
Online Bin Packing with Resource Augmentation∗

Leah Epstein† Rob van Stee‡

September 17, 2007

Abstract

In competitive analysis, we usually do not put any restrictions on the computational complexity of
online algorithms, although efficient algorithms are preferred. Thus if such an algorithm were given the
entire input in advance, it could give an optimal solution (in exponential time). Instead of giving the
algorithm more knowledge about the input, in this paper we consider the effects of giving an online bin
packing algorithm larger bins than the offline algorithm it is compared to. We give new algorithms for
this problem that combine items in bins in an unusual way and give bounds on their performance which
improve upon the best possible bounded space algorithm. We also give general lower bounds for this
problem which are nearly matching for bin sizesb ≥ 2.

1 Introduction

In this paper we investigate the bin packing problem, one of the oldest and most thoroughly studied problems
in computer science [2, 3]. In particular, we investigate this problem using the resource augmentation model,
where the online algorithm has bins of sizeb ≥ 1 and is compared to an offline algorithm that has bins of
size 1. We show improved upper bounds and general lower bounds for this problem.

Problem Definition In theclassical bin packingproblem, we receive a sequenceσ of itemsp1, p2, . . . , pN .
Each item has a fixedsize in (0, 1]. In a slight abuse of notation, we usepi to indicate both theith item
and its size. We have an infinite supply ofbinseach withcapacity1. Each item must be assigned to a bin.
Further, the sum of the sizes of the items assigned to any bin may not exceed its capacity. A bin isemptyif
no item is assigned to it, otherwise it isused. The goal is to minimize the number of bins used.

In the resource augmentationmodel [8, 11], one compares the performance of a particular algorithmA
to that of the optimal offline algorithm (denoted byOPT) in an unfair way. The optimal offline algorithm
uses bins of capacity one, whereA is allowed to use bins of capacityb > 1. The goal is still to minimize
thenumberof bins used.

In theonlineversions of these problems, each item must be assigned in turn, without knowledge of the
next items. Since it is impossible in general to produce the best possible solution when computation occurs
online, we consider approximation algorithms. Basically,we want to find an algorithm that incurs cost

∗A preliminary version of this paper appears in Proceedings of the 2nd Workshop on Approximation and Online Algorithms
(WAOA 2004).

†School of Computer Science, The Interdisciplinary Center,Herzliya, Israel.lea@idc.ac.il. Research supported by Israel
Science Foundation (grant no. 250/01).

‡Department of Computer Science, University of Karlsruhe, D-76128 Karlsruhe, Germany.vanstee@ira.uka.de. Re-
search supported by the Netherlands Organization for Scientific Research (NWO), project number SION 612-061-000.

1

which is within a constant factor of the minimum possible cost, no matter what the input is. This constant
factor is known as the asymptotic performance ratio.

The resource augmentation model was introduced due to the following drawback of standard competitive
analysis. Competitive analysis compares the performance of an online algorithm, which must pack each item
upon arrival, to that of an omniscient and all-powerful offline algorithm that gets the input as a set. Resource
augmentation gives more power to the online algorithm, making the analysis more general. In particular, it
allows us to exclude instances that crucially depend on exact values in the input (in the current paper, the
bin size) and that could give an unrealistically negative view of the performance of an online algorithm.

This approach has also been used to show that certain simple scheduling algorithms have constant com-
petitive ratio for the problems1 | ri, pmtn|

∑

Fi and1 | ri, pmtn|
∑

wi(1 − Ui) if they are given a small
amount of resource augmentation [8]. A constant competitive ratio for these problems is not possible in the
strict online model. Moreover, the strict online model often requires algorithms which seem unnecessarily
complicated.

A bin-packing algorithm usesbounded spaceif it has only a constant number of bins available to accept
items at any point during processing. These bins are calledopenbins. Bins which have already accepted
some items, but which the algorithm no longer considers for packing areclosedbins. While bounded space
algorithms are sometimes desirable, it is often the case that unbounded space algorithms can achieve lower
performance ratios.

We define the asymptotic performance ratio more precisely. For a given input sequenceσ, and a fixed
bin sizeb, let costA,b(σ) be the number of bins (of sizeb) used by algorithmA on σ. Let cost(σ) be the
minimum possible cost to pack items inσ using bins of size1. Theasymptotic performance ratiofor an
algorithmA is defined to be

R∞
A,b = lim sup

n→∞
max

σ

{

costA,b(σ)

cost(σ)

∣

∣

∣

∣

∣

cost(σ) = n

}

.

Theoptimal asymptotic performance ratiois defined to beR∞
OPT,b

= infA R∞
A,b. Our goal is to find for all

values ofb (b ≥ 1) an algorithm with asymptotic performance ratio close toR∞
OPT,b

.

Previous Results The classic online bin packing problem was first investigated by Ullman [14]. He
showed that the FIRST FIT algorithm has performance ratio1710 . This result was then published in [6]. John-
son [7] showed that the NEXT FIT algorithm has performance ratio 2. Yao showed that REVISED FIRST FIT

has performance ratio53 . Currently the best known lower bound is 1.54014, due to van Vliet [15].
Define u1 = 2, ui+1 = ui(ui − 1) + 1, and h∞ =

∑∞
i=1

1
ui−1 ≈ 1.69103. Lee and Lee showed

that the HARMONIC algorithm, which uses bounded space, achieves a performance ratio arbitrarily close
to h∞ [9]. They further showed that no bounded space online algorithm achieves a performance ratio less
thanh∞ [9]. In addition, they developed the REFINED HARMONIC algorithm, which they showed to have a
performance ratio of273228 < 1.63597. The next improvements were MODIFIED HARMONIC and MODIFIED

HARMONIC 2. Ramanan, Brown, Lee and Lee showed that these algorithms have performance ratios of
538
333 < 1.61562 and 239091

148304 < 1.61217, respectively [12]. Currently, the best known upper bound is 1.58889
due to Seiden [13].

Bin packing with resource augmentation was first studied by Csirik and Woeginger [4]. They give an
optimal bounded space algorithm. Naturally, its asymptotic performance ratio is strictly decreasing as a
function of the bin size of the online algorithm. Some preliminary general lower bounds for bin packing
with resource augmentation were given in [5]. In Section 7, we will compare them to our new lower bounds.

2

Our Results In this paper, we first present new lower bounds for the onlinebin packing problem in the
resource augmentation model by using improved sequences. For b ≥ 2, our lower bounds show that the best
bounded space algorithm is very close to optimal (among unbounded space algorithms).

We use the intuition gained from these lower bounds to develop new algorithms for this model, specif-
ically for the caseb ∈ [1, 2). We introduce a general method which extends many previously studied
algorithms for bin packing. This method takes the online binsizeb as a parameter. We study four instances
of the general method, each of our algorithms performs well for a different interval of values ofb. By
partitioning the interval[1, 2) in four sub-intervals and using the most appropriate algorithm on each sub-
interval, we give upper bounds that improve upon the bounds from [4] on the entire interval. That is, these
algorithms are better than the best possible bounded space algorithm.

Our analysis technique extends the general packing algorithm analysis technique developed by Sei-
den [13]. Specifically, unlike previous algorithms which pack the relatively small items by a very simple
heuristic (Next-Fit, or any fit), we combine small items withlarge items in the same bins in order to achieve
good performance (see the algorithms SMH and TMH).

2 Lower bounds - general structure

We first consider the question of lower bounds. Prior to this work, only a very simple general (non-bounded
space) lower bound for resource-augmented online bin packing was known [5].

Our method follows along the lines laid down by Liang, Brown and Van Vliet [1, 10, 15]. We give some
unknown online bin packing algorithmA one ofk possible different inputs. These inputs are defined as
follows: Let̺ = s1, s2, . . . , sk be a sequence ofitem sizessuch that0 < s1 < s2 < · · · < sk ≤ 1. Let ǫ be
a small positive constant. We defineσ0 to be the empty input. Inputσi consists ofσi−1 followed byn items
of sizesi + ǫ. AlgorithmA is givenσi for somei ∈ {1, . . . , k}.

A patternwith respect to̺ is a tuplep = 〈size(p), p1, . . . , pk〉 where size(p) is a positive real number
andpi, 1 ≤ i ≤ k are non-negative integers such that

∑k
i=1 pi si < size(p). Intuitively, a pattern describes

the contents of some bin of capacity size(p). DefineP(̺, β) to be the set of all patternsp with respect to̺
with size(p) = β. We writePOPT(̺) = P(̺, 1) andPA(̺) = P(̺, b). Note that these sets are necessarily
finite. Given an input sequence of items, an algorithm is defined by the numbers and types of items it places
in each of the bins it uses. Specifically, any online algorithm is defined by a functionΦ : PA(̺) 7→ R≥0.
The algorithm usesΦ(p) bins containing items as described by the patternp. We defineφ(p) = Φ(p)/n.

Consider the functionΦ that determines the packing used by online algorithmA uses forσk. SinceA
is online, the packings it uses forσ1, . . . , σk−1 are completely determined byΦ. We assign to each pattern
a class, which is defined as class(p) = min{i | pi 6= 0}. Intuitively, the class tells us the first sequenceσi

which results in some item being placed into a bin packed according to this pattern. I.e. if the algorithm
packs some bins according to a pattern which has classi, then these bins will contain one or more items
afterσi. DefinePA(̺, i) = {p ∈ PA(̺) | class(p) ≤ i}. Then ifA is determined byΦ, its cost forσi is
simplyn

∑

p∈PA(̺,i) φ(p). Since the algorithm must pack every item, we have the following constraints

n
∑

p∈P(̺)

φ(p) pi ≥ n, for 1 ≤ i ≤ k.

For a fixedn, defineχi(n) to be the optimal offline cost for packing the items inσi. The following lemma
gives us a method of computing the optimal offline cost for each sequence:

3

Lemma 1 ([5]) For 1 ≤ i ≤ k, χ∗ = limn→∞ χi(n)/n exists and is the value of the linear program:
Minimize

∑

p∈POPT(̺,i) φ(p) subject to1 ≤
∑

p∈POPT(̺) φ(p) pj , for 1 ≤ j ≤ i, over variablesχi and

φ(p), p ∈ POPT(̺).

Given the construction of a sequence, we need to evaluate

c = min
A

max
i=1,...,k

lim sup
n→∞

costA(σi)

χi(n)
.

As n → ∞, we can replaceχi(n)/n by χ∗
i . Once we have the valuesχ∗

1, . . . , χ
∗
k, we can readily compute a

lower bound for our online algorithm:

Lemma 2 The optimal value of the linear program: Minimizec subject to

c ≥
1

χ∗
i

∑

p∈PA(̺,i)

φ(p), for 1 ≤ i ≤ k;

1 ≤
∑

p∈PA(̺)

φ(p) pi, for 1 ≤ i ≤ k;
(1)

over variablesc andφ(p), p ∈ PA(̺), is a lower bound on the asymptotic performance ratio of any online
bin packing algorithm.

Proof. For any fixedn, any algorithmA has someΦ which must satisfy the second constraint. Further,Φ
should assign an integral number of bins to each pattern. However, this integrality constraint is relaxed, and
∑

p∈PA(̺,i) φ(p) is 1/n times the cost toA for σi asn → ∞. The value ofc is just the maximum of the
performance ratios achieved onσ1, . . . , σk. �

3 Lower bound sequences: which inputs are hard to handle?

First of all, it can be seen that items of the formb/i + ǫ, whereǫ > 0 is very small andi is an integer, are
difficult to pack by any algorithm in the sense that if you packonly items of one such size in a bin, you leave
almostb/i empty space in that bin. Moreover, within this class of items, it can be seen that the largest items
are the worst in this sense: packing an item of sizeb/2 + ǫ (and nothing else) into a bin leaves almost half
that bin empty, but packing 99 items of sizeb/100 + ǫ into a bin leaves only a little less thanb/100 empty
space.

It is for these reasons that all our lower bound sequences start with the smallest items (so that the online
algorithm has to take into account that larger and more difficult items may appear later, and thus has to
reserve some room for them while packing the ‘easier’ items), and use only items of the formb/i + ǫ. We
will not explicitly mention the addedǫ when discussing various item sizes below.

To determine lower bounds, we first extended the idea of a “greedy” sequence that was also used to
give the best known lower bound for the standard online bin packing problem [1, 10, 15]. Interestingly,
unlike these papers and the previous paper on resource augmentation in bin packing [4], it turns out to be
insufficient to simply consider the “standard” greedy sequence that we will define first. More sequence and
arguments are required to get a good lower bound.

A greedy sequence is built as follows. We start by taking the largest possible number of the formb/i that
is less than 1, wherei is a positive integer. Ifb ∈ [1, 2), this is always the numberb/2. Then we repeatedly
add the largest possibleb/ij (ij is an integer) that fits in the remaining space after packing all previous items

4

in a bin of size 1. That is, forb ∈ [1, 2), the second itemb/i2 has size strictly less than1 − b/2. We repeat
this until the item found is sufficiently small.

We also use several modified greedy sequences. The reason to do that is that unlike the construction
for bounded space algorithms [4], we need to consider the optimal offline packing of subsequences and not
only of the complete sequence. For some intervals of values of b, some greedy itemsb/ij are inconvenient
to pack into bins of size1, and a better lower bound can be proved by choosing such itemsdifferently. This
is not an issue in the model without resource augmentation, where both algorithms deal with the same bin
size.

The first modified sequence picks the itemb/(i2 + 1) instead ofb/i2, and continues greedily from that
point. Another natural choice isb/(i2 + 2) instead ofb/i2, but that does not improve the bounds. A second
modified sequence keeps the first two items picked greedily,b/2 andb/i2, but it picksb/(i3 + 1) as the next
item, and continues greedily. A third version picks both thesecond and third item using this non-greedy
method.

The lower bound is then constructed in the standard fashion:we have constructed a sequence of item
sizesb/2, b/i2, b/i3, . . . , b/ij . We invert the order of this sequence and start with the smallest item size. The
inputsσi are then constructed as described above, whereǫ is chosen in such a way that a set which consists
of one instance of each item can be placed together in a singlebin of size 1.

For b ≥ 2 we use only the basic greedy sequence.

4 The HARMONIC algorithm and variations

In this section we discuss the important HARMONIC algorithm [9] and possible variations on it. In the next
section we will discuss the specific variations on HARMONIC that we have used in this paper.

The fundamental idea of these algorithms is to first classifyitems by size, and then pack an item ac-
cording to its class (as opposed to letting the exact size influence packing decisions). For the classification
of items, we need to partition the interval(0, 1] into subintervals. The standard HARMONIC algorithm uses
n− 1 subintervals of the form(1/(i + 1), 1/i] for i = 1, . . . , n− 1 and one final subinterval(0, 1/n]. Each
bin will contain only items from one subinterval (type). Items in subintervali are packedi to a bin for
i = 1, . . . , n − 1 and the items in intervaln are packed in bins using NEXT FIT.

A disadvantage of HARMONIC is that items of type 1, that is, the items larger than1/2, are packed one
per bin, possibly wasting a lot of space in each single bin. Toavoid this large waste of space, later algorithms
used two extra interval endpoints, of the form∆ > 1/2 and1−∆. Then, some small items can be combined
in one bin together with an item of size∈ (1/2,∆]. Items larger than∆ are still packed one per bin as in
HARMONIC. These algorithms furthermore use parametersαi (i = 3, . . . , n) which represent the fraction
of bins allocated to typei where the algorithm will reserve space for items∈ (1/2,∆]. The remaining bins
with items of typei still containi items per bin.

Example MODIFIED HARMONIC (MH) is defined byn = 38 (the number of intervals) and∆ = 419/684.

α2 = 1
9 ;

α3 = 1
12 ;

α4 = α5 = 0;

αi =
37 − i

37(i + 1)
, for 6 ≤ i ≤ 36;

α37 = α38 = 0.

5

The results of [12] imply that the asymptotic performance ratio of MH is at most538333 < 1.61562. (In the
original definition,∆ was used to denote1 − ∆.)

In the current paper, we will use as interval endpoints the points of the formb/i (as long as they are
below 1) instead of1/i, since items in(b/(i + 1), b/i] can be placed exactlyi to a bin in an (online) bin of
sizeb. Moreover, sometimes we will also use points of the form∆, b − ∆, 1 − b/2 as interval endpoints, in
order to combine items from different types where they wouldotherwise waste much space.

Note that forb ∈ [1, 2) we always haveb/2 ≤ 1. We now consider an algorithmA that usesn basic
intervals (some might be subdivided further):

I1
A = (b/2, 1]

Ij
A = (b/(j + 1), b/j] j = 2, . . . , n − 1

In
A = (0, b/n]

In case∆ is used as an endpoint, the intervalI1
A = (b/2, 1] is partitioned into two subintervals, which

will be denoted byI∆(2)
A = (b/2,∆] andI

∆(1)
A = (∆, 1]. (∆ will always be chosen larger thanb/2.) We will

use two versions of algorithms, that are determined by whether they useb − ∆ or 1 − b/2 as an additional
endpoint. We denote the largest possible size of an item of the smallest type byε. This isb/n unlessIn

A is
divided further into two subintervals.

Version 1 We use the endpointb − ∆ (but not the endpoint1 − b/2). Let j∆ be the integer such that
b/(j∆ + 1) < b − ∆ ≤ b/j∆. ThenIj∆

A is partitioned into two subintervals, which will be denotedby

I
∆(4)
A = (b/(j∆ + 1), b − ∆] andI

∆(3)
A = (b − ∆, b/j∆].

Version 2 We use the endpoint1 − b/2 (but not the endpointb − ∆). Let j∆ be an integer such that
b/(j∆ + 1) < 1 − b/2 ≤ b/j∆. In this version we always taken ≥ j∆.

If n ≥ j∆ +1, thenIj∆
A is partitioned into two subintervals, which will be denotedby I

∆(4)
A = (b/(j∆ +

1), 1 − b/2] andI
∆(3)
A = (1 − b/2, b/j∆].

OtherwisenA = j∆ andIn
A is partitioned into the two subintervalsI∆(4)

A = (0, 1 − b/2] andI
∆(3)
A =

(1 − b/2, b/n].

In both versions, the intervals are disjoint and cover(0, 1]. A assigns each item atypedepending on its
size. An item of sizes has typeτA(s) whereτA(s) = j ⇔ s ∈ Ij

A. Note that either2 ≤ j ≤ n (j 6= j∆)
or j = ∆(i) for some1 ≤ i ≤ 4.

Note that if we place an item from the intervalI
∆(2)
A in a bin, the amount of space left over is at least

b − ∆. If possible, we would like to use this space to pack more items. To accomplish this, we assign each
item a color,red or blue. A attempts to pack red items with typeI∆(2)

A items. For both versions, all items of
types2, . . . , j∆ −1 and∆(k), k = 1, 2, 3 (where applicable) are blue. Other items can be either red orblue.

To assign colors to items, the algorithm uses two sets of counters,ej∆ , . . . , en andsj∆, . . . , sn, all of
which are initially zero. The countersj∆ counts the number of bins for items of type∆(4), and the counter
si keeps track of the total number of bins in which we packed items of typei for i = j∆ + 1, . . . , n. The
countersei are defined analogously, but only count the number of bins containing red items of type∆(4) or
i. These bins are also called red themselves.

For j∆ ≤ i ≤ n, A maintains the invariantei = ⌊αisi⌋, i.e. the fraction of bins with typei items that
contain red items is approximatelyαi. Recall thatαi is defined only forj∆ ≤ i ≤ n. For each such interval,

6

at least one item can fit in a bin together with an item of size atmost∆ in a bin of sizeb. Moreover, for
version 2 we combine only relatively small items with items of interval∆(2), so in most cases several items
fit together with the∆(2) item.

We now describe how blue and red items are packed. The packingof blue items is simple. Fori < n,
the number of items with sizes in(b/(i + 1), b/i] which fit in a bin of sizeb is i. Blue items with such sizes
are placedi in a bin, as in the HARMONIC algorithm. Note that the type of such an item is eitheri or ∆(k)
for some1 ≤ k ≤ 4. Small items (typen) which are colored blue are packed into separate bins using NEXT

FIT, again as in the HARMONIC algorithm.
For the red items, we consider the two versions of algorithmsdefined before separately.

Version 1 One red item of type∆(4) can be combined with an item of type∆(2). We defineγj∆ = 1. For
j∆ < j < n, the number of red items we will assign together with a type∆(2) item isγj = ⌊j(b − ∆)/b⌋.
For typen, we treat the remaining space ofb − ∆ in bins containing an item of type∆(2) as a bin, and use
NEXT FIT to place red items in such bins. Clearly we can fill at leastb−∆− b/n of this space by small red
items.

Version 2 If n = j∆, it means that we combine only the smallest interval with items of type∆(2). Then
we can assign at leastb− ε = 3b/2− 1 to blue items bins, andb−∆− ε = 3b/2−∆− 1 to red items bins.
If n > j∆, all the amounts are defined as for version 1, except forγj∆ = ⌊(b − ∆)/(1 − b/2)⌋.

We explain more precisely the method by which red items are packed with type∆(2) items. When a bin
is opened, it is assigned to agroup. If ε = b/n, the bin groups are named:

∆(1),∆(3),∆(4), 2, 3, , . . . , j∆ − 1, j∆ + 1, . . . n; (2)

(∆(2), i), for αi 6= 0, j∆ ≤ i ≤ n; (3)

(∆(2), ∗); (4)

(∗, i), for αi 6= 0, j∆ ≤ i ≤ n; (5)

If ε = 1 − b/2, i.e. the smallest interval was partitioned, the bin groupsare named:

∆(1),∆(3),∆(4), 2, 3, . . . , n − 1; (6)

(∆(2),∆(4)); (7)

(∆(2), ∗); (8)

(∗,∆(4)); (9)

Bins from groups in (2) and (6) contain only blue items of the type they is named after. The closed bins
all contain the maximum number of items they can have (explained earlier).

If the smallest interval was not partitioned, then forj∆ ≤ i < n, a closed bin in group(∆(2), i) contains
one type∆(2) item andγi type i items, and a closed bin in group(∆(2), n) contains one type∆(2) item
and red items of total size at leastb−∆− b/n. If the smallest interval was partitioned, a closed bin in group
(∆(2),∆(4)) contains red items of total size at least3b/2 −∆− 1. There is at most one open bin in any of
these groups.

The group(∆(2), ∗) contains bins which hold a single blue item of type∆(2). These bins are all open,
as we hope to add red items to them later.

7

The group(∗, j) contains bins which hold only red items of typej. Again, these bins are all open, but
only one has fewer thanγj items if j < n. For j = n only one bin can contain total size of less than
b − ∆ − ε of red items of the last interval. We will try to add a type∆(2) item to these bins if possible.

We call bins in the last two group classes ((4) and (5), or (8) and (9)) indeterminate. Essentially, the
algorithm tries to minimize the number of indeterminate bins, while maintaining all the aforementioned
invariants. I.e. we try to place red and type∆(2) items together whenever possible; when this is not
possible we place them in indeterminate bins in hope that they can later be combined.

On arrival of an item, it gets the same color as the previous item of the same type, if it can also fit into
the same bin. Otherwise, we update the bins counter, and according to the counters, decide which color it
gets.

5 Algorithms in this paper

After describing the general framework, we now describe thespecific algorithms that we have designed.
They are all instances of the general algorithm above. The first two algorithms, which deal with the case
b ≤ 4/3, handle the standard greedy lower bound sequence (defined inSection 3) well. The next two
algorithms were designed to handle other input sequences better. We explain in Section 5.3 why the standard
Harmonic approach is not so useful in the caseb ≥ 4/3.

5.1 Generalized Modified Harmonic (GMH)

This algorithm has the same structure as the regular MODIFIED HARMONIC, i.e. n = 38, and the same
values ofαi. The only difference is that the variable∆ is adjusted to ensure that∆ ∈ (b/2, 1) for b ∈ [1, 2).

Specifically, we let∆ grow linearly with the bin size until it reaches the value 1 for a bin size of 2, i.e.
∆ = 419/684 + 265(b − 1)/684. We applied this algorithm on the interval[1, 6/5). This algorithm is of
version 1 as we only modify∆.

5.2 Convenient Modified Harmonic (CMH)

On the interval[6/5, 4/3), we focus on the items that could be packed together in one offline bin together
with items of type 1, that is, items that are just larger thanb/2. This was done specifically to handle the
greedyinput sequence, which starts with an item just larger thanb/2 and repeatedly adds an item of the form
b/ij + ε such that all items together fit into a bin of sizeb.

Our algorithm is of version 1 and does the following. Let

k =

⌊

1

1 − b/2

⌋

.

This means that the largest items that can be packed togetherwith an item of sizeb/2 in a single bin of
size 1 are in the interval(1/(k + 1), 1/k] (possibly not every size in this interval can be so packed). Let
∆ = (k − 1)b/k. Note that in the interval ofb we consider, we always havek = 3 and hence∆ = 2b/3.
Note thatb − ∆ = b/k and thereforeI∆(3) = ∅.

Our choice of∆ ensures that items of type∆(2), with sizes in(b/2, (k−1)b/k], can be packed very well
together with items of typek, with sizes in(b/(k + 1), b/k], in our case this is(b/4, b/3]. In the discussed
interval we haveb/2 + b/4 < 1, so in the optimal packing such items could also be together in one bin. The

8

choice ofn = 38 is as in GMH and the valuesαi are chosen by experimenting. The values we used are

α3 = 1
8 ;

α4 = 1
10 ;

α5 = 0;

αi =
37 − i

37(i + 4)
, for 6 ≤ i ≤ 36;

α37 = α38 = 0.

5.3 Small Modified Harmonic (SMH)

On the interval[4/3, 12/7 ≈ 1.7143), it becomes more important how to pack smaller items (relative tob).
We define∆ = 1, andn = 12. ThusI∆(1) = ∅. Note that we use the second version of the algorithm,
which means that in marked contrast to all other previously defined variations on Harmonic that the authors
are aware of, we do not takeα12 = 0, that is, we pack some of the smallest items together with thelarge
items.

We illustrate the reason. Consider a bin of size3/2. Taking∆ = 1 leaves a space of1/2 in a bin. This
space could be used to accommodate an item of sizeb/3 = 1/2. However, items of size in(b/4, b/3], when
packed three to a bin, occupy at least3b/4 = 9/8 > 1. Considering an offline packing we can see that such
items do not fit together with an items of type∆(2). Therefore there is no reason to improve their packing
which is already relatively good.

However, items that do fit together with type∆(2) items do need to be packed more carefully (partly red
and partly blue), including the ones from the last interval,since they can be combined in an offline packing.
We determine the largest item type thatOPT could pack together with an item in(b/2, 1] (i.e. the smallesti
such thatb/i ≤ 1 − b/2). Larger items are packed according to Harmonic, while a fraction of these smaller
items are reserved to be packed together with an item of type∆(2), i.e. in (b/2, 1].

We explain how to fix the valuesαi for this algorithm in Section 6.2.

5.4 Tiny Modified Harmonic (TMH)

On the interval[12/7, 2), it turns out that it is crucial to pack the smallest items better than with Harmonic.
All other items are packed in their own bins according to Harmonic. We use the second version of the
algorithm. We use∆ = 1 (soI∆(1) = ∅) and letn = j∆.

In other words, we determine the number of intervals that we use in such a way that1 − b/2 ∈ (b/(n +
1), b/n]. The smallest interval boundary of the formb/i is just larger than1 − b/2 (or equal to it). This
ensures that in the optimal packing, only items of the smallest type could be packed together with large
items with size in(b/2, 1]. We useαj∆ = (2b − 2)/(4 − b).

It would be possible to improve very slightly using the algorithm SMH with more intervals, but the
number of intervals required grows without bound asb approaches 2, and it becomes infeasible to calculate
all the patterns.

6 Analysis

An algorithm for a given bin sizeb can be used without change for any bin sizec ≥ b, and will have the same
performance ratio since for any given sequence, the offline optimal packing and the cost of the algorithm

9

remain unchanged. This means that the functionR∞
OPT,b

is monotonically decreasing inb. This property
allows us to give bounds on an interval bysamplinga large but finite number of points. An upper bound for
the bin sizeb holds forb + γ for anyγ > 0. A lower bound for the bin sizeb holds for a bin sizeb − γ for
anyγ > 0.

6.1 Weighting functions

The type of algorithm described in Section 4 can be analyzed using the method of weighting systems devel-
oped in [13]. The full generality of weighting systems is notrequired here, so we adopt a slightly different
notation than that used in [13], and restrict ourselves to a subclass of weighting systems.

A weighting system for an algorithmA is a pair(WA, VA). WA andVA areweighting functionswhich
assign each itemp a real number based on its size. The weighting functions for an algorithmA are defined
as follows.

If ε = 1 − b/2, the only value ofαi which is not zero isαj∆ . The weighting functions are defined as
follows.

Type of itemp WA(p) VA(p)

∆(1) 1 1
∆(2) 1 0

k ∈ {2, 3, . . . , j∆ − 1} 1/k 1/k
∆(3) 1/j∆ 1/j∆

∆(4)
p(1 − αj∆)

3b/2 − 1 − ∆αj∆

p

3b/2 − 1 − ∆αj∆

For the cases thatε = b/n we define the functions differently.

Type of itemp WA(p) VA(p)

∆(1) 1 1
∆(2) 1 0

k ∈ {2, 3, . . . , j∆ − 1} 1/k 1/k
∆(3) 1/j∆ 1/j∆

∆(4)
1 − αj

γj∆αj
∆ + j∆(1 − αj

∆)

1

γj∆αj
∆ + j∆(1 − αj

∆)

k ∈ {j∆ + 1, . . . , n − 1}
1 − αk

γkαk + k(1 − αk)

1

γkαk + k(1 − αk)

n
p(1 − αn)

b − b/n − ∆αn

p

b − b/n − ∆αn

The following lemma follows directly from Lemma 4 of [13]:

Lemma 3 For all σ, we have

costA(σ) ≤ max

{

∑

p∈σ

WA(p),
∑

p∈σ

VA(p)

}

+ O(1).

So the cost toA can be upper bounded by the weight of items inσ, and the weight is independent of the
order of items inσ.

We give a short intuitive explanation of the weight functions and Lemma 3: Consider the final packing
created by an algorithmA on some inputσ. In this final packing, letr be the number of bins containing red

10

items, letb1 be the number of type∆(2) items, and letb2 be the number of bins containing blue items of
type other than∆(2). The total number of bins is justmax{r, b1} + b2 = max{r + b2, b1 + b2}. We have
chosen our weighting functions so that

∑

p∈σ WA(p) = b1 + b2 + O(1) and
∑

p∈σ VA(p) = r + b2 + O(1).
In both WA andVA, the weight of a blue item of type other than∆(2) is just the fraction of a bin that it
occupies.WA counts type∆(2) items, but ignores red items.VA ignores type∆(2) items, but counts bins
containing red items. For a formal proof, we refer the readerto [13].

Let f be some functionf : (0, 1] 7→ R+.

Definition 6.1 P(f) is the mathematical program: Maximize
∑n

x∈X f(x) subject to
∑

x∈X x ≤ 1, over
all finite sets of real numbersX. In an abuse of notation, we also useP(f) to denote the value of this
mathematical program.

Intuitively, given a weighting functionf , P(f) upper bounds the amount of weight that can be packed in a
single bin. It is shown in [13] that the performance ratio ofA is upper bounded bymax{P(WA),P(VA)}.
The value ofP is easily determined using a branch and bound procedure verysimilar to those in [13, 5].

6.2 Choice of valuesαi for SMH

To choose the values ofαi in the algorithm SMH we use the following idea. We would like to balance the
total weight of two particular offline packings. The first offline packing contains one item of interval∆(2)
and smaller items of typei (here the weight is maximized by considering the weight function WA). The
second offline packing contains only items of typei, and we useVA to determine the maximum weight.

In order to balance these weights, we define theexpansionof typei to be the maximum ratio of weight
to size of an item of typeI. Let EV (i) be the expansion according toVA andEW (i) be the expansion
according toWA. We would like to have

EV (i) = 1 + (1 − b/2)EW (i).

This implies

αi =
S − b/2

S − s + 1 − b/2
,

whereS is the minimal occupied area in a closed bin containing blue items of typei ands is the minimal
occupied area by red items of intervalI in a closed bin.

Note that this computation is not entirely accurate for all types, as it is not always possible to fill a bin of
size1 or of size1− b/2 completely with items of the largest expansion. However, the interval which affects
the asymptotic performance ratio the most is(0, ε].

6.3 Analysis of TMH

The simple structure of TMH allows an analytical solution. For this algorithm, we do not need to solve
mathematical programs, but can instead calculate the asymptotic worst case performance directly, as follows.

For all types but the smallest and the largest, the weight of an item of sizex is at mostx. The reason for
this is that they are packed according to Harmonic, and TMH can fit at least the same number of items per
bin asOPT can. To get a bin of weight more than 1, there must be some itemsof the first or the last type.

The upper bound of the last interval is1 − b/2, denoted byε. Only items in this interval can be packed
together with a type∆(2) item in one bin.

11

Recall that the algorithm uses a parameterα = αj∆ that determines how the small items are packed.
The algorithm maintains the invariant that a fractionα of the bins containing small items are red and have
room for a type∆(2) item. The total size of all the small items in such a bin is at leastb − 1 − ε. The rest
of these bins are blue and contain a volume of at leastb − ε. There are two cases.

Case 1 There is no item of type∆(2). If TMH usesk bins to pack all items of type∆(4) (the last
type), thenαk bins are red and contain a minimum volume ofb − 1 − ε each;(1 − α)k bins contain a
minimum total volume ofb − ε of small blue items each. Thusk bins contain a total volume of at least
αk(b − 1− ε) + (1− α)k(b − ε) = k(b− α− ε), in other words each bin contains on average a volume of
at leastb − α − ε. The worst case is that all the items are small. Since an offline bin can contain one unit
of such items, this gives an asymptotic performance ratio of1/(b − α− ε). Note that this is consistent with
the definition of the functionVA for this case.

Case 2 There is an item of type∆(2). We are interested in the case that its weight is 1, i.e. in theweights
according to the functionWA. The large item is of size at leastb/2. The weight in a bin that contains such
an item is maximized by filling up the bin with items of type∆(4). The remaining space in the offline bin is
exactly1− b/2. In this case, TMH only needs “to pay” for the blue bins. It packs a volume ofk(b−α− ε)
using only(1 − α)k blue bins. The total weight according toWA is 1 + 1−α

b−α−ε
(1 − b/2).

Balancing the weights gives that the best choice isα = 2b−2
4−b

and a ratio of1/(b − α − ε) = (2b −

8)/(3b2 − 10b + 4).

7 Results

As mentioned in Section 6, we can determine valid upper and lower bounds on the asymptotic performance
ratio for this problem on any interval by sampling a finite number of points. In fact, since we have given an
analytical solution for the algorithm TMH, it is not necessary to do any sampling for the upper bound on the
interval(12/7, 2].

On the remaining intervals, we used a computer program to solve the associated mathematical program
P for many specific values ofb (we sampled integer multiples of11000) and whichever algorithm is used for
that value ofb.

We also used a computer program to generate lower bounds for 1,000 values ofb between 1 and 2. This
program can be found at http://algo2.iti.uni-karlsruhe.de/vanstee/program/. There were some values ofb
where all lower bound sequences that we used gave a worse lower bound than we had already found for
some higher value ofb. However, a lower bound ofc for a valueb0 also implies a lower bound ofc for
all values1 ≤ b ≤ b0 as stated before. Therefore, whenever we found a lower boundthat was worse than
one that was found for some higher value ofb, we instead use this higher bound. This explains the small
intervals in the graph where the lower bound is constant.

Our results are summarized in the two Figures 1 and 2. The horizontal axis is the size of the online bin,
and the vertical axis is the asymptotic performance ratio. For comparison, we have included the graph of
the bounded space upper bound (which matches the bounded space lower bound).

It can be seen that for all bin sizes between 1 and 2, we have given substantial improvements on the
bounded space algorithm, which was the best known algorithmfor this problem so far. In particular, for
b ≥ 1.6, the upper bound of our algorithms is less than half as much removed from the (new) lower bound
as the previous (bounded space) upper bound was.

12

The lower bounds from [5] were also significantly improved: for instance forb = 6/5, the lower bound
was improved from less than1.18 to above1.34, and forb ≥ 3/2, the previous lower bound was less than
0.8.

1.2 1.4 1.6 1.8 2
a

1.1

1.2

1.3

1.4

1.5

1.6

Figure 1: The lower bound (lowest graph), upper bound (middle), and bounded space bound (highest).
Horizontal axis is size of online bin, vertical axis is asymptotic performance ratio.

2.5 3 3.5 4 4.5 5
a

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2: The lower bound (lowest graph) and bounded space bound on[2, 5]. Axes as in previous figure.

13

8 Conclusions

We have improved all known results for bin packing with resource augmentation. The remaining gap be-
tween the upper and lower bound is at most 7% for allb ≥ 1, at most 3% forb ≥ 1.6, and the bounds are
nearly tight forb ≥ 2.

The fact that the online algorithm deals with a different binsize than the offline algorithm complicates
the design of algorithms. It is in particular critical to deal with sequences that can be packed with very
little loss by the offline algorithm, while other sequences like the standard greedy sequence become less
important since the optimal offline algorithm can not alwayspack subsequences of that input well enough
to give a good lower bound.

An interesting observation which follows from our researchis that in some cases, it can be helpful to
pack very small items in the input together with large items in one bin. To our knowledge, this is the first
time that this approach has worked for any bin packing problem. It is an open problem whether this can help
for standard bin packing too.

References

[1] Donna J. Brown. A lower bound for on-line one-dimensional bin packing algorithms. Technical Report
R-864, Coordinated Sci. Lab., Urbana, Illinois, 1979.

[2] Edward G. Coffman, Michael R. Garey, and David S. Johnson. Approximation algorithms for bin
packing: A survey. In D. Hochbaum, editor,Approximation algorithms. PWS Publishing Company,
1997.

[3] János Csirik and Gerhard J. Woeginger. On-line packingand covering problems. InA. Fiat and
G. J. Woeginger, editors,Online Algorithms: The State of the Art, volume 1442 ofLecture Notes in
Computer Science, pages 147–177. Springer-Verlag, 1998.

[4] János Csirik and Gerhard J. Woeginger. Resource augmentation for online bounded space bin packing.
Journal of Algorithms, 44(2):308–320, 2002.

[5] Leah Epstein, Steve S. Seiden, and Rob van Stee. New bounds for variable-sized and resource aug-
mented online bin packing. In P. Widmayer, F. Triguero, R. Morales, M. Hennessy, S. Eidenbenz, and
R. Conejo, editors,Proc. 29th International Colloquium on Automata, Languages, and Programming
(ICALP), volume 2380 ofLecture Notes in Computer Science, pages 306–317. Springer, 2002.

[6] Michael R. Garey, Ronald L. Graham, and Jeffrey D. Ullman. Worst-case analysis of memory allo-
cation algorithms. InProceedings of the Fourth Annual ACM Symposium on Theory of Computing,
pages 143–150. ACM, 1972.

[7] David S. Johnson. Fast algorithms for bin packing.J. Comput. Systems Sci., 8:272–314, 1974.

[8] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance.J. ACM, 47:214–221,
2000.

[9] C. C. Lee and D. T. Lee. A simple online bin packing algorithm. J. ACM, 32:562–572, 1985.

[10] F. M. Liang. A lower bound for online bin packing.Inform. Process. Lett., 10:76–79, 1980.

14

[11] Cynthia Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-critical scheduling via resource
augmentation.Algorithmica, pages 163–200, 2002.

[12] P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. Online bin packing in linear time.J. Algorithms,
10:305–326, 1989.

[13] Steve S. Seiden. On the online bin packing problem.Journal of the ACM, 49(5):640–671, 2002.

[14] Jeffrey D. Ullman. The performance of a memory allocation algorithm. Technical Report 100, Prince-
ton University, Princeton, NJ, 1971.

[15] André van Vliet. An improved lower bound for online binpacking algorithms.Inform. Process. Lett.,
43:277–284, 1992.

15

