Reordering Buffer Management with Advice

Anna Adamaszek!, Marc P. Renault?, Adi Rosen®, and Rob van Stee!

! Max-Planck-Institut fiir Informatik, Saarbriicken, Germany,
{anna, vanstee}@mpi-inf.mpg.de
2 Univerité Paris Diderot - Paris 7 and UPMC, France.
mrenault@liafa.univ-paris-diderot.fr
3 CNRS and Univerité Paris Diderot - Paris 7, France.
adiro@liafa.univ-paris-diderot.fr

Abstract. In the reordering buffer management problem, a sequence
of colored items arrives at a service station to be processed. Each color
change between two consecutively processed items generates a cost. A
reordering buffer of capacity k items can be used to preprocess the input
sequence in order to decrease the number of color changes. The goal is
to find a scheduling strategy that, using the reordering buffer, minimizes
the number of color changes in the given sequence of items.

We consider the problem in the setting of online computation with ad-
vice. In this model, the color of an item becomes known only at the
time when the item enters the reordering buffer. Additionally, together
with each item entering the buffer, we get a fixed number of advice bits,
which can be seen as information about the future or as information
about an optimal solution (or an approximation thereof) for the whole
input sequence. We show that for any € > 0 there is a (14 ¢)-competitive
algorithm for the problem which uses only a constant (depending on €)
number of advice bits per input item.

We complement the above result by presenting a lower bound of £2(log k)
bits of advice per request for an optimal deterministic algorithm.



1 Introduction

In the reordering buffer management problem, a sequence of colored items arrives
at a service station for processing. At any time, the service station is configured
to process items of a certain color ¢. Changing the configuration of the service
station, i.e., preparing the station to service items of a different color, generates
a cost. The total cost of processing a sequence of items is equal to the number
of color changes in the sequence. In order to reduce the processing cost, the
service station is equipped with a reordering buffer that has a capacity to hold
k items. At each point in time, the buffer contains the first k& items of the input
sequence that have not yet been processed, and one arbitrary item has to be
chosen to be extracted from the buffer and processed by the service station. If
the color of the chosen item differs from the color of the previously processed
item, the configuration of the service station has to be changed, generating a
cost. The goal is to find a scheduling strategy that, using the reordering buffer,
preprocesses the input sequence to minimize the number of color changes. In the
online setting, which is considered in this paper, the color of an item becomes
known only at the time when the item enters the reordering buffer, i.e., we do
not know the whole input sequence in advance.

This framework has many applications in various areas, such as production
engineering, storage systems, network optimization and computer graphics (e.g.,
[?7,2,2,2,7]). One simple example is a paint shop of a car manufacturing plant,
where switching colors between two consecutively painted cars generates costs
and delays due to the necessary cleaning and set-up. Therefore, some paint shops
are equipped with a reordering buffer to preprocess the sequence of incoming cars
(see [?]).

In this paper, we study the problem in the setting of online computation with
advice [EFKR11]. This setting has gained increasing attention in recent years in
that it relaxes the traditional online setting of no information about the future,
and allows the online algorithm to get some partial information about future
requests or about the structure of an optimal (or near-optimal) solution. It also
allows one to quantify the amount of information about the future available to
the online algorithm and to study the interplay between the amount of infor-
mation and the attainable competitive ratio. Informally (See Section ?? for a
formal definition), in this setting, the online algorithm receives with each request
some b bits of advice which are the value of a function, defined by the algorithm,
of the whole input sequence (including the future). In this manner the online
algorithm receives some information about the future. Note that we view the
advice as given by an oracle, i.e., we do not consider the issue if the advice can
be computed efficiently when knowing the whole input sequence.

Related work. The reordering buffer management problem has been intro-
duced by Récke et al. [?], and has been extensively studied. In the online setting,
the best known results are a deterministic O(+y/log k)-competitive algorithm by
Adamaszek et al. [?], and a randomized O(loglog k)-competitive algorithm by



Avigdor-Elgrabli and Rabani [?]. To complement this, there are (nearly) match-

log k
loglog k

ing lower bounds of {2 ( ) and 2(loglogk) on the competitive ratio of

any online deterministic and randomized algorithms, respectively [?]. In the of-
fline setting, i.e., when the whole input sequence is known in advance, the best
known result is a constant factor approximation by Avigdor-Elgrabli and Rabani
[?], while the problem is known to be NP-hard [?,7].

More general versions of the problem have been studied, where the context
switching cost for switching from an item of color ¢ to an item of color ¢’ depends
on ¢ (e.g., [?,?]), or on both ¢ and ¢ [?].

The model of online computation with advice considered in the present paper
was introduced by Emek et al. [EFKR11]. In that paper, the authors gave tight
bounds of ©(logn/b) on the competitive ratio of deterministic and randomized
online algorithms with advice for Metrical Task Systems, where n is the number
of states of the system and b is the number of advice bits per request. They also
gave a deterministic online algorithm with advice for the k-server problem which
is k() -competitive, where O(1) < b < logk. This has been first improved by
Béckenhauer et al. [BKKK11], and later improved to {%_‘ by Renault and
Rosén [?].

Bockenhauer et al. [BKK*09] introduced a somewhat similar model for online
algorithms with advice, where the advice is a single tape of bits instead of being
given separately for each request. This allows an algorithm to read a different
number of bits of advice per request, but it requires that the online algorithm
knows how many bits of advice to read with each request. Thus, the two models
are, in general, incomparable. Several results were given in this related model
[DKP08,BKK™09,HKK10,KK11,BKKK11]. For example, in [DKP08,BKK*09],
the authors explore the number of bits of advice required for deterministic and
randomized paging algorithms, algorithms for the DiffServe problem, algorithms
for a special case of the Job Shop Scheduling problem, and algorithms for the
Disjoint Path Allocation problem to be 1-competitive.

Our contribution. We give an online algorithm with advice that, for any
e > 0, achieves a competitive ratio of 1 + ¢, using only O(log(1/¢)) advice bits
per request. We show how to construct advice for any input sequence, based on
an optimal solution for the given sequence, which allows us to obtain a good
competitive ratio. The overview of the construction is as follows. The advice
bits for each element of a color ¢ encode how the algorithm should handle all
“adjacent” elements of color ¢, i.e., if the algorithm should keep all the elements
in the buffer until more elements of the color arrive, output these elements at
once, or output them, but only after a certain waiting period. The idea is that
the order of the colors with the latter property is not contained in the advice of
single elements (as that would require too many bits of advice), but it is encoded
together among all the the advice bits of the given color. The key obstacle is that
with a small number of advice bits per item we cannot encode the exact order
in which the colors should be output. Therefore, we have to modify the optimal
solution by removing some elements earlier from the buffer and keeping some



other elements until later, so that we can encode the order of all colors which
have to be output “soon, but not yet”. We show how to perform this operation
with only a slight increase of the cost of the generated output sequence.

We complement the above result by giving a lower bound that shows that, in
order for an online algorithm to have optimal performance, the number of bits of
advice must depend on k. More precisely, 2(log k) bits are required. This lower
bound applies even if all the advice bits are given to the algorithms before the
sequence starts, and it matches (up to constant factors) the trivial upper bound,
where the advice indicates which color switch has to be performed at each step.

2 The Model

We use the definition of deterministic online algorithms with advice as presented
in [EFKR11]. An online algorithm is defined as a request-answer game that
consists of a request set, R; a sequence of finite nonempty answer sets, Ay, As, .. .;
and a sequence of cost functions, cost,, : R" X Ay X Ag X -+ x A, = RTU{oco} for
n =1,2,.... In addition, online algorithms with advice have access via a query
to an advice space, U, which is a finite set. The advice space has a size of 2°,
where b > 0 is the number of bits of advice provided to the algorithm with each
request. With each request, the online algorithm receives some advice that is
defined by a function, u; : R* — U, where i is the request index, that is applied
to the whole request sequence, including future requests. A deterministic online
algorithm with advice can, thus, be represented as a sequence of pairs (g;, u;),
where g; is the function defining the action of the online algorithm at step ¢ and
is defined g; : R® x U* — A; for i = 1,2,.... The action taken by the online
algorithm after receiving request r; is therefore a function of the first i requests,
r1,...,7i, and the advice received so far, uq(0),...,u;(o).

We use the standard definitions of competitive analysis. We say that an
algorithm is a-competitive if, for every finite request sequence o, |ALG(0)| <
a - |oPT(0)| 4 ¢, where ( is a constant which does not depend on the request
sequence o, |ALG(0)| denotes the cost of the solution generated by ALG for o,
and |opT(0)] is the cost of an optimal solution for o.

3 Structure of Advice and the Algorithm

The advice for each input element e consists of two parts: the type t. and the
value ve. The type of an element e describes how e, or rather a whole collec-
tion of elements of the same color as e, should be handled by the algorithm
ALG, i.e., if ALG should keep them in the buffer until more elements of the same
color arrive, if ALG should output them at once, or output them, but only af-
ter a certain waiting period. There are four possible types of an element, i.e.,
t. € {WAIT, LIST, READY, COMPLETE}. The value v, of an element e is used to
encode an order, according to which some input elements will be output. For
each element e we have v, € {0,...,D — 1}, where D is a constant depending
on ¢ and will be fixed later.



The advice sequence will be constructed based on an optimal solution OPT
for the input sequence.

Time In this paper, we use the following notion of time. In each time step
1,...,n, one element arrives and is stored in the buffer. In each time step
k,...,k +n — 1, one element is removed from the buffer, after the element
which arrives at that time (if any) has been stored.

Color blocks The elements which have the same color are partitioned into
color blocks. A complete color block is a maximal set of elements of one color
ending with an element of type COMPLETE, and containing no other elements of
type COMPLETE. The advice sequence will be constructed in such a way that the
types of the consecutive elements from one complete color block always form an
expression

(WAIT)* ((LIST)* U (READY)") COMPLETE,

i.e., first there is an arbitrary number (possibly zero) of elements of type WAIT,
then an arbitrary number of elements of type LIST or an arbitrary number of
type READY, and at the end exactly one element of type COMPLETE.

At time t, a color block is that part of a complete color block which is con-
tained in the buffer (some elements may have been already served, and some
may not have been read yet). The notion of a color block here differs from the
standard definition of a color block for the reordering buffer management prob-
lem, where it denoted the set of all elements of one color contained in the buffer,
which were then output consecutively from the buffer. We now can have more
than one color block of the same color in the buffer. The advice sequence will
be constructed in such a way, that the algorithm ALG will always output all
elements of each complete color block consecutively.

We define the type tp of a color block B in the following way. If there is an
element of type COMPLETE in B, then the type of B is COMPLETE. If all the
elements of B have type WAIT, B has type WAIT. Otherwise, the type of B is
LIST or READY, depending on whether B contains elements of type LIST or of
type READY.

The values v, of all elements of a color block B together encode a wvalue of
a color block vp € {0,..., DIBl —1}. The value of a color block will be encoded
only for color blocks containing elements of type LIST, and it will define the order
in which these color blocks will be output by the algorithm ALG.

Waiting list The algorithm ALG maintains a waiting list of color blocks of
type LIST. This list contains only (a subset of) those color blocks that have the
property that some elements of their color are read into the buffer of OPT while
OPT is serving it. At the beginning of the algorithm, the waiting list is empty.
Whenever a color block B of type LIST appears (i.e. the first element of type
LIST for some color block is read from the input), it is inserted into the waiting
list. The initial position of the block on the waiting list, i.e., the position where
the block is inserted, is defined by the value v of the block. Value 0 denotes the



head of the list. Note that when a new color block is inserted into the waiting
list, the position of other blocks on the list can change.

The value vp of each color block is read from the advice of its elements.
However, some short color blocks may not contain sufficiently many elements to
encode their required position vg. We will check for this case and ensure that
such blocks are never stored in the waiting list. Instead, we serve parts of them
immediately and keep only part in the buffer.

The algorithm Starting at time k, the algorithm ALG chooses a color block to
be output in the following way.

1. If ALG has a complete color block in the buffer, it chooses the oldest of them
(i-e., the block which first became complete is chosen).

2. Otherwise, if ALG has a color block of type READY in the buffer, it chooses
the oldest of them (i.e., the block which first obtained type READY is chosen).

3. Otherwise ALG chooses a color block of type LIST which is at the head of the
waiting list. The color block is then removed from the waiting list.

The algorithm then outputs consecutively all elements of the chosen color block,
one element at each time step. Notice that when ALG starts outputting a color
block, possibly some elements of the block have not yet been read from the input.
When ALG gets such elements from the input sequence, it appends them to the
color block and outputs them without making any color change.

The complete construction of the advice sequence is given in Section 4. In
Section 5, we show that the construction of the advice sequence guarantees that
ALG can always choose a color block to be output (i.e., there is always a block of
type COMPLETE, READY or LIST in the buffer of ALG). We also show that when
ALG starts outputting a color block, it can output all elements from that color
block without making any color change. That means in particular that the cost
of the algorithm is upper bounded by the number of color blocks in the advice
sequence.

4 Constructing the Advice Sequence

Overview The advice sequence A, (o) is constructed offline, based on an optimal
solution OPT for the instance o of the reordering buffer management problem.
The idea of the construction is as follows. We initially assign each input element
e type t. based on the way OPT handles e. Let ¢ be the color of e. If OPT makes a
color change right after outputting e, e is assigned type COMPLETE. Otherwise,
if the whole color block containing e is kept in the buffer of OPT until the next
element element of color c¢ is read from the input sequence, e is gets type WAIT.
Otherwise, e gets type LIST. This ensures the following invariant.

Invariant 1 For each color block, its elements are output by OPT in a single
block (i.e., without making a color change).



]wwwwﬁ[fﬁﬁé‘ ]wwwwﬁ[fﬁﬁﬂ

[wwww cfr rrr 7] [ wwwww r T

removed removed
from buffer from list

removed from list

Fig. 1. The procedures Split(B) (on the left) and Postpone(B) (on the right). None of
the resulting blocks remain on the waiting list. The letters w, [, r, c are used to denote
elements of types WAIT, LIST, READY and COMPLETE, respectively. The frames represent
color blocks.

For each color block B which contains elements of type LIST, we want to
assign a value vpg, which is the initial position of the block on the waiting list.
The blocks in the waiting list are ordered according to the order in which they
are output by OPT. If for each color block the advice included the exact po-
sition of the block in the waiting list, based on the output sequence of OPT,
the algorithm ALG would output an optimal solution. However, for some short
color blocks we cannot encode their position on the waiting list. To deal with
this problem, we will modify the advice data, to decrease the number of blocks
which are in the waiting list at any time. The modification increases the number
of color blocks (i.e., the cost of ALG becomes larger than the cost of OPT), and
introduces elements of type READY. Blocks containing elements of type READY
are not inserted into the waiting list. We now give the overview of the needed
modifications of the advice data.

Procedure Remove(B) Remove the block B from the waiting list. For each block
B’ that was inserted into the waiting list later than B, and behind B, decrease
vp’ by one.

Procedure Split(B) Run Remove(B). Reassign type COMPLETE to the first ele-
ment of block B which had type LIST, and reassign type READY to the remaining
elements of B which had type LIST assigned (see Figure 1, left). Note that pos-
sibly some of these elements have not been read from the input yet.

The block B has been split into two blocks, both ending with an element
of type COMPLETE. The elements of the first block (called the early block) are
removed from the buffer. The second block is called a late block. This block is
kept in the buffer (but not on the waiting list).

Procedure Postpone(B) Run Remove(B). Reassign type WAIT to the first element
of B which originally had type LIST assigned, and reassign type READY to the
remaining elements of B which had type LIST assigned (see Figure 1, right).
Possibly some of these elements have not been read from the input yet. Blocks
processed in this way are called postponed blocks.



The procedure Split(B) makes ALG evict the elements from the first block
of B (i.e., the early block) earlier than they were evicted by OPT, generating
free space in the buffer of ALG. This allows some blocks to stay in the buffer
until the next element of the block is read from the input, and only then to be
output by ALG. These are the blocks for which we run procedure Postpone(B).
We will specify later which blocks will be treated in this way. Whenever a block
B is removed from the waiting list using these procedures, the effect is that ALG
will never insert it into the waiting list. This is the reason we update the values
vps of other blocks on the waiting list when applying procedure Remove(B). We
have the following observation.

Observation 1 The procedures Split(B) and Postpone(B) maintain Invariant 1.

We are now ready to describe the details of the construction of the advice
sequence A. (o). The input elements from the sequence o are processed one by
one, using a buffer of size k (which we call an advice buffer) and a waiting
list. Notice that at this point we are only creating an advice sequence, that is
assigning type t. and value v, for each input element e, and not creating an
output sequence. In particular, "removing elements from the buffer” does not
mean "appending elements to the output sequence”.

Processing an input element Whenever there is empty space in the buffer,
we read the next element e from the input sequence o. We proceed as follows.
First, we assign the initial type of the element e as described above, based on
the way OPT handles e. Then, if e is the first element in its block which is of
type LIST, i.e., its color block changes type to LIST, we insert the color block of e
at the appropriate position, based on the optimal output sequence OPT, into the
waiting list. If after this operation the waiting list has too many blocks of length
similar to the one added, we remove all such blocks from the waiting list, by
applying procedure Split(B) to some of the blocks, and procedure Postpone(B)
to the remaining blocks of the given length. We use the following definition.

Definition 1. The class of a block B on the waiting list is |log |B||, where |B|
1s the number of items of this block up to and including the first element of type
LIST.

We now give the detailed description of actions performed for a newly read
element e of color c. Here C' is another constant which will depend on .

1. (Type assignment) We assign the element e type t. based on the way OPT
handles e (see Figure 2).
(a) If OPT makes a color change right after outputting e, e is assigned type
COMPLETE.
(b) Else, if e has already been assigned type READY due to some previous
Split or Postpone operation (i.e., before e has been read into the buffer),
it keeps the type READY.



| B
COMPLETE

Lo Le[ ] | o] Lel | |

WAIT  will enter the buffer LIST will enter the buffer
before OPT serves eg after OPT serves eg

Fig. 2. Possible initial types of elements (excluding the special case of READY). The
type LIST indicates that OPT starts serving this color block before all elements have
been read into the buffer; the remaining elements enter the buffer while the color block
is being served (and while other elements of the color block are being removed).

(c¢) Else, if the whole color block containing e is kept in the buffer of opT
until the next element element of color ¢ is read from the input sequence,
e is gets type WAIT.

(d) Else, e gets type LIST.

Note that the type of the element e can be modified later, by applying
procedure Split(B) or Postpone(B) to the color block B of e.

2. (Insertion into the waiting list) If e is the first element of its color block of
type LIST, insert the color block B of e into the waiting list at position vpg
(derived from the solution OPT). Let ¢ be the class of block B. Count the
number n; of color blocks of class ¢ which are currently in the waiting list.

If n; = C, let By and Bs be the two last color blocks of class ¢ in the waiting
list. Run Split(B;) and Split(Bg). For each other block By of class i on the
waiting list, run Postpone(By). By performing these operations we ensure
that ALG will never insert these C' blocks into the waiting list.

Note that in step 2 some blocks may be split, with the resulting early blocks
being removed from the buffer.

Whenever the advice buffer becomes full, and there are no elements of the
current color block in the buffer, we choose a new color block B to be processed
(i.e., removed from the buffer), according to the rules of ALG. The following
lemma shows that the rules of ALG can always be successfully applied.

Lemma 1. While creating the advice sequence, if blocks are removed from the
buffer according to the rules of ALG and Step 2 above, then starting from time k
there is always an element of type different than WAIT in the buffer.

Let B be the color block chosen from the full advice buffer according to the
rules of ALG. If B is not on the waiting list, we simply remove it from the buffer.
If B is on the waiting list, we have to consider two cases.

1. The value vp is smaller than DIP! i.e., it can be encoded using |B| values
v of the elements of the block. We set appropriately the values v, and we



remove B from the buffer and from the waiting list. (Note that this time we
do not apply the procedure Remove(B), i.e., we do not modify any values
vps of blocks B’.)
Only blocks processed in this way will ever be inserted by ALG into the
waiting list.

2. The value v is at least DIZl. Run Split(B). In this case, only the early block
obtained from B is removed from the buffer.

Notice that, as above, in determining the length of B in Step 1 we count only
the elements up to and including the first element of type LIST. The reason is
that these are the only elements of B that have been inserted into the buffer
before B has to be inserted into the waiting list, i.e., before the value of B has
to be computed.

Note also that the initial value of vp might decrease (due to calls to the
procedure Remove when B is already in the waiting list) before B is processed
by ALG. Specifically, it does not matter if v was initially too high, as long as it
drops below D!Bl before the block is chosen to be processed.

5 Analysis of ALG

Lemma 1 leaves open the possibility that ALG may be able to serve only part of
a block. This could happen if not all elements of the (complete) block enter the
buffer while ALG is serving its color. In such a case, ALG would have to return to
this color several times, and its cost would be higher than the number of color
blocks given by the advice sequence A.(0). At the beginning of this Section we
will show that this does not happen, and ALG always outputs complete color
blocks. Then we will bound the competitive ratio of ALG.
First, we present two technical lemmas.

Lemma 2. In the advice sequence A¢ (), types of the consecutive elements from
one complete color block always form an expression

(WAIT)* ((LIST)* U (READY)") COMPLETE.

Lemma 3. Let cy,...,co be a collection of consecutive elements of color ¢, out-
put by OPT with no color change in between, and let t be the time when OPT
outputs the first element ¢y of the collection. If ALG outputs c¢; at some time
t' > t, and it has not output any c; before time t’, it can output all elements
C1,...,cp with no color change in between.

We can now consider all types of blocks which ALG starts outputting before
they become complete, and show that OPT cannot keep the elements of such
blocks longer in the buffer. Applying Lemma 3 gives us the following results.

Lemma 4. When ALG starts outputting a color block, it can finish it with no
color changes.

10



Theorem 1. The algorithm ALG always outputs complete color blocks.

In the remaining part of this Section we will bound the competitive ratio
of ALG, if ALG uses the advice sequence A, (o). For this, we will need an upper
bound on the cost of ALG (denoted by |ALG|), as well as a lower bound on the
cost of OPT (denoted by |oPT|). From the construction of the advice sequence,
we know the following.

Observation 2 The cost of ALG is upper bounded by the number of color blocks
given by the advice sequence A;(0).

Observation 3 The cost of OPT is lower bounded by the number of color blocks
other than the late blocks given by the advice sequence A (o).

To bound the competitive ratio, it is enough to bound the number of late
color blocks in A.(0), compared to the number of color blocks of other types.
Late blocks can be generated in two ways: while inserting new elements into the
waiting list, and when processing a color block at the head of the waiting list.
We call the sets of late blocks generated during these two operations by LATE
and LATEp, respectively.

Lemma 5. We have [LATE;| < Z(|POSTPONED| 4 |EARLY]), where POSTPONED
and EARLY denote the sets of postponed and early blocks for A.(o).

Lemma 6. We have |[LATEp| < 527 |LISTED|, where LISTED denotes the set of

color blocks which contain elements of type LIST.

Combining the two Lemmas above and setting C' = [2/¢] and D = [C/e] +1
gives us the main theorem of the paper.

Theorem 2. For any € > 0 there is a (1 + £)-competitive algorithm for the
reordering buffer management problem which uses only O(log(1/¢)) advice bits
per input item.

6 Optimality Lower Bound

In this Section we show that a deterministic algorithm requires £2(log k) bits of
advice per request in order to be optimal. Throughout this Section, we assume
without loss of generality that an algorithm will only perform a color switch
when there are no more items of the current color in the buffer, and the buffer
is either full or contains the last request. Let k be the size of the buffer, and let

o={c1,ca...,cp,m1(1), kg1, 71(2), Chp2 - .., 1 (K), con, m2(1), 72(2), ..., m2(k)),
where 7 is a permutation of the colors cq,...,cr, and w9 is a permutation of
the colors cgy1, ..., cor. Note that |o| = 4k.

As long as the buffer of an optimal algorithm remains full, the algorithm
must switch to the color ¢; when next element waiting to enter the buffer has
color ¢;. In particular, the first k£ consecutive colors output by the algorithm
must be m1(1),...,m (k). More formally,

11



Lemma 7. Given o, let S be the sequence of colors w1 (1),...,m1 (k). Let C be
the set of all the possible optimal sequences of color switches for . The k-prefix
of all the sequences in C is S.

Using Lemma 5, we can prove the main theorem of this section.

Theorem 3. At least logk bits of advice per request are required for a determin-

istic algorithm with advice to be optimal.

References

[BKK109] Hans-Joachim Béckenhauer, Dennis Komm, Rastislav Kralovic, Richard
Krélovic, and Tobias Momke. On the advice complexity of online problems.
In Yingfei Dong, Ding-Zhu Du, and Oscar H. Ibarra, editors, ISAAC, volume
5878 of Lecture Notes in Computer Science, pages 331-340. Springer, 2009.

[BKKK11] Hans-Joachim Bockenhauer, Dennis Komm, Rastislav Krélovic, and
Richard Krélovic. On the advice complexity of the k-server problem. In
Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP (1), volume
6755 of Lecture Notes in Computer Science, pages 207-218. Springer, 2011.
Also as technical report at ftp://ftp.inf.ethz.ch/pub/publications/tech-
reports/7xx/703.pdf.

[DKPO08] Stefan Dobrev, Rastislav Kralovi¢, and Dana Pardubskd. How much infor-
mation about the future is needed? In SOFSEM’08: Proceedings of the 34th
conference on Current trends in theory and practice of computer science,
pages 247-258, Berlin, Heidelberg, 2008. Springer-Verlag.

[EFKR11] Yuval Emek, Pierre Fraigniaud, Amos Korman, and Adi Rosén. Online
computation with advice. Theor. Comput. Sci., 412(24):2642-2656, 2011.

[HKK10] Juraj Hromkovic, Rastislav Krélovic, and Richard Krélovic. Information
complexity of online problems. In Petr Hlineny and Antonin Kucera, editors,
MFCS, volume 6281 of Lecture Notes in Computer Science, pages 24-36.
Springer, 2010.

[KK11] Dennis Komm and Richard Kréalovic. Advice complexity and barely random
algorithms. In Ivana Cernd, Tibor Gyiméthy, Juraj Hromkovic, Keith G.
Jeffery, Rastislav Kralovic, Marko Vukolic, and Stefan Wolf, editors, SOF-
SEM, volume 6543 of Lecture Notes in Computer Science, pages 332-343.
Springer, 2011.

12



A Proofs from Section 4

Proof (of Lemma 1). Assume for contradiction that at some time ¢, i.e., after
reading exactly ¢ items from the input, all items have type WAIT. If all these
elements originally had type WAIT assigned to them, they are kept in the buffer
of OPT at time ¢, and OPT does not remove any of them before it reads an element
with a matching color from the input sequence. Contradiction, as OPT has to
remove an element at time ¢, and its buffer is completely filled with elements
which cannot be removed at that time.

Therefore, we must have run Postpone(B) for a block B at some point, and
reassigned a type from LIST to WAIT. If at time ¢, OPT has already finished
outputting any postponed block B from the advice buffer, the element of B of
type COMPLETE would be already read from the input and it would be in the
advice buffer — contradiction. So no postponed blocks have been output by opPT
yet. That means that at time ¢, OPT is in the process (or is just beginning) of
outputting one of the postponed blocks B, and all but k—|B| other elements from
the advice buffer are still in the buffer of orPT (and have type waAIT). However,
as B is a postponed block, there are two blocks of size greater than |B|/2 each,
which are kept in the buffer of oPT, and which have been removed from the
advice buffer. Contradiction, as OPT does not have enough buffer space. O

B Proofs from Section 5

Proof (of Lemma 2). The type COMPLETE is only assigned to final elements
of blocks (in Step 1, and also in the procedure Split(B)). In Step 1, the type
WAIT is only ever assigned to elements that form a prefix of a color block, and
Postpone(B) only extends such a prefix by one element, while Split(B) keeps the
types of such a prefix unchanged. Finally, the types LIST and READY are never
combined in one block, neither in Step 1 nor in Step 2 (see also Figure 1). O

Proof (of Lemma 3). At time ¢, OPT has the elements ¢y, ..., ¢, in its buffer for
some m € [1,¢] (along with k& — m other items). It switches to the color ¢ of ¢;
and serves this color for exactly the next £ time steps. Afterwards, OPT has read
the input until item exactly ¢ 4+ £. The buffer content of OPT is the same as at
time t, except that the m elements of color ¢ have been replaced by a set S of
m new elements with different colors which arrive in the interval [t + 1,¢ + £].

At time t/, based on the assumptions of the lemma, ALG has the elements
C1y. .., Cm in its buffer for some m' € [m, (] (and k — m’ other elements). ALG
switches to color ¢ and starts serving it. It continues serving this color and
reading the input until it has read exactly m’ > m elements of different colors
or until it has served all ¢ items of the block, whichever comes first.

To find out how far ALG can read the input, we must count the number of
elements that are not of color ¢ in the input starting from time ¢’ +1 > ¢t+1, and
continue until we find m’ > m of them. But then we certainly count all elements
of S (that ALG had not yet read at time t'). Hence ALG reads the input at least
as far as OPT, and can indeed serve the entire color block. a

13



Proof (of Lemma 4). The only color blocks which ALG can start outputting
before reading all the elements from the input are READY blocks (postponed and
late blocks) and blocks of type LIST. The other blocks are COMPLETE and can
trivially be output at once.

First consider postponed blocks. From the construction of the advice se-
quence, we know that ALG starts outputting a postponed block later than OPT:
OPT outputs it strictly before reading the block element f that follows the first
element e of type LIST, but the advice for e gets modified to WAIT in the Post-
pone operation and therefore ALG only outputs e after reading f (of type READY
or COMPLETE). From Lemma 3, ALG can finish outputting all the elements of
the block without a color change.

Now consider non-complete blocks of type LIST. Let ¢’ be the time when ALG
starts outputting a block B of type LIST. By Invariant 1 and Observation 1, OPT
outputs all the elements of B in a single block. We want to show that OPT starts
outputting the block B at some time ¢ < t/, as then by Lemma 3 we are done.

Assume that OPT starts outputting B at a time ¢ > ¢'. As B has type LIST at
time ¢/, we get that at time ¢’ there are no blocks of type READY or COMPLETE
in the buffer of ALG. All the blocks in the buffer of ALG at time ¢’ are

1. original blocks of type WAIT, which OPT has still in the buffer at time ¢/;

2. postponed blocks, which still have type WAIT because of the reassignment of
the type, where OPT can be in the process of outputting the first of them at
time ¢'. In this case, OPT still has two early blocks in its buffer, of total size
greater than |B|, which ALG has already output;

3. blocks of type LIST, which are in the waiting list behind B, i.e. OPT still has
them in its buffer at time ¢, and therefore also at time ¢'.

OPT also keeps the whole block B in its buffer — contradiction, as OPT does not
have enough buffer capacity to have an item which it would remove at time #'.

Finally, consider late READY blocks. Let ¢’ be the time when ALG starts
outputting a late READY block B of color c. Say the first element f of this block
is loaded into the buffer at time ¢ < ¢’ (note that ¢ does not depend on the
algorithm used). Originally, f was part of a longer block B’ and was directly
preceded in this block (not necessarily directly preceded in the input) by e, the
first element of B’ of type LIST. Since e had type LIST, by definition OPT starts
to serve B’ strictly before f arrives, i.e., before time ¢ < ’. Since the late block
B is not complete at time ', but it is processed together with the corresponding
early block by OPT, OPT must still be serving color ¢ at time ¢’ (either the early
or the late block that was produced by the splitting of B’).

Since there are no complete blocks in the buffer of ALG at time t’, all blocks
that OoPT served completely before time ¢’ have also been served by ALG by time
t" (possibly using multiple color changes per block). Hence, all items that are in
the buffer of ALG at time ¢’ and that are not of the current color of OPT (which
is ¢) are also in the buffer of opPT. Therefore, in the time period which starts at
time ¢’ in which both ALG and OPT are serving color ¢, OPT does not have more
room than ALG to store new items of different colors, so it cannot read more of
the input than ALG, and ALG manages to serve the entire late block B. O

14



Proof (of Theorem 1). From Lemma 4, whenever ALG starts outputting a color
block, it can finish it with no color changes. From Lemma 1, one of the rules of
ALG can always be applied. a

Proof (of Lemma ??). Color blocks from the set LATE; are obtained while insert-
ing new elements into the waiting list, when there are C' blocks of the same class
in the waiting list. The C blocks are then modified to obtain two late blocks,
two early blocks and C' — 2 postponed blocks. The inequality follows. ad

Proof (of Lemma ??7). Let B € LATEp, and let orig(B) be the original block
which later has been split into an early block and the late block B. Let ¢ be the
class of orig(B). As orig(B) has been split, at the time when orig(B) has been
processed we had voyig(p) > DIBl > D?'.

Let B(B) be the set of color blocks which, during the construction of the
advice sequence, have been in the waiting list at the time orig(B) has been
inserted there, and which have been successfully removed from the waiting list
(i.e., they did not become postponed block, and did not split into early and
late blocks) before orig(B) has been split. From the construction of the advice
sequence we get that [B(B)| = vaig(p). Each block from the set B(B) belongs
to the set LISTED.

Let By € LISTED, and let ¢ be the time when By has been (successfully)
removed from the waiting list. For any block B € LATEp such that By € B(B),
the block orig(B) must have been in the waiting list at the time ¢. As for any
class i the number of blocks of class ¢ which are in the waiting list at time ¢ is
smaller than C, By belongs to less than C' sets B(B), such that orig(B) is in
class i.

Now, for each block B € LATEp, we charge a cost of voré(s) < DlZi
of the vgyig(py blocks from the set B(B). The total cost charged to all blocks in
LISTED equals |LATEp|. From the reasoning above we know that each block from
the set LISTED can belong to at most C sets B(B) per each class ¢, and therefore
is charged a total cost less than

to each

[log k|

C C
E —_ <.
. D? D-1
=0
That gives us that [LISTED| - 525 > |[LATEp|. 0

Proof (of Theorem ?7). We set C' = [2/e] and D = [C/e] + 1. From Lemma 77
and Lemma 7?7 we get that

2 C
|[LATE;| 4+ |LATEp| < (max{c, Dl}) |opT| < g|OPT| .

That gives us |ALG| < (14 ¢)|oPT|. The number of advice bits per input item is
2+ [log D] = O(log(1/¢)). O

15



C Proofs from Section 7?7

Proof (of Lemma 5). Let OFF be an offline algorithm for o that performs 2k
color switches, denoted by C°™, such that the first k£ color switches are those of
S and the last k color switches are m2(1), m2(2), ..., m2(k). The correctness proof
for OFF is by induction on j over the indexes of C°FF. Initially, OFF fills its buffer
with the first k& requests which are k distinct colors. By definition, the request
waiting to enter the buffer is 71 (1) which is the color switched to by OFF. OFF
serves both requests of color 71(1) in o with one color switch and a new color
enters the buffer. Assume that for every color switch for j = 1 to v — 1, the 2
requests of CF(j) are served. For the inductive step from u—1 to u, let o, be o
with the pairs of requests with colors of C°™(1),...,C°"™(u—1) removed. The 2
requests of color C°(u) occur in the first k + 1 requests of o,,. Therefore, both
requests will be served when OFF switches to C°™ (u). Since OFF correctly serves
o and the number of color switches is equal to the number of distinct colors in
the request sequence, OFF is optimal.

Finally, we show by induction on j over the indexes of S, that S is the only
sequence of color switches that an optimal algorithm can perform. Note that
no algorithm can perform better than the number of distinct color switches.
Therefore, by induction, we will show that any deviation from S results in an
additional color switch which implies more color switches than OFF. At the point
of the first color switch, the buffer of an algorithm will contain the first k£ distinct
colors and S(1) is waiting to enter the buffer. If any other color besides S(1)
is switched to at this point, the algorithm will only serve the first request of
that color resulting in an additional color switch to serve the second request of
the same color. Therefore, an optimal algorithm must switch to S(1) initially.
Assume that this is the case for j from 1 to u — 1. For the inductive step from
u—1to u, let o, be o with the pairs of requests with colors of S(1),...,S(u—1)
removed. The first k requests of o, will be the first request to k distinct colors
including S(u) and the k 4 1-th request will have the color S(u). As in the base
case, an optimal algorithm must switch to S(u) at this point. O

Proof (of Theorem ?7). There are (k!)? different input sequences of the form
o = <Cl7 C2..., Ck,’ﬂ'l(].), Ck+177T1(2),Ck+2 Ce 77T1(k),02k,7('2(1),7'r2(2), ey 7T2(]€)>,

with k! > k2 different permutations m;. By Lemma 5, the sequence of the first
k colors output by an optimal algorithm must be exactly the sequence .

Assume, for contradiction, that there is a deterministic algorithm using less
than k’gk bits of advice per input item and which is optimal. As the algorithm
uses less than % bits of advice per input item, i.e., less than % bits of
advice in total, there must be two sequences o1 and o9 which have different
permutations 71, and for which the whole advice sequence A = {a1,...,aq;} is
the same.

The first color switch, for both sequences o1 and o9, is to the same color
C(1) =g(c1y ..., ¢k, a1,...,ax). As the algorithm is optimal both for o1 and o5,

16



the color m1(1) must be the same for both o1 and o9. Assume that 7 (j), for
some j € {2,...,k}, is the first position at which o7 and og differ. Then, as the
algorithm is optimal, it performs the same color switches for both o; and o5
over the first j — 1 color switches. Now, let

C(j) =glers -y ep, (1), epr1, T1(2), gy - oo, (1), Chtjmt, @1, - - oy Qrpa(i—1))-

The j-th color switch of the algorithm both for o; and o5 is the same, as it is to
the color C(j). However, C(j) must be different from 7 (j) for at least one of the
sequences o1, 02. We obtain contradiction with the optimality of the algorithm.
A deterministic algorithm using less than % bits of advice per input item

cannot be optimal.
O

17



