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ing on the cost ratio, proving that our algorithm is the best possible trackless
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1 Introduction

The weighted � -server problem was introduced by Fiat and Ricklin [8]. In this

problem, we are given a metric space �������	��

� with � mobile servers, and each

server ��� has a weight ������� . Here � is a set of points and 
 is a distance function

(metric). At each step, a request ����� is issued that has to be served by one of

the servers by moving to � . The cost for server � � to serve request � is 
�������� � � ��� � .
This problem is an on-line problem: each time that there is a request, it needs to be

served before the next request becomes known. We denote the cost of an algorithm

ALG on a request sequence ! by ALG ��!"� . We denote an optimal off-line algorithm

that knows all the input in advance by OPT. The goal of an on-line algorithm # is

to minimize its competitive ratio $%�&#'� , which is defined as the smallest value $
that satisfies

#(�)!"�+*,$-� OPT ��!"�".,/��

for any request sequence ! and some constant / (independent of ! ).

In [8] a doubly exponential upper bound in � is given for uniform spaces. Fur-

thermore, for the special case where only two weights are allowed, a �10�24365 com-

petitive algorithm is presented. They also show that the competitive ratio is at least

�87924365 in any space with at least �:.�; points. In [11], a simple upper bound of

�<��=�>@?BA��1C �4D is proven for the general case, where �EC �4D is the minimal and �E=�>@?
is the average weight of the servers.

The special case of two servers and uniform spaces was investigated in [7].

There a 5-competitive version of the Work Function Algorithm and matching lower

bound, and a 5-competitive memoryless randomized algorithm and matching lower

bound are presented.

All previous work (except the simple result of [11]) focuses on the asymptotic

case where the ratio between the weights of the servers tends to F . We consider in-
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stead the case of smaller ratios and obtain the surprising result that for the weighted

2-server problem in a uniform space, an algorithm that uses both its servers equally

is best possible as long as the ratio between the weights is at most 2.2.

We also consider the more general case, where we have � servers with speed

1 and � servers with speed � . The total number of servers is
� � . Since we only

investigate uniform spaces, the problem can also be seen as a caching problem

where we have two caches of size � : the cheap cache � , and the expensive cache
�

. This type of cache is called a two-level cache [1, 5]. For this reason, we borrow

some terminology from caching theory. We formulate our problem as follows. The

algorithm has to serve a sequence of requests for pages. If the requested page is

not in either of the caches, then we have to put it into one of the caches, evicting

a page from the chosen cache if it is full. This event is called a fault. The set of

possible pages is called the slow memory. Moving a page into � has cost 1, and

moving a page into
�

has a cost of ��� ; .
All of the previous algorithms for the weighted server problem store informa-

tion about most of the previously requested points: the algorithm SAMPLE of [8]

has a counter of the points, in the work function algorithm of [7] this information

is coded in the work function. This yields that these algorithms might have an ex-

tremely large space requirement if there is a large number of different requested

points. Moreover, and more importantly, they perform very slowly. For the origi-

nal k-server problem, a class of algorithms called trackless is introduced in [3] to

avoid this problem.

Definition Trackless algorithms are algorithms that for each request receive as

input only the distances between current server positions and the request point.

A trackless algorithm may memorize such distance values, but it is restricted

3



from explicitly storing any points of the metric space. This also means that it must

be lazy: only moving one server for each request that occurs.

For the special case of uniform spaces, the trackless property changes into the

rule that the algorithm is not allowed to use bookmarks in the slow memory to

distinguish between the pages. This means that in the case of a fault, the decision

as to which cache is used for the requested page and which page is removed from

this cache must be independent of the requested page itself. This restriction seems

to be very strong at first look, but we must note that for paging the best possible

deterministic marking algorithms are trackless [9], and even for the more general

web caching problem the best possible algorithm is trackless [13]. Randomized

trackless algorithms for the paging problem are investigated in [2]. It is shown that

it is necessary to use bookmarks to reach the best possible ������� competitive ratio.

Our Results:

The results we show in this paper are as follows:

For � � ; we introduce a trackless algorithm which is based on the well-known

paging algorithm FIFO. As mentioned before this algorithm has best possible com-

petitive ratio for � * ��� � . Specifically it has competitive ratio �	��

� � ��� � ; .�� � A���� .
We also analyze a modified version of the other well-known paging algorithm LRU,

and we obtain that in the weighted case FIFO is better than LRU, which has the

competitive ratio ; .�� . This is in sharp contrast to the intuition from previous lit-

erature [6] and practice. This surprising result hints that even in practice it might be

the case that two-level caches (of relatively small size) would work more efficiently

using FIFO rather than using the standard LRU. A third algorithm we study is an

adaptation of the widely known algorithm BALANCE. We show that BALANCE

performs even worse than LRU for infinitely many values of � (its competitive ra-
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tio is
� � for even values of � ). All the above results hold for � �-; , however the

adaptations of FIFO and LRU are defined not only for � � ; but also for general

values of � .

Next we move on to trackless algorithms and � � ; . We show that for such

algorithms the competitive ratio must grow (at least) linearly as a function of � �
(it is at least � � ;1.�� �@A � for � � � and at least � A � . ; for � � ; ). For the sake

of completeness we also show a simple upper bound of � � ; . � � for general �

(which is a special case of the upper bound from [11]), pointing out that all marking

algorithms (including our version of LRU) are best possible trackless algorithms up

to a constant factor 2 (in terms of competitive ratio). The proof also holds for our

version of FIFO.

2 Marking Algorithms

To begin with, we give a simple proof for the competitiveness of marking algo-

rithms, which is a special case of the bound from [11].

We first partition the request sequence into phases in the following well-known

way: each phase � � ; is the maximal subsequence of the request sequence that

contains requests to at most
� � distinct pages, and that starts with the first request

after phase ��� ; ends. Phase 1 starts with the first request of the sequence.

The marking algorithms, which are defined in [9], unmark all the pages in

the caches at the beginning of each phase. When a page from one of the caches

is requested we mark it. If there is a fault, then we evict some unmarked page

(determined by the algorithm), load the requested page and mark it. From the

definition of the phase partitioning, we can see that a phase is ended when we have

a fault and every page in the caches is marked. We unmark the pages and the new

phase is started.
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Theorem 2.1 For any marking algorithm # , $ ��#'�'* � � ; . � � . Moreover, we

also have $ � FIFO �+* � � ; . � � .

Proof. Every marking algorithm has a cost of at most � � ;9. � � per phase, whereas

OPT has a cost of at least 1 per phase. This also holds for FIFO. �
3 Two Servers

It is possible to adapt the well-known paging algorithms FIFO and LRU for the

current problem by considering the two caches as one big cache and ignoring the

difference in costs. We denote these adaptations also by FIFO and LRU. We begin

by proving the following theorem.

Theorem 3.1 For � � ; ,

$ � FIFO �8� � � 

�
� � �� � ; .�� ��� �

Definition 3.1 A relevant request sequence is a request sequence on which FIFO

faults on every request.

We can map any request sequence ! onto a relevant request sequence !�� by

removing all requests on which FIFO does not fault. This does not affect the cost of

FIFO or its decisions: a request in ! � is put into the cheap cache by FIFO if and only

if FIFO puts the corresponding request in ! in the cheap cache. Hence FIFO �)!�� � �
FIFO ��!"� . Moreover, OPT ��!�� � * OPT ��!"� . Therefore we only need to consider

relevant request sequences to determine the competitive ratio of FIFO. Note that for

a relevant request sequence, a phase always consists of two consecutive requests.

W.l.o.g. we can assume that OPT only loads a page when it is requested and OPT

does not have it in a cache.
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Lemma 3.1 Any three consecutive requests in a relevant request sequence are to

distinct pages.

Proof. If this were not the case, FIFO would not fault on every request.

Lemma 3.2 Suppose ��� � � � ����� is a relevant sequence. For any ; * � *	� � � , OPT

faults on at least one of the requests ��

� � and ��

��� .

Proof. We use Lemma 3.1. If OPT does not fault on � 
�� � , then it has � 
 and � 

� �
in its cache after the request for � 
 . Thus OPT must fault on � 

��� , since that is a

different page. �
Definition 3.2 A relevant interval is a maximal subsequence ��� � � 
����� 
�� of a request

sequence with the following property: OPT faults on ��
���� � � � � � � � ��� � � � .

By Lemma 3.2 we can partition any relevant sequence into relevant intervals.

Here we assume that both OPT and FIFO start with empty caches. Note that all

relevant intervals (except possibly the very last one) end with a fault by OPT, and

have odd length.

Lemma 3.3 Consider a relevant interval � of length � ��� � ��� and write  �
! � ��� � A���" . Then OPT has at least  expensive faults on � .

Proof. Partition � into  subintervals of length 4, followed by one final subinterval

of length at most 3. Consider a subinterval of length 4. It has the form

#%$'& 


where OPT faults only on � and / . Thus 
 is already in OPT’s cache when it is

requested. By Lemma 3.1, 
)(� $ and 
)(� / . Suppose 
)(�*� . Then after OPT loads

� , it must have both � and 
 in the cache. Since $ (�+� by Lemma 3.1, this means
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OPT faults on $ , a contradiction. Hence 
	� � . Since � remains in the cache when

OPT serves / , either � or / must be loaded into the expensive cache by OPT.

Therefore OPT has at least one expensive fault per subinterval. �
Lemma 3.4 For any relevant request sequence ! of length � , we have

OPT ��!"� � � ���
� �
� �
; .��
� ��� � �

Proof. We partition ! into relevant intervals. Consider any relevant interval �
and denote its length by � � �<� . We show that for each such interval, OPT ��� � �
� ��� � � A � ��� ; . � �@A �<� � � ��� � .

If � ��� �8� ; , OPT ��� � � ; � � A � . If � ��� � � � , OPT � �<� � � � �� � � .

Suppose � � �<� � � , and write  (� ! � ��� � A ��" . We use Lemma 3.3.

If � ��� �(� �  . ; then OPT has
�  . ; faults, among which at least  are

expensive. This is a cost of �  '. ; .  � � A � �  '. ; � per request.

If � ��� �(� �  . � then OPT has
�  . � faults, among which at least  are

expensive. This is a cost of �  '. � .  � � A � �  '. � � per request.

Both of these are at least � ; . � � A�� or at least
� A�� . �

Lemma 3.5 For � � ; , $ � FIFO �+* �	��
9� � ��� � ; .�� � A��
� �

Proof. Consider a relevant request sequence ! . We partition ! into phases, and

compare the cost of FIFO to the average cost of OPT per phase. By Lemma 3.4,

we have that OPT ��� � � � ��� � �<A � ��� ;8. � � A � � for any phase � on average. We also

have FIFO ��� � � ; . � exactly. Therefore, $ � FIFO �+* � � 
9� � ��� � ; .�� � A��<� . �
We now show a general lower bound for FIFO, that holds if both the cheap

cache and the expensive cache have some size � � ; .

Lemma 3.6 For � � ; ,

$%� FIFO � � �	��

�
� �"�
� � . ;� � . � � � ; . � � � �
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Proof. Consider the following request sequence:

� ; � � � � � � � . ; �
� �

We define two different offline strategies to serve this sequence, and use one or the

other depending on � .

For � � � � �'. � �@A � � � . ; � , OPT has ; � � � � � � in the cheap cache at the start,

and �'. ; � � � � � � � in the expensive cache. OPT only faults on pages ; � � � � � � and
� �9.:; , each time evicting the page from this set which will be requested the furthest

in the future (LFD [4]). In
� � . ; phases, there are

� � � � � . ; � requests in total

and
� � � � . ; � requests to pages ; � � � � � � and

� � . ; . OPT has a fault once every

� requests to these pages, so it has
� � � . ; � faults in

� � . ; phases.

FIFO pays � � ; . � � per phase, so by letting
�

grow without bound we find

$ � FIFO � �
� � . ;� � . � � � ; . � � �

For ��� � � � . � � A � � � . ; � , OPT uses its entire cache in a round-robin fashion.

Thus OPT pays on average � ; . � � A � per FIFO phase, so

$%� FIFO � � � � � �
Proof of Theorem 3.1. This follows from Lemma 3.6 for the case � ��; and from

Lemma 3.5. �
FIFO cannot have best possible competitive ratio for every � since according

to [7] there exists a constant competitive algorithm whereas the competitive ratio

of FIFO grows linearly with � . However for relatively small values of � , FIFO has

best possible competitive ratio.

Theorem 3.2 FIFO is a best possible on-line algorithm for the weighted server

problem and � ��; in the interval ; * � * � � ��� A�� � ; A �
	 ��� ; � ��������� .
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Proof. We prove a general lower bound that matches the upper bound of FIFO from

Theorem 3.1. This even holds for a 3-point space.

We construct a sequence of requests, which consists of requests for at most

three different pages: 0, 1 and 2. Consequently there are 6 different possible con-

figurations of the cache. Two basic ingredients for the proof are similar to the

lower bound for the � -server problem [10]. Many new ingredients are added to the

analysis, that becomes more involved for the related case.

As in [10], the sequence of requests is constructed in such a way that the on-line

algorithm has a fault in every request. That is, in each step a request is added for the

only page that is not present in either of the two caches of the on-line algorithm. In

order to give a lower bound on the general (not strict) competitive ratio, we build a

long enough sequence. Note that the on-line cost of such a sequence of
�

requests

is at least
�

. Another similarity to [10] is a comparison of the on-line algorithm

to several off-line algorithms. We keep five off-line algorithms that all process the

complete sequence along with the on-line algorithm, and consider their average

cost. This is a lower bound for the optimal off-line cost.

A sequence of requests that is constructed in this way can be transformed into

a sequence of costs that the on-line algorithm pays in every step. We define a cost

sequence as a sequence of ; ’s and � ’s, where 1 indicates a fault of the cheap cache

whereas � indicates a fault of the expensive cache. Given a starting configuration

of the on-line algorithm (without loss of generality ��� ��� � and
� � �
;�� ) and a

cost sequence, it is easy to recall the request sequence. We define a set of pattern

sequences � which consists of a finite number of cost sequences of bounded length

� . The patterns in � form a prefix code. In other words, there is a unique way to

partition any cost sequence into members of � (a remainder of length at most � �%;
might be left over). We call the points in the cost sequence where a member of �

ends ‘breakpoints’. The starting point of the complete sequence is also considered
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a breakpoint.

Besides having to serve the request sequence, a second requirement from the

off-line algorithms is that at every breakpoint, each of the six algorithms (that is,

the five off-line algorithms and the on-line algorithm) have a different configura-

tion. This means that at every breakpoint, exactly one algorithm has each possible

configuration. Note that we do not require a certain order among the configurations

of the off-line algorithms.

For each of the patterns � � � , we compute the cost of the on-line algorithm

on � and compute the cost of the five off-line algorithms to serve all requests and

end up in a valid configuration (i.e. so that all six final configurations are again

all different). Note that this gives room to the off-line algorithms to choose which

configuration each of them ends up in, and there are � � � ; � � possibilities.

As we need to show a lower bound of $ , we compare the on-line cost on � ,

denoted by ONL ��� � , to the total cost of the off-line algorithms FIVEOFFS ��� � , and

show � � ONL � � � � $ � FIVEOFFS ��� � . This implies that for the total off-line cost

we have

FIVEOFFS �)!"�+* �
$ � ONL ��!"�". � � ; . � �". � � � � ; � � �

The value � � ; . � � is the setup cost of the five off-line algorithms to reach the

correct starting configurations, and � �)� � ; � � is an upper bound on the cost of

serving the ‘remainder’ of the request sequence which is not a pattern in � . As

OPT is an optimal off-line algorithm, its cost is at most the average cost of the five

off-line algorithms and so OPT ��!"�+* ; A�$ � ONL ��!"�". ; .,��� . We get that

ONL ��! � � $ � OPT ��!"� � ; � ��� �

It is left to show the sets � that imply the lower bound. We show a pattern set

� � that proves a lower bound of
�

for every value of � in the interval � ; �
� A���� , and a

11



pattern set � � which proves the lower bound � � ; .(� � A�� for every value of � in the

interval � � A � � � � � ��� ��� � A���� . See Table 1. The upper limit of the second interval

is the solution of the equation
�
� � ; . � � � � � � � . �
� A ��� . � � � (line 11 in the

second table). To check that those patterns are indeed valid (give the correct lower

bound on the competitive ratio) it is only required to solve a linear or a quadratic

equation for each pattern � . It is also easy to see that both pattern sets form a prefix

code. The cost of the on-line algorithm follows directly from the pattern whereas

the off-line costs require a short proof. The details of that are omitted. �
Pattern � ONL ��� � FIVEOFFS ��� �
; ; ; � �

� � ; � ��. ; � � . �
; ;�� � . � � . �
� � � �B� � � . �
� ; ; ; � . � � . �
� ;�� ; � ��. � �B� . �
;�� ; � � ��. � �B� . �
;�� � ; � ��. � � � .��
� ; ; � � ��. � � � .��
� ; � � �B��. ; � � . �
; � � � �B��. ; � � .��
;�� ; ; ; � .�� � � .��
;�� ; ; � ; ; � ��. � � � . ; �
; � ; ;�� � ; �B��. � � � . ; �
; � ; ;�� ; � �B��. � ��� . ; �

; � ; ; � � � � ��. � �B� . ; �

Pattern � ONL ��� � FIVEOFFS ��� �
� � ��. �

; ;�� ��. � ��. �
;�� � � � . ; �
; ; ; ; � �

; ; ; � ��. � ��. �

; � ; ;�� � � . � ;��
; � ;�� � � � . � � . ; �
;�� ; ; ; ; ��. � � . ; �
; � ; ; ; � � � . � � ��. ; �

;�� ; � ;�� � � . � � �
;�� ; � ; ;�� � � . � � . � �
;�� ; � ; ; ; ; � � . � ����. ; ;
;�� ; � ; ; ;�� � � . � �B��. ; �

Table 1: Left are the patterns for � � � ; �
� A � � , right for � � � � A � � ��� ; � ��� � ��� � .

12



Even though all the data was carefully verified, the origin of the pattern sets

is a computer program we used. The program performs an exhaustive search on

all 120 permutations and finds the cheapest cost of the off-line algorithms for each

possible pattern. The result given here is an output of the program when it checked

all patterns up to a length of 11. Using this program for patterns of length 13, we

also found that FIFO is best possible for � * ��� � ��� . An extension of the program

for patterns of length at most 15 improves the bound by a negligible amount.

Interestingly, it is possible to show that under the current model LRU is strictly

worse than FIFO, in contrast to the model in [6]. We have the following result.

Lemma 3.7 $%� LRU � ��; . � .

Proof. The upper bound follows from Theorem 2.1.

Denote the starting caches of LRU by � � � ��� and
� � � ; � . Without loss

of generality, we may assume LRU starts by using the cheap cache. We use the

following sequence: � � � � ; � ; � � . For one iteration of this sequence (six requests),

LRU pays
� . � � . On the other hand, an offline algorithm can keep 0 in

�
at all

times and only pay 2 per iteration. By letting
�

grow without bound, we get the

desired result. �
Note that the lower bound from Lemma 3.6 also holds for LRU, so for large

� both algorithms have a competitive ratio that tends to � � ; . � � . We end this

section with a short analysis of two other natural algorithms. When � is large, it is

tempting to use an algorithm which uses only the cheap cache, i.e. each time there

is a page fault, the algorithm replaces the page in � by the requested page. This

algorithm is not competitive at all. Consider the on-line cache in the beginning of

the sequence, and denote � � � ��� and
� � � $ � . Let / and 
 be pages such that

all four pages � � $ ��/��@
 are distinct. The sequence simply alternates between pages

/ and 
 . Let
� �

be the length of the sequence. Then the cost of the algorithm is
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� �
, whereas OPT can initialize its caches by � � ��/ � and

� � � 
�� and pay only

; . � . As
�

grows, the ratio of the costs grows without bound.

Another natural option is to apply the BALANCE algorithm, trying to balance

the costs of the two caches. As BALANCE performs as well as LRU and FIFO for

� � ; (competitive ratio
�

for paging), it is interesting to see how it performs for

other values of � . The modified definition of BALANCE for � � ; is as follows:

Keep a counter for each place in the cache ( ��� and ��� ). On a page fault, if

��� . ; *����'. � , replace the page in � and increase ��� by 1; otherwise replace

the page in
�

and increase ��� by � .

Lemma 3.8 The competitive ratio of BALANCE is at most
� � . This is tight for

infinitely many values of � .

Proof. We again reduce a request sequence ! to a relevant request sequence and cut

it into parts determined by the behaviour of BALANCE. Each part contains some

number of cheap faults followed by one expensive fault by BALANCE, except for

the last part which might not contain an expensive fault. Let
�

be the number

of parts that contain an expensive fault. The cost of BALANCE consists of two

amounts; cost for cheap faults and cost for expensive faults. These are stored in

��� and ��� . It is easy to show that after a page is put into
�

(i.e. at the start

of a new part), we have � � *	� � �
� � . ; . Hence the cost of BALANCE is

� � .�� � * � � � � � � � . To give a bound on OPT, note that there are
�
� ;

subsequences where BALANCE has a cheap fault followed (immediately) by an

expensive fault followed by a cheap fault (of the next part). These 3 faults must

be on 3 distinct pages and hence OPT must have at least one fault, or
�
� ; faults

in total. Consequently, the competitive ratio approaches
� � as the length of the

sequence grows.
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To show tightness we consider (integer) even values of � , say � � ��� � � ��� .

Let � � � ��� and
� � � ; � the initial configuration of BALANCE. The sequence

consists of
�

parts, each of which is the sequence � � � ��� � � ; � ���
; . BALANCE has

a fault on every request and pays � � for each part. However, an offline algorithm

can keep 0 in
�

at all times and only have two faults per part. This gives the

competitive ratio
� � . �

4 Lower Bounds for Trackless Algorithms

In this part we prove a lower bound for trackless algorithms which is linear in � � .

First we prove the lower bound for the case � ��; , and then for general � .

Theorem 4.1 For � � � , any trackless algorithm for � � ; has a competitive

ratio of at least � A � . ; .

Note that for � � � , we can use the general lower bounds of the previous section.

Specifically Theorem 3.2 gives a lower bound of 2 for the complete interval ;(*
� * � .
Proof. We construct a sequence in pieces, and bound the ratio for the pieces by

presenting an offline algorithm OFF to serve each piece. We have a distinguished

page denoted by � , this page is kept in
�

by OFF, and is never placed into
�

by

ONL. The configurations of the caches are called inverse if the caches of OFF are

in the configuration
� � ��� � , �-� � � � and the caches of ONL are in

� � � � � ,
� � ��� � for some page

�
. Each piece starts and ends when the algorithms are in

an inverse configuration.

The first inverse configuration can be reached as follows. Denote the page that

ONL has in cache � by � and the page that it has in
�

by $ . Then, if this is not

already the case, OFF loads � into
�

and $ into � . Thus OFF has a startup-cost of
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at most ; . � . We are now ready to start the first piece.

Suppose the caches are ONL � ��� ��� �
� � � � $ ��� OFF � ��� � $ � � � � ��� � .
Denote the requests in the current piece by �<� ( ��� ; � � � � ). We take � �+� / . We use

a case analysis. We will consider pieces of the following forms, where the letter

denotes the cache used by ONL for the current page:

1.
�

2.1. � � D � and � � D for � � ;

2.2.1. � � �

2.2.2. � � followed by a piece of the form 2.1, 2.2.1 or 2.2.2.

Case 1 / is placed by ONL into
�

. OFF loads / into � and the piece ends. The

configuration is inverse and the cost ratio during this piece is � � � A � .�; for

��� � .

Case 2 / is placed by ONL into � .

Case 2.1 Request � � is placed by ONL into
�

. Then � � � 
 . Denote by � � the

number of pages which are placed into
�

by ONL after this request. These � �
requests are alternating between $ and 
 , and � ��� � � � � . (If ONL never puts

another page into � , then this is the last piece. By extending it arbitrarily long, the

ratio for this piece tends to � � � A � . ; .) After request � � � � � we are again in an

inverse configuration. During this piece the cost of OFF is � � . � , and the cost of

ONL is � � � . ; � ��. � . Therefore the ratio is at least � A � . ; .
Case 2.2 Request � � is placed by ONL into � . Then � � �*� .

Case 2.2.1 � � is placed into
�

. Then � � � 
 , and the piece is ended. OFF has cost
�
, and ONL has a cost of � . � .

Case 2.2.2 � � is placed into � . Then � � � / , and we are at the same configuration

as we were after the first request for / (the start of case 2). During this loop OFF
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has cost � , and ONL has cost
�
. We can therefore ignore this loop and continue

as at the start of case 2. If ONL never puts another page in
�

, then this is the last

piece. By extending it arbitrarily long, the ratio for this piece tends to F .

Since we considered all the possible cases, and the ratio of the costs is at least

� A � . ; in all cases, we are done. �
Theorem 4.2 Any trackless algorithm for � � � has a competitive ratio of at least

� ��� . ; �@A � .

Proof. Consider an arbitrary trackless online algorithm. Consider two sets of

pages, � � ��� � � � � � � ��� � � � and ��� � $ � � � � � � $ � � � � . The sequence is constructed

in such a way that the online algorithm always has pages from � in � , and pages

from � in
�

. If the algorithm will place the next page into � , then this request is

to the page from � which is not currently in � . Otherwise, the request is to the

page from � which is not currently in
�

.

Consider a long sequence of requests produced by this rule, denote by � the

number of online faults in C, and by � the number of online faults in E. Then ONL

has a cost of �	. � � .

To estimate the offline cost for the request sequence, we consider two offline

algorithms. The first algorithm OFF � uses
�

for � � � � � � � � � and one memory cell

from C for � � � � . Furthermore it uses the other � � ; cells (called active cells)

for serving the requests for � , always evicting the page from � which will be

requested the furthest in the future (LFD [4]). The other offline algorithm called

OFF � works in the same way, but with the roles of � and � interchanged. Thus

OFF � has the pages from � continuously in its cache.

Consider first the cost of OFF � . It has at most � � . ; cost on the requests from

the set � , and a starting cost of � � ; , placing the first � � ; requests for the pages

from set � . We can bound the remaining cost in a similar way as it is done in [12].
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We partition the sequence of requests to pages in � into subsequences of length �

called � -parts. Consider a � -part. Suppose there is a request for a page from � ,

which is not contained in the � � ; active cells of OFF � . Consider the first such

request in the � -part. Denote the set of active cells after servicing this request by

� � , the evicted page by $ � , and the remaining element of ��� � � ��� � $ � ��� by $ 
 . If

during the rest of this � -part there is a request for $ 
 , then there will be no other

fault in the � -part: by the LFD rule there is no further request for $ � or for the page

which was evicted when $ 
 was placed into the cache. On the other hand, if there

is no request for $ 
 , then there is no fault during the next � � � requests (there is

no request for $ � ).
This yields that OFF � has at most

�
faults during a � -part. Therefore we showed

that the cost of OFF � is at most � ����.%; � .�� � � A ��� . Similarly, OFF � has a cost of at

most � ��� .,; ��.�� � � A ��� . Therefore, we obtained that the optimal offline cost is at

most � ��� . ; � .	� � � � � ��� � � �@A ��� . By considering arbitrarily long sequences, where

we have �	. ��
 F , we find that the competitive ratio of any on-line algorithm is

at least
�	. � �� � ��� � �"� � � A � �

� ; . � � �� �

which ends the proof. �
Corollary 4.1 Any trackless algorithm has a competitive ratio at least half that of

any marking algorithm.

5 Open problems

It would be interesting to find out what is the lowest value of � such that FIFO

is no longer best possible. There must be such a value since FIFO (and trackless

algorithms in general) cannot be best possible for all � .
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Very little is known about server problems in more general spaces. It might be

interesting to examine the problem of two servers with a small weight ratio also in

other spaces.

Also, the complexity of the offline version of this problem is unknown.
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