Multi-dimensional packing with conflicts

Leah Epstein Asaf Levin Rob van Stee
August 8, 2007

Abstract

We study the two-dimensional version of the bin packing fwbwith conflicts. We are given a set
of (two-dimensional) squard§ = {1,2,...,n} with sidessy, ss...,s, € [0,1] and a conflict graph
G = (V, E). We seek to find a partition of the items into independentafets where each independent
set can be packed into a unit square bin, such that no two egjpacked together in one bin overlap.
The goal is to minimize the number of independent sets in éngtion.

This problem generalizes the square packing problem (irchvhie haveE = () and the graph
coloring problem (in whichs; = 0 forall : = 1,2,...,n). Itis well known that coloring problems on
general graphs are hard to approximate. Following prewiark on the one-dimensional problem, we
study the problem on specific graph classes, namely, bipgraphs and perfect graphs.

We design &+¢-approximation for bipartite graphs, which is almost bestgible (unles® = N P).
For perfect graphs, we design a 3.2744-approximation.

Topic: Algorithms and data structures

1 Introduction

Two-dimensional packing of squares is a well-known problasith applications in stock cutting and other
fields. In the basic problem, the input consists of a set ab{@imensional) squares of given sides. The goal
is to pack the input into bins, which are unit (two-dimensijrsquares. A packed item receives a location
in the bin so that no pair of squares have an overlap. The gadalminimize the number of used bins.

However, in computer related applications, items oftemasgnt processes. These processes may have
conflicts due to efficiency, fault tolerance or security tees In such cases, the input set of items is accom-
panied with a conflict graph where each item corresponds trtex: A pair of items that cannot share a
bin are represented by an edge in the conflict graph betwedmthcorresponding vertices.

Formally, the problem is defined as follows. We are given ao$dtwo-dimensional) squarelg =
{1,2,...,n} whose sides are denoted by s, . .., s, and satisfys; € [0,1] forall 1 < i < n. We are also
given a conflict grapiG = (V, E'). A valid output is a partition of the items into independeetssof G,
together with a packing of the squares of each set into a quérg bin. The packing of a bin is valid if no
two squares that are packed together in this bin overlap gbhkis to find such a packing with a minimum
number of independent sets.

*Department of Mathematics, University of Haifa, 31905 ldaléraell ea@mat h. hai fa. ac.il.

fDepartment of Statistics, The Hebrew University, Jeruss¢905, Israell evi nas@mscc. huji.ac.il .

iDepartment of Computer Science, University of Karlsruhef@28 Karlsruhe, Germanywanst ee@ r a. uka. de. Re-
search supported by the Alexander von Humboldt Foundation.

This problem is a generalization of the square packing probll], whereE = (), and of the graph
coloring problem, where; = 0 foralli = 1,2,... n. It is well known that coloring problems on general
graphs are hard to approximate. Following previous workhendne-dimensional problem, we study the
problem on specific graph classes, namely, bipartite graptiperfect graphs.

For an algorithmA, we denote its cost on an inpitby A(), and simply byA, if I is clear from the
context. An optimal algorithm that uses a minimum numberiotlis denoted byPT. We consider the
(absolute) approximation ratio that is defined as follow$ie Tabsolute) approximation ratio gf is the
infimum R such that for any inpuf, A(I) < R - oPT(I). We restrict ourselves to algorithms that run
in polynomial time. The asymptotic approximation ratio efided adim sup sup {%]OPT(I) = n}

n—oo I

The absolute approximation ratio is useful when no inputsbEneglected. The asymptotic approximation
ratio is used for problems where only the behavior of therilgm for large enough inputs is of interest.
Bin packing algorithms are typically measured using thergagtic approximation ratio. However, coloring
algorithms are usually measured using the absolute appatixin ratio. Following previous work on (one-
dimensional) packing with conflicts, we address the absapproximation ratio in this paper.
One-dimensional packing without conflicts . The one dimensional problem (where both items and bins
are one-dimensional rather than squares) was introduct iearly 70’s [28, 7, 5]. Many variants of this
problem has been studied ever since.

One-dimensional packing with conflicts . The one dimensional problem was studied on several graph
classes, including perfect graphs and bipartite graphssedaandOhring [16] introduced the problem and
designed approximation algorithms which work in two phasHse first phase is a coloring phase, where
the graph is colored using a minimum number of colors. In #e®osd phase, each independent set (which
corresponds to a color class) is packed using a bin packgaitdim. Using this method, they obtained a
2-approximation algorithm for bipartite graphs and a Zopraximation algorithm for perfect graphs.

In [8], improved algorithms were designed. It was shown thatapproximation ratio of the algorithm
of [16] for perfect graphs is actually approximately 2.68dd a2.5-approximation algorithm was designed.
The algorithm applies a matching phase in which some panedatively large items are packed in dedicated
bins, and applies the methods of [16] as above on the rengggningraph. An improved 1.75-approximation
for bipartite conflict graphs was achieved by applying thgoathm of [16] on inputs with large enough
values ofoPT, while finding better solutions for inputs with small valug#fsopPT.

Several papers [16, 15, 8] contain further results for it graph classes. The paper [16] considered
a class of graphs, on which tHFRECOLORING EXTENSIONproblem, where every precolored vertex is
assigned a different color (see [13, 21, 22]), can be solvedliynomial time. In this problem a graph is to be
colored using a minimum number of colors with the constrtiat some vertices already have given colors
(a different color to each such vertex). This class contalmsrdal graphs, interval graphs, forests, split
graphs, complements of bipartite graphs, cographs, paftimees and complements of Meyniel graphs. For
these graphs, they designed a 2.5-approximation algorithioh is based on solving thHeRECOLORING
EXTENSION problem, mentioned above, on the graph (where the itemzefiaiger than} are precolored
each with a different color). In [8] an improve§approximation algorithm, which is based on a pre-
processing phase in which subsets of at most three itemsekeg into dedicated bins, was designed.

For alle > 0, Jansen an®hring [16] also presented @ + ¢)-approximation algorithm for one-
dimensional packing with conflicts on cographs and parialrees. Jansen [15] showed an asymptotic
fully polynomial time approximation scheme for the one-dimsional problem od-inductive (also called
d-degenerate) graphs, whetes a constant. Ad-inductive graph has the property that the vertices can be
assigned distinct numbets. . . , n such that each vertex is adjacent to at mbkiwer numbered vertices.
This includes the cases of trees, grid graphs, planar gaphgraphs with constant treewidth. Additional

papers [25, 23] studied the one-dimensional problem onhgr#mat are unions of cliques, but their results
are inferior to work of Jansen ar@hring [16].

Hardness of approximability for packing without conflicts. The inapproximability results known for
the two-dimensional and one-dimensional packing problamsas follows. Since standard bin packing
(two-dimensional packing of squares and one-dimensioaekipg, respectively), is a special case of the
problems with conflicts, the same inapproximability resdiblds for them as well. This means that the
one-dimensional problem cannot be approximated up to arfacballer than%, unlessP = NP, (due to

a simple reduction from theAarTITION problem, see problem SP12 in [10]). Also, the two-dimeraion
problem cannot be approximated up to a factor smaller thamlessP = N P, since it was shown in [20]
that given a set of squares, itA6P-hard to check whether these squares can be packed intorariEhgise
results hold for the graph classes we consider since an egngth (i.e., a graph with an empty edge set) is
both bipartite and perfect.

Square packing without conflicts. Square packing was studied in many variants. An algorithm of
approximatior (best possible unles® = N P) was shown in [29]. Unlike coloring problems, bin packing
is often studied with respect to the asymptotic approxiomatatio. An asymptotic approximation scheme
was given by Bansal et al. [1, 2, 6]. This was the last restdtr & sequence of improvements [4, 17, 3, 18,
27,9].

Our results. In this paper we design the first approximation algorithmshipartite graphs and perfect
graphs. Prior to this work, no approximation algorithms $quare packing with conflicts on any conflict
graph were known. For bipartite graphs, we give an algoritfimpproximation rati® + ¢ for anye > 0.
Note that unlike the one-dimensional case, this is almost pessible unles® = N P. The algorithm
chooses the best solution out of several algorithms, whiehlesigned for various values oPT.

Our main result is for perfect conflict graphs, for which weide algorithms with clever pre-processing
phases. We analyze an algorithm which chooses the bestosotutt of the outputs of all the algorithms
we design. This results in an algorithm of approximatioiorat most3.2744. The only property of perfect
graphs used by our algorithm is the existence of a polynotimied algorithm which finds a valid coloring
of the graph using a minimum number of colors. An algorith@ait finds such a coloring for perfect graphs
is implied using the ellipsoid algorithm [11] (see also deaf®7 in [26]). Our algorithm is valid not only
for perfect conflict graphs, but for any class of conflict grsyfor which a minimum coloring can be found
in polynomial time.

2 Bipartite graphs

In this section, we present an algorithm and analysis foct#se where the conflict graph is bipartite, and
establish the following theorem.

Theorem 1 For everye > 0, there exists a polynomial time approximation algorithm quare packing
with conflicts, where the conflict graph is bipartite, withpapximation ratio of at mos2 + «.

The algorithm will use the well-known square packing altfori NEXT FIT DECREASING (NFD) [24]
and a natural variant of it, IRST FIT DECREASING (FFD), as subroutines. We begin by giving some
properties of these two algorithms in Section 2.1. In Secf®, we introduce a new algorithm called
SixEleven, which is a variation of FFD which packs itemsefiéintly in one special, crucial case. This helps
to get a better area guarantee in a bin packed with SixEla¥enthen describe our main algorithm for the
case®PT = 1 andoPT = 2 (Section 2.3)pPT = 3 (Section 2.4)pPTis a constank > 3 (Section 2.5) and

finally the case wherePTis not constant (Section 2.6). Since the valuepf is unknown to the algorithm,
the algorithm needs to apply all these possibilities andragribese that output a valid solution, choose the
one with the smallest cost. We will therefore assume dimatis known to the algorithm (but make sure that
the number of different algorithms applied is constant).

2.1 NFD and FFD

NFD packs items in slices, which are rectangular regionheflin of width 1 that are stacked on top of
each other starting from the bottom of the bin. The height siice is defined as the side of the first item
packed into it. Each item is packed immediately to the righthe previously packed item, or in the next
slice in case it does not fit in the current slice. When a negesloes not fit in the current bin, a new bin is
opened for it. FFD works the same, but tries to put each newiiteeach slice that has been opened so far
(to the right of the last item in the slice) instead of onlyirtigy the last slice or a new one. Regarding NFD
and FFD, we have the following results.

Lemma 1 (Meir & Moser [24]) Let L be a list of squares with sidag > 2o > ... ThenL can be packed
in a rectangle of height > x; and widthb > x; usingNEXT FIT DECREASING if one of the following
conditions is satisfied:

e the total area of items it is at mostz? + (a — x1)(b — z1).

e the total area of items i is at mostub/2.

In the following, we will abuse notation and useto denote both théh item in the input and its side, i.e.,
the length of one of its sides.

Lemma 2 (van Stee [29])Consider a bin that is packed by NFD, and suppose the largesst in this bin
has side at most 1/3. If after packing this bin, there aré stipacked items with side at mc%teft, then the
total area of the items in the bin is at least16.

A hereditarycondition on an inpuf is a condition which still holds if we remove some items frénin
particular, the conditions in Lemmas 1 and 2 are all hergditan area guarantee for algorithm .4 means
that if we apply.4 on an input/ and.A(I) needs at least two bins then it uses at least one bin to pauk ite
whose total area is at legst The following technical lemma helps in the analysis of $exten.

Lemma 3 Suppose we are given an area guarantee for NFD on idrid rectangleR that depends only
on hereditary conditions, as long as not all items are padkeB. Then this area guarantee also holds for
FFD.

Proof Consider an inpuf = {z1,...,x,} and suppose that NFD as well as FFD do not pAdk one
bin. Denote byl’ C I the subset which is packed in the first bin by FFD. We createnaimgut 1"/ C I’
from I’ as follows. Remove froni’ any item that is placed in an old slice by FFD, that is, not thestm
recently started slice. Denote the last (smallest) iterf’iby x;, theni < n. Finally, add an item of side
x;41 temporarily tol”.

Consider the output of NFD faf” U z;11. Since NFD never tries to use old slices, it can be seen by
induction that each item is allocated to exactly the sanee giihd position as it was allocated by FFD on the
input I’.

Regarding the itemx;, 1, there are two options for FFD, since FFD did not place tl@miin the last
slice.

Input: A list of squares of side§x, ..., z,}, sorted in order of nonincreasing side
Output: A packing of the input or a prefix of it in a single bin.

1. foxy + 20 +23 > 1, butzy + 29 + 24 < 1, pack the three largest items as shown in Figure

2. Pack the ared using NFD starting from the fourth item, then continue inaalewith NFD
(considering this to be a single slice), and finally pack @r'assing NFD.

2. Else, use FFD.

Figure 1: Algorithm SixEleven

1. FFD putsr;; in an earlier slice, or

2. FFD does not put;; in the first bin at all

In the first case, either NFD already “fails” before iterm.; (NFD does not pacle; in this bin), or NFD
tries to putz; ;1 into the last slice. However, if it were possible to pagk, there, FFD would pack at least
one item after; in the last slice, contradicting the definition of

In the second case, clearly NFD also does notiput in the first bin (since the packing so far is equal
to the packing of FFD for the items iff', and FFD tries more options to paek,; than NFD does).

Thus in both cases NFD packs at m@éwithoutz; 1 in a bin, andl” C I’. We have an area guarantee
for I”, which then clearly also holds for the supergegpacked by FFD. O

2.2 Algorithm SixEleven
Algorithm SixEleven is displayed in Figure 1. It has the daling properties.

Lemma 4 Consider a set of squares of sides > z, > ... that is packed using SixEleven. Assume that
at least one item remains unpacked anddetbe the side of the first such item. If the three conditions,
x1 > 1/3, 21 + 2 < 1landz, < 1/5 hold, then SixEleven packs at least a total areé Afl in this bin.

Proof We assume that there is at least one unpacked item. Thereuaugakes. In Cases 1, 3and 4, FFD is
applied to the input; only in Case 2, Step 1 of SixEleven idiadpIn Cases 1, 3 and 4, we will sometimes
prove area guarantees for NFD (instead of FFD). This is sefffidy Lemma 3. Throughout this proof, we
denote the side of the largest item bythe side of the largest item in the second slice;and the side of
the largest unpacked item lay Note thaty > «. Additionally, we also denote the sides of the items by
z1, T2, ... N Nonincreasing order (so, = x).

Case 1 The largest three items have total side at most 1. t.e+4 x5 + 23 < 1.

In this case, NFD packs a total area of at leest 232 in the first slice, and by Lemma 1, at least
v+ (1 —-y)(1—z—y)—a?>(1-y)(1—x—y)inall other slices (since the height of the remaining
partis1 — x). Note that since the three largest items already havedintalat most 1, NFD indeed allocates
more than one slice. In fact at least three slices are opeanezk the total height of these slices would be
the sum of three items in the sequence, and even for the #mgest items in the sequeneeg, xo, x3, we
havex, + x2 + z3 < 1, so the second and third slices are indeed non-empty. Iy E® packs at least an
area ofA = 22 + 2y% + (1 — y)(1 — = — y) in the bin. This expression has a global minimun6pf1 at
x =4/11,y = 3/11. In the remaining cases we assume that- x5 + x3 > 1.

5

Figure 2: Alternative packing

Case 2 The first, second and fourth item have total side at most 1.ahet+ o + 24 < 1.

In this case SixEleven uses the packing shown in Figure 2. éeargue that the rectanglesandC
contain at least one item. Fd, this holds because; + x5, + 4 < 1. ForC' because the first item placed
in it has side at most,, andz; + 23 + 24 < 21 + 22 + 24 < 1.

B contains at least two items. The first item that SixEleverstto pack there has side at mogt< x3,
wherezs is the height ofB, so at least one item fits height-wise. Moreovey+ 2z4 < x1 + 22 + x4 < 1,
S0 at least two items fit next to each otherin

Denote the number of items B by k£ > 2, and their sides by, ..., z. In A, by Lemma 1, we pack
items with total area at Ieaéfl_“’;i_“) — 22, In B, we pack items with total area at Iea@f:l 22.InC, by
Lemma 1, we pack items with total area at Ie%\‘sgly — z,g. In total, we pack total area of at least

k—1

1—z— 1—z—

P = $2+x§+y2+—(TT) N2 Y
1=2
k—1
1 22 ax y 9
T2ty TRV Ty T

The condition arex > a9 > y > 21 > ... > zk,w+x2+y > 1, andzz 1% > 1—y—zk
From this expression, we simply omit the te@ 21 . On the domaing > 1 — 25 — y, SO =52 >
(L2 —y)(12%20) ' and thereforeP dominates

P=1- g (y+w2—y2—yx2) +2w% =1- g(y+x2)(1—y)+2x§.
We havedP, /0y = 0 < y = % —ZandoP [0z =0 y=1— 33‘2 The global minimum ofP; is
attained at the point, = %,y = 1—3 where the constraing < zs is not satisfied. Therefore, sindg
is convex, the constraint < x5 is a binding constraint in the constrained optimum, and wesesarch for
the minimum of P, with y = 5. The minimum of1 — 3(2y)(1 — y) + 2y* = 5y — 3y + 1is attained at
y = -+ and at the optimun®; has the valueg > &.

Case 3 NFD creates only two slicedn this case and the next case, NFD packs exactly two itensein t
first slice: not more than two because we are not in Case 1, tdedst two because the two largest items
have total side at most 1. We make a case division based omthiear of items packed in the second slice.

6

If the second slice contains only two items, the total sidéhebe items is at leady/5 since the largest
unpacked item has side at magp, and this then also holds for the total side of the first (lafggvo items.
By the arithmetic mean-geometric mean inequality, thd totea of each pair of items is at Ie@st(%)z, SO
the total area overall is at least (2)? = 28 = 0.64 > £.

Suppose the second slice contains three items. Denotesides byy, z1, z2 In nonincreasing order.
NFD packs a total area of at leadt= 22 + 2y? + 22 + 22, wherex + y > 4/5 since there are only two
slices,y + z1 + zo > 4/5 andx > y > z; > 2. Consider the vectofz, g, Z1, Z2) which minimizesA on
this domain. We havé; = Z,. This is so because suppose otherwise that Z; + a for somea > 0,
then the vecto(z, g, 21 —a/2, Z2 + a/2) is also in the domain but the value dfis smaller, a contradiction.
Assume therefore; = 2 and letz = z; = 2».

Thus NFD packs a total area of at least = 2% + 2y% + 222 wherex > 4/5 — y andz > (4/5 —y)/2.
Takingz = 4/5 —y andz = (4/5 — y)/2, we find thatA, dominatesd; = 2! — 2y + 142 on the domain.
As has a global minimum dof6/175 > 6/11 for y = 12/35.

Suppose the second slice contains at least four items. NEKsmatotal area of at least + 232 +
Zle zg, wherey + Zle 2z > 11—z, +y > 1— 2z, andk > 3. We again find that in the minimum,
2 = zfori=1,..., k,using asimilar reasoning. Thus NFD packs a total area ebatdl = x2+ 2y +kz>
wherez >y > 2, k>3, y+kz>1—zandz+y >1—2 Aisatleastdy = (1 —y — 2)? 4 2y + k2>
on the domain since > 1 — y — z. Ay has a global minimum otk/(3k + 2) for y = k/(3k + 2) and
z = 2/(3k + 2), which is monotonically increasing imand is6/11 for k = 3.

Case 4 NFD creates at least three slices.

Denote the side of the fourth item by(i.e., z = z4). We findz + z2 + z > 1 (since otherwise
we are in Case 2), of > (1 — x — z9). If NFD packs at least three items in the second slice, then by
Lemma 1, NFD packs a total area of at leadtt 23 + y? + (1 — 2 —22)? + 22+ (1 — 2 —y)/2 —a? >
22+ 23+y*+ (1 -2 —29)? + (1 — 2 —1y)/2 = A. This expression has a global minimumogfi6 > 6,/11
forx:%,ajgzy:%.

If NFD packs only two items in the second slice, there are tages. If FFD packs some future item in
one of the first two slices, we again find the area guaraAtdmcause the side of that item is larger than the
side of the first unpacked item (just likg > « above). Otherwise, since FFD packs at least three slices,
FFD packs a total area of at leat = 22 4 2y + 22 + 3(1 — z — »)2. This follows because the third slice
has height less than 1/3, and therefore contains at lea# tf@ms, and none of these items apparently fit in
the second slice. Recall tha + x4 + =5 > 1 andy = z3. Thereforex > 1 — 2y, and hence FFD packs a
total area of at leasty = (1 —2y)? +2y?+ 2% +3(1 — z —y)2. A4 has a global minimum of7/27 > 6/11
fory =11/27,2 = 4/9. O

Lemma 5 Consider a set of squares. If the two largest items have sidal at most 1, and the largest item
that remains unpacked has side at mbsi, then SixEleven packs at least a total are& pf1 in this bin,
unless it runs out of items.

Proof If the side of the largest square is at mogs, this follows from Lemma 2. Else, it follows from
Lemma 4. g

Define alarge itemto be an item with side more tharf88. An item that is not large is said to beseall
item A large item ishugeif its side is more than /3.

Definition 1 A goodset of squares is a sétwith at least one of the following properties:

1. The two largest items if have total side at most 1, and the total area of the large itema most
6/11.

2. S contains only one large item.

Theorem 2 For any input setS of squares which is good, SixEleven either paghka one bin, or packs at
least an area of 6/11 in the first bin.

Proof In case S contains only one large item, then if this large thas area at least 6/11, we are done.
Else, the two largest items must have total side at most lixileyen packs at least four items in the first
bin. Suppose SixEleven does not p&tkn one bin, and it moreover packs a total area less than 6/ttiein
first bin. Then the total area of the first four itemsSns less than 6/11. If the first item ifi has side at
most1/3, SixEleven behaves like FFD, so by Lemma 2 the area packedrs tian6 /11, a contradiction.
The largest item that remains unpacked must have side mamel{b by Lemma 4. Moreover, the cases 1,2,
and 4 in the proof of that Lemma do not use the assumptionhidatgest unpacked item has side at most
1/5. (In particular, this covers the case whéreontains only one large item of area less tl@nl.) This
also holds for the last subcase of Case 3 (at least four itertieisecond slice). Hence it must be the case
that NFD creates two slices, where the first slice has twodtaml the second slice has two or three items.

Suppose the second slice has two items. Then the total sithe dhird, fourth and fifth item irt' is
more than 1, and their average area is more (I%a)ﬁ. But then the area of each of the two largest items
must both also be more thaé)z, giving that the total area of items with side more than 1/m@e than
5/9 (since the fifth item has side more than 1/5, so then thefdins items also have side at least 1/5),%0
is not good, a contradiction.

Suppose the second slice contains three items. Denotesithes byy, z1, zo in nonincreasing order. Let
a > 1 be the side of the first unpacked item.2lf< o < &, NFD packs at least = 22 + 2y? + 27 + 23,
wherex + y > 1 — a (since there is no third slice}, + z; + 22 > 1 — a (Sincea does not fit into the
second slice) and > y > z; > z;. We concluder? + y? > 1(1 — a)? andy? + 2§ + 23 > (1 — a)? by
the arithmetic mean-geometric mean inequality. But thethaue thatd + a* > 2(1 — a)? + o which is
monotonically non-increasing in this interval and largear6/11 ata = %. Otherwise, we can follow the
proof of Case 3 for at least four items in the second sliceubatthe casé = 2 in which we get that the
contents of the bin have a total area of at Ida&€ Adding the area of the first unpacked item fréhgives
atleast23. > & We get that in both cases, is not good. O

This Theorem implies that when SixEleven packs a good dehelarge items in the set are packed in
the first bin.

2.3 The algorithm for OPT =1 and OPT =2

Recall that the conflict graph is bipartite. Thus, it is 2ezable in all cases. bPT = 1, we get that all items
can be packed into a single bin, and therefore the confligigimempty. We can apply the 2-approximation
from [29].

If oPT = 2, we act as follows. There are at most 18 huge items. Considparitions (a constant
number) of the huge items into two sdts and L,. For the analysis it suffices to consider the iteration
of the correct guess. So each such set of huge items can bedpattk one bin (and we can find such a
packing using the algorithm from Bansal et al. [1], whichegia constant time algorithm to pack a constant
number of squares into a bin, is possible), and the colorrigeohuge items (where the color of an item is
determined by the set it is in) can be extended to a 2-colafrige entire input as explained below.

For each connected component that contains a huge item ¢bo@ng is defined uniquely (unless it
contains at least two huge items and we get that it is implestibextend the coloring accordingly, in this
case the partition of the huge items is incorrect), and itiesto decide on the 2-coloring of the connected
components of the remaining items. For this problem we apm@imilar idea to the one in [8] on the 1-
dimensional case, only the partition into two sets must beedoore carefully here. For each connected
component we find its 2-coloring and we need to decide whitbr ¢®red and which color is blue (in each
of the connected components). We see the problem of batatisenarea of blue items and red items as
a load balancing problem. Letbe the number of connected components. For each conneatgzboent
i, let ¢; andd; be the areas of items of the two colors in compongnte definep; = max{¢;,d;} and
A(i) = min{¢;, d;}. Clearly, each color has in total an area of at l€gdt ; A(i). We define a load
balancing problem on the residual area, i.e., we would likédlance the loads; — A(i) between two
“machines”, where assigning “jok”to machine 1 means that in componénthe color class of larger area
got red color, and assigning “jol'to machine 2 means that in componérthe color class of larger area got
blue color. Some “jobs” are pre-assigned to a machine if tterimg of this component is determined by
the huge items. Therefore, we have a restricted assignmaniem. This is a special case of load balancing
on two unrelated machines, which admits an FPTAS, see [12].

Consider an optimal solution to the original bin packinghpeon. The total size of the items that are
packed withL; for : = 1,2 is at most 1. Since we are using an FPTAS, where some area nraynbged,
the totals remain at mostand the total size of the larger set of items is at Mo3@6 (for £ = 0.006).

Next we show that we can apply an algorithm based on SixEléseeach color class, which uses at
most two bins (and four in total). First consider the caseraliee set of the huge items in this color has
size at leastl/9. Then the huge items use at most one bin (using the packingeddlgorithm from [1]),
and for the other items, if by packing them using SixEleveaneed at least two bins, then we have an area
guarantee of at lea8f/ 16 in the second bin by Lemma 2, and this is a contradictiof/ast-9/16 > 1.006.

On the other hand, if the total area of the huge items is at ystthen we use SixEleven on the
compelte color class. We would like to show that the areaaqieae of the first packed bin is at ledg0, if
there is a second bin. If there is a single huge item and it idasad leas2/3 we are done. Otherwise, the
huge item can fit next to any other item. If there are at leagtituge items, since the huge items can fit into
one bin, the sum of sides of the largest two items in at nhog¥e get from the proof of Lemma 4 that if an
item does not fit into the first bin, then the area guaranté¢1s$ in cases 1,2,4, no matter what the size of
the next item is, and a guaranteelg® in case 3, unless the bin contains exactly four items. Simeaéxt
item had side of at modt/3, we get a guarantee @fin this case (similarly to the proof for the case that
this item is bounded by/5). So if there is a second bin, the first one has an area guaraﬁge If we are
using three bins, then the second bin again has an area te@aadf/16 by Lemma 2, which again leads to
a contradiction.

2.4 The algorithm for OPT =3

We call items with side irf1/3, 1/2] items of type 2, and larger items are type 1. In this sectiems$ with
side at mosl1 /88 are calledsmall and the others atarge. If oPT = 3, there are at mosk- 872 large items.
In constant time, find

e A two-coloring of these items that can be extended to a valldring for the entire input. This can
be done by standard methods. We color the entire conflichggamring the sizes of items.

e A packing of these items in at most three bins. This can benag@ane by checking all possible
partitions of large items into three sets, and applicatibthe algorithm of [1] on each set to pack it

9

into a bin.

Note that the two results are unrelated and we do not rego@eacking to be consistent with the two-
coloring. There are two cases. First, if the total area okthall items is at most - (g—g)z ~ 1.9548, do the
following.

1. Use an arbitrary valid two-coloring for the small items.
2. Pack the largest set of small itemibins, and the smallest set in at madtin, using NFD.
3. Pack the large items in at most three bins according todhkipg found above.

To see that Step 2 can indeed by applied, note that the strsdldsas area at mo@%)z, and the largest
set has area at most twice this. The first bin packed for tlyedarset has area packed at Ie(%t)2 by
Lemma 1, leaving at most the same amount for the second binhwhn be packed there using NFD again
by Lemma 1.

If the total area of the small items is more trﬁan(%)?, consider the packing for the large items (in at
most 3 bins) that we have found. This packing gives us (atntloste sets, denoted Wy, Lo, L3. Each set
may contain items of both colors. The total area of thesestisnat most 1.0452. In total, there are at most
three items with side more than2, since all items can be packed in three bins.

We are going taepackthese items so that each bin contains only items of one coiahis way we
ensure that we do not pack conflicting items together. We steov the following auxiliary claim.

Claim 1 All large items can be packed in at most four bins. For any célaot all items of that color are
packed with large items, then the bins with large items haga guarantee of at least 6/11.

Let us now consider the following two tables of area guaesitdable 1 and Table 2.

Bins needed for blue items 1 2 3 4
Total area guarantee of blue items packe@/11 1.5228 2.5002 3
Maximum possible area of red items 3 2.4546 1.4772 0.4998
Packed inred bin 1, 2, 3 6/11 6/11 6/11 1/2
Packed in red bin 4, 5 (if needed) 0.977 0.977 - -

Table 1: The set of blue items is good: SixEleven packs ajeldnue items in one bin

Bins needed for blue items 1 2 3 4
Total area guarantee of blue items packed/11 12/11 2.068 3
Maximum possible area of red items 3 2.4546 1.909 0.932
Packed in red bin 1, 2 6/11 6/11 6/11 6/11
Packed in red bin 3, 4 (if needed) 0.977 0.977 0.977 -

Table 2: the blue large items are placed in two bins

The first table concerns the case where one of the colorgdchlle in the table) igood This means
that if we pack all blue items using SixEleven, by TheoremxE&ven packs an area of at least 6/11 in the

10

first blue bin (unless perhaps if it needs only one bindibblue items). By Lemma 1, the area guarantee of
any other bin for this color (except, always, the last onégi—gs)Q > 0.977. Furthermore, Claim 1 shows the
printed area guarantees for the other color (red). Usirgt#tle, it is easy to verify that in this case (i.e., if
the set of blue items is good) we never need more than six bins.

We give one example of such a verification. Suppose the tegal @f the blue items is 1.6, and the set
of blue items is good. Then by Table 1, we need at most threefbirthe blue items. Since the total area
guarantee for the first three red bind&/11 > 1.4 = 3 — 1.6, we need at most three bins for the red items
as well, so at most six bins in total.

The second table concerns the case where the large blue desmzacked intawo bins (either by
SixEleven, or in some other way). In this case by Claim 1, wepzck the red items with area guarantees of
6/11 in the first two bins. Therefore, all large red items areked in the first two bins sind2/11 > 1.0452.
Therefore, any further red bin that is packed using SixEigwehich uses FFD in this case) will again have
an area guarantee Qg%)? > 0.977 by Lemma 1. Again, it can be verified that this is sufficient &zl all
items in at most six bins in all cases.

2.5 The algorithm for OPT =k > 3

For any constant valueof OPT, we can find using Lemma 1 a vakusuch that the area guarantee for NFD
on items of side at mostis at leas{k — 1.0452) /(k — 1) = 1 — 22122 Then, if the small items have total
area at most — 1.0452, we can pack them into at mastins using NFD, and find an optimal packing for
the items with side larger thanusing complete enumeration.

Else, the items with side at leashave total area at most 1.0452. The proof of Claim 1 showsithat
case there are at most three items of typgelneed at most four bins for all large items. We now show that
we need at mostk bins for all the items. If SixEleven needs more bins for baitois, this follows because
the area guarantee in the four bins with large itenisljd 1, so a total area of at mokt— % remains to be

packed, and we have

24 0.0452
k—ﬁ<(2k:—6)<1—k_1> for k > 4. 1)
So we need at mogt — 5 bins for the small items of both colors: we lose (at most) oimecbmpared to
(1) because there are two colors. (If there are less tharbiogrwith large items, the area guarantee of the
remaining bins improves.)

If SixEleven has already packed one color, then the smalfidtef the other color have total area at most
min(k, k — 1—61(]' — 2)) wherej < 4 is the number of bins packed so far (there may be two almostyemp
bins that contain large items, since we have two colors) s&litems can be packed in at mast— j bins
for k > 4, since

min(k, k — - (j — 2)) < (2k —) (1 fork>d,j=0,. .. 4 @)

~0.0452
11

k—1

The only case that is not covered yet is the case where thefeuaritems of type 1 (since there cannot
be more than four such items because the total size of itethsidie at least is at most 1.0452). If all these
items are red (say), the blue items are good, and we packrte ded items in four bins. In case we need
more bins for both colors, we now have five bins with area guem6/11, and we can pack the remaining
items in at mosRk — 5 bins sincek — 2V < (2k — 6)(1 — £252) for k > 4. If one color is already packed,
we can pack the remaining items into at mpkt— 6 bins by (1) if we packed five bins so far, and into at
most2k — j bins by (2) if we packed < 5 bins so far.

11

If only one item of type 1 is blue, the blue items are still gotdthis case the red items are also good
if we exclude the two largest red items, so we need only fous Br all large items (again packing the red
items as in Case 1A). Finally, if there are two blue items p&tyt, we can pack the large items of each color
into two bins, since removing the largest item of either cé#daves a good set.

2.6 The algorithm for large OPT

Consider a fixed value > 0. There are two cases: 4f- OPT > 2, color the items with two colors, and on
each of them apply the APTAS of [1] for square packing. Siteerhinimum number of bins required to
pack each color class is no larger thampr, it needs only at most((1 + €)opPT+ 1) < (2 + 3¢)OPT bins.
Else,oPT < 2/e which is a constant, so use the method from the previousoseatid use at mogoOPT
bins.

Note finally that for the case- opPT > 2, we run just one algorithm, so in total we run at m®gt + 1
polynomial-time algorithms and take the one that gives #wst butput.

3 An algorithm for perfect graphs

3.1 An algorithm for independent sets

Given an independent set of items, we use the following paclgorithm.
Algorithm Pack Independent Set (PacklS):

1. Aslong as there exists an item of side@) 1], pack such an item in a bin.

2. As long as the number of items of side(ih 1] is at least four, pack four such items in a bin.
3. Aslong as the number of items of side(ih 3] is at leas®, pack9 such items in a bin.

4. Aslong as the number of items of side(ih, 1] is at leastl6, pack16 such items in a bin.

5. If there are no items of side (r%, %] left, pack the remaining items using NFD and halt.

6. Pack all items of side if0, 2] using NFD. Call the resulting set of biiss and letm = |S|. Lets, be
the side of the first item of bim of S.

Take binm of S and remove all items from it. Pack its contents together Withremaining larger
items (of side ir(%, %]), possibly using a second bin, by applying algorithm SixEfeon the first bin,
and NFD on the second bin. The items packed in the secondeatibjot are those which did not fit
into the first adapted bin.

If a second bin is needed for the adapted packingsand % keep the first adapted bin packed with
the items of side irﬁ%, %]. Re-pack all other items (the onesSrplus the ones in the second adapted
bin) once again with NFD. Note that this may affect the paglohbinm — 1. Otherwise, the current

packing (6 without binm together with one or two adapted bins) is given as output.

Note that there is at most one bin packed in the last step witsspacked item has side in the interval
(71> 1) fork =2,3,4,5.

As can be seen, some of the steps of this algorithm are basathamonic partition according to sides
of items. The first to use such a partition in the design of laickjing algorithms were Lee and Lee [19].

12

To a_nalyze our algorithm, we use three parametérs, r < 30, 1 < p < 2and} < v < 1. These
bounds imply

T r
> — and > —. 3
Y= 16 F=9 3
We moreover require
43) 331
— 1, — +4r>1 — > 1. 4
o9 THZ ST VT I @
We assign weights as follows.
side (3. 1] (53] (4> 3] 0, 1]
weight 1 p+r@@®—§) v4r@@®—:) r-a?
expansion 1 r+(u—35)/z* r+ v —4)/z* r

Expansion is defined as the minimum ratio of weight over sizanotem. By (3), it can be seen that the
expansion of any item of side at masts at leastr, so it is at leasg.

Claim 2 Let/ be the number of bins created by Algorithm PackIS applied given color class. The sum
of weights of items in this color class is at leést 1.

Proof ConS|der the bins created in steps 1-4. The Welghts of itdreiles in(3 1] (3, 2] (4, 3] are at
leastl, 1, & respectively. The weight of an item of sides(ih, 1] is at leastl: > 5= > ;-. We get that
the total weight of items in each one of these bins is at leadtext, consider bins created in steps 5 and
6. If there is at most one such bin we are done, therefore astuah at least two bins are created. In the
execution of NFD, there is at most one bin whose first item fdes i (k+1’ 1], for k = 3,4. Call these
bins 3 and~, and all other bins packed by NFBbins. Note that birg is the first bin packed in Step 5 or 6
(if it exists) and binry is the first or second bin packed in Step 5 or 6 (again, if ittekis

We first consider the case that SixEleven does not manageckoghatems in one bin in step 6. We

distinguish the case where in step 6< % and the case, > %

Casel If s, < % then at least oné-bin exists, so the last bin packed by NFD ig-ain. Consider first
the bing, if it exists, after NFD is run for the first time. Singgis the first bin packed in Step 5, the second
round can only increase the area of items packed in this birteShis is not the last bin packed by NFD,
it has a total packed area of at qu%t[zg]. Moreover, if there are at most three items@) %], it can be
deduced from [29] that the occupied area is actually at I%t Note also that the expansion of all items
in this bin is at least.

The weight of an item of side; in (7, 3] isv +r(s? — 15) = rsi + v — %. Thus if the bin contains
s such items and its area guaranteeljghe total weight is at leastA + s(- 15)- BY (3), the minimum
weight is achieved for minimal. If s > 4, we get a weight of at least’ 5+ 4(15) = 7‘16 +4v > 1.
Otherwise, since > 1 we get a weight of at leastsis. + (v — L) = 7“641 +v>1.

Consider the biny, if it exists, together with alb-bins, and otherwise (i.e., if there is no bihthe-bins
only. We consider these hins after the second round of NFDj Le 1 be the total amount of bins , and
Y1, ..., y; the sides of the first items packed in these bins, W%G{Eyl <... <y

By Lemma 1, each bin which is started by the item of gjdéor i < j has an occupied area of at least

24+ (1 —y)? - yz+1 This g|ves a total of at leagf + >/_] (1 — y;)2. Sincey; < forz‘ > 1 we get at
leasty? + (1 —y1)? + (5 — 2) . On the domain, this function is m|n|m|zed for = 7, and we get an area
of at least(j — 1)% and thus (smce > 8) a total weight of at least — 1.

13

Consider the bin packed using SixEleven. Since at leasttenedid not fit into it, and since this item
has side no larger tha? (since alreadys, belongs to this group of items, and further items can only be
smaller), by Lemma 4 the area packed in this bin is at Iépstett be the number of items of side (é, %]
in this bin. The weight of an item of side in (3, 3] is u+7r(s2 —) = rs2 + p— &, thus if the bin contains
t such items and its area guaranteeisthe total weight is at leastB + t(u —). By (3), the minimum
weight is achieved for minimal We get a weight of at least® + (1 — 5) = $3r + p > 1.

Case 2 Consider now the case, > % Note that in this cas@& contains at most two binsi{ < 2), §

and~y. Thus, the adapted bin was eithgor v. We consider both cases together, where the possiblg bin
can be analyzed as above. We analyze the two adapted birisdpogad show the total weight in them is at
leastl. If the first item in the second bin is of side at méslthen by Lemma 4, the area packed in the first
adapted bin is at Iea%. Otherwise, the only case of that theorem that requirescthislition is if NFD is

the algorithm which is used as a procedure by SixElevengtites two slices, and the second one has two
or three items (see Case 3).

If there are two items in the second slice, the sum of the siflesery two items is more thah— s,,.
This gives a total area of at Ieacs(tl‘%)2 + 52 = 252 — 2s, + 1 for all five items, which has the minimum
values > £ Otherwise, the proof for three items in the second slicegjan area of at leagt(where the
side of the item that does not fit into the bin may be arbitray}the case} <sq < % we have a total area
of at least > £ [29]. Otherwise, let. denote the side of the first itemin the first adapted bin. Let,
be the side of the first item in the second slice and;let, ¢35 be the sides of the two additional items in the
second slice and the item which did not fit. We have a total afed leasts? + 2s2 + ¢] + ¢3 + ¢3, where

§;+ sy +t3 > lands, +t; +ta +t3 > 1. This function is minimized fot; = to = t3 = t,t = 152,
s;=1—-t—s5,= 2(1;33@’) and achieves a minimal value fey = 0.28 which is0.56 > ;.
As shown above, the total weight of a set of items of total atdaast->-, where at least one item has

117
side in(}, 1], is at leastl.

Case 3 SixEleven does manage to pack all items in a single bin. kdhse, the number of bins is the
same as in the case where we would run only step 5 on items idehirs(0, %]. Thus we can apply the
analysis from Case 1 above for bifisy and thej-bins and note that we now pack strictly more items (and
therefore weight) in the same amount of bins. d

3.2 The general algorithm
Algorithm Matching Preprocessing (PM):

1. Define the following auxiliary bipartite graph. One seteftices consists of all items of side@l, 1].
The other set of vertices consists of items of sidéfinl]. An edge(a, b) between vertices of items
of sidess, > % ands;, < % occurs if both following conditions hold.

(@) sq +sp <1
(b) (a,b) ¢ E(G).

That is, if these two items can be placed in a bin togethehisfédge occurs, we give it the cqstf
sp > 3 andv otherwise.

2. Find a maximum cost matching in the bipartite graph.

14

3. Each pair of matched vertices is removed fr@mand packed into a bin together.

4. Let G’ denote the induced subgraph over the items that were noegaokthe preprocessing (i.e.,
during Steps 1,2,3).

5. Compute a feasible coloring 6f usingy(G’) colors.
6. For each color class, apply the PackIS algorithm destibeve .

We analyze algorithm PM using weighting functions. Denb&weight function defined in the analysis
of Algorithm PacklS for independent sets by. We define the weight function for items packed into bins
which are created in the preprocessing td bey for an item of side ir(%, 1] which is packed with an item
of side in(3, 3], and1 — v otherwise (i.e., if it is packed with an item of side (i, 1]).

We define a second weight functiar, which is based on an optimal packiagpT of the entire input
which we fix now. This weight function is defined differentlsom w, only for items of side in(%, 1].
Specifically, for a given such item, consider the bin in whiclopPT packsz. If all items in this bin are of
side in(0, %], we definewy(z) = 1. If the bin contains at least one other item of side largen tzhawe
definew,(z) = 1 — p and otherwisevs (z) = 1 — v. Note that matching each item of side(ih, 1], which
got a weight strictly smaller thahwith respect tavs, with the largest item that shares its binarT, gives
a valid matching in the auxiliary bipartite graph. Therefaf WW; denotes the total weight of all items with
respect to the weight function;, then we havél’; < Ws.

To prove an upper bound for PM, we first prove the following heas. Letus be an upper bound on the

amount of weight according to- that a set of items packed into a single bin can have.

Lemma 6 Consider a partitioning of the input into sets, where eachiséndependent. Some of the sets
consist of items that can be packed into a single bin, and hawéal weight at least according tow;. Let

k be the number of independent sets that do not follow this filhese sets are packed using the algorithm
PacklS. The number of packed bins is at m@stPT + k.

Proof Consider the: sets defined above, 1éf be the number of bins resulting from getand/ the total
number of bins including also sets that result in one bin tdltaveight at least. Using Claim 2 we find
that the total weight of items in séts at least; — 1. Since there arg such sets, the total weight according
tow; is at least! — k, i.e. Wy > W7 > £ — k. According to the definition ok,, we havells < wo0OPT
which proves the claim. d

Lemma 7 The approximation ratio of PM is at most + 1.

Proof PM creates the independent sets using an optimal colorgugitdim. Thereforek < OPT, sincek
is the minimum number of colors required to color a subsehefinput. O

Theorem 3 The approximation ratio of PM, for square packing with cartflj where the conflict graph is
perfect, is at most 3.277344.

Proof We need to analyze the total weight in packed bine®f. We first compute this value as a function
of the parameters.
A bin with one itema of sides, € (1, 1] and all other items no larger thgnhas weight of at most

3
1+(1—33)r<1'r+1.

15

Given a bin with one itena of sides, € (3,1] and all other items no larger than let s be the number

of |tems of side in(1, 3] Clearlys < 5. The b|n has a total weight of at mast- v + sv + (1 — 3 — {5)r =
143 17+ (s —1)v — {5. By (3), the expression is maximized for the largest value, givmg
Tr
1+ 16 + 4v. (5)

Finally, consider a bin which consists of an item of sid@m] and at least one item of side qé, %].
Let s andt be the number of items of sides(if, 3] and(3, 1%] respectively. Note that+¢ < 5andl < ¢ <
3. The bin has a total weight of atmds%u+su+m+(1—z—§— £)r < 1+0.75-r+sv+(t—1)u—4 — 3.
Sincey — g > 0, the expression is maximized whent ¢ is maximal, i.e. we need to consider the three
caseg = 1 s=4;t=2,5=3;t=3,5 =2 We get the three bounds+ 7= + 4v, 1 + % + 3v + 4,
1+ ;Q + 2v + 2u. The first two are dominated by the last bound and/or by (5).

Given a bin where all items are of side no larger tléanet s andt be the number of items of sides
in (1, 3] and(g, 1], respectively. Clearly + t < 9 andt < 4. The bin has a total weight of at most
svttp+(1—5—S)r <r+sv+tp—% — 2. Again, the expression is maximized for maxinaat ¢.
Weneedtocon&dertheﬂvecag&s0 s_9 t_l s=8t=2,s="7t=3,s=6;t=4,s=>5.This
gives the five bound$2: + 9v, 255 + 8v + pu, 192 + Tv + 2p, B5 + 6v + 3y, % + 5v 4 4p. Obviously,
only the first and the last need to be considered. Smge% the first is dominated by (5). Singe< % the
last one is dominated b+ 2= + 2v + 2.

We are left with the following bound,

r

r
max{—+1 1+16+41/ 1+24+21/+2u}

Running a linear program we find that an upper bound on thigevi approximately 2.277344, which
is achieved forr ~ 1.7031, © =~ 0.2603, v =~ 0.13. This gives an upper bound of 3.277344 on the
approximation ratio. d

Running an alternative algorithm which combines five pdsgibeprocessing steps instead of just one
improves the upper bound on the approximation ratio to 83238. The details of this algorithm are in the
appendix.

4 Conclusion

In this paper we addressed the approximability of squarkipaavith conflicts. Our study focuses on the
absolute approximation ratio as is common for coloring fis. The upper bounds which we proved
on the absolute approximation ratio of our algorithm chedublds for the asymptotic approximation ratio
as well. However, all the known approximability results,igfhare mentioned in the introduction, do not
hold in this case. An interesting research direction wowdddfind whether an Asymptotic Polynomial

Time Approximation Scheme (APTAS) exists for some squaiekipg with conflicts, for some class of

(non-empty) conflict graphs.

References
[1] N. Bansal, J. Correa, C. Kenyon, and M. Sviridenko. Bimkpag in multiple dimensions: Inap-

proximability results and approximation schemithematics of Operations Resear&i(1):31-49,
2006.

16

[2] N. Bansal and M. Sviridenko. New approximability and ppaoximability results for 2-dimensional
packing. InProceedings of the 15th Annual Symposium on Discrete Algog pages 189-196.
ACM/SIAM, 2004.

[3] A. Caprara. Packing 2-dimensional bins in harmonyPtac. 43rd Annual Symposium on Foundations
of Computer Scien¢g@ages 490-499, 2002.

[4] F. R. K. Chung, M. R. Garey, and D. S. Johnson. On packirgdimensional binsSIAM Journal on
Algebraic and Discrete Method8:66—76, 1982.

[5] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approxioralgorithms for bin packing: A survey.
In D. Hochbaum, editorApproximation algorithmsPWS Publishing Company, 1997.

[6] J. Correa and C. Kenyon. Approximation schemes for mimtensional packing. [fProceedings of
the 15th ACM/SIAM Symposium on Discrete Algorithpages 179-188. ACM/SIAM, 2004.

[7] J. Csirik and G. J. Woeginger. On-line packing and covggproblems. IrA. Fiat and G. J. Woeginger,
editors,Online Algorithms: The State of the Art, pages 147-177, 1998

[8] L. Epstein and A. Levin. On bin packing with conflicts. Bmoc. of the 4th Workshop on Approximation
and online Algorithms (WAOA20Q6§)ages 160-173, 2006.

[9] L. Epstein and R. van Stee. Optimal online bounded spadédimensional packing. IProc. of 15th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODAlREges 207-216, 2004.

[10] M. R. Garey and D. S. JohnsorComputers and intractability W. H. Freeman and Company, New
York, 1979.

[11] M. Grotschel, L. Lovasz, and A. SchrijveiGeometric algorithms and combinatorial optimization
Springer, 1993.

[12] E. Horowitz and S. Sahni. Exact and approximate algorg for scheduling nonidentical processors.
Journal of the ACM23(2):317-327, 1976.

[13] M. Hujter and Z. Tuza. Precoloring extension, Ill: Glas of perfect graphsCombinatorics, Proba-
bility and Computing5:35-56, 1996.

[14] C. A.J. Hurkens and A. Schrijver. On the size of systefinsets every of which have an SDR, with
an application to the worst-case ratio of heuristics forkpag problems. SIAM Journal on Discrete
Mathematics2(1):68—72, 1989.

[15] K. Jansen. An approximation scheme for bin packing wahflicts. Journal of Combinatorial Opti-
mization 3(4):363-377, 1999.

[16] K.Jansen and ®hring. Approximation algorithms for time constrained egtling. Information and
Computation 132:85-108, 1997.

[17] C. Kenyon and E. Rémila. A near optimal solution to aslmensional cutting stock problenviath-
ematics of Operations Reseay@b(4):645—-656, 2000.

[18] Y. Kohayakawa, F. K. Miyazawa, Prabhakar Raghavan,Mosthiko Wakabayashi. Multidimensional
cube packing Algorithmicg 40(3):173-187, 2004.

17

[19] C.C. Lee and D. T. Lee. A simple online bin packing algan. Journal of the ACM32(3):562-572,
1985.

[20] J.Y.-T. Leung, T. W. Tam, C. S. Wong, G. H. Young, and AH.YChin. Packing squares into a square.
Journal on Parallel and Distributed Computin0:271-275, 1990.

[21] D. Marx. Precoloring extensiorttp://www.cs.bme.hu/ dmarx/prext.htmi

[22] D. Marx. Precoloring extension on chordal graphs. Qraph Theory in Paris. Proceedings of a
Conference in Memory of Claude Beydaends in Mathematics, pages 255-270. Birkhauser, 2007.

[23] B. McCloskey and A. Shankar. Approaches to bin packinth wlique-graph conflicts. Technical
Report UCB/CSD-05-1378, EECS Department, University dff@aia, Berkeley, 2005.

[24] A. Meir and L. Moser. On packing of squares and culke€£ombinatorial Theory Ser.,5:126-134,
1968.

[25] Y. Ohand S. H. Son. On a constrained bin-packing probléechnical Report CS-95-14, Department
of Computer Science, University of Virginia, 1995.

[26] A. Schrijver. Combinatorial optimization polyhedra and efficien@pringer-Verlag, 2003.

[27] S. S. Seiden and R. van Stee. New bounds for multi-dilaat packing. Algorithmicg 36(3):261—
293, 2003.

[28] J. D. Ullman. The performance of a memory allocationoathm. Technical Report 100, Princeton
University, Princeton, NJ, 1971.

[29] R.van Stee. An approximation algorithm for square jpagkOperations Research Lette32(6):535—
539, 2004.

A Improved upper bound for perfect graphs

To achieve a better upper bound, we suggest four new pregmiogesteps. Each possible preprocessing
yields a different algorithm. Our main algorithm runs eacle @f the five algorithms, and it chooses the
solution with the minimum number of bins.

The general structure of our algorithms is as follows. Renfa preprocessing which creates some
packed bins. Then steps 4-6 of PM are applied. Each one obtiefternative pre-processing steps creates
a collection of subsets, whose ground set is the set of itartisei input. Each subset has at mbsitems
(2 < i < 5). We are using an algorithm of Hurkens and Schrijver [14]dpproximating the maximum
(unweighted) set packing problem. Their algorithm findslasollection of subsets, such that every pair of
subsets is disjoint. The cardinality of the output subezilbn is at least % — ¢ fraction of the largest such
sub-collection. The preprocessing packs each such sulteet separate bin.

The four collections are as follows.

2. Sets of four items that can fit into one bin, where one itesndide in(%, 1] and three items have sides
in (3, 3. Thereforek; = 4.

3. Sets of three items that can fitinto one bin, where one itesrsitle in(1, 1] and two items have sides
in (3, 3. Thereforek; = 3.

18

4. Sets of six items that can fit into one bin, where one itemsigesin (3, 1] and five items have sides
in (1, 4]. Thereforek, = 6.

5. Sets of five items that can fit into one bin, where one itensfasin (3, 1] and four items have sides
in (4, 3]. Thereforeks = 5.

We usew;[1] = w; andws[1] = wsy. Furthermore we define four additional weight functionsg|i]
andws|i] for ¢« = 2,3,4,5. The functionsw,[i| are based on a fixed optimal packingwag1]. The weight
function for items of side irf0, %] is as before. Iltems of side @e, 1] get weightl except for special cases
as described below.

2. Anitem of side in(3, 1] that in the optimal packing shares a bin with three itemsaté &1 (1, 1] gets
weight1 — #4029 according tows[2]. Let Ny be the number of such items.
3. An item of side in(%, 1] that in the optimal packing shares a bin with at least two &terhside in

s
(3, %] gets weightl — &32) according taws[3]. Let N3 be the number of such items.

4. Anitem of side in(3, 1] that in the optimal packing shares a bin with five items of sidg},] gets

weight1l — M according towz[4]. Let V4 be the number of such items.

5. An item of side in(%, 1] that in the optimal packing shares a bin with at least foungef side in

5
(1. 3] gets weightl — M according tows[5]. Let N5 be the number of such items.

Next, we describe the functions [i]. Similarly tow,][i], the only items that get special weights are the
ones of side i3, 1].

2. An item of side in(%, 1] that is packed into a bin during preprocessing gets weight3; according
to w; [2]. Note that the number of such items is at le@gst- &) V.

3. An item of side in(%, 1] that is packed into a bin during preprocessing gets weigh2, according
to wy [3]. Note that the number of such items is at le@st- £) V.

4. An item of side in(%, 1] that is packed into a bin during preprocessing gets wdightsv according
to w [4]. Note that the number of such items is at le@st- ¢) V.

5. An item of side in(%, 1] that is packed into a bin during preprocessing gets wdightiv according
to w [5]. Note that the number of such items is at le@st- ¢) Ns.

Let W be the sum of regular weight of all items. &t [i] andTV5[i] be the sums of weights of all items
according tow [¢] andws]i].

We haveWs[2] = W — 21u(1 — 2e)No = W — 3482 4 31e Ny, Wa[3] = W — 2u(1 — &) N3, Wa[4] =
W — 2u(1 —)Ny, Wa[5] = W — E1(1 — €)Ns.

On the other hand we havié/; [2] < W —3pu(3 —&)No = W — % +3ueNy = W5 [2], W1 [3] < W —
21(2 —e)N3 = W — 205 4 9)e Ny = W3], Wi[4] < W —5u(3 —e)Ny = W — 2N 4 506N, = Wh[4),
Wi5] < W —4v(2 —e)Ns = W — 8% 4 4ueN; = Wo[5).

To prove an improved upper bound, lef[i] be an upper bound on the amount of weight according to
wo[i] that a set of items packed into a single bin can have. As in Laripfor each weight function, we
analyze the total amount of weight that can be packed intogesbin ofoPT.

19

The analysis for the first pre-processing is the same as iprtd of Theorem 3. Since bins without an
item of side in(%, 1] have the same weight in all cases and no reductions, thenlweeed to consider the
extreme cases as in the proof of Theorem 3.

There are 20 types of bins that need to be considered and viyzareach type according to every
preprocessing. We denote items of sidg{n3] by A and items of side irf1, 1] by B. Items of side in
(1, 1] are denoted by.

Since we choose the solution with smallest number of binsyseea convex combination instead. We
use parameters[i] (for 1 <4 < 5 such tha®">_, afi] = 1.

For each bin typg (1 < j < 20), we computets[i][j] which is the largest amount of weight that
can be packed in a bin of typeaccording to weight functiomws[i]. We use the following lemma. Let

wy = max; {327 aliltz[i][j]}.

Lemma 8 The approximation ratio of the algorithm which chooses thetlout of the five solutions is at
mostw} + 1.

Proof We define a new weight function, = 3">_, a[i] - ws[i]. For eachi, the sum of the total weight

according taws[:] and the chromatic number, is at least the cost of the algorittherefore, this holds also
for w}, and the cost of the best solution among the five algorithms. d

Using Matlab, we were able to find that using the values 1.699191, p = 0.261967, v = 0.132049,
all] = 0.5872688, «[2] = 0.120419, «[3] = 0.052589, approximately 3.2743938. We summarize with the
following theorem.

Theorem 4 The approximation ratio of the combined algorithm, for sgupacking with conflicts, where
the conflict graph is perfect, is at most 3.274394.

20

