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Abstract

We consider the offline sorting buffer problem. The input is a sequence of items of
different types. All items must be processed one by one by a server. The server is
equipped with a random-access buffer of limited capacity which can be used to rearrange
items. The problem is to design a scheduling strategy that decides upon the order in
which items from the buffer are sent to the server. Each type change incurs unit cost,
and thus, the objective is to minimize the total number of type changes for serving the
entire sequence. This problem is motivated by various applications in manufacturing
processes and computer science, and it has attracted significant attention in the last few
years. The main focus has been on online competitive algorithms. Surprisingly little is
known on the basic offline problem.

In this paper, we show that the sorting buffer problem with uniform cost is NP-
hard and, thus, close one of the most fundamental questions for the offline problem. On
the positive side, we give an O(1)-approximation algorithm when the scheduler is given
a buffer only slightly larger than double the original size. We also sketch a fast dynamic
programming algorithm for the special case of buffer size 2.

Keywords: NP-hard, approximation algorithm, resource augmentation, buffer sorting

1. Introduction

The sorting buffer problem results from the following scenario. The input is a se-
quence σ of n items of different types. We represent different types by different colors,
i.e., each item i is associated with a color c(i). The number of colors in the sequence is
denoted by C. All items must be processed by a server. The server is equipped with
a random-access buffer of limited capacity which can be used to rearrange the items.
The items are moved one after another into the buffer that can hold at most k items.
At any step, a scheduling algorithm chooses a color from the buffer, say c, and then all
items in the buffer of color c are removed from the buffer and processed by the server.
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This creates space in the buffer, and the next items in the sequence will be moved to
the buffer. If some of these new items have color c, they will be removed and processed
immediately and it continues until no item in the buffer is of color c. The scheduling
algorithm then chooses a new color and repeats, until all items in the sequence are re-
moved for processing. The goal is to design a scheduling algorithm that minimizes the
total number of color changes. The server has no color initially.

While the sorting buffer problem looks simple, it models a number of important prob-
lems in manufacturing processes, hardware design, computer graphics, file servers and
information retrieval. For example, consider the sequencing problem in an automotive
paint shop [12], where cars are painted in different colors. The cars traverse this pro-
duction stage consecutively, and whenever a color change is necessary, this causes setup
and cleaning cost. The goal is to minimize the total cost for changing colors. For an
extended discussion on various applications and more references, we refer the readers to,
e.g., [15, 9, 5].

1.1. Previous work

The sorting buffer problem (also known as buffer reordering problem) has attracted
significant attention since it was first proposed by Räcke, Sohler, and Westermann [15].
The original focus was on competitive analysis of online algorithms. Räcke et al. [15]
proposed an O(log2 k)-competitive algorithm and showed that some simple heuristics like
First In First Out (FIFO) and Least Recently Used (LRU) are Ω(

√
k)-competitive, where

k > 0 is the buffer size. Englert and Westermann [10] improved these results and gave
an O(log k)-competitive algorithm for a more general non-uniform cost function, where
the cost of a color change depends on the final color. To obtain this result, they first
relate their algorithm’s solution to an optimal offline solution using a buffer of size k/4.
Then, they prove that an offline optimum with buffer size k/4 is O(log k)-competitive
against an offline optimum with buffer size k. The first result translates into a constant
competitiveness result using resource augmentation, i.e., their algorithm is 4-competitive
when given a buffer with size 4 times the original size. The currently best known result
was derived very recently by Adamaszek et al. [1]; they gave an O(

√
log k)-competitive

deterministic online algorithm for the sorting buffer problem with non-uniform costs, as
well as an almost matching lower bound of Ω(

√
log k/ log log k).

Considerable work has been done for the problem when the cost function is a metric
and the cost of a color change depends on both the original and final colors. We do not
review the results here and refer the readers to the summary by Avigdor-Elgrabli and
Rabani [5].

In order to develop good online methods, one of the most natural steps is to investigate
the offline sorting buffer problem and identify its structural properties. Even if the offline
problem is less relevant in practice, its analysis should be easier and give new insight
to the problem. However, only little is known on the offline problem. It is easy to
see that there are dynamic programming algorithms that solve the problem optimally
in O(nk+1) or O(nC+1) time; see also [14, 13]. Aiming at polynomial time algorithms, the
above mentioned online algorithms already provide the best known offline approximation
guarantees (which are non-constant). A constant approximate algorithm for the offline
case on the line metric has been derived by Khandekar and Pandit [13]; however, it runs
in quasi-polynomial time.
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There has been research on the complementary variant of the sorting buffer problem,
where the objective is to maximize the number of avoided color changes in the input
stream. This problem is more successful in terms of approximation algorithms. Kohrt and
Pruhs [14] gave a polynomial time 20-approximate algorithm. This was later improved
by Bar-Yehuda and Laserson [6] who gave a 9-approximation algorithm for non-uniform
cost. Note that the maximization and minimization problems have the same optimal
solution, but they may be very different in terms of approximation.

1.2. Our results

We give a concise NP-hardness proof for the sorting buffer problem by a reduction
from 3-Partition [11], and hence close one of the fundamental open questions on this
problem [5]. Clearly, this implies that both variants, the minimization and the max-
imization problem, are NP-hard. Independently, an NP-hardness proof was given by
Asahiro et al. [3]. However, their proof is much longer than ours and turned out to be
incorrect [2]. Recently, they gave a new, though still very long, proof [4].

We also note, that increasing the number of servers does not make the problem easier.
The idea of modeling more servers leads to an intuitive generalization of (or joint model
for) the sorting buffer problem and the somewhat related well-known paging problem.
In the latter problem, there is given a cache of m colors while a request from an online
request sequence must be served immediately without intermediate buffering. We could
interpret the cache as m servers that may immediately serve a current request. This leads
to a generalized sorting buffer problem in which we have a buffer of size k and m servers.
In this general formulation, the sorting buffer problem corresponds to the special case
with m = 1, while the paging problem has k = 1. Yet, the earlier problem is NP-hard,
as we show in this paper, while the later problem is polynomial-time solvable [7].

Naturally, we also consider an immediate adaption of the optimal paging algorithm [7]
Longest Forward Distance (LFD) as a candidate for the sorting buffer problem. However,
we show that it is Ω(k1/3)-approximate, hence a different strategy is needed to derive
constant approximate algorithms for sorting buffers. This negative result is in line with
similar observations for several other natural (online) strategies in Räcke et al. [15].

On the positive side, we consider the setting with resource augmentation, where the
algorithm is given a larger buffer than the optimal one. We give a new LP formulation
for the sorting buffer problem and show that it can be rounded using a larger buffer size.
This gives an O(1/ε)-approximate algorithm using a buffer of size (2 + ε) times that of
optimal.

We also sketch an O(n logC)-time optimal algorithm for the special case in which
the size of the buffer is k = 2. The algorithm uses a somewhat special dynamic pro-
gramming approach with a non-trivial combination of data structures that guarantee the
linear running time in the input size. Note that it is straightforward to obtain a dy-
namic programming algorithm that runs in O(nk+1) time; our algorithm improves this
significantly.

Organization.. In Section 2, we show that the sorting buffer problem is NP-hard. We
also generalize this proof to show that the sorting buffer problem with m servers is NP-
hard for any constant m ≥ 1. In Section 3, we provide the LP and the constant factor
approximation algorithm using a larger buffer size, and finally we sketch in Section 4
the dynamic programming algorithm for k = 2. We present the lower bound on the
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approximation ratio of LFD in Section 5. We conclude with some open problems in
Section 6.

2. Complexity

An instance of the sorting buffer problem is given by a sequence of n items and for
each item a number from {1, 2, . . . , C} which represents the color of the item. Hence,
the size of the input of a sequence of n items is Ω(n logC) = O(n log n).

Theorem 1. The sorting buffer problem is NP -hard.

Proof. We reduce from 3-Partition which is known to be strongly NP-hard [11]: Given
3q positive integers a1, a2, . . . , a3q and an integer A such that a1+a2+. . .+a3q = qA, can
we partition {1, 2, . . . , 3q} into q sets Ii such that

∑
j∈Ii aj = A for all i ∈ {1, 2, . . . , q}?

Given an instance of 3-Partition, we construct an instance σ for the sorting buffer
problem as follows. We multiply all the 3q integers by a large number L = 2q2A.
Let bj = Laj for all j and B = LA. We define the buffer size as k = qB + L/2. We
see the buffer as having a main part of capacity qB and an extra part of capacity L/2.
For each j ∈ {1, 2, . . . , 3q} we define a color j. We call these the primary colors. The
sequence contains many other colors but we do not label those explicitly. We call those
the secondary colors. The input sequence is defined by 3q + 4 subsequences:

σ = β γ1δ1 α1 γ2δ2 α2 . . . γqδq αq γq+1δq+1 αq+1

As we will see, β and αi are subsequences used to encode the numbers bj and aj . γi and
δi are used as separators to enforce certain actions of the sorting buffer algorithm. The
subsequences are defined as follows.

β contains bj items of color j for each j ∈ {1, 2, . . . , 3q}. Items are given in arbitrary
order. Note that the total number of items equals qB which is the size of the main
part of the buffer.

αi (i=1. . . q+1) contains aj items of color j for each j ∈ {1, 2, . . . , 3q}. Again, the
order is arbitrary.

γi (i=1. . . q+1) We distinguish between i ≤ q and i = q+1. For i ≤ q it starts with iB
items of different colors followed by again one item of each of these colors. Any
color used in γi is unique in the sense that it appears twice in γi and nowhere else
in the sequence σ. Sequence γq+1 is defined exactly the same but the number of
colors is now k−M , where M = 1

2q(q+ 1)A. Hence γq+1 contains 2(k−M) items.
Note that M ≤ q2A = L/2.

δi (i=1. . . q+1) contains k items of the same color. This color is not used anywhere
else in σ.

Let us, just for clarity, count the number of colors in σ. The subsequences β and αi con-
tain the 3q primary colors. The sequences δi together contain q+1 colors. A sequence γi
contains iB colors for i ≤ q and k −M colors for i = q + 1 (each color twice). The total
number of colors in the sequence σ is C = 3q+q+1+(

∑q
i=1 iB)+k−M . We shall prove
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that a 3-partition exists if and only if the sequence can be served with at most C + 3q
color switches.

First assume that a 3-Partition I1, . . . , Iq exist. This is the easy direction and it
immediately provides the reader with more insight in the reduction. Note that the buffer
is large enough to hold all items from β plus all items from α1, α2, . . . , αq since the
number of these is qB + q2A ≤ k. The server does the following. It places β in the
buffer. Then it removes the B items with a color in I1. It gives a space of B in the
buffer to serve all items in γ1 while using each color in γ1 only once. Then the server
switches to the color of δ1 and removes all these items. Next all items of α1 enter the
buffer and the server removes all items with a color in I2. Note that we have removed
2B items from β and A items from α1 so far. This gives enough free space in the buffer
to serve all items in γ2 while using each color in γ2 only once. Next the sequence δ2 is
served and α2 enters the buffer. This process continues until αq has entered the buffer.
Let us count the number of items in the buffer at this moment. All primary colors have
been used exactly once. Hence, all items from β are gone. All the qA items from αq are
in the buffer. From αq−1, exactly (q − 1)A items are still in the buffer. In general, iA
items from αi remain (1 ≤ i ≤ q). Hence, the number of items in the buffer after αq has
entered the buffer is exactly

∑q
i=1 iA = 1

2q(q+ 1)A = M . (Later we shall argue that the
number of remaining items is larger than M if no 3-partition exists.) We see that γq+1

can be served using each of its colors only once. Next δq+1 is served and, finally, αq+1

can be served by using each primary color once more. We conclude that σ can be served
using each primary color twice and each secondary color once. This gives a total cost of
C + 3q.

For the other direction, we assume that the optimal solution Opt can serve all items
with C + 3q color changes. We shall prove that a 3-Partition exists. We first list some
properties that Opt has.

Claim 1. Before the first item of αi enters the buffer, Opt must have used the color
of δi.

Proof. The length of δi is equal to the buffer size. �

We remark that the reduction would be valid without the subsequences δ1, . . . , δq.
However, these subsequences gives us separations of the server sequence which enhance
the analysis. Hence, we assume that the server switches to color δi simply once δi enters
the buffer.

Claim 2. We may assume that Opt serves γi completely before serving δi.

Proof. Since the items of γi which remain in the buffer when Opt switches to color δi
cannot be combined with items arriving later, we may as well serve these remaining items
before switching to δi. �

It follows from the preceding two claims that we may assume that

Claim 3. Opt serves the sequences γi and δi in the order γ1δ1γ2δ2 . . . γq+1δq+1.

For 1 ≤ i ≤ q, let Hi be the set of primary colors used before serving δi. We want to
show that a large number of items in β have been removed before serving δi.
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Claim 4. For all i ∈ {1, 2, . . . , q}, we have
∑

j∈Hi
bj ≥ iB. Hence,

∑
j∈Hi

aj ≥ iA.

Proof. Assume that
∑

j∈Hi
bj < iB for some i. Then,

∑
j∈Hi

bj ≤ iB − L since
all bj are multiples of L. This means that from the qB items of β at most iB − L
items are removed before time δi. Hence, the free space we have to serve γi is no more
than iB − L + L/2 ≤ iB − L/2, where we add L/2 due to the extra part of the buffer.
But then at least L/2 colors of γi must be used more than once. The total number of
color switches will be at least C + L/2 = C + q2A > C + 3q for qA > 3.

The second statement follows by noticing that bj = Laj and B = LA. �

Claim 5. Every primary color is used exactly two times: once before serving δq and once
after serving δq+1. Every secondary color is used exactly once.

Proof. Taking i = q in Claim 4 we see that all 3q primary colors must be used before
serving δq. Further, each primary color must also be chosen at least once after switching
to δq+1 since αq+1 contains all primary colors and is served after the switch to δq+1. We
see that the bound of C + 3q can only be reached if the statement in the claim holds.�

Let I1 = H1 and Ii = Hi \ Hi−1 for 2 ≤ i ≤ q, i.e., the set of primary colors used
between serving δi−1 and serving δi. Consider the buffer contents just after serving δq.
If j ∈ Ii then the buffer contains at least (q− i+ 1)aj items of color j. The total number
of primary colored items in the buffer is at least

q∑
i=1

∑
j∈Ii

(q − i+ 1)aj =

q∑
i=1

∑
j∈Hi

aj ≥
q∑

i=1

iA =
1

2
q(q + 1)A = M. (1)

If the inequality (1) is strict, then at least one color of γq+1 is used twice which contradicts
Claim 5. Hence, equality holds and this can only be true if equality in Claim 4 holds for
all i. This implies that

∑
j∈Ii aj = A for all i. Hence, a 3-Partition exists. �

The NP-hardness of buffer sorting extends to the generalized sorting buffer problem
with multiple servers m, even if m is constant.

Theorem 2. The generalized sorting buffer problem is NP -hard for any number of
servers m ≥ 1.

Proof. The case m = 1 is NP-hard, see Theorem 1. We show that the problem with m
servers and buffer size k can be reduced to the problem with m+ 1 servers and the same
buffer size. The theorem then follows by induction.

Assume m = ` is NP-hard for some integer ` ≥ 1. Consider an arbitrary sequence ρ
for the case m = `. We take a color x not used in ρ and add k items of color x between
any two consecutive items in ρ. Let the resulting sequence be ρ′. We claim that it is
optimal to ρ′ to let one server serve only color x and the other ones the remaining colors.
Suppose this were true, then ρ can be served using ` servers with minimum cost z if and
only if ρ′ can be served using ` + 1 servers with minimum cost z + 1. Hence, the case
for m = `+ 1 is also NP-hard.

It is left to prove the claim. For the sake of contradiction, suppose there is an optimal
solution Opt to sequence ρ′ which does not serve all items of color x by the same server.
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Let m1 be the server which serves the first item of color x in ρ′. Consider the first
moment in which an item preempts the sequence of consecutively serving color x by m1,
i.e., an item i of color c(i) 6= x is assigned to m1. Let S be the set of items that are in
the buffer at that moment. We can assume that the next item j that enters the buffer
is the first of k consecutively incoming color-x items. (Whenever we remove one color-x
item from the buffer, then we can serve all of them without extra cost.) Hence, with the
buffer capacity k, Opt must serve at least one (and thus w.l.o.g. all) items of color x
before an new item with color different from x can enter the buffer.

Consider the schedule after Opt served the color x items by some server, say m2.
Suppose m1 6= m2. While the current color of m2 is x, server m1 might have served
after i some items of the same or other colors from S; let i′ be the last item assigned
to m1 so far. Now, we simply exchange the current output sequence on server m1 from
item i up to i′, with the sequence of color-x items on m2. This is feasible since we only
swap output positions of items in S that are in the buffer or enter with the same color x.
Note, that the currently active colors of the servers are not changed. Moreover, the cost
of the schedule can only decrease: Moving the color-x items to m1 reduces the cost by
one and moving the sequence starting with item i to m2 does not cause a new color
change. Thus, Opt was not an optimal solution.

If m1 = m2, then we extract from the output sequence on m1 the subsequence i up
to i′, and assign it to the end of the current sequence of some server, say m2. Clearly,
the current color of m2 changes and may cause an additional unit of cost when Opt
assigns the next item to m2. However, we reduce the cost by one unit when removing
the color change on m1 for switching back to color x. Thus, the cost does not increase.
This exchange can be applied iteratively to an optimal solution until no items of a color
different from x is assigned to m1. �

3. Resource Augmentation

In this section, we give an LP-based algorithm which yields an O(1/ε)-approximation
with respect to the optimal solution that uses no more than 1/2− 2ε times the original
buffer size. By scaling up the buffer size by a factor of 2 + O(ε), it gives an O(1/ε)-
approximate algorithm using a buffer size of 2 + ε times that of optimal.

We first introduce a new LP relaxation, followed by a rounding scheme. We consider
that the buffer is empty initially. For each time step i = 1, 2, . . . , n, the following three
events occur. (1) The i-th item is moved to the buffer, (2) the algorithm chooses c(i)
to be the color of the buffer, and (3) all items in the buffer with color c(i) are removed.
Call an interval a c-interval if the color of the buffer is c throughout the interval and call
it non-c if the color is not c throughout the interval. The cost for serving a color c is the
number of maximal c-intervals. Note that the cost over all colors is exactly 2 − C plus
the number of maximal non-c intervals for each color c. One observation is that after
each time step i = 1, 2, . . . , n, the number of items in the buffer should be at most k− 1.
It motivates the following IP.

We define a variable ycs,t for every color c and time steps s, t with 1 ≤ s ≤ t ≤ n.
ycs,t should be one if [s, t] is a maximal non-c interval; and it is zero otherwise. For each
color c and time step s ≤ i, let Ac

s,i be the number of items with color c moved into the
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buffer during [s, i].

minimize 2− C +
∑
c

∑
s,t: s≤t

ycs,t

subject to
∑

s,t: s≤t; s≤i+1; i≤t

ycs,t ≤ 1 for all c and i = 1, 2, . . . , n+ k − 1 (2)

∑
c

∑
s,t: s≤i≤t

ycs,t = C − 1 for all i = 1, 2, . . . , n+ k − 1 (3)

∑
c

∑
s,t: s≤i≤t

Ac
s,iy

c
s,t ≤ k − 1 for all i = 1, 2, . . . , n− 1 (4)

∑
s: s≤i

Ac
s,iy

c
s,i = 0 for all c and i = n+ k − 1 (5)

ycs,t ∈ {0, 1} for all c and s, t ∈ {1, 2, . . . , n+ k − 1}. (6)

The first constraint (2) ensures two things: (i) for any color c and time i, i is included
in at most one maximal non-c interval and (ii) maximal non-c intervals are really maximal,
i.e. if ycs,t = ycu,v = 1 then t ≤ u+ 2 or v ≤ s+ 2. By (i), each color c contributes at most
1 to the left hand side of the second constraint (3). Hence this constraint ensures that at
any time i, the color of the buffer is different from exactly C − 1 colors. Constraint (4)
ensures that by the end of each time step i ≤ n − 1, the number of items remaining in
the buffer is at most k−1 and constraint (5) ensures that the buffer is empty at the end.
It is easy to verify that for any valid schedule we can set the values of ycs,t according to
whether it is a maximal non-c interval and this satisfies all the constraints. On the other
hand, any IP-solution corresponds with a feasible coloring sequence with the same cost.
The LP-relaxation is obtained by replacing (6) with ycs,t ≥ 0. It is easy to verify that any
LP-solution has value at least C. We can round the LP to get an O(1/ε)-approximation
against an optimal solution that uses no more than 1/2−2ε times the buffer size. Define

xci =
∑
s,t:

s≤i≤t

ycs,t.

Intuitively, 1− xci is the fraction of color c on the machine at step i. Further, define

zci =
∑
s:

1≤s≤i

ycs,i, and Zc
i =

i∑
j=1

zcj .

The variable zci sums over all intervals ending in i and the variable Zc
i sums over all

intervals ending in i or before that. In particular, Zc
n is the LP-cost for color c. The

value Zc
i is non-decreasing in i. We mark every step that Zc

i increases by another ε.
More precisely, mark the first step i for which Zc

i ≥ ε and mark every next step i′ for
which Zc

i′ has increased by at least ε since the last marking.
A feasible integral solution is found by the following rounding scheme.

8



LP Rounding. Start with an arbitrary buffer color. For i = 1 to n+ k − 1 do:

(i) Remove all items with the current color (state) of the buffer.

(ii) For each marked color c, remove all its items.

(iii) If xc
′

i ≤ 1/2− ε for some c′, then switch the color to c′ and remove all items with
color c′.

Theorem 3. The LP Rounding Algorithm applied to an optimal LP solution yields an
O(1/ε)-approximate solution for the sorting buffer problem when the optimum is using a
buffer of size at most 1/2− 2ε times the original buffer size k.

Proof. First we argue that (iii) is well defined. Constraint (3) states that
∑

c x
c
i ≥ C−1

and (2) states xci ≤ 1. Hence, there is at most one c′ for which xc
′

i ≤ 1/2− ε. (∗)
The first step (i) is done for free, and one can easily verify that only the just entered

item is possibly removed in this step. Clearly, the number of markings is O(1/ε) times
the LP cost. Consider two consecutive switches. If at least one of the two is due to a
marking then we charge both to the marking. To prove that the total number of switches
is O(1/ε) times the LP cost we only need to bound the number of pairs of consecutive
switches in which both are of type (iii). Assume the buffer switches to c′ in step i and
subsequently switches to another color c′′ in step j > i and both are of type (iii). We
have xc

′

i ≤ 1/2 − ε and xc
′′

j ≤ 1/2 − ε. The first implies that xc
′′

i ≥ 1/2 + ε; see (*).

Hence, xc
′′

j − xc
′′

i ≤ −2ε.
Notice that for every j > i and c holds that

xcj − xci =
∑
s,t:

s≤j≤t

ycs,t −
∑
s,t:

s≤i≤t

ycs,t =
∑
s,t:

i+1≤s≤j≤t

ycs,t −
∑
s,t:

s≤i≤t≤j−1

ycs,t ≥ 0−
∑
s,t:

s≤i≤t≤j−1

ycs,t

= −(Zc
j−1 − Zc

i−1).

Therefore, 2ε ≤ xc
′′

i − xc
′′

j ≤ Zc′′

j−1 − Zc′′

i−1. Thus, for color c′′ there is an increase of
the Z-variable of 2ε between two switches of the third type. We conclude that the total
cost due to switches of the third type is also O(1/ε) times the LP cost.

Now we bound the capacity needed. Consider any c and step j and let i < j be the
last time before j that c was removed from the buffer in the rounded solution. We may
assume that c was not removed at step j since otherwise there are no items of color c at
the end of step j. Denote the term for color c in constraint (4) by acj .

acj =
∑
s,t:

s≤j≤t

Ac
s,jy

c
s,t.

Intuitively, acj is the amount of color c in the buffer at step j in the LP-solution. On
the other hand, the number of items of color c in the buffer at step j in the rounded
solution is Ac

i+1,j . To relate the rounded solution to the LP-solution we are interested in
the variables that correspond to (s, t)-intervals with s ≤ i + 1 ≤ j ≤ t. For these (s, t)-
intervals we have Ac

s,t ≥ Ac
i+1,j .
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Since we have not picked color c in steps i + 1, . . . , j, we have Zc
j − Zc

i < ε. Note
further that

∑
s,t:s≤i+1≤j≤t y

c
s,t ≥ xci+1 −Zc

j−1 +Zc
i . Since c is not removed at step i+ 1

we have xci+1 > 1/2− ε. Using additionally Zc
j−1 ≤ Zc

j we conclude that

∑
s,t:

s≤i+1≤j≤t

ycs,t >
1

2
− ε− Zc

j−1 + Zc
i ≥

1

2
− ε− Zc

j + Zc
i >

1

2
− 2ε.

Finally, we can relate the amount of c in the LP-buffer with the number of c in the buffer
of the rounded solution.

acj =
∑
s,t:

s≤j≤t

Ac
s,jy

c
s,t ≥

∑
s,t:

s≤i+1≤j≤t

Ac
s,jy

c
s,t ≥ Ac

i+1,j

∑
s,t:

s≤i+1≤j≤t

ycs,t ≥ Ac
i+1,j

(
1

2
− 2ε

)
.

Hence, the total number of items in the buffer after step j is
∑

cA
c
i+1,j ≤

∑
c a

c
j/(1/2−

2ε) ≤ (k−1)/(1/2−2ε). Moreover, when j = n+k−1, we have aCj = 0 by constraint (5).
This implies that the buffer is empty at the end. �

4. Dynamic programming

Straightforward dynamic programming algorithms solve the sorting buffer problem
optimally in running time O(nk+1) or O(nC+1); see also [14, 13]. In this section we
consider the special problem setting with a buffer of size k = 2. We have the following
Theorem.

Theorem 4. There is an optimal algorithm solving the sorting buffer problem with buffer
size k = 2 in time O(n logC).

Note that the size of the input is O(n logC), so this running time is optimal. In our
dynamic programming algorithm, we maintain the optimal cost Opti, a set Si of colors,
and the sizes of those colors. A color c is in Si if there exists an optimal way to serve
the first i items in the sequence such that an item of color c is served last. The size of a
color is the (or, a possible) number of items of this color that are served together if this
color is served last. In order to use only linear time, from one step to the next we only
store the changes in Si and in the sizes of the colors. This works because the number of
these changes is amortized constant per step.

Observation 1. For each i > 1, we have |Si| ≤ |Si−1|+ 1.

The only color that could possibly enter the set of optimal finishing colors is the color
of the most recent item; any other color would have been optimal before. The following
lemma is crucial.

Lemma 5. At any step i, there can be at most one color c such that size(c) > 1; this is
color ci.
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Proof. Suppose there is any other color c in Si with size(c) > 1. Then the last two items
in some optimal serving order have color c 6= ci. But then item i is served in step i− 2
or before, i.e. before it entered the buffer, a contradiction. �

The main technical difficulty to get a linear running time was storing and retrieving
the necessary data efficiently, so that the program does not just calculate the optimal
cost but also returns an optimal schedule in linear time. For the dynamic program, its
implementation and analysis, see [8].

5. A lower bound for LFD

The well-known paging problem has several offline algorithms that solve it to opti-
mality. One of those is the Longest Forward Distance (LFD) algorithm [7]. With the
mentioned relation to the sorting buffer problem, it is reasonable to consider a natural
adaption of this algorithm for sorting buffer. In the following we give a negative result
that rules out LFD as a candidate for a constant approximation algorithm.

Longest Forward Distance (LFD).
If no item can be served without a color change, then choose the color of
item i that has its next occurrence j > i farthest in the future of the se-
quence. If no more items j with the same color as i exist, the distance is infinity.

Theorem 6. LFD has an approximation ratio of at least Ω(k1/3).

Proof. Consider the following input instance. Given is a buffer of size M+n, where M ≥
n3. The sequence of items is as follows; we describe each item by its color (natural
number), and we denote by ab that the item with color a appears b times consecutively.

[ 0M ]

[ 123 . . . n ] [ 2 32 43 . . . nn−1 ]

[ 0123 . . . n− 1 ] [ 2 32 43 . . . (n− 1)n−2 ]

[ 0123 . . . n− 2 ] [ 2 32 43 . . . (n− 2)n−3 ]

. . .

[ 0123 ] [ 2 32 ]

[ 012 ] [ 2 ]

[ 01 ]

The sequence consists of n+ 1 lines; let us denote them as L0, L2, . . . , Ln. Initially, the
buffer contains all items of line L0 and the first block (in brackets) of L1. An optimal
solution chooses color 0 first; it can serve all items of this color and by the end, all
remaining items of the sequence are in the buffer. Thus, there are no more than n + 1
color changes necessary.

LFD chooses color 1 first, moving the next item of color 2 into the buffer. Then
it picks 2, moving two items of color 3 into the buffer and repeats until it chooses n
and moves the first block of L2 into the buffer. Then the process repeats. This way,
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LFD causes n − i color changes serving the first block of line Li. Thus, it has total
cost n(n+ 1)/2.

The ratio of LFD’s cost and the optimal cost for this sequence are n/2. Hence, LFD
has an approximation ratio bounded by Ω(k1/3) for a given buffer of size k. �

6. Open problems

Now that NP-hardness has been settled, the main open problem is to design a poly-
nomial time constant factor approximation. In the introduction we listed several partial
results on this. Given our LP-rounding result, a natural next step is to design an algo-
rithm that gives an O(1/ε)-approximation against an offline solution using only (1− ε)k
capacity, instead of (1/2− 2ε)k .

We gave a dynamic program for k = 2 which has a significantly better running time
than the straightforward DP. It would be interesting to give an exact algorithm with a
running time that is much less than O(nk+1).

Our NP-completeness proof does not answer the question of how well this problem
can be approximated in polynomial time. Hence it remains open whether the buffer
sorting problem is APX-hard or not.
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