
Max-min online allocations with a reordering buffer

Leah Epstein1, Asaf Levin2,?, and Rob van Stee3,??

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel.
lea@math.haifa.ac.il

2 Faculty of Industrial Engineering and Management, The Technion, 32000 Haifa, Israel.
levinas@ie.technion.ac.il.

3 University of Karlsruhe, Department of Computer Science, 76128 Karlsruhe, Germany.
vanstee@ira.uka.de

Abstract. We consider online scheduling so as to maximize the minimum load,
using a reordering buffer which can store some of the jobs before they are as-
signed irrevocably to machines. For m identical machines, we show an upper
bound of Hm−1 + 1 for a buffer of size m − 1. A competitive ratio below Hm

is not possible with any finite buffer size, and it requires a buffer of size Ω̃(m) to
get a ratio of O(log m). For uniformly related machines, we show that a buffer of
size m+1 is sufficient to get an approximation ratio of m, which is best possible
for any finite sized buffer. Finally, for the restricted assignment model, we show
lower bounds identical to those of uniformly related machines, but using different
constructions. In addition, we design an algorithm of approximation ratio O(m)
which uses a finite sized buffer. We give tight bounds for two machines in all the
three models.
These results sharply contrast to the (previously known) results which can be
achieved without the usage of a reordering buffer, where it is not possible to get
a ratio below an approximation ratio of m already for identical machines, and
it is impossible to obtain an algorithm of finite approximation ratio in the other
two models, even for m = 2. Our results strengthen the previous conclusion that
a reordering buffer is a powerful tool and it allows a significant decrease in the
competitive ratio of online algorithms for scheduling problems. Another interest-
ing aspect of our results is that our algorithm for identical machines imitates the
behavior of the greedy algorithm on (a specific set of) related machines, whereas
our algorithm for related machines completely ignores the speeds until the end,
and then only uses the relative order of the speeds.

1 Introduction

Scheduling problems are most frequently described in a framework of assigning jobs to
machines. There are various kinds of scheduling problems depending upon the proper-
ties of the machines, allowable assignments, and the cost criteria. Our goal is to study
a natural model where the assignment of jobs is performed dynamically, in the sense
that jobs are being considered one by one, and generally must be assigned in this order,
? Chaya fellow.
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while the information on future jobs is unknown. We consider parallel machines, and
a problem variant which possesses features of both offline and online scenarios. These
are not offline problems, since the input arrives gradually, but they are not purely online
either, since we allow partial reordering of the input.

More specifically, in this paper we study a variant called scheduling with a reorder-
ing buffer, where a buffer, which can store a fixed number of unassigned jobs, is avail-
able. Thus each new job must be either assigned to a machine or stored in the buffer
(possibly in the case where the buffer is already full, the algorithm is forced to evict
another job from the buffer, which must be assigned to a machine immediately). A job
which is assigned to a machine, is assigned irrevocably to that machine.

In this paper, we are concerned with max-min allocations, that is, the goal is max-
imizing the minimum load. The concept of such allocations is related to the notion of
fair division of resources [2]. Originally, the goal function was used for describing sys-
tems where the complete system relies on keeping all the machines productive for as
long as possible, as the entire system fails even in a case that just one of the machines
ceases to be active [18]. Additional motivations for the goal function come from is-
sues of Quality of Service. From the networking aspect, this problem has applications
to basic problems in network optimization such as fair bandwidth allocation. Consider
pairs of terminal nodes that wish to communicate; we would like to allocate bandwidth
to the connections in a way that no link unnecessarily suffers from starvation, and all
links get a fair amount of resources. Another motivation is efficient routing of traffic.
Consider parallel links between pairs of terminal nodes. Requests for shifting flow are
assigned to the links. We are interested in having the loads of the links balanced, in the
sense that each link should be assigned a reasonable amount of flow, compared to the
other links. Yet another incentive to consider this goal function is congestion control by
fair queuing. Consider a router that can serve m shifting requests at a time. The data
pieces of various sizes, needing to be shifted, are arranged in m queues (each queue
may have a different data rate), each pays a price which equals the delay that it causes
in the waiting line. Our goal function ensures that no piece gets a “preferred treatment”
and that they all get at least some amount of delay.

We are mainly interested in two models of parallel machines, namely identical ma-
chines [20] and uniformly related machines [3, 7]. The input is a stream of jobs, of
indices 1, 2, . . ., where the single attribute of each job j is its processing time, pj , also
known as its size. The goal is always to partition the jobs into m subsets, where each
subset is to be executed on one specific machine, that is, there are m machines, of in-
dices {1, 2, . . . , m}, and each job is to be assigned to one of them. Online algorithms
see the input jobs one at a time, and need to assign each job before becoming familiar
with the remaining input. In the identical machines model, the completion time (also
called load) of a machine is the total size of the jobs assigned to it, while for uniformly
related machines (also known as related machines), each machine i has a speed si as-
sociated with it, and the completion time (or load) of a machine is the total size of jobs
assigned to it, scaled by the speed of the machine. Without loss of generality, let the
speeds be s1 ≤ · · · ≤ sm.
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An additional common variant considered here is restricted assignment [5]. The
machines have identical speeds, though each job j is associated with a subset of the
machines, Mj ⊆ {1, 2, . . . , m}, and can be assigned only to a machine in Mj .

Notations Throughout the paper we use the following notations. The size of the buffer
is denoted by K. We use OPT to denote an optimal solution as well as its value or profit
(i.e., the load of its least loaded machine). For an (offline or online) algorithm ALG we
denote its value or profit by ALG as well. For a minimization problem, the value of a
solution is called its cost and the approximation ratio of ALG is the infimum R such
that for any input, ALG ≤ R · OPT, whereas for a maximization problem (such as the
problem studied here), the approximation ratio of ALG is the infimum R such that for
any input, R · ALG ≥ OPT (note that we use numbers greater than 1 for approximation
ratios for a maximization problem). If the approximation ratio of ALG is at most r,
then we say that it is an r-approximation. Let Ht denote the harmonic series, that is,
Ht =

∑t
i=1

1
t .

Related work This problem (without a buffer) has been well studied (known by dif-
ferent names such as “machine covering” and “the Santa Claus problem”) in the com-
puter science literature (see e.g. [18, 12, 11, 24, 6, 15, 17, 2]). For identical machines, it
is known that any online algorithm for identical machines has an approximation ratio
of at least m (the proof is folklore, see [24, 4]), and this bound can be achieved using a
greedy algorithm which assigns each job to the least loaded machine, as was shown by
Woeginger [24]. Before the usage of our approach of incorporating a reordering buffer
became popular, there were other attempts to overcome this bound. Randomized algo-
rithms were studied in [4], where it was shown that the best approximation ratio which
can be achieved using randomization is Θ̃(

√
m). Several types of semi-online variants

were considered, where one of the following was assumed: the largest processing time
of any job is given in advance, the total size is given in advance, or both are given. It
was shown that in these cases, the best approximation ratio remains Θ(m) [23, 8]. Here
we show that our approach allows us to reduce the approximation ratio much more sig-
nificantly. It should be noted, that an additional, much stronger, semi-online variant was
studied as well, where it is assumed that jobs arrive sorted by non-increasing process-
ing time. In this variant, which is much closer to an offline problem than our model, the
approximation ratio is at most 4

3 [11, 12].
For uniformly related machines, no algorithm with finite approximation ratio exists

even for two machines [4]. The semi-online problem where jobs arrive sorted by non-
increasing order, and the problem where the profit of an optimal algorithm is known
in advance, admit m-approximations, which is best possible in both cases. If the two
types of information are combined, a 2-approximation is known [4]. To the best of our
knowledge, no positive results are known for the case of restricted assignment. It is
known that no finite approximation ratio can be achieved for a purely online algorithm,
even for two machines [9], and even in the model of hierarchical machines, where for
every j, the set Mj is a prefix of the machine set.

In all variants of scheduling with a buffer studied in the past, a finite length buffer
(usually of size O(m)) already allowed to achieve the best possible approximation ratio
(for any finite sized buffer). Moreover, in almost all cases, the approximation ratio is



4 Leah Epstein, Asaf Levin, and Rob van Stee

significantly reduced, compared to the best possible purely online algorithm. We next
survey the results for the min-max allocation problem (also known as the minimum
makespan problem), whose goal is dual to our goal function, with a buffer.

Kellerer et al. [22] and Zhang [25] considered the case of two identical machines,
and showed that a buffer of size 1 allows to achieve an approximation ratio of 4

3 , which
is best possible. For m identical machines, Englert et al.[16] showed that a buffer of
size O(m) is sufficient. Their algorithm has the best possible approximation ratio for
every value of m, while this ratio tends to 1.47 for large m. It is known that for online
scheduling, no algorithm can have an approximation ratio smaller than 1.853 [1, 19].
For the more general case of uniformly related machines, it was shown in [13] that for
two machines, a buffer of size 2 is sufficient to achieve the best approximation ratio. In
fact, for some speed ratios between the two machines, a buffer of size 1 is sufficient,
while for some other speed ratios, a buffer of size 1 provably is not enough to achieve
the best bound. Note that it was shown by [16] that a buffer of size m − 1 reduces the
approximation ratio for uniformly related machines below the lower bound of the case
without a reordering buffer, specifically, in addition to the case of identical machines,
Englert et al. [16] designed a 2-approximation algorithm for related machines, which
uses a buffer of size O(m). Whereas, without a buffer it is known that no algorithm can
have an approximation ratio below 2.43 [7]. Finally, for the standard online scheduling
problem in the restricted assignment model, there are tight bounds of Θ(log m) on
the approximation ratio [5]. The lower bound still holds if there is a buffer, since the
construction of [5] holds for fractional assignment (where a job can be split arbitrarily
among the machines that can run it); each job can be replaced by very small jobs, and
so the usage of a buffer does not change the result.

The analogous questions for preemptive scheduling on identical machines were re-
solved in [14]. In this variant, jobs can be arbitrarily distributed among the machines,
with the restriction that two parts of one job cannot be simultaneously processed on two
machines. The best possible upper bound over all values of m is 4

3 , while for the case
without a buffer, this value is approximately 1.58, as was shown by Chen et al. [10].

Our results For identical machines, we design an algorithm which uses a buffer of size
m − 1, and has an approximation ratio of at most Hm−1 + 1. For m = 2, we design a
different 3

2 -approximation algorithm, which is optimal. We show a lower bound of Hm

for any finite sized buffer, and in addition, we show that for a buffer size of o( m
log m ),

an upper bound of O(log m) cannot be achieved. Interestingly, our algorithm IMITATE
imitates the behavior of a greedy algorithm for uniformly related machines, with the
speeds {1, 1

2 , 1
3 , . . . , 1

m}.
For the cases of related machines and restricted assignment, we extend the known

negative results of [4, 9], and show that a buffer of size at most m − 2 does not ad-
mit an algorithm of finite approximation ratio. For an arbitrary sized buffer, we show
lower bounds of m on the approximation ratio of any algorithm. The proofs of the lower
bounds in the two models are very different, but the results are similar. We complement
these result by O(m)-approximation algorithms, which use a finite sized buffer. Specif-
ically, for the related machines model we design an algorithm of approximation ratio
m, which uses a buffer of size m + 1, and an algorithm of approximation ratio below
2m − 1, which uses a buffer of size m − 1. For two machines we design a different
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2-approximation algorithm, which uses a buffer of size 1. For the restricted assignment
model we present an algorithm of approximation ratio at most 2m which uses a buffer
of size O(m2). For two machines, we give a simpler algorithm of approximation ra-
tio 2, which only requires a buffer of size 1. In contrast to the algorithm for identical
machines, which attributes phantom speeds to the machines, the algorithm for related
machines ignores the speeds during the main loop, and in the final loop, only uses the
relative order of speeds, rather than their values.

Omitted proofs are deferred to the full version.

2 Identical machines

We start with the most elementary case of identical machines. We first show limitations
on the performance and the required buffer size of any algorithm.

2.1 Lower bounds

In some of the lower bound proofs, the input sequence starts with a large number of
very small jobs. In such a case, having a buffer is not meaningful, since almost all jobs
must be assigned. The difficulty is in spreading these small jobs among the machines
without knowing the sizes of future jobs. The next proof has some similarities with a
lower bound for the preemptive variant [21].

Theorem 1. For any buffer size K, no online algorithm can have an approximation
ratio below Hm.

Proof. We only give the construction here, and defer the proof to the full version. Let
ε > 0 be a very small constant such that ε = 1/N for some N ∈ N which is divisible
by m!. The input contains N jobs of size ε, where N >> K. Let b1 ≤ · · · ≤ bm be
the resulting loads for a given algorithm, after the last of these jobs has arrived. Since
at most K of them remain in the buffer, we have 1 − Kε ≤

∑m
i=1 bi ≤ 1.

Next, j jobs of size 1/(m − j) arrive for some 0 ≤ j ≤ m − 1. These j jobs are
called large jobs. For this input, the optimal value is OPTj = 1/(m − j). �

The following proposition implies that we in fact need a buffer of size Ω(m/ log m)
to get an approximation ratio which is logarithmic in m.

Proposition 1. Let f(m) be a function where f(m) < m for all m > 1. For a buffer
size f(m), no algorithm can have an approximation ratio below m/(f(m) + 1).

2.2 Algorithm

While the lower bound constructions are relatively simple, it is harder to see what an al-
gorithm of sufficiently small approximation ratio should do. Intuitively, given the lower
bound construction in the proof of Theorem 1, the machines should be relatively unbal-
anced. We achieve this by acting as if the machines have speeds (the so-called phantom
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speeds). We next define the algorithm IMITATE, which has a buffer of size m− 1. IMI-
TATE always keeps the largest m − 1 jobs in the buffer.
ALGORITHM IMITATE. We store the first m − 1 jobs in the buffer. Upon an arrival of
a job, in the case that the buffer already contains m − 1 jobs, consider those jobs and
the new job. Let the size of the smallest job among these m jobs be X . A job of size
X will be assigned while the other jobs are stored in the buffer. The algorithm imitates
the behavior of the so-called post-greedy algorithm for uniformly related machines. We
define the phantom speed of the machine of index i to be 1

i . Let Li denote the current
load of machine i. The next job is assigned to a machine which minimizes i · (Li +X).

Upon termination of the input sequence, let b2 ≤ . . . ≤ bm be the sizes of jobs
remaining in the buffer. (If there are only j < m − 1 jobs in the buffer, then we let
bi = 0 for 2 ≤ i ≤ m− j.) The job of size bi is assigned to machine i (machine 1 does
not get a job). We call this job the final job of machine i.

In what follows, we use `i to denote the load of machine i before the assignment of
the final job, and Li be the final load of machine i. That is, Li = `i + bi for 2 ≤ i ≤ m
and L1 = `1. Note that if b2 = 0, that is, the buffer contains less than m − 1 jobs upon
termination of the input sequence, then `i = 0 for all 1 ≤ i ≤ m.

To analyze the algorithm, we start with proving the following lemmas.

Lemma 1. Let 1 ≤ i ≤ m and 2 ≤ k ≤ m, i 6= k. Then k · Lk ≥ i · `i.

Proof. If `i = 0, then the claim trivially holds. Otherwise, let µ be the size of the last job
ever assigned to machine i (neglecting the final job). Let λk be the load of machine k at
that time in which µ was assigned. Then k(λk+µ) ≥ i`i by the post-greedy assignment
rule. We have Lk = `k + bk ≥ λk + µ, using the properties bk ≥ µ, since just before
the assignment of the final jobs, the buffer contains the largest m − 1 jobs in the input,
and `k ≥ λk, since `k is the load of machine k just before the final jobs are assigned,
while λk is the load of this machine at an earlier time. Hence Lk ≥ λk + µ ≥ i·`i

k . �

Lemma 2. For i ≥ 2, `1 ≥ (i − 1)`i.

Proof. If `i = 0, then we are done. Otherwise let µ be the size of the last job ever
assigned to machine i prior to the allocation of the final jobs. Let λ1 be the load of
machine 1 at the time when we assigned µ. Then λ1 + µ ≥ i`i by the post-greedy
assignment. Since `i ≥ µ and `1 ≥ λ1, we get `1 ≥ λ1 ≥ i`i − µ ≥ (i − 1)`i. �

We denote the total size of all jobs except for the final ones by ∆. That is, we let
∆ =

∑m
i=1 `i.

Lemma 3. (Hm−1 + 1)`1 ≥ ∆.

Proof. By Lemma 2, we conclude that for all i ≥ 2, `1 ≥ (i−1)`i, and hence `1
i−1 ≥ `i.

We sum up the last inequality for all 2 ≤ i ≤ m, and we get
∑m

i=2
`1

i−1 ≥
∑m

i=2 `i =
∆ − `1. On the other hand,

∑m
i=2

`1
i−1 = Hm−1`1, so (Hm−1 + 1)`1 ≥ ∆. �

Lemma 4. For any k > 1, (Hm − 1
k )kLk ≥ ∆ − `k.
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Proof. For all 1 ≤ i ≤ m such that i 6= k, we have that `i ≤ k·Lk

i by Lemma 1.
Summing up for all i 6= k we get ∆ − `k =

∑
i 6=k `i ≤

∑
i 6=k

k·Lk

i = kLk

∑
i 6=k

1
i =

kLk(Hm − 1
k ). �

Lemma 5. For any 1 ≤ k ≤ m, OPT ≤ 1
k (∆ +

∑k
j=2 bj).

Theorem 2. The approximation ratio of IMITATE is at most Hm−1 + 1.

3 Uniformly related machines

3.1 Lower bounds

Theorem 3. For a buffer of size at most m− 2, no algorithm can have a finite approx-
imation ratio on related machines.

Proof. Let the speed of machine i be Si−1 for some large S ≥ m + 1. Without loss of
generality assume that the buffer has size m− 2. The input sequence starts with m − 1
jobs of sizes S, S2, . . . , Sm−1. At least one of these jobs cannot remain in the buffer.
Let Sk be the size of the assigned job. Let j be the machine it is assigned to. If j ≤ k,
there is another job of size 1. Otherwise, another job of size Sm arrives.

In the first case, there is a machine in {k + 1, . . . ,m} which does not receive a job
in {Sk, . . . , Sm−1}, this machine has a profit of at most Sk−1/Sk = 1/S (there are m
jobs, so if a machine gets two jobs then ALG = 0). In this case, OPT = 1.

In the second case, if the machines {k+1, . . . , m} have all jobs {Sk, . . . , Sm}, then
machines {1, . . . , k} only have k − 1 jobs and ALG = 0. Again, each machine must
have one job exactly. Thus the machine having Sk has a profit of at most Sk/Sk = 1,
while OPT = S. Letting S → ∞, we get a ratio of ∞. �

Theorem 4. For any buffer size K, no algorithm can have an approximation ratio be-
low m for related machines.

Proof. Again, we only give the construction here. Let the speed of machine i be Si−1

for some large S ≥ m + 1. The first phase is the same as for identical machines (see
Lemma 1). Then in the second phase for some 1 ≤ j ≤ m, the next jobs are of sizes
1/Sj−1, 1/Sj−2, . . . , 1/S and S, S2, . . . , Sm−j (if j = 1 then the first set is empty and
if j = m then the second set is empty). In the second phase there is one job of each size,
so there are m−1 jobs. We have that the optimal value in this case is OPTj = 1/(Sj−1)
(put the job of size 1/Si on machine j − i for i 6= 0 and all small jobs on machine j;
note that i can be negative). �

3.2 An algorithm for m related machines

We next present an algorithm of approximation ratio m which uses a buffer of size
m+1. In the full version, we design another algorithm of an approximation ratio slightly
less than 2m − 1, which uses a buffer of size m − 1. Our algorithms ignore the exact
speeds, and only use their relative order.
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Here we show that by using just two extra buffer positions compared to the mini-
mum number of positions required to get an algorithm of finite approximation ratio, it
is possible to get an optimal approximation ratio of m and hence save a factor of almost
2. In the case m = 2, the algorithm can be easily modified to keep only two jobs in the
buffer, rather than three.

The algorithm works as follows. The first m + 1 jobs are stored in the buffer. Upon
arrival of a job, it is possibly swapped with a job of the buffer to maintain the property
that the buffer contains the largest jobs seen so far.

The algorithm runs List Scheduling (LS) [20] on the machines, while ignoring the
speeds. That is, a job is assigned to a minimally loaded machine, that is, a machine for
which the total size of jobs assigned to it so far is minimum. Let the remaining jobs
in the buffer when the input ends be c0 ≤ · · · ≤ cm. We slightly abuse notation and
let ci denote also the size of job ci. If the buffer contains at most m − 1 jobs, then
any assignment is optimal, since in this case, OPT = 0. If there are m jobs in the buffer,
then assigning job ci to machine i results in an optimal solution. The case that the buffer
contains m + 1 jobs is analyzed below (even if no other jobs were assigned).

The jobs {c0, c1, . . . , cm} are assigned in one of the following 2m − 1 ways, de-
pending on which option gives the largest profit.

1. Assign c0 to the least loaded machine (in terms of the total size of jobs assigned to
it), and ci to machine i for all i = 1, 2, . . . , m.

2. Assign the jobs as in the previous case, but move cj to machine m for some 1 ≤
j ≤ m − 1.

3. Assign ci to machine i for all i = 1, 2, . . . , m. assign c0 to a machine j for some
1 ≤ j ≤ m − 1.

In our analysis below, we show that there is always at least one assignment which shows
that the approximation ratio is at most m.

Theorem 5. The approximation ratio of this algorithm is at most m.

Proof. We scale the input such that OPT = 1. Let T be the total size of all the jobs.
Then T ≥

∑m
i=1 si. If ci ≥ si/m for i = 1, . . . , m, we are done. Else, let k be the

maximum index for which ck < sk/m. We consider three cases.

Case 1: k = m (i.e., cm < sm/m). We analyze only options where c0 is assigned
greedily to the least loaded machine. Let a1, . . . , am be total sizes of jobs assigned to
machines, neglecting c1, . . . , cm but not c0. That is, since c0 is assigned greedily, it is
counted as part of some ai.

If am = maxi ai, we analyze the first assignment option. Recall that T is the total
size of all the jobs, that is T =

∑m
i=1(ai + ci). The load of machine m is

am + cm

sm
=

maxi ai + maxi ci

sm
≥ T/m

sm
≥ 1

m
.

For each other machine i ≤ m − 1, we have ai + ci ≥ am. To see this, note that
if am = 0 this clearly holds. Otherwise, let x be the size of the last job assigned to
machine m before cm. Due to the assignment rule ai ≥ am − x. Since all the jobs in
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the buffer are larger than all other jobsand since c0 ≤ ci, we conclude that x ≤ ci and
the claim follows. Hence,

∑m
j=1 aj = T −

∑m
j=1 cj ≥ T − m · sm

m ≥ si, due to the
definition of T , the property ci ≤ cm < sm

m and T ≥
∑m

j=1 sj ≥ si + sm.
Finally,

ai + ci

si
≥ am

si
≥ 1

msi

m∑
j=1

aj ≥ 1
m

holds since ai + ci ≥ am, am = maxj aj ≥ 1
m

∑m
j=1 aj , and

∑m
j=1 aj ≥ si.

If am < maxi ai, let j = arg maxi ai < m. Consider the second type of assign-
ment, for this specific value of j. As before,

∑m
t=1 at ≥ si, aj = maxt at ≥ 1

m

∑m
t=1 at

and so aj ≥ si

m for all i < m. Similarly to the previous proof, we can show ai+ci ≥ aj ,
so

ai + ci

si
≥ aj

si
≥ 1

m
for 1 ≤ i < m, i 6= j.

For machine j, already aj/sj ≥ 1/m. Finally, for machine m, am + cj ≥ aj ≥ ai

(for all 1 ≤ i ≤ m). We need to bound (am + cj + cm)/sm and we get (am + cj) +
cm ≥ maxi ai + maxi ci ≥ T/m ≥ sm/m.

Case 2: 1 < k < m. Consider the third assignment option, where c0 is assigned to
machine k. We now let ai denote the total size of jobs assigned to machine i before the
jobs c0, . . . , cm are assigned, so T =

∑m
i=1 ai +

∑m
i=0 ci.

For machines k + 1 ≤ i ≤ m, we have (ai + ci)/si ≥ ci/si ≥ 1
m and are done.

Let j = arg maxi ai. We have
∑k

i=0 ci < (k + 1) · sk

m ≤ sk since k < m.
There are at least k machines of OPT that have no jobs in the set {ck+1, . . . , cm}, so∑m

i=1 ai +
∑k

i=0 ci ≥ s1+ · · ·+sk, or
∑m

i=1 ai ≥ sk−1 (using the property k > 1) and
therefore aj ≥ sk−1/m. As before, we have ai + ci ≥ aj for any machine 1 ≤ i ≤ m,
so for 1 ≤ i ≤ k − 1, we find (ai + ci)/si ≥ aj/sk−1 ≥ 1/m.

However, ak +c0 ≥ aj , since the assignment of the last job of machine j (excluding
cj) to machine k would have increased the total size of jobs assigned to it to at least aj ,
and c0 is no smaller than that job, so

ak + c0 + ck ≥ aj + ck ≥
∑m

i=1 ai

m
+

∑k
i=0 ci

k + 1
≥ sk

m
,

since aj ≥ ai for all 1 ≤ i ≤ m, ck ≥ ci for all 0 ≤ i ≤ k, and k + 1 ≤ m.

Case 3: k = 1. We have ci ≥ si/m for i = 2, . . . , m, so we only need to consider
machine 1. Consider the first assignment, and use the notations ai as in the first case. At
least one machine of OPT has no jobs of c2, . . . , cm, so

∑m
i=1 ai + c1 ≥ s1 = mini si.

We have a1 + c1 ≥ ai for 2 ≤ i ≤ m, so a1 + c1 ≥ s1/m and (a1 + c1)/s1 ≥ 1/m. �

4 Restricted assignment

4.1 Lower bounds

We first state the lower bounds which we show for the case of restricted assignment.
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Theorem 6. For a buffer of size at most m − 2, no algorithm can have a finite ap-
proximation ratio in the restricted assignment setting, that is, a buffer of size Ω(m) is
required for a finite approximation ratio.

Theorem 7. For any finite-sized buffer, any online algorithm has an approximation
ratio of at least m.

4.2 An algorithm for restricted assignment with a finite-sized buffer

We now present an algorithm for restricted assignment. At each time, for every machine
i, we keep the m largest jobs which can be processed on i, in the buffer. Every job which
is not in this set (or a job which stops being in this set) is assigned in a greedy fashion
to a least loaded machine which can process it. Thus, the required size of the buffer is
m2. Assume OPT > 0, so every machine has at least one job that can be assigned to it.

At the end of the input we assign the jobs from the buffer in an optimal way (i.e.,
we test all possible assignments and pick the best one). Note that it is possible to reduce
the number of tested assignments while maintaining optimality. We will analyze a fixed
assignment which depends on a (fixed) optimal solution OPT, which we define next.

Let S be the set of machines such that OPT has at least one job of size OPT/(2m)
assigned to it. Then, we would like to pick for every machine in S one job from the
buffer of size at least OPT/(2m), and assign it to that machine. Note that a machine
having less than m jobs which it can process must belong to S, since in the optimal
solution it has less than m jobs assigned to it, the largest of which has a size of at least
OPT/(m − 1).

Lemma 6. Such an assignment of jobs of size at least OPT/(2m) is possible.

Proof. Let ji be the largest job (of size at least OPT/(2m)) assigned to machine i by
OPT. If ji is in the buffer, then we assign it to machine i. We do this for every i ∈ S.
So far jobs were only assigned to their machines in OPT, so each job was assigned to at
most one machine.

At the end of this process there might be additional machines in which we planned
to assign to each such machine is not in the buffer. Therefore, the reason that for such a
machine i we did not assign jobs is that there are more than m jobs which can be pro-
cessed by i and which are larger than ji. This means that i is a machine which initially
(after the termination of the input) has m jobs in the buffer which can be assigned to it.
At least one such job was not assigned before (since at most m− 1 jobs from the buffer
have been assigned), so we can assign it to i. Applying this procedure for one machine
at a time, we will get an allocation of one job for each machine in S and such a job has
size at least OPT/(2m) as we required. �

After dealing with the set S, we continue to allocate one job to each machine not
in S. We apply the following rule, for each machine i /∈ S we allocate to i the largest
job in the buffer, which can be run on i, and which was not allocated before. We again
assign a job to one machine at a time. We can always allocate a job from the buffer
to i because initially there are at least m jobs which can be processed by i, and every
machine is allocated exactly one job from the buffer.
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Lemma 7. If machine i /∈ S is allocated a job j, then for every job j′ of size pj′ ,
which can be processed on machine i and is either still in the buffer after each machine
received a job out of the buffer, or was allocated by the list scheduling algorithm before
the input terminated, we have pj ≥ pj′ .

Proof. Job j is larger than any job which is left in the buffer after every machine was
allocated one job out of those left in the buffer (taking into account only the jobs which
can be processed by machine i). The jobs assigned greedily before the final step are no
larger than j, since the buffer keeps the m largest jobs which i can receive. �

The jobs remaining in buffer, after each machine received a job out of the buffer, are
assigned one by one, so that each job is assigned greedily to the least loaded machine
that can process it. We say that a job j is small if it was allocated greedily (either at
the earlier stage or after the input ends). Other jobs are called large. Therefore, the
algorithm has allocated exactly one large job for each machine, and if OPT has assigned
a job of size at least OPT/(2m) to machine i, then the large job of i is of size at least
OPT/(2m).

Theorem 8. Every machine is allocated a load of at least OPT/(2m).

Proof. A machine i ∈ S is allocated a large job of size at least OPT/(2m) as we
discussed above. Hence, it suffices to consider a machine i /∈ S whose large job is
of size less than OPT/(2m). Fix such a machine i. For every machine j 6= i we denote
by Cj the set of jobs which OPT assigns to i and the algorithm assigns to j. Note that
Cj may contain a large job, but in this case the large job is of size at most OPT/(2m)
(as otherwise i ∈ S which is a contradiction).

We consider the total size of small jobs in Cj . Denote by x the last small job from
the set Cj assigned to j. Note that by the greedy fashion in which jobs are assigned
we conclude that if we discard x from Cj , the total size of remaining small jobs in Cj

is at most the total size of small jobs assigned to i (as otherwise the algorithm would
not assign x to j). Recall that the large job of i is at least as large as x, and hence we
conclude that the total size of small jobs of Cj is at most the total assigned jobs to
machine i. Summing up over all j we conclude that the total size of small jobs which
OPT assigns to machine i and the algorithm assigns to other machines is at most m − 1
times the load of machine i in the solution returned by the algorithm. The total size of
large jobs which OPT assigns to machine i is at most OPT/2 (as each such job has size
less than OPT/(2m)). Hence, the total size of small jobs which OPT assigns to machine
i is at least OPT/2. Therefore, the algorithm assigns at least OPT/(2m) to machine i,
and the claim follows. �
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