Approximation schemes for packing
splittable items with cardinality constraints

Leah Epsteih Asaf Levirf Rob van Stee
August 3, 2010

Abstract

We continue the study of bin packing with splittable itemsl @ardinality constraints. In this
problem, a set ofi items must be packed into as few bins as possible. Iltems maglibebut each
bin may contain at most (parts of) items, wheré is some given parameter. Complicating the
problem further is the fact that items may be larger than i¢wis the size of a bin. The problem is
known to be strongly NP-hard for any fixed valuekof

We essentially close this problem by providing an efficieatypomial-time approximation
scheme (EPTAS) for most of its versions. Namely, we presergfficient polynomial time ap-
proximation scheme fak = o(n). A PTAS fork = ©(n) does not exist unless-P NP.

Additionally, we presentlual approximation schemes fér = 2 and for constant values @f.
Thus we show that for any > 0, it is possible to pack the items into the optimal number obin
polynomial time, if the algorithm may use bins of size- .

1 Introduction

In bin packing problems, a sétof n itemsis given and the goal is to pack them into the minimum
number of containers, callddins. The items are typically given as numbergin1], wherel is the bin
size. In this paper we consider items that may be larger than 1, that is, tlesiesein0, co). Items are
allowed to besplit and distributed among an arbitrary number of bins. The size of aniitsrdenoted
by Sj-

Clearly, if we allow items to be split and have no other constraints, a simple Neyjie algorithm
can generate an optimal solution. However, we require that atir{pstrts of) different items are packed
together in a single bin. This is callectardinality constraintand it makes the problem NP-hard in the
strong sense for any fixdd> 2 [4, 10].

This problem was introduced by Chung et al. [4], who discussed tHaegumoof allocating memory
to parallel processors. The goal is that each processor has suffitéenory and not too much memory
is being wasted. If processors have memory requirements that havevéaiggons over time, any
memory allocation where a single memory can only be accessed by onegmoeds be inefficient.

A solution to this problem is to allow memory sharing between processors. \owié there is a
single shared memory for all the processors, there will be a large ambuaahtention which is also
undesirable. Itis currently infeasible to build a large, fast shared meamatin practice, such memories

*Some of the results in this paper (for const@nhave appeared in the extended abstract [9].

fDepartment of Mathematics, University of Haifa, 31905 Haifa, Ishraeh@rat h. hai fa. ac.i | .

fChaya fellow. Faculty of Industrial Engineering and Management, Tleehdion, 32000 Haifa, Israel.
| evinas@e.technion.ac.il.

§Max-Planck-Institut fir Informatik, 66123 Saarblicken, Germanyanst ee@rpi - i nf . npg. de. Research supported
by the Alexander von Humboldt Foundation and the German Reseacity5(DFG).

are time-multiplexed. For processors, this increases the effective memory access time by a factor o
n.

Chung et al. [4] suggested a new architecture where each memory magdssed by at mosivo
processors, avoiding the disadvantages of the two extreme models didabsse. This leads to the bin
packing problem described above, where in their paper2: the bins are the memories and the items
to be packed represent the memory requirements of the processorgrofitem was further studied
in [10, 12]. We describe the results of these papers below. First, weedbf performance measure that
we use.

In this paper, we study approximation algorithms in terms ofth®olute approximation ratior the
absolute performance guaranteket B(Z) (or B, if the inputZ is clear from the context) be the cost
of algorithm B on the inputZ. We also denote bj3(Z) the solution which algorithn$8 returns on the
instanceZ. Note that3(Z) refers both to the cost of the solution and to the solution itself, however, it will
be clear from the context which is used in every case. An algorihiman (absoluteR-approximation
if for every inputZ, A(Z) < R - oPT(Z), whereoPT is an optimal algorithm for the problem. The
absolute approximation ratio of an algorithm is the infimum valug afuch that the algorithm is aR-
approximation. A polynomial time approximation scheme (PTAS) is a familyt ef<)-approximations
for every value of: > 0. An efficient polynomial time approximation scheme (EPTAS) is a PTAS
whose time complexity is of the forni(1) - POLY(LENGTH(Z)) where f can be an arbitrary function
(typically, an exponential function) areoLY(LENGTH(Z)) is a polynomial of the input length. The
notion of EPTAS is a modern one, motivated in fixed parameterized tractab(€PT) community (see
e.g. Cesati and Trevisan [3]). Recall that a fully polynomial time approximaiheme (FPTAS) is a
PTAS whose time complexity is polynomial in the input length ané.in

Theasymptotiapproximation ratio for an algorithd is defined to be

oo _1; A(Z)
RA ll]{fllj;lop s%p{ oPT(T) |OPT(Z) =N} .
This ratio is relevant if we are particularly interested in the performancégofithms on large inputs,
which cannot be packed into just a few bins. If the generic approximadiim involved in an approxi-
mation scheme is defined according to the asymptotic measure, then it is caligutatsy (resulting in
the concepts of an APTAS, AEPTAS, and AFPTAS).

Fernandez de la Vega and Lueker [5] designed an APTAS for stibidfapacking. Their work was
followed by the work of Karmarkar and Karp [14] who developed an A&8.

Regarding the absolute approximation ratio, for the classical bin packitdgon, a simple reduction
from thePARTITION problem (see problem SP12 in [11]) shows that no polynomial-time algoridsm h
an absolute performance guarantee bettergwniess P= NP. This reduction is no longer valid for our
problem, where items may be split.

Chung et al. [4] showed that the bin packing problem with splittable items isaié+h the strong
sense fork = 2. They use a reduction from the 3RTITION problem (see problem [SP15] in [11]).
In [10], Epstein and van Stee showed that this problem is NP-hard in thiegstense for any fixed
constant value of. Chung et al. [4] also gave %/2-approximation for the case = 2. Graham and
Mao [12] analyzed the asymptotic approximation ratio of several algorithimsiggupper bounds of
1.498 fork = 2, 3/2 fork = 3 and2 — 2/k for k > 4. In [10], a simple algorithm with an absolute
approximation ratio o — 1/k for £ > 2, and an algorithm with an asymptotic approximation ratio of
7/5 for k = 2 were presented.

Bin packing with cardinality constraints (and regular, non-splittable items)jnasiuced and stud-
ied in an offline environment as early as in 1975 by Krause, Shen aweeBolan [16, 17]. They showed
that the performance guarantee of the well known First Fit algorithm is at 2o — ;—i Additional
results of [16, 17] were offline approximation algorithms of performanaeantee. Kellerer and Pfer-
schy [15] designed an improved offline approximation algorithm with perémce guarantek5, and

an APTAS was designed by Caprara, Kellerer and Pferschy in [R&(foore general problem). Finally,
an AFPTAS for this problem was obtained by Epstein and Levin in 2007 [8].

From a different perspective, Babel et al. [1] designed a simipliae algorithm with an asymptotic
approximation ratio of for any value ofk. They also designed improved algorithms for= 2, 3.
Epstein [7] gave an optimal online bounded space algorithm (i.e., an algavitlich can have a constant
number of active bins at every time) for this problem. Its asymptotic wors&-c## is an increasing
function ofk and tends td + h~, =~ 2.69103, whereh, is the best possible performance guarantee of an
online bounded space algorithm for regular bin packing (without cditlinstraints). Additionally,
she improved the online upper bounds 3ok k£ < 6.

A related problem was studied by Shachnai, Tamir and Yehezkely [18)y Gdnsidered two variants
of an offline bin packing problem where items may be split arbitrarily: onergvbplitting items comes
at a cost, as each part of a split item increases the size of the item by tardcadditive factor, and
one where there is an upper bound on the total number of splits. Theyedhbat both variants do not
admit a PTAS unless P = NP. They designed asymptotic approximation scharbetifvariants. Their
problem is different from our problem since in their case all items haveasiz®ostl; in their case it is
possible to exploit the existence of simple structures of optimal solutions, ahécimore complicated
in our case. In a follow up paper, Shachnai and Yehezkely [19] dedign AFPTAS for each of the two
variants.

Our results Our first main result is an efficient polynomial-time approximation scheme. IRbea
for standard bin packing, this is impossible unless- NP. We present some special cases, then we
present our scheme for the cdse- 2 and finally we show how to extend it to the cadse- o(n). The
main difficulty of packing splittable items, especially for variables that we have less structure in the
packing, due to possible splits of items, and in particular, of very large itenishgié harder to search
all potential packings efficiently. Note that it is NP-hard to approximate tbblpm withk = 3 within
a factor smaller tha@. Specifically, this follows from a reduction from theQEAL CARDINALITY
PARTITION problem. Therefore, it is impossible to obtain a PTAS for all valuefs. of

We also present a dual PTAS for this problem, firstfor 2 and then for general constant values
of k. That is, given bins of sizé + ¢ for an arbitrary= > 0, we give an algorithm to pack these items
into at mostN bins, whereN is the number of bins (of size 1) in an optimal solution. The difficulty
of designing such a dual PTAS lies in the packing of large items. Since tmepearbitrarily large,
the number of items does not imply any upper bounds on the optimal cost, akabnm rounding
techniques apply in this case. Note that a dual PTAS for standard bimngasla procedure used in the
PTAS for scheduling on identical machines, which was given by Hoahtend Shmoys [13].

Throughout this paper, we I8t< ¢ < QLO be such thag is an even integer.

2 Efficient polynomial time approximation schemes

Denote bylV the total size of all items. We will assume tHat < n if £ > 3 andW < n?if k = 2.
These assumptions are made without loss of generality, since otherwisanveslee the problem in
polynomial time as shown in the following lemma.

Lemma 1 The problem is polynomially solvable in either case:Wi)> n andk > 3; or (i) W > n?
andk = 2.

Proof First assume thdt > 3 andW > n. Then we haveprT > [W] > n. Consider the following
solution. The solution packs each item of size at masta bin. The larger items are packed into bins
using (fractional) Next-Fit, starting with the bins containing single items, ansilplgusing empty bins
afterwards. As a result, no bin contains parts of more than three diffiéeers (as it contains parts of at

most two larger items, and at most one item of size at most 1). Moreoveimsalbbt possibly the last
one will contain a total size of. Thus the number of created bins is at md$t] < opT, and hence the
problem can be solved optimally by this algorithm.

Next assume that = 2, andWW > n2. Then there exists an item of size at leastWe use the
same algorithm as described above, but particularly starting the applicatiextFit with the largest
item. Since there are at mastbins containing items of size at malstand the size of the largest item
is at leastn, Next-Fit will complete the packing of the largest item no earlier than inthe 1)st bin.
Therefore, among the firstbins, no bin will contain parts of more than two items, and this property will
be maintained while packing the remaining items of size greaterltiaarwell. Therefore, the algorithm
returns an optimal solution for this case as well.

To prove the lemma, it suffices to show that the two algorithms run in polynomial titoeboth
algorithms, any itenX of size more than 1 is packed into bins of only two types. A bin of the first type
is a bin which is either not full or contains an item (or a part of an item) diffefi®m X . A bin of the
second type contains a part &f of size1. Note that the number of bins of the first type is at most
(since each such bin contains the last part of some item) while bins of thedsgque are consecutive
and hence it is possible to give a compact representation of the list oflilmsse O

We now present structural properties which will be used in this sectioraddtlition, we provide
(approximation) algorithms for several special cases, including thescas%. Afterwards, we present

the scheme fok = 2, and finally we present the scheme o= o(n).

2.1 Afirst modification to the input

We start with a modification to the input which will be used for the design of dieht approximation
schemes. We show that it can be assumed that no item has a sizeéalﬁtmeall that the original input
is denoted byl. We modify the input as follows and let the modified input be denoted bjny item
of sizex > 1/¢ is replaced by ez | items of sizel /e and one additional item of size— %Lexj (if this
last amount is nonzero). The following holds for dny 2.

Lemma 2 opPT(I’) < (14 e)oPT(I).

Proof Consider an optimal packing for the inplt We show how to modify this packing to pack the
input I/, opening at most - W < ¢ - oPT(I) extra bins in the process. This will imply the claim.

For an itemX of sizex > 1/e, consider the bins in which it is packed in some order, and let us
number these bins, 2, Let.S; denote the total size of parts af packed into bind, 2,...,j, and
let So = 0. For every integet < i < ¢ -z, let j; be the value of for which S;_; < g andsS; > g The
valuej; is well defined fqr anyl <4 < [e - z]. The partin biny; is cut into two parts of sizeS;, — *
and: — Sj, 1. If S;; > 2 then the first part has a nonzero size, and we pack it into a new, empty bin.
Thus we need at most one extra bin for each multiple/afof the total size ofX. O

Note that in this process, the number of items cannot increase by a largenurop any item of
sizel’ > % the number of new items is at mdsfl’ |. If &£ > 3, then the number of new items is at most
eW < en. If k = 2, then the number of new items is at mest. Fork > 3, the resulting number
of items inI’ is no larger tham(1 +), while for £ = 2, it is polynomial inn and%. Therefore, this
process takes polynomial time. In this section, we abuse notation and tasdenote the number of
items inI’. Fork > 3 this does not change the fact that o(n).

Lemma 2 implies that it is sufficient to apply an efficient polynomial time approximatibeme on
I'. Note that a packing of implies a packing fof having the same cost.

2.2 Optimal solutions for the cases < E% andk > en

Recall that we assume thiat= o(n), that is,k is a functionk(n) of n, such thatim sup k) — 0. This

n
n—0o0

assumption clearly holds for any constant valug obut also for functions such dgn) = m.

Therefore, by the assumptidn= o(n), and considering the cage> en, then there exists a constant
ne such thatn < n.. In the example wheré(n) = m, we haven, = 22" Note that if
oPT(I') < % then% < % and therefore this case will be covered in this section.

Lemma 3 Given the inputl’, if n is a constant, it is possible to compute a solution of cwst(1’)
in constant time (which depends on the value)ofThat is, the problem can be solved (optimally) in
constant time for the instandé.

Proof Since the size of each item ifis at mosté, opPT(I") < g. Our algorithm for this case initializes
2 bins. We use enumeration to assign at nmio#&ems to each bin. There are at mast subsets of at
mostk items, so there are at magt*)"/= possible assignments. For each assignment, the number of
bins which it requires is the number of bins which have at least one itemmasisig them.

Next, for each assignment, we construct a feasibility-checking linegramowhich outputs a pack-
ing if such a packing exists. There are at m@fstvariables, where there is a variahlg;, if one of the
items assigned to thgth bin is thei-th item. If thei-th item was not assigned to thieh bin then we
let z; ; = 0. In addition to the non-negativity constraintg, > 0, there are two families of constraints.
A constraint of the first one is defined for each birand it states that the total size of parts of items
packed into biry is at most 1, thatisy *,_;» z;; < 1. A constraint of the second family state that each
item< is completely packed (fractionally), thatis,> . z; ; = s;. Note that the cardinality constraints

1<j<n/e
are ensured by the guessing step. ==

Since both the number of variables and the number of constraints are poéino n and%, and
since all coefficients are binary an exact solution can be computed irgktropolynomial time (since
the dual can be solved in strongly polynomial time, using the algorithm of Téjg output is the valid
packing with the minimum number of required bins. O

Thus, we have solved this special case and in the remainder of Sectiercanvmake the following
assumptions:

1 1
k<en,n>—5, andopPT(I') > — . (1)
9 13

2.3 An approximation algorithm for large values of k

We next deal with the cage> —, or equivalently: > ﬁ .

Lemmad If ¢ > ﬁ then there exists an approximation algorithm for cardinality constrained bin

packing of splittable items with an approximation ratiolof 6 and a running time 00(2—22).

Proof Recall that!’ consists of: items, each of size at mo§t Thus the number of bins in an optimal
solution take at most distinct values.

In this proof, we say that an item is large if its size is at leasind otherwise it is small. Small items
are partitioned into medium items, of size(ix?,) and tiny items, of size iri0, 2¢2].

The first step is to partition each large item into one or more pieces such thapiege will have
size between and2e¢ (this can be achieved by cutting off pieces of sizeintil a piece of size at most
2e remains). UsingV < n, the resulting number of large items is at m@stWe sort the resulting set
of items (pieces of large items and small items) in non-increasing order of theiingimeO(n log n)
(the newly created items of sizecan be “sorted” in a single step).

For each possible valugfor opT(I") out of the possible values, we apply the following. We first
allocate the items tg bins in a round-robin fashion, so that himeceives items with index+ gt for
t =0,1,..., where the indices of the items are their positions in the sorted list of items. Siegeripn
round the first bin received an item which is not smaller than the item which shbitareceived, while
in the last round, the last bin possibly did not receive an item at all, theilagt the least loaded one,
while the first bin is the most loaded one. However, if we remove the first item €ach bin except for
the last one, we are in the situation that the assignment started from the last bin

Forg = opT(I’), the total size of items is at mogt and therefore, the last bin contains a total size
of items of at mosti.. Therefore, if we remove the largest item from each bin, then the resskingf
items in each bin have total size of at most 1. The removed items are packéddptaadditional bins
where% such items are packed into a common bin. Note that these additional bins sildefdBth
with respect to the total size of their items (since the size of each item after pantijithe large items
is at moste), and with respect to their cardinality sinke> % and,- < 2.

We next note that for the correct valueg@fthe number of parts of small items in each bin is at most
k. To see this denote by the number of small items, and recall that small items are not cut into pieces.
Each bin contains therefore at mdsf | = [5pi| < [= & small items, where the inequality
holds since iropPT(1’) each bin contains up tb parts of small items. Recall that each piece of a large
item has a size of at leastand hence there are up %q)ieces of large items in each bin. Therefore, the
current set of items in each bin may exceed the cardinality constrairbatfno bin has more thaln+%
parts of items. Moreover, the number of parts of items which are either medilargeris at mos%,
since each such part has a size of at I@a%t For a bin which contains at mo§ttiny items, all of them
are removed, leaving at mo%rg < k items in the bin. Otherwise, there are at Ie§$iny items, so it
is possible to remove the smalléc_sttems of each bin, leaving at mosttems in the bin. The removed
items are partitioned into groups, where a group of removed items consistesnsfriéenoved fromzl—g
bins. Each group of items contains at m9§t < k items and it is packed into one common dedicated
bin, so the new dedicated bins clearly satisfy the cardinality constraint. feanbved item is tiny, so
the total size ofzg removed items does not excekdThe number of new bins is at mast=g| again.

To conclude the performance of our approximation algorithm, note that éocdlrect value of,
it returns a feasible solution whose cost is at most(’) + 2:0PT(I’) + 2coPT(I') + 2 = (1 +
4e)opPT(I') + 2. By (1), oPT(I’) > % and hence our algorithm returns a solution of cost at most
(1 + 6e)oPT(I'), as claimed. For each guegsthe algorithm can be implemented to runidg + n)
time by treating the items of sizeas a block in each bin. Hence the overall running tim@@gé). O

We are left with the cask < 8% SinceopT(I’) > % we get that in the remaining cases it holds that

oPT(I") > ne?. (2)

2.4 A second modification to the input - linear grouping

Given an input to be packed, create groups of items, angdetthe number afjroups which is defined

to bep = 8%1 Sop < n sincen > 8%0 by (1). We sort the items aF by nonincreasing size and put the

items into groups of%} successive items (the last group may contains a smaller number of items).
We create an instand® by modifying I’ as follows. First, we remove the first group (the one with

the largest items). For each remaining group, we round the item sizes indhig gp to the size of the

largest item in the group. This creates the inflt

Lemma5 opT(I”) < oPT(I').

Proof We show that every packing df can be converted into a packing Bf with the same number
of bins. This can be done by replacing every itenT’ofvith an item of the next group of’ (removing

some items of” which are not replaced with any item &f). Each itemX € I’ is replaced with an
item X € I which is not larger tharX . O

Lemma 6 There exists a polynomial time algorithm which converts a packid§ afto a packing ofl’
using at mos€” additional bins.

Proof We show how to convert a packing 6f into a packing ofl’. Clearly, every packing of”” can

be converted into a packing &f without the first group, by replacing the size of each itend’ofvith its
original size. Specifically, wherever an item of grouig supposed to be packed, we are going to take
an arbitrary unpacked item from this group. Since it is smaller than its raLveision, it must fit into
the union of spaces that are allocated to its parts. (Weitems in group 1 are packed into dedicated

separate bins. This requires at mpst+ 1)/ < i—’; extra bins, using < n. O

25 AnEPTASfork =2
2.5.1 The structure of the optimal packing

In this section we deal witli” andk = 2. Recall thatn denotes the number of items ih and it is
assumed that > 1/£!°. The number of items id” is at mostn.

We first make some observations regarding optimal packings for arbiiauys. Any packing can
be represented by a graph where the items are nodes and edgegarar@me-to-one) to bins. If there
is a bin which contains (parts of) two items, then there is an edge betweeritdmseA bin containing
a single part of an item corresponds to a loop on that item in the graphsismavn in [4] that for any
given packing, it is possible to modify it such that there are no cycles ingbecated graph. Thus the
graph representing the packing consists of a forest together with sope loo

While the graph which represents an optimal packing for the modified iffpobnsists of a forest
and some loops, the trees of this forest can be arbitrarily large (whesi&zthef a tree is the number of
its nodes). However, given an optimal solution with large trees (possiblyl@oibs), we can split these
trees into subtrees (with loops) of constant size. Denoteroy(1”) an optimal solution (as well as its
cost) for the case where there is an additional constraint that all treées¢haeated in the packing must
have size of at mosit/=2. We then have the following lemma.

Lemma 7 opT(I"”) < (1 + 2¢)opPT(I”).

Proof A centroid in a tree of sizé" is defined as a node which can be taken as root such that no subtree
has size more thah'/2. Assume that an optimal packing &f contains at least one tree of size larger
than1/e? (otherwise we are done). As long as a tree of size Iargerg%laxists, choose such a tree
and remove a centroid along with all its outgoing edges and loops. Every itder goncern, which
was removed as a centroid of some tree, is packed into dedicated new &ahstirBe that a centroid is
removed, the resulting trees have a size which is at most half the size ofthieys tree, and thus the
process terminates after a finite number of steps.

Consider a specific tree of siZe > 6% We calculate the number of centroids removed from this
tree and from subtrees resulting from it. For= [log, Se?], ..., 1, we count the number of trees
ever considered, from which a centroid was removed (trees createdsiprtitess and the original
tree), which have a size i2~1/¢2,2¢/¢2]. Since each node participates in at most one such tree,
then for a giveni, the number of such trees is smaller thga? /2i~!. This gives a total of at most
2S5e2? — 1 centroids. Moreover, no item i’ has size greater thdn'e, so each centroid requires at most
% dedicated bins, and it results in a tree of size 1. The total number of bingeddo pack all the
centroids is therefore at maoafe — % for an original tree of siz& > 1/£2. A tree of sizeS has at least
S — 1 edges, so the original number of bins used for this tree is atfeast. The number of bins used
for the centroids removed from this tree is no larger thafb — 1).

7

Thus the number of additional bins to decompose the trees into trees of sipstt/<? is at most
2e0PT(I"). This proves the lemma. O

2.5.2 Description of the EPTAS

Using Lemma 7, we focus on solutions with trees of size at most.

From a tree to a packing of I” Assume that a tree representation of a packirg’(1”), with all
trees having size at most<?, is given. Moreover, assume that the tree contains only the edges betwee
distinct items while loops are not specified. Assume furthermore that therrees' (1) areminimalin
the sense that any partition of the items in a tree into two sets, which are padiepeitdently, requires
a strictly larger number of bins to pack the items than the number of bins implied loyitheal tree.

We pack the items into bins starting from the leaves. Each leaf is removed feotrethafter the
corresponding item has been fully packed into bins (see Figure 1 foxampe). We keep track of
which item is supposed to be packed along with this leaf item in its final bin, bgrasg the item to
that bin. In each step, we pack the item of the selected leaf into bins, staitm¢he bins that it was
assigned to in previous steps, if any (filling those bins completely), andrgpeew bins if necessary
(due to the minimality assumption, this is in fact always necessary until we teachot).

B (0.3)| |B (0.5) A (0.5)
B (1) A (0.1)

c (0.7)| [D (0.5) B (0.5)

0.7

Figure 1: A tree where for each node the number next to it is the size of the tee corresponding
bins are created from left to right from bottom to top where in each bin theeobis shown as a list of
items and the size of the item which is packed in this bin. The packing algorithcegses the items in
the orderC, D, B, A.

This proves the following lemma.

Lemma 8 Given a tree representation of a feasible packing with minimal trees, it islgese pack the
items into bins such that for each tree, there is at most one bin which is nuiletely full.

Patterns for a tree respresentation We define a type of a tree to be a pgir E') wherej is the number

of nodes { < j < 1/£2). We assume that these nodes are always numbered, j andE is a subset

of j — 1 edges. Apatternconsists of two parts. The first one is a type of a tree (defined abowtjhe
second is a vector of lengih where componenit(for 1 < i < j) is the group to which nodgebelongs,
which is a number between 2 apdrecall that!” does not contain a group of indé). We next show
that the number of patterns is a constant (which depends$.cFhe number of trees with at mobte?
nodes can be computed as follows. For a given number of ngdbe number of different trees is at
most the number of ways to chooge- 1 edges (some of these ways do not result in a tree), that is, at

iG=1) . A L L .
most(J J;) < (%) < (&)=2. This gives at most; - (X)=* trees. There arg — 1 possible groups

for each node, so there are at m§§t (6%)52 ~p52 patterns. For a given pattern, the process of packing
is defined as above. A patternvalid if the packing process applied on it (that is, on the item sizes
defined by its vector) leads to all items being packed into a single tree (witplitting the tree, which
would imply that the tree is not minimal), and without violating any cardinality comggaThat is, if

the representation of the resulting packing is exactly the original tree.

Finding an approximate solution Recall that there is a constant number of patterns. For each one of
them, we check its validity (including minimality) in constant time, resulting in a list of vaditterns.
Thus we get a constant size set of valid patterns which we dendke Iyr a valid patterry € P we
denote byn(g, ¢) the number of items of groupwhich are packed ig. For every grougy, we denote

by n(g) the number of items in this group iff. For a patterry € P, we denote byize, the number

of bins which are needed to pack the items in pattgithat is,size, is the smallest integer which is at
least the total size of the items in the patteriWe next formulate a linear program where each variable
zq4 (for ¢ € P) indicates the number of times we use a patteriihe role of the constraints is to verify
that all items of groupg, 3, ..., p are packed.

min Zsizeqzq
qeP
st n(g,q)z > n(g) Yg=2,3,...,p
qeP

24 >0 Vg € P.

Consider the optimal solution to this linear program and without loss of giiyesasume that it
is a basic solution. Denote it bi;),er. The number of non-integer components in the solution is at
most the number of constraints (neglecting the non-negativity constraiatsgt mosp — 1. We pick
|z, | times the patterg, and as a result, we are left with at mé’gl items which are not completely
packed; these are the items whose packing is done in the fractional pae basic solution to the
linear program, at mos;lj items for each patterg for which z; is not an integer. Packing these items
in separate bins costs us at mdstadditional bins since every item has size at mgbsSince the cost
of z* is at mostorT (I”) < (1 + 2¢)oPT(I”) < (1 + 2¢)oPT(I’) (using Lemma 5 and Lemma 7), we
conclude that the resulting feasible solutior/toosts at mostl + 2¢)opPT(I’) + i—? + % by Lemma 6.

Our EPTAS is summarized in Figure 2. Recall that 6%1 so the solution obtained by our algorithm
costs at most

2 1
il 5% = (14 25)0PT(I') + 2ne® + = < (1+22)OPT(I') + Ben

1+ 2e)oPT(I’
(1 +25)0PT(I') + 2

< (1+8)oPT(I') < (1 + 10e)oPT([),

where we have applied the definitionygfn > 8% OPT(I") > %, and Lemma 2 in this order, as well as
e < Qio.

Input: I.

1. Apply the modification of Section 2.1 to get the indit That is, for every itemX of size
x > 1/e, replace it with|ex| items of sizel/s and possibly one additional item of size
v — Llex],if [ex] < ex.

2. Ifk>¢ec-norn < ﬁ apply the algorithm described in Lemma 3.
3. Else, ifk > 6% apply the algorithm in Lemma 4.

4. If no algorithm was applied so far, apply the modification of Section 2.4 tehgeinput/”.
That s, put the items into a collection pf= E%L groups, remove the items of the first (largest)
group and round up the item sizes as in Fernandez de la Vega and I[5ek&l items in a
group have the same size.

5. Apply the following steps. Fok = 2 the steps are defined in Section 2.5 and for the case
2 < k < % they are defined in Section 2.6.

(a) Determine the set of valid patterns (trees plus specification of grdunasies).

(b) Solve a linear program for determining the forest (combination of peslfevhich uses
the least number of bins and which packs all the items.

(c) Round down the fractional solution to the linear program.

(d) Assign the items of” according to the rounded solution. Pack the remaining items|into
dedicated bins.

(e) Convert the tree representation into a packing into bins.

6. If the algorithm was applied off’, use Lemma 6 to convert it into a packing Bf That is,
replace the rounded items by the original items and pack remaining items usargtedpns.

Output: the packing of” (which is also a packing af).

Figure 2: The EPTAS.

Theorem 1 There exists an efficient polynomial-time approximation scheme for @ditgiconstrained
bin packing of splittable items where each bin is allowed to have at most twodtepasts of items.

Proof The approximation ratio follows by the above argument. We next considéinmkeecomplexity

of the scheme for the case> 5% andV < n?2, since otherwise we can calculate an exact solution in
strongly polynomial time by Lemmas 1 and 3. UsiAg < n?, the pre-processing of step 1 is done in
O(n?). Therefore, the number of items i is alsoO(n?). The linear grouping in step 4 takes a time
linear in the number of items ii¥. The time complexity of the remaining steps is clearly polynomial
in the number of valid patterns (trees plus specification of groups of hodssmentioned above, the

1 1 i
number of patterns is no larger than- (%) <* - p=2. Sincep = X, we conclude that the number of
patterns is a function of. Therefore, the time complexity of steps 5(b)-5(e) is a constant whichrie so
exponential function ot . The claim holds since step 6 takes time which is linear in the number of items
inI’. O

10

26 AnEPTASfor3<k <4

In this section we present an approximation schemea far £ < 8% In this section we deal with the
input1”.

Our EPTAS for constank is similar to the one fok = 2, however, the major difference is that
we need to implement Step 5(a) for this more general case. For this pumgasee a modified graph
representation. If a bin contains parts of the iteérs. . ., Y%, then we order them in some way and
create edges only between successive items in this ordering. Thus #wiedgjs case, if the items are
ordered as above, af&7,Y2),...,(Yx_1, Yx). Each item is still represented by a single node, thus one
node might be involved in a number of such chains, where each chaesegjts one bin.

In this case we no longer have a one-to-one correspondence o adddins. Instead we have the
property that there are at least as many edges as there are bins. Nohe thiader of the parts inside
a bin has no meaning and we can reorder the parts in a chain arbitrarilyma@kisesult in a different
graph representation for the same packing into bins. It is now more diffecatinstruct a packing into
bins from a given graph. Before we proceed, we prove severalriauqroperties.

Lemma 9 There exists an optimal packing whose corresponding graph repiesen does not contain
any cycles.

Proof We use a repacking process similar to the one used in the proof of Lemmia J4ffoConsider
a representation in which the parts of items in every bin are ordered in aasicg order of indices.
The packing which we consider is one with a minimal number of edges, thahé&gwhe total number
of parts is minimal. Assume by contradiction that there is a cycle in the associaigil gConsider the
sequence of items in a cycle. The cycle must contain edges of at least svdN@rtemporarily replace
every maximal sub-path of the cycle, whose edges correspond all tbionby a single edge, thus
removing some items from the sequence. Denote the resulting sequengeXy. .. X 1,X: = Xo,
wheret > 2. Each itemXj, for 0 < j < ¢, is therefore split into two parts of sizes and x;
(and possibly, some additional parts), where the part of sjzis packed with the part of sizeg-_l,
for1 < j < t (sinceX, and X, are the same item, it holds tha§ = z; andz, = z}). Letu =

min{lrgjgt Zi, 11211% z,}, i.e., the smallest part out of the conside¢cparts. Assume without loss of
<< 7

generality thatzy = 1. We split each part of size; into a part of size:, and possibly an additional part
(in the case = 0, this second part does not exist). The part of siz&f z; is moved to the bin which
contains the item of size]. Since parts of the same size were moved cyclically, no bin exceeds a total
size of 1. The packing is valid since each bin already contained a part of the iteninwilgs moved
into it. No new edges are created. However, as a result, there is a biof which a part of an item
was removed completely, and the number of parts of items in this bin is reducedTws, in order
to represent this bin, the number of edges in the graph representatiducgdebyl, which contradicts
minimality. O

We next prove that it is possible to assume again that the number of items inectet component
is upper bounded by a polynomial ﬂén and it is at mostg%. We now denote byprT(I”) an optimal
solution for the case where there is an additional constraint that all traearehcreated in the packing
must have size of at mosye*.

Lemma 10 oPT (I") < oPT(I") + 3ne3.

Proof We apply a process similar to the one in the proof of Lemma 7, however, iftaopan item
(which is a centroid, in our case) is removed from a bin, if this part usecve bwo edges to items
which have parts in the same bin, an edge should be added between thésensydo keep the items
which have parts in this bin connected in a path, or otherwise the bin muslitietsptwo bins.

At a time that a centroid has just been removed, and before any edgaeddea®, some number of
connected components is created, while the edges that need to be audedfiatching between these

11

components (each edge of the matching corresponds to a bin where ttué e removed centroid
was neither first nor last in the chain). It is possible to add all edgespéxar possibly one such edge,
without creating components of size larger than half the size of the origeal fFhis can be proved
as follows. Letr be the number of connected components after the centroid is removed anithéet
number of edges in the matching. Cleatly> 2p. If p = 1 then the claim holds since no edges need
to be added. Otherwise, temporarily add all the edges of this matching. Bhitsreny — p > p > 2
connected components. At most one of them has a size which excee@éstired upper bound. The
edge of the matching which created this component is removed, resultindiaiesufy small connected
components. Since one edge is not added, one additional bin is creasplitigg one bin into two
bins.

Let us assume that the packingT(I”") contains a tree of siz6 > 1/¢*. We repeatedly remove a
centroid from large trees, along with all its outgoing edges and loops. Wiedhern edges connecting
resulting connected components, except for one edge, as desdriney] that is, an edge is put between
a pair of components, which have a total size of at ntgoand the edges connecting them to the centroid
correspond to the same bin. This process is applied on each tree, aslartgea of size larger than
%4 exists. Every item under concern, which was removed as a centroidrd see, is packed into
dedicated new bins. Each time that a centroid is removed, the size of the esdén is at most half
the size of the previous tree.

Similarly to the casé = 2, if the number of nodes in the original tree§s then the number of
removed centroids (along all iterations) is at m2St*. For all trees, the number of removed centroids
is at mostne*. The removal of each centroid causes the creation of at ?;n@st bins (at most% bins
for the centroid, and one additional bin due to one removed edge), sedhléimg solution costs at most
oPT(I") + 3ned. O

From a tree to a packing of I” We further modify our graph representation, and let each item be
represented by nodes if and only if it is split intay parts in the packing. The parts of one item are
connected by a simple chain (usiitgm edgep as are the parts that are in one bin (ustigedges We
can then start packing bins from the leaves of the tree and repeatedlyadésaves similar to before.
There are now two cases, depending on whether the edge that cotimeelgaf to the tree is an item
edge or a bin edge.

If it is a bin edge, then the leaf represents the last part of stamewhich is now packed inside the
bins it is assigned to. Also, we assign the item at the other end of this edge rthis

Ifitis an item edge, then the leaf represents the last part that is packeadpatticulabin (possibly
a new bin), which is now filled up (entirely, unless it is the root) by this leaf.

Using this packing process, it can be seen that Lemma 8 also holds for ¢kisltaome item does
not fit where it is supposed to, violates the cardinality constraint, or doEeflrup a bin that it should,
the tree we are considering is not valid. In order to apply this procesdpwet only need to know the
group to which each node belongs but alguchof the items of that size is packed there. Again, we let
the type of a tree be a pdif, F') wherej is the number ohodesin the tree (as mentioned above, there
is one node in the tree for every part of an item) @i a set ofj — 1 edges.

We now need a vectaf,) for each node (to get a pattern for the tree). Thuss the group
(v € {2,3,...,p}, wherep is the number of groups as in Section 2.5.2 &rid the number of the item
of this group in this treed < 1/¢%). In a valid tree, the nodes of tyge, 3) for any fixeda: and3 must
be in a chain, since they represent parts of one item. The maximum lengtbioésthain is bounded
by the following Lemma.

Lemma 11 The length of a chain representing one item in a valid pattern is at m@st+ 1 /¢.

Proof There can be at mog‘g nodes in the chain that have an edge to another item, because otherwise
there would be two nodes having edges to the same item, giving a cycle.

12

There can be at mo%tnodes in the chain that do not have an edge to another item, since each such
node has a bin to itself and such a bin (apart from at most one) will be fatliggrl in an optimal solution
by Lemma 8. The size of an item is at mést O

Let (1) be the maximum number of nodes in such a tree, then the number of differenopolo-
gies on at mosy(2) nodes is again a constant denoted fy). Hence, the number of patterns is

bounded byf (2) - (6%)9(%), and so it is a constant sinpe= .
We can now construct in polynomial time a linear program which is the same as jpréelious
EPTAS (with the difference that the notion of feasible pattérns now different). Again, we solve this
linear program and round down the resulting fractional basic solutioen T¥e pack each remaining
item in its own set of bins. The analysis of the approximation ratio follows the $ae®as the case
k = 2. Using the value op, Lemma 10, Lemma 5 > E% OPT > ne? (see (2)), Lemma 2 and< 2—10
(applied in this order) we get the following inequalities:
" 2n 2p 7 3 2 / 3
OPT(I") + — + = < OPT(I") +5ne’ + = < OPT(I') + Te’n
pe € €

< (1+7e)OPT(I) < (14 9¢)0PT(1),

and therefore the resulting scheme is indeed a PTAS. Note that the time com@egain of the form
F(1/e)-POLY(LENGTH(!)), and hence we got an EPTAS for the value# abnsidered in this section.
Thus in Section 2 we have established the following theorem.

Theorem 2 For any k = o(n), there exists an efficient polynomial-time approximation scheme for
cardinality constrained bin packing of splittable items where each bin is alldevbdve at most items
or parts of items.

3 Dual approximation schemes

3.1 Adual PTASfork =2

In this section we present approximation schemes where the number of binddsger than in an
optimal solution, while the bins are slightly larger. Thus, the modifications ioto I’ and I” from
before cannot be used, and we act on the idpuf\s discussed in Section 2, an optimal packing can
be represented by a graph which is a forest together with some loopss ketition, an item is called
small if its size is at mos%. An item of size in(%, 1] is calledmedium All other items (i.e., items of
size strictly above) are calledarge. We may still assum& < n? by Lemma 1.

Our algorithm tries to find a good way to cut items, i.e., split them into parts. Tiseace performed
in two stages. As a first step we cut a single piece off medium and large itaimsl@@rithm performs
an enumeration on such possible cuts. Clearly, these are not the only @ugnthptimal algorithm
may perform on these items for its packing. However, by Lemmas 12 andda, o further cuts are
required for items of size at most 1.

Lemma 12 There exists an optimal packing represented by a forest in which all itésigedat most
1/2 are leaves.

Proof Consider a packing represented by a forest where the sum of degoéemall items is minimal,
and assume by contradiction that there is a non-leaf small ifeniNote that if two small items are
adjacent, but at least one of them is not a leaf, then the packing carabgethso that these two items
form a separate connected component, which is a tree with two nodes amgleaezige. This would
increase the number of small items which are leaves, and thus would lead ntradoction. Thus we
may assume that all neighbors Bfare medium or large items.

13

Consider two arbitrary neighbor$; and A, of B. Denote the corresponding bins by 1 and 2, and
denote the sizes of the corresponding neighboring pamsiof a; andas, and the parts oB by b, and
ba. We haveh +be < 1/2. If by < ay (see figure 3 for illustration), we cut off a part of sizefrom the
part of sizeas and put it in bin 1, while putting the part of siz¢ in bin 2. This removes the neighbor
A; from the small itemB. A new edge is created betwedn and A,, none of which is small. Since the
edge betwee and A; is removed, a cycle cannot be created.

B(0.3) | | B(0.1) A,(0.3)| | B(0.4)

A, (0.7)| [A,(0.6) A, (0.7)| | A,(0.3)

& @ &

Figure 3: The cask, < ay in the proof of Lemma 12. On the left side the packing of the items and the
corresponding tree before the change, and on the right side the gacidrihe tree after the change.

Otherwisens < by < 1/2 (see figure 4 for illustration), which means that we canipttto bin 2
without taking anything out of bin 2: we hawe < 1/2 andb; + by < 1/2. Again, 4, is no longer a
neighbor ofB. Moreover, no new edges are created.

Thus we successfully removed one neighbor frBmkeeping the forest structure. The degree of
B was reduced by while no other degrees of small items were changed. This results in an optimal
packing with a smaller sum of degrees of small items, which is a contradiction. O

The next lemma can be seen as a generalization of Lemma 12.

Lemma 13 There exists an optimal packing which is represented by a forest in whigltem of size
in ((« —1)/2,1/2] has at most neighbors for alli > 2.

Proof For a given tree, we root it at some item. We need to modify the packing oy &een, for
which the number of its parts is too large. These items are considered lelalgbystarting from the
root (considered as the highest level). We apply an iterative proceseevitems are being repacked
without increasing the number of bins used.

Thus, assuming that all items of previous levels are packed into a small emougper of bins,
consider an itenX of size at most/2, which is packed int@’ > i bins. Neglecting the bin that contains
its parent, i.e., the uplevel item (if any), there are at leédmsbs into which the item is packed. Consider
the two bins among them (1 and 2) with the two smallest partX pbf sizesz; andzs such that

14

B (0.3) | | B(0.1) B (0.4)
A, (0.7)

A, (0.7)| |A,(0.2) A, (0.2)

(B) ()

O ()

Figure 4: The cask, > as in the proof of Lemma 12. On the left side the packing of the items and the
corresponding tree before the change, and on the right side the gagidrthe tree after the change.

1 < xo. By the size constraint o', we have
T +(i— 1).7}2 SZ/Q

Letzy; = 3 —v. We get] — v <z < 2 + 2. Thusy > 0 andz, < 5 ++, sincei > 2. This gives
1+ a9 < 1.

Let the total size of parts of items in the second bin, including the part ohisibeg < 1. If any
of the two parts of sizes; andx; is packed alone, the second part can be moved to join it, since their
total size is at most. Else, ifz; + g — 1 < 0, then moving the part of size; into bin 2 results in a
total size ofg + z; < 1. Otherwise, the part of an iteiri, packed with the part of size, has a size of
g—2To > g— % —~v =g—14z;. We can split” into a part of size:; + g — 1 and possibly another part,
and swap the part of sizg + g — 1 with z1 in the first bin. This reduces the number of bins that contain
X and gives a valid packing (with no more than two parts in any bin). Note thatdimeof whichY
is a part, may receive a new neighbor, though the connected compenaains a tree. The two items
whose parts were packed with the parts of sizeandx, of X are treated later if necessary, since they
are items of a lower level of the tree. O

Thus in particular, each medium item has at most two neighbors in the tressgonding to an
optimal packing. When we perform cuts on items, our algorithm considersvineesulting parts to
be two independent items and thus allows to cut them further (for parts déatsize more than 1)
while creating a packing. The enumeration considers a set of cut optitoh wover sufficiently many
packings to find a very good one. The options include “no cut”.

We do this initial cutting in order to simplify the tree structure. We would like to woith\trees
that contain at most one large item, and each tree is a star rooted at a large &grart of a large item.
We now show that by cutting off a piece of size at most 1 from each item vidicledium or large, and
treating this piece as an independent item, we get a packing which has théstgravithout increasing
the number of bins required to pack the input. Note that these techniquasedtg only for the dual

15

PTAS and not for the PTAS since the modification of the input is done by cudtinge items, and a
rounding on the sizes is applied. We later use the fact that we can slightasethe sizes of bins in
order to efficiently enumerate the possible cutting points.

We next show that there exists some set of cuts where each medium dtdange cut at most once,
that converts an optimal solution, which is a set of trees, into a set of &tex. we show how we can
restrict ourselves to a small set of possible cuts which results in the nesédrdfy larger bins.

Lemma 14 It is possible to modify the input in such a way that an optimal packing for tieimgut
requires the same number of bins as the old input, and there exists an bptioking for the new input
such that all medium items have degree 1.

Proof Consider an optimal packing for the original input. For each medium item in this packing,
create one or two new items with sizes depending on where (and whetheitgthis cut into parts.
Two parts are sufficient by Lemma 13. An optimal packing for the modifiedtinpguires the same
number of bins. First, we can use the packifgso we do not need more bins. Second, if there were a
better packing for the new set, it could also have been used for the diiiggta@nce. In the packing®

for the modified input, each newly created item is a leaf. O

Lemma 15 It is possible to modify the input in such a way that the optimal packing for theimgut
requires the same number of bins as the old input, and there exists an bpéakéng for the new input
such that each tree contains at most one large item.

Proof Given a tree with more than one large iteéth rooted at an arbitrary node (see Figure 5 for an
illustration), consider a large item of maximum distance from the root. Computeaitief this item
that should be combined with each of its children. The sum of these parth@amdimber of loops of
X equals the part that should be cut off in order to split the node of the ingeinto two nodes, one
which is the root of a new tree that has no large item besiasd the other one is a leaf of the old tree
(which is now smaller).

The second part of the item has the remaining size (less than 1!) whiclddf@combined in a bin
with the item of the uplevel edge. Repeat this process until there is onlyemies) large item in the
tree. Since each such process for one large item results in a new trez evigepart of the item is its
root, and the other part is a leaf in the original tree, each large item is musttonce. O

We conclude that by modifying the input appropriately, there exists an oppiatking which con-
sists of stars with large items in the root (where such a large item which is af@ostar might be
smaller by at most 1 than the corresponding large item in the original inpuglesialges, and loops.
We will look for a packing that has this structure.

3.1.1 Description of the algorithm

Our dual PTAS works as follows. It is summarized in Figure 6. We use anpeters which is based
one, and which is the inverse of some odd integer. Specifically, w&let % +1landé =1/K. We
begin by rounding item sizes (of all items that are not large) up to the neatdple of 5. There are
K + 1 possible sizes of such items. For a given tree, we can fill the bins startingheik items. This
means that each cut of an item will now occur at an integer multipbe @his also holds for a tree that
contains no small items but does contain medium items. By the above, if a treseamdatems of size
at most 1, it consists of only a loop (a single item).

Denote the number of items of siz&by M, fori = (K +1)/2, ..., K. For each size of a medium
item, we guess how many items of this size are cut at each integer multiplela€h is at most /2.

Denote the number of large items Wiy For convenience of notation, we will also denote this
number byM 1)/ (the index of Mk _1),, will be used later in a similar way to the indices bf;
fori = (K +1)/2,...,K). We guess how many pieces of each size of at most 1, which is an integer

16

0.3

2.9(X 2.6

0.3 O 0.6 0.3 0.6

0.5 0.5

Figure 5: An illustration for the proof of Lemma 15. On the left side the treereehe change, and on
the right side the tree after the change.

multiple of 5, are cut off. Note that a large item may stop being large when some parisagit off.
However, in our algorithm, we still group it among the large items (and in particailaw it to be cut
further). The cuts can be represented by a vector of(dize 1)?/4 + (K + 1), which tells us how many
items of each sizéK + 1)6/2,..., K¢ are cut off at each point, and how many pieces of each size are
cut off from the large items. We will cut each large item at most once, andfithe a forest consisting

of stars, and then the final packing of the items allows each large item to berttr.

Construction of the graph (Figure 7) For every possible set of cuts, we construct a layered graph
which represents possible packings. The graph starts at a single smde, then there atk layers
which correspond to thé large items, and finally there is a sink. We maintasuanmary vectowhich
describes how many unpacked (parts of) items there are of everysize- 0, ..., K) (including parts

of large items!). This vector is denoted byu) for a nodeu. Additionally, we maintain autoff vector
which contains unpacked parts of size less than 1 of large items. This vedenoted by:(u) for a
nodeu. We concatenate both vectors into a singheking vectoof length2(K + 1) which contains all
relevant information needed to find the optimal packing for these parts.

For two nonnegative integer vectaraindb of length?, we say thatt > bif a; > b; fori =1,..., .

We say that: — b if there exists a uniqug such that; = b; + 1 anda; = b; fori € {1,...,0}\{j}.

The cost of an edgeu, v) that is mentioned in Step 4 of Figure 7 can be computed as follows. This
step creates a star rooted at a given large itemifthdétem in the list of large items is associated with
layeri). The size of the large item that needs to be packed is given by its origgeaisnus the size of
the part of item which corresponds to the nonzero entry(of — c(v). This item is to be packed with
items specified by(u) — s(v). The only item that we cut further at this point is the large item associated
with the current layer. Moreover, that is the only item that may be combinedattittr items. Thus, if

17

1. LetK =2 +1ands =1/K.

2. Round each item size which is no larger thaup to the nearest multiple éf Let the number,
of items of sizeld be M, fori = (K +1)/2,..., K.

3. For each medium item size, guess how many items of this size arejédbay = 0, . .., (K —
1)/2.
4. Guess how many items of sizé are cut off from large items fof = 0, .. ., K.

5. Create a graph with layers, plus source and sink. The construction of the graph is shown in
Figure 7. This graph represents all possible packings for the cigeénf guesses. Find a path
with minimal cost from the source to the sink. This is the cost of packing thd imipl these
guesses.

6. Use the packing of this guess to create a packing for the original irstanc

Figure 6: The dual PTAS far = 2

we denote the sizes of items specifieddfy) — s(v) by a1, .. ., a, and the size of the part of the large

item that needs to be packed By, then the number of bins isax{p, [% }.

The cost of an edgg, v) that is mentioned in Step 5 of Figure 7 can be computed as follows. The
items to pack here are specified &y:). These items are not split further, they are packed in bins of size
14 26 containing one or two of these items. We apply the First Fit Decreasing (&lgD)ithm with the
restriction that no bin can contain more than two items. By Lemma 16, this givastiamab packing.

Lemma 16 FFD is an optimal algorithm for cardinality constrained bin packing foe 2.

Proof We modify the input as follows. For anitem> 0 letz’ = (x +1)/3. Then1/3 < 2/ < 2/3.
Three modified items clearly do not fit together, and for two itefns i/ <1 < z+y < 1.

Thus the number of bins required to pack the modified input is the same asforignal input.
We now have an input where all items are larger thah It is known [20] that for such an input, FFD
gives an optimal solution. O

Packing the original input Once we have found the set of cuts that allows the best packing, it is easy
to find the packing for the original input items. Say large item 1 (in our ordgiis packed into bins
together with parts of sizk;d, k29, . . ., k., 0. Using the original vector that represents the set of cuts,
we find the firsti such that there exists an item of side< 1 which is cut atk;0, or at(i — k1)J, and

the part of size:; § that is created by this cut is so far unpacked. We then mark this part ksdpand
continue. (For each item size less than 1, we keep track of how manyritsteond parts are packed

of each size.)

The correct part of this item of size less than 1 is putin bin 1. Bin 1 is filled vathespart of large
item 1 (namelyl + 26 — k16). Then we find an unpacked part for bin 2 in the same manner, etc. At the
end we have some part of the large item left, exactly how large this is deterimnedat piece was cut
off from the first large item. If this part has a positive size, it is packeimsecutive bins, and we move
to the next large item. Finally, we find parts that are paired up in the same manner

Lemma 17 The running time of this algorithm is®(1/=*).

Proof As stated above, a set of cuts can be represented by a vector of (&ngth)2 /4 + K + 1.

18

1. Layer O and layef. + 1 contain a single node. The node in layer O is labeled with the packing
vector, while the node in laydr is labeled with the all-zero vector.

2. Define a fixed ordering on the large items. Each large item is associated hajthr betweer
1 andL. Each of these layers contains one nodesfa@ry(nonnegative, integer) vector that|is
smaller than the original packing vector.

3. For a nodeu, denote the cutoff vector by(u) and the summary vector by(u). For any
nodew in layeri (i = 0,..., L — 1), there is an arc to every noden layer: + 1 such that
c(u) — c(v) ands(u) > s(v).

4. The cost of ar¢u, v), whereu is in layeri (i = 0,..., L — 1), is the cost of packing thah
large item excluding a piece of size specified by the nonzero enttfuin— c(v) (this size
may be 0), together with the items specifieddfy) — s(v).

5. For every node in layer L, there is an arc to the single node in laye# 1. The cost of this
arc is the cost of packing all items #fu).

Figure 7: Construction of the layered graph for one set of guessts (c

The total number of options for such a vector is

K K (K+3)/2
L+K -1 M, + K -1
< .) 11 < M,)S [I oi+K-1)
i=(K+1)/2 i=(K—1)/2

whereL+>" M; < n. Thisimpliesy_,(M;+K —1) < n+L32(K—1) and thereforg [, (M;+ K —1) <
(24 + K — 1)E+3)/2 which means we have at mdsgz; + K — 1)(<+3)°/1 options to cut the input
items. This is an upper bound for the number of graphs that we need tidenrand it is polynomial in
n.

How many nodes are there in layer 1 of one of these graphs? Denotentthenof parts of sizé&) in
the summary vector by;, and in the cutoff vector by:;. We havezifio n; =n-+1L andeiO m; = L.
For entryi in the summary vector, there ang + 1 possibilities, and similarly in the cutoff vector. This

gives us
K

[L((+ 1) (my + 1))

i=0
possibilities overall. This number is upper bounded by

m 2(K+1)
1
<K +1 + > ’

which is polynomial inn. There are at most layers in the graph. Thus, the overall size of the graph is
2(K+1
bounded by (KQ—L + 1) (), which means that we can find the path with minimal cost in time

on 4(K+1)
2
1 .
" <K+1+ >

19

Overall this gives a running time of

m (K+3)%/4 om 4(K+1)
K—1 2 1
<K 3T) " (K 1t)

1 2, 11 1
>4K +iK+61

2n 2
< ———+K-1 = QU
=n <K+1+ n

Lemma 18 This algorithm uses at mostPT(I) bins of sizel + 24 to pack the inpuf.

Proof An optimal solution of the original instance (in bins of size 1) can be adapteadothe rounded

items in the same number of bins of size- 24, using only cuts at multiples @f. Denote this packing

by P. The PTAS tries all possible packings of this form for the rounded itemshargitries the packing

P at some point. Therefore, it manages to pack the original items in bins of $i28, needing at most

the optimal number of bins for these items. O
Taken together, these two lemmas prove the following theorem.

Theorem 3 For anye > 0, there exists a polynomial-time algorithm for cardinality constrained bin
packing of splittable items where each bin is allowed to have at most two itepagtsrof items. This
algorithm packs the items in the optimal number of bins, but uses bins df size

3.2 A dual PTAS for constantk

We give an algorithm for packing the input items into the optimal number of buntswhere the bins
have sizel + ¢. In fact we will pack the items in bin of size+ k§, whered = %. Therefore, we only
have a dual PTAS for the case whérés constant. We chooseso thats is the inverse of some odd
integer. LetM = 1/§ + k. All items of size more that + k6 = Mo are called large.

We will again use the fact that there is an optimal packing which is a foreshha 9). We modify
the input in two steps.

Sizes of items and parté first step will be a revision of sizes of items and parts of items. We take
an optimal packing, and replace any item of sizeith an item of size| 5 [5. Specifically, we consider
all of its parts one by one (in some order) and round each part up on tiothe nearest multiple of
4, maintaining the invariant that the total new sizeof all parts considered so far is at least the total
original sizexr;, and at mosf - [5. As a result, the total size of parts in any one bin can increase by at
mostkd. All parts in the packing now have sizes that are multiple§. dflote that it could happen that
the number of bins used decreases, if there are bins where all the ipi&desve their size reduced to 0.
We use bins of sizé + k§. Denote the resulting rounded instancelbylin I’ we allow an algorithm to
use bins of sizé + k¢§ but we force it to cut items only in integer multiple &f Therefore, we showed
that

opPT(I") < oPT(I).

Large items.As in the previous Section (Lemma 15), we would like to pack the large items one by
one and not combine them together into bins. Note that we showed in Sectitma8llemma 8 still
holds in this case. We have the following lemma.

Lemma 19 It is possible to modify the input in such a way that the optimal packing for theimgut

requiresoPT(I’) bins, and there exists an optimal packing for the new input such that eeeldntains
at most one large item.

20

Proof Consider the set of itemS resulting fromopT(1”), in which we replace each non-large item by
the set of parts (of it) as ioPT(I”). We consider the tree representation of the optimal packitsgsafch
that each item ob is represented in a single node of the tree. That is, each large item iseetwée by
a single node (but the non-large items are already cut), and each atggctotwo items sharing a bin.
We can now apply the proof of Lemma 15, using the vdlue k¢ instead of 1 as bin size and as lower
bound for the size of a large item. O
Thus we find that for each large item, it is sufficient to cut off one pasiz# at most + k0 in order
to pack them into separate trees, and moreover this part does not neecduifbrther later.
Non-large itemsWe now consider the non-large items (of size at nostkd). We need to allow
these items (except non-large parts cut off from large items) to be cuetiateger multiple of. This
is sufficient since iroPT(I’) all parts have sizes that are integer multiples.of he number of cuts for
each item is therefore at mosf — 1.

Description of the dual PTAS We begin by rounding up all items into integer multipleséof To
convert our packing into a packing &f for each item of original sizg we need to decrease the size of
at most one of its parts b} |6 — y (this amount may be zero). From now we only discIiss

After rounding, the non-large items in the input can be represented bsterweith A/ components
whoseith component indicates how many items of si@gexist. For each size, the number of parts cut
off from those items of a particular smaller size can also be representeddnya. We need to try all
possibilities for these cutoff vectors. For each possibility, we will enumerpossible packings of the
items of size at most + k¢ into bins of sizel + k§ such that no bin is empty. Here we use the fact
that there is only a constant number of different packings of one bitefpa), and a packing can be
specified by giving how often each pattern is used.

For each such packing, we will construct a layered graph similar to theéndhe previous section,
with one layer for each large item. Each node now represents a sulbsettnfs of the current packing.
The cost of an edge between two nodes is determined by the differemasenethe packing vectors and
by the size of the large item of the current layer.

Guess vectors We construct a guess vector with at masg(2 + 2/ -1) entries. For each non-large
size, there are at mogt+ 2~ entries. We have a first entry which is the number of such items in the
input. A second entry is a number of large items from which this size of nge-léem is cut off. The
other entries are numbers of items of this size that are cut according teragattern. There a1
options for the cut set of each item. Therefore there are at 1ést possible patterns (actually the
number is less for smaller items). A guess vector is valid if the following conditioits

e The number of items of each non-large sizd'iiis identical to the respective first entries.

e The sum of second entries is at most the number of large items. (Some largeigm ot have
a part cut off.)

e The sum of other entries (not first or second) of each size is equad fashentry for this size.

The number of non-large items is at masttherefore no component in the guess vector exceeds
and there are. + 1 options for each component. Therefore there are at most 1)M(2+2M_1) valid
guess vectors. This number is polynomiahiffor constant andk.

Short guess vectors Once a guess vector is given, we can summarize its contents as followavé/e h
a summary vector witld/ entries, where entryis the total number of parts of sizé. Additionally, we
have a cutoff vector with/ + 1 entries, where entry denotes the number of non-large items of size
(i — 1) that are cut off from the large items for=1,..., M + 1. Fori > 1, this is taken from the

21

second entry for thé — 1)th size in the guess vector. The first entry is simply the number of large items
minus the sum of the other entries in the cutoff vector, and is the number efitargs that do not have

a non-large item cut off from them. We concatenate these vectors sthora guess vectoof length

2M + 1. We can build a packing based on the short guess vector, and latdy sg@ch items the parts
belong to (the parts of items which have the same size are interchangable actkireg).

Patterns A pattern is a list oft + 1 integersiy, ..., that indicate where the different parts end:
the jth part in this bin starts at;_; and ends at;J (letip = 0). Note that the bin may contain less

thank parts (in this case we writg = 0 up to somej) and/or be partially empty (so we cannot omit

the numberi;). For each numbei;, there areM + 1 options. Thus the number of patterns is at most
T = (M + 1)*, which is constant (that is a function bfande).

Guess packings In order to be able to use a layered graph, we will need to build guesgngackA
packing is a set of bins which are partially packed. Each bin is packexiding to a pattern. Note that
the total number of parts afon-largeitems to be packed does not exceel, since each non-large
item is cut into at mosb/ parts.

A guess packing vector is a vector of lengthwhere entryi denotes the number of bins packed
according to patteriifor : = 1,...,T. A guess packing vector is valid for a given short guess vector if
the total number of parts of each size is the same in both. The number oflpagsiiss packing vectors
that need to be checked for each short guess vector is at(mbst+ 1)7. Since no bin is empty in
the packing, the total number of bins which involve packing of parts oflaaye items, is at mosti/.
Therefore this number is polynomial infor a fixed constant value af

The required information in order to pack the remaining large items via a lageapth is the guess
packing vector, and the cutoff vector (second part of the shortsguexsor). We concatenate these two
vectors into a singlé&nal vector of lengthl” + M + 1.

Layered graph Finally, we show how to define a layered graph as before, where ldyers, L
correspond to thed. large items. Bins with exactly items in the guess packing vector are full, and
others can receive parts of large items in the scheme. Therefore thafutldnot need to participate in
the scheme, and are removed from the guess packing vector befomnsteuct the graph (noting how
many such bins we remove).

We use/L| + 1 layers. The nodes of each layer are vectors that are smaller than thesfita (i.e.,
including the cutoff vector). Layer zero has a single node which cporeds to the given packing guess
vector, and the full set of cut off parts. All other layers have all fldess/ectors that are smaller than
this vector.

A nodew in layeri is connected to a nod¥ in layeri + 1 if the following conditions hold.

e The cutoff part ofv minus the cutoff part ofX is a unit vector (i.e., all components are zero,
except for one the i$). Denote the (non-large) size associated with the nonzero component by
Note thatz may be 0.

e Let z be the size of the large item. Let = 2 — a. The size that is left to be packed4is (The
part of sizea is packed in some other step.) Consider now the guess packing pamiols the
guess packing part oX. We require that there are no negative entries in the difference vector.
This difference relates to a set of packed bins with 1 or less parts. Denote the total empty
space in these bins by If 2’ < b, this means that the large item can be packed entirely in these
bins. In this case the edge costsOtherwise, the cost of the edge{i%} . This is the number

of bins still needed to complete the packing.

22

e We are interested in the shortest path from layer zero to any node in tHayast (This is the
reason we do not count the bins in the guess packing vector in the abstedges: they are fixed
and we are only interested in the extra cost of packing the large items.)

e The cost of the packing is the cost of the path, plus the number of bins imtkég guess vector,
including the full bins that do not participate in the scheme.

Naturally, we choose the best solution ever found, and translate it tokengaaf parts of items. Com-
pletely analogously to the proof of Lemma 18, it can be shown that we finthamowith the optimal
number of bins.

4 Conclusions

In this paper, we provided approximation schemes for bin packing of spditiegms with cardinality
constraints for almost all values &f We provided dual approximation schemes as well. It should be
noted that our upper bounds are absolute, i.e. there is no additive termdefihition of the approxi-
mation ratio. We leave an interesting open problem which is to develop a da& fF non-constant
values ofk.

References

[1] Luitpold Babel, Bo Chen, Hans Kellerer, and Vladimir Kotov. Algorithmsdo-line bin-packing
problems with cardinality constraintBiscrete Applied Mathematic§43(1-3):238-251, 2004.

[2] Alberto Caprara, Hans Kellerer, and Ulrich Pferschy. Approxinragohemes for ordered vector
packing problemsNaval Research Logistic92:58—-69, 2003.

[3] Marco Cesati and Luca Trevisan. On the efficiency of polynomial tipgr@ximation schemes.
Information Processing Letter4(4):165-171, 1997.

[4] Fan Chung, Ronald Graham, Jia Mao, and George VarghesdleRsmaversus memory allocation
in pipelined router forwarding engine¥heory of Computing Systen39(6):829-849, 2006.

[5] Wenceslas Fernandez de la Vega and George S. Lueker. Bimpgaan be solved within 1+epsilon
in linear time.Combinatorica 1(4):349-355, 1981.

[6] Andras Frank andEva Tardos. An application of simultaneous Diophantine approximation in
combinatorial optimizationCombinatorica7(1): 49-65, 1987.

[7] Leah Epstein. Online bin packing with cardinality constrair8AM Journal on Discrete Mathe-
matics 20(4):1015-1030, 2006.

[8] Leah Epstein and Asaf Levin. AFPTAS results for common variantsropacking: A new method
to handle the small item$£oRR abs/0906.5050, 2009.

[9] Leah Epstein and Rob van Stee. Approximation schemes for packiit@isie items with car-
dinality constraints. IrProc. of the 5th International Workshop on Approximation and Online
Algorithms (WAOA2007pages 232-245, 2007.

[10] Leah Epstein and Rob van Stee. Improved results for a memory allogatiblem. InProc. of
the 10th International Workshop on Algorithms and Data Structures (V2ADB pages 362—-373,
2007. Also in Theory of Computing Systems, to appear.

23

[11] Michael R. Garey and David S. Johnsddomputers and Intractability: A Guide to the theory of
NP-CompletenessV. H. Freeman and Company, New York, 1979.

[12] Ronald L. Graham and Jia Mao. Parallel resource allocation of spétitems with cardinality
constraints. Preprint, 2006.

[13] Dorit S. Hochbaum and David B. Shmoys. Using dual approximatigarshms for scheduling
problems: theoretical and practical resulisurnal of the ACM34(1):144-162, 1987.

[14] Narendra Karmarkar and Richard M. Karp. An efficient appr@ation scheme for the one-
dimensional bin-packing problem. Rroceedings of the 23rd Annual Symposium on Foundations
of Computer Scien¢g@ages 312-320, 1982.

[15] Hans Kellerer and Ulrich Pferschy. Cardinality constrained bickpey problems. Annals of
Operations Resear¢i®2:335-348, 1999.

[16] K. L. Krause, V. Y. Shen, and Herbert D. Schwetman. Analy$iseveral task-scheduling algo-
rithms for a model of multiprogramming computer systedsurnal of the ACM22(4):522-550,
1975.

[17] K. L. Krause, V. Y. Shen, and Herbert D. Schwetman. Erragandlysis of several task-scheduling
algorithms for a model of multiprogramming computer systerdstrnal of the ACM24(3):527—
527, 1977.

[18] Hadas Shachnai, Tami Tamir, and Omer Yehezkely. Approximatioenseh for packing with item
fragmentation.Theory of Computing Systep3(1):81-98, 2008.

[19] Hadas Shachnai and Omer Yehezkely. Fast asymptotic FPTASaing fragmentable items
with costs. InProc. of the 16th International Symposium on Fundamentals of Compuitieory
(FCT2007) pages 482-493, 2007.

[20] David Simchi-Levi. New worst-case results for the bin-packing faab Naval Research Logis-
tics, 41(4):579-585, 1994.

24

