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Abstract

We continue the study of bin packing with splittable items and cardinality constraints. In this
problem, a set ofn items must be packed into as few bins as possible. Items may besplit, but each
bin may contain at mostk (parts of) items, wherek is some given parameter. Complicating the
problem further is the fact that items may be larger than 1, which is the size of a bin. The problem is
known to be strongly NP-hard for any fixed value ofk.

We essentially close this problem by providing an efficient polynomial-time approximation
scheme (EPTAS) for most of its versions. Namely, we present an efficient polynomial time ap-
proximation scheme fork = o(n). A PTAS fork = Θ(n) does not exist unless P= NP.

Additionally, we presentdual approximation schemes fork = 2 and for constant values ofk.
Thus we show that for anyε > 0, it is possible to pack the items into the optimal number of bins in
polynomial time, if the algorithm may use bins of size1 + ε.

1 Introduction

In bin packing problems, a setI of n items is given and the goal is to pack them into the minimum
number of containers, calledbins. The items are typically given as numbers in(0, 1], where1 is the bin
size. In this paper we consider items that may be larger than 1, that is, their sizes are in(0,∞). Items are
allowed to besplit and distributed among an arbitrary number of bins. The size of an itemi is denoted
by si.

Clearly, if we allow items to be split and have no other constraints, a simple Next Fit-type algorithm
can generate an optimal solution. However, we require that at mostk (parts of) different items are packed
together in a single bin. This is called acardinality constraint, and it makes the problem NP-hard in the
strong sense for any fixedk ≥ 2 [4, 10].

This problem was introduced by Chung et al. [4], who discussed the problem of allocating memory
to parallel processors. The goal is that each processor has sufficient memory and not too much memory
is being wasted. If processors have memory requirements that have largevariations over time, any
memory allocation where a single memory can only be accessed by one processor will be inefficient.
A solution to this problem is to allow memory sharing between processors. However, if there is a
single shared memory for all the processors, there will be a large amount of contention which is also
undesirable. It is currently infeasible to build a large, fast shared memoryand in practice, such memories
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are time-multiplexed. Forn processors, this increases the effective memory access time by a factor of
n.

Chung et al. [4] suggested a new architecture where each memory may be accessed by at mosttwo
processors, avoiding the disadvantages of the two extreme models discussed above. This leads to the bin
packing problem described above, where in their paperk = 2: the bins are the memories and the items
to be packed represent the memory requirements of the processors. Theproblem was further studied
in [10, 12]. We describe the results of these papers below. First, we define the performance measure that
we use.

In this paper, we study approximation algorithms in terms of theabsolute approximation ratioor the
absolute performance guarantee. Let B(I) (or B, if the inputI is clear from the context) be the cost
of algorithmB on the inputI. We also denote byB(I) the solution which algorithmB returns on the
instanceI. Note thatB(I) refers both to the cost of the solution and to the solution itself, however, it will
be clear from the context which is used in every case. An algorithmA is an (absolute)R-approximation
if for every inputI, A(I) ≤ R · OPT(I), whereOPT is an optimal algorithm for the problem. The
absolute approximation ratio of an algorithm is the infimum value ofR such that the algorithm is anR-
approximation. A polynomial time approximation scheme (PTAS) is a family of(1+ε)-approximations
for every value ofε > 0. An efficient polynomial time approximation scheme (EPTAS) is a PTAS
whose time complexity is of the formf(1ε ) · POLY(LENGTH(I)) wheref can be an arbitrary function
(typically, an exponential function) andPOLY(LENGTH(I)) is a polynomial of the input length. The
notion of EPTAS is a modern one, motivated in thefixed parameterized tractable(FPT) community (see
e.g. Cesati and Trevisan [3]). Recall that a fully polynomial time approximation scheme (FPTAS) is a
PTAS whose time complexity is polynomial in the input length and in1

ε .
Theasymptoticapproximation ratio for an algorithmA is defined to be

R∞
A = lim sup

N→∞
sup
I
{

A(I)

OPT(I)
|OPT(I) = N} .

This ratio is relevant if we are particularly interested in the performance of algorithms on large inputs,
which cannot be packed into just a few bins. If the generic approximation ratio involved in an approxi-
mation scheme is defined according to the asymptotic measure, then it is called asymptotic (resulting in
the concepts of an APTAS, AEPTAS, and AFPTAS).

Fernandez de la Vega and Lueker [5] designed an APTAS for standard bin packing. Their work was
followed by the work of Karmarkar and Karp [14] who developed an AFPTAS.

Regarding the absolute approximation ratio, for the classical bin packing problem, a simple reduction
from thePARTITION problem (see problem SP12 in [11]) shows that no polynomial-time algorithm has
an absolute performance guarantee better than3

2 unless P= NP. This reduction is no longer valid for our
problem, where items may be split.

Chung et al. [4] showed that the bin packing problem with splittable items is NP-hard in the strong
sense fork = 2. They use a reduction from the 3-PARTITION problem (see problem [SP15] in [11]).
In [10], Epstein and van Stee showed that this problem is NP-hard in the strong sense for any fixed
constant value ofk. Chung et al. [4] also gave a3/2-approximation for the casek = 2. Graham and
Mao [12] analyzed the asymptotic approximation ratio of several algorithms, giving upper bounds of
1.498 fork = 2, 3/2 for k = 3 and2 − 2/k for k ≥ 4. In [10], a simple algorithm with an absolute
approximation ratio of2 − 1/k for k ≥ 2, and an algorithm with an asymptotic approximation ratio of
7/5 for k = 2 were presented.

Bin packing with cardinality constraints (and regular, non-splittable items) wasintroduced and stud-
ied in an offline environment as early as in 1975 by Krause, Shen and Schwetman [16, 17]. They showed
that the performance guarantee of the well known First Fit algorithm is at most 2.7 − 12

5k . Additional
results of [16, 17] were offline approximation algorithms of performance guarantee2. Kellerer and Pfer-
schy [15] designed an improved offline approximation algorithm with performance guarantee1.5, and

2



an APTAS was designed by Caprara, Kellerer and Pferschy in [2] (for a more general problem). Finally,
an AFPTAS for this problem was obtained by Epstein and Levin in 2007 [8].

From a different perspective, Babel et al. [1] designed a simpleonlinealgorithm with an asymptotic
approximation ratio of2 for any value ofk. They also designed improved algorithms fork = 2, 3.
Epstein [7] gave an optimal online bounded space algorithm (i.e., an algorithmwhich can have a constant
number of active bins at every time) for this problem. Its asymptotic worst-case ratio is an increasing
function ofk and tends to1+h∞ ≈ 2.69103, whereh∞ is the best possible performance guarantee of an
online bounded space algorithm for regular bin packing (without cardinality constraints). Additionally,
she improved the online upper bounds for3 ≤ k ≤ 6.

A related problem was studied by Shachnai, Tamir and Yehezkely [18]. They considered two variants
of an offline bin packing problem where items may be split arbitrarily: one where splitting items comes
at a cost, as each part of a split item increases the size of the item by a constant additive factor, and
one where there is an upper bound on the total number of splits. They showed that both variants do not
admit a PTAS unless P = NP. They designed asymptotic approximation schemes for both variants. Their
problem is different from our problem since in their case all items have sizeat most1; in their case it is
possible to exploit the existence of simple structures of optimal solutions, whichare more complicated
in our case. In a follow up paper, Shachnai and Yehezkely [19] designed an AFPTAS for each of the two
variants.

Our results Our first main result is an efficient polynomial-time approximation scheme. Recall that
for standard bin packing, this is impossible unless P= NP. We present some special cases, then we
present our scheme for the casek = 2 and finally we show how to extend it to the casek = o(n). The
main difficulty of packing splittable items, especially for variablek, is that we have less structure in the
packing, due to possible splits of items, and in particular, of very large items, making it harder to search
all potential packings efficiently. Note that it is NP-hard to approximate the problem withk = n

2 within
a factor smaller than32 . Specifically, this follows from a reduction from the EQUAL CARDINALITY

PARTITION problem. Therefore, it is impossible to obtain a PTAS for all values ofk.
We also present a dual PTAS for this problem, first fork = 2 and then for general constant values

of k. That is, given bins of size1 + ε for an arbitraryε > 0, we give an algorithm to pack these items
into at mostN bins, whereN is the number of bins (of size 1) in an optimal solution. The difficulty
of designing such a dual PTAS lies in the packing of large items. Since they can be arbitrarily large,
the number of items does not imply any upper bounds on the optimal cost, and noknown rounding
techniques apply in this case. Note that a dual PTAS for standard bin packing is a procedure used in the
PTAS for scheduling on identical machines, which was given by Hochbaum and Shmoys [13].

Throughout this paper, we let0 < ε ≤ 1
20 be such that1ε is an even integer.

2 Efficient polynomial time approximation schemes

Denote byW the total size of all items. We will assume thatW ≤ n if k ≥ 3 andW ≤ n2 if k = 2.
These assumptions are made without loss of generality, since otherwise we can solve the problem in
polynomial time as shown in the following lemma.

Lemma 1 The problem is polynomially solvable in either case: (i)W > n andk ≥ 3; or (ii) W > n2

andk = 2.

Proof First assume thatk ≥ 3 andW > n. Then we haveOPT ≥ ⌈W ⌉ > n. Consider the following
solution. The solution packs each item of size at most1 to a bin. The larger items are packed into bins
using (fractional) Next-Fit, starting with the bins containing single items, and possibly using empty bins
afterwards. As a result, no bin contains parts of more than three different items (as it contains parts of at
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most two larger items, and at most one item of size at most 1). Moreover, all bins but possibly the last
one will contain a total size of1. Thus the number of created bins is at most⌈W ⌉ ≤ OPT, and hence the
problem can be solved optimally by this algorithm.

Next assume thatk = 2, andW ≥ n2. Then there exists an item of size at leastn. We use the
same algorithm as described above, but particularly starting the application of Next-Fit with the largest
item. Since there are at mostn bins containing items of size at most1, and the size of the largest item
is at leastn, Next-Fit will complete the packing of the largest item no earlier than in the(n + 1)st bin.
Therefore, among the firstn bins, no bin will contain parts of more than two items, and this property will
be maintained while packing the remaining items of size greater than1 as well. Therefore, the algorithm
returns an optimal solution for this case as well.

To prove the lemma, it suffices to show that the two algorithms run in polynomial time.For both
algorithms, any itemX of size more than 1 is packed into bins of only two types. A bin of the first type
is a bin which is either not full or contains an item (or a part of an item) different fromX. A bin of the
second type contains a part ofX of size1. Note that the number of bins of the first type is at mostn
(since each such bin contains the last part of some item) while bins of the second type are consecutive
and hence it is possible to give a compact representation of the list of thesebins. �

We now present structural properties which will be used in this section. Inaddition, we provide
(approximation) algorithms for several special cases, including the caseε > 1√

k
. Afterwards, we present

the scheme fork = 2, and finally we present the scheme fork = o(n).

2.1 A first modification to the input

We start with a modification to the input which will be used for the design of all efficient approximation
schemes. We show that it can be assumed that no item has a size above1

ε . Recall that the original input
is denoted byI. We modify the input as follows and let the modified input be denoted byI ′. Any item
of sizex > 1/ε is replaced by⌊εx⌋ items of size1/ε and one additional item of sizex− 1

ε⌊εx⌋ (if this
last amount is nonzero). The following holds for anyk ≥ 2.

Lemma 2 OPT(I ′) ≤ (1 + ε)OPT(I).

Proof Consider an optimal packing for the inputI. We show how to modify this packing to pack the
input I ′, opening at mostε ·W ≤ ε · OPT(I) extra bins in the process. This will imply the claim.

For an itemX of sizex > 1/ε, consider the bins in which it is packed in some order, and let us
number these bins1, 2, . . . . Let Sj denote the total size of parts ofX packed into bins1, 2, . . . , j, and
letS0 = 0. For every integer1 ≤ i ≤ ε · x, let ji be the value ofj for whichSj−1 <

i
ε andSj ≥

i
ε . The

valueji is well defined for any1 ≤ i ≤ ⌊ε · x⌋. The part in binji is cut into two parts of sizesSji −
i
ε

and i
ε − Sji−1. If Sji >

i
ε then the first part has a nonzero size, and we pack it into a new, empty bin.

Thus we need at most one extra bin for each multiple of1/ε of the total size ofX. �

Note that in this process, the number of items cannot increase by a large number. For any item of
sizeΓ > 1

ε , the number of new items is at most⌊εΓ⌋. If k ≥ 3, then the number of new items is at most
εW ≤ εn. If k = 2, then the number of new items is at mostεn2. For k ≥ 3, the resulting number
of items inI ′ is no larger thann(1 + ε), while for k = 2, it is polynomial inn and 1

ε . Therefore, this
process takes polynomial time. In this section, we abuse notation and usen to denote the number of
items inI ′. Fork ≥ 3 this does not change the fact thatk = o(n).

Lemma 2 implies that it is sufficient to apply an efficient polynomial time approximationscheme on
I ′. Note that a packing ofI ′ implies a packing forI having the same cost.
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2.2 Optimal solutions for the casesn ≤ 1
ε10

and k ≥ εn

Recall that we assume thatk = o(n), that is,k is a functionk(n) of n, such thatlim sup
n→∞

k(n)
n = 0. This

assumption clearly holds for any constant value ofk, but also for functions such ask(n) = n
log2 log2 n

.
Therefore, by the assumptionk = o(n), and considering the casek ≥ εn, then there exists a constant
nε such thatn ≤ nε. In the example wherek(n) = n

log2 log2 n
, we havenε = 22

1/ε
. Note that if

OPT(I ′) ≤ 1
ε , thenn

k ≤ 1
ε , and therefore this case will be covered in this section.

Lemma 3 Given the inputI ′, if n is a constant, it is possible to compute a solution of costOPT(I ′)
in constant time (which depends on the value ofε). That is, the problem can be solved (optimally) in
constant time for the instanceI ′.

Proof Since the size of each item inI ′ is at most1ε , OPT(I ′) ≤ n
ε . Our algorithm for this case initializes

n
ε bins. We use enumeration to assign at mostk items to each bin. There are at mostnk subsets of at
mostk items, so there are at most(nk)n/ε possible assignments. For each assignment, the number of
bins which it requires is the number of bins which have at least one item assigned to them.

Next, for each assignment, we construct a feasibility-checking linear program which outputs a pack-
ing if such a packing exists. There are at mostn2

ε variables, where there is a variablezi,j , if one of the
items assigned to thej-th bin is thei-th item. If thei-th item was not assigned to thej-th bin then we
let zi,j = 0. In addition to the non-negativity constraints,zi,j ≥ 0, there are two families of constraints.
A constraint of the first one is defined for each binj, and it states that the total size of parts of items
packed into binj is at most 1, that is,

∑

i∈I′ zi,j ≤ 1. A constraint of the second family state that each
item i is completely packed (fractionally), that is,

∑

1≤j≤n/ε

zi,j = si. Note that the cardinality constraints

are ensured by the guessing step.
Since both the number of variables and the number of constraints are polynomial in n and 1

ε , and
since all coefficients are binary an exact solution can be computed in strongly polynomial time (since
the dual can be solved in strongly polynomial time, using the algorithm of [6]).The output is the valid
packing with the minimum number of required bins. �

Thus, we have solved this special case and in the remainder of Section 2, we can make the following
assumptions:

k ≤ εn, n >
1

ε10
, andOPT(I ′) ≥

1

ε
. (1)

2.3 An approximation algorithm for large values of k

We next deal with the casek > 1
ε2

, or equivalentlyε > 1√
k

.

Lemma 4 If ε > 1√
k
, then there exists an approximation algorithm for cardinality constrained bin

packing of splittable items with an approximation ratio of1 + 6ε and a running time ofO(n
2

ε2
).

Proof Recall thatI ′ consists ofn items, each of size at most1ε . Thus the number of bins in an optimal
solution take at mostnε distinct values.

In this proof, we say that an item is large if its size is at leastε, and otherwise it is small. Small items
are partitioned into medium items, of size in(2ε2, ε) and tiny items, of size in(0, 2ε2].

The first step is to partition each large item into one or more pieces such that each piece will have
size betweenε and2ε (this can be achieved by cutting off pieces of sizeε, until a piece of size at most
2ε remains). UsingW ≤ n, the resulting number of large items is at mostn

ε . We sort the resulting set
of items (pieces of large items and small items) in non-increasing order of their size in timeO(n logn)
(the newly created items of sizeε can be “sorted” in a single step).

5



For each possible valueg for OPT(I ′) out of then
ε possible values, we apply the following. We first

allocate the items tog bins in a round-robin fashion, so that bini receives items with indexi + gt for
t = 0, 1, . . ., where the indices of the items are their positions in the sorted list of items. Since inevery
round the first bin received an item which is not smaller than the item which the last bin received, while
in the last round, the last bin possibly did not receive an item at all, the last bin is the least loaded one,
while the first bin is the most loaded one. However, if we remove the first item from each bin except for
the last one, we are in the situation that the assignment started from the last bin.

For g = OPT(I ′), the total size of items is at mostg, and therefore, the last bin contains a total size
of items of at most1. Therefore, if we remove the largest item from each bin, then the resultingset of
items in each bin have total size of at most 1. The removed items are packed into⌈2εg⌉ additional bins
where 1

2ε such items are packed into a common bin. Note that these additional bins are feasible both
with respect to the total size of their items (since the size of each item after partitioning the large items
is at most2ε), and with respect to their cardinality sincek > 1

ε2
and 1

2ε < 1
ε2

.
We next note that for the correct value ofg, the number of parts of small items in each bin is at most

k. To see this denote byn′ the number of small items, and recall that small items are not cut into pieces.
Each bin contains therefore at most⌈n

′

g ⌉ = ⌈ n′

OPT(I′)⌉ ≤ ⌈ n′

n′/k⌉ = k small items, where the inequality

holds since inOPT(I ′) each bin contains up tok parts of small items. Recall that each piece of a large
item has a size of at leastε and hence there are up to1ε pieces of large items in each bin. Therefore, the
current set of items in each bin may exceed the cardinality constraint ofk but no bin has more thank+ 1

ε
parts of items. Moreover, the number of parts of items which are either medium orlarge is at most 1

2ε2
,

since each such part has a size of at least2ε2. For a bin which contains at most1ε tiny items, all of them
are removed, leaving at most1

2ε2
< k items in the bin. Otherwise, there are at least1

ε tiny items, so it
is possible to remove the smallest1

ε items of each bin, leaving at mostk items in the bin. The removed
items are partitioned into groups, where a group of removed items consists of items removed from1

2ε
bins. Each group of items contains at most1

2ε2
< k items and it is packed into one common dedicated

bin, so the new dedicated bins clearly satisfy the cardinality constraint. Eachremoved item is tiny, so
the total size of 1

2ε2
removed items does not exceed1. The number of new bins is at most⌈2εg⌉ again.

To conclude the performance of our approximation algorithm, note that for the correct value ofg,
it returns a feasible solution whose cost is at mostOPT(I ′) + 2εOPT(I ′) + 2εOPT(I ′) + 2 = (1 +
4ε)OPT(I ′) + 2. By (1), OPT(I ′) ≥ 1

ε , and hence our algorithm returns a solution of cost at most
(1 + 6ε)OPT(I ′), as claimed. For each guessg, the algorithm can be implemented to run inO(g + n)

time by treating the items of sizeε as a block in each bin. Hence the overall running time isO(n
2

ε2
). �

We are left with the casek ≤ 1
ε2

. SinceOPT(I ′) ≥ n
k we get that in the remaining cases it holds that

OPT(I ′) ≥ nε2. (2)

2.4 A second modification to the input - linear grouping

Given an input to be packed, create groups of items, and letp be the number ofgroups, which is defined
to bep = 1

ε4
, sop < n sincen ≥ 1

ε10
by (1). We sort the items ofI ′ by nonincreasing size and put the

items into groups of⌈np ⌉ successive items (the last group may contains a smaller number of items).
We create an instanceI ′′ by modifyingI ′ as follows. First, we remove the first group (the one with

the largest items). For each remaining group, we round the item sizes in this group up to the size of the
largest item in the group. This creates the inputI ′′.

Lemma 5 OPT(I ′′) ≤ OPT(I ′).

Proof We show that every packing ofI ′ can be converted into a packing ofI ′′ with the same number
of bins. This can be done by replacing every item ofI ′ with an item of the next group ofI ′′ (removing

6



some items ofI ′ which are not replaced with any item ofI ′′). Each itemX ∈ I ′ is replaced with an
item X̂ ∈ I ′′ which is not larger thanX. �

Lemma 6 There exists a polynomial time algorithm which converts a packing ofI ′′ into a packing ofI ′

using at most2npε additional bins.

Proof We show how to convert a packing ofI ′′ into a packing ofI ′. Clearly, every packing ofI ′′ can
be converted into a packing ofI ′ without the first group, by replacing the size of each item ofI ′′ with its
original size. Specifically, wherever an item of groupi is supposed to be packed, we are going to take
an arbitrary unpacked item from this group. Since it is smaller than its rounded version, it must fit into
the union of spaces that are allocated to its parts. The⌈np ⌉ items in group 1 are packed into dedicated

separate bins. This requires at most(np + 1)/ε ≤ 2n
pε extra bins, usingp ≤ n. �

2.5 An EPTAS for k = 2

2.5.1 The structure of the optimal packing

In this section we deal withI ′′ andk = 2. Recall thatn denotes the number of items inI ′ and it is
assumed thatn > 1/ε10. The number of items inI ′′ is at mostn.

We first make some observations regarding optimal packings for arbitraryinputs. Any packing can
be represented by a graph where the items are nodes and edges correspond (one-to-one) to bins. If there
is a bin which contains (parts of) two items, then there is an edge between theseitems. A bin containing
a single part of an item corresponds to a loop on that item in the graph. It was shown in [4] that for any
given packing, it is possible to modify it such that there are no cycles in the associated graph. Thus the
graph representing the packing consists of a forest together with some loops.

While the graph which represents an optimal packing for the modified inputI ′′ consists of a forest
and some loops, the trees of this forest can be arbitrarily large (where thesize of a tree is the number of
its nodes). However, given an optimal solution with large trees (possibly withloops), we can split these
trees into subtrees (with loops) of constant size. Denote byOPT′(I ′′) an optimal solution (as well as its
cost) for the case where there is an additional constraint that all trees that are created in the packing must
have size of at most1/ε2. We then have the following lemma.

Lemma 7 OPT′(I ′′) ≤ (1 + 2ε)OPT(I ′′).

Proof A centroid in a tree of sizeF is defined as a node which can be taken as root such that no subtree
has size more thanF/2. Assume that an optimal packing ofI ′′ contains at least one tree of size larger
than1/ε2 (otherwise we are done). As long as a tree of size larger than1

ε2
exists, choose such a tree

and remove a centroid along with all its outgoing edges and loops. Every item under concern, which
was removed as a centroid of some tree, is packed into dedicated new bins. Each time that a centroid is
removed, the resulting trees have a size which is at most half the size of the previous tree, and thus the
process terminates after a finite number of steps.

Consider a specific tree of sizeS > 1
ε2

. We calculate the number of centroids removed from this
tree and from subtrees resulting from it. Fori = ⌈log2 Sε

2⌉, . . . , 1, we count the number of trees
ever considered, from which a centroid was removed (trees created in this process and the original
tree), which have a size in(2i−1/ε2, 2i/ε2]. Since each node participates in at most one such tree,
then for a giveni, the number of such trees is smaller thanSε2/2i−1. This gives a total of at most
2Sε2 − 1 centroids. Moreover, no item inI ′′ has size greater than1/ε, so each centroid requires at most
1
ε dedicated bins, and it results in a tree of size 1. The total number of bins required to pack all the
centroids is therefore at most2Sε− 1

ε for an original tree of sizeS > 1/ε2. A tree of sizeS has at least
S − 1 edges, so the original number of bins used for this tree is at leastS − 1. The number of bins used
for the centroids removed from this tree is no larger than2ε(S − 1).
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Thus the number of additional bins to decompose the trees into trees of size atmost1/ε2 is at most
2εOPT(I ′′). This proves the lemma. �

2.5.2 Description of the EPTAS

Using Lemma 7, we focus on solutions with trees of size at most1/ε2.

From a tree to a packing of I ′′ Assume that a tree representation of a packingOPT′(I ′′), with all
trees having size at most1/ε2, is given. Moreover, assume that the tree contains only the edges between
distinct items while loops are not specified. Assume furthermore that the treesin OPT′(I ′′) areminimalin
the sense that any partition of the items in a tree into two sets, which are packed independently, requires
a strictly larger number of bins to pack the items than the number of bins implied by theoriginal tree.

We pack the items into bins starting from the leaves. Each leaf is removed from the tree after the
corresponding item has been fully packed into bins (see Figure 1 for an example). We keep track of
which item is supposed to be packed along with this leaf item in its final bin, by assigning the item to
that bin. In each step, we pack the item of the selected leaf into bins, starting with the bins that it was
assigned to in previous steps, if any (filling those bins completely), and opening new bins if necessary
(due to the minimality assumption, this is in fact always necessary until we reachthe root).

Figure 1: A tree where for each node the number next to it is the size of the item. The corresponding
bins are created from left to right from bottom to top where in each bin the content is shown as a list of
items and the size of the item which is packed in this bin. The packing algorithm processes the items in
the orderC,D,B,A.

This proves the following lemma.

Lemma 8 Given a tree representation of a feasible packing with minimal trees, it is possible to pack the
items into bins such that for each tree, there is at most one bin which is not completely full.
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Patterns for a tree respresentation We define a type of a tree to be a pair(j, E) wherej is the number
of nodes (1 ≤ j ≤ 1/ε2). We assume that these nodes are always numbered1, . . . , j andE is a subset
of j − 1 edges. Apatternconsists of two parts. The first one is a type of a tree (defined above), and the
second is a vector of lengthj, where componenti (for 1 ≤ i ≤ j) is the group to which nodei belongs,
which is a number between 2 andp (recall thatI ′′ does not contain a group of index1). We next show
that the number of patterns is a constant (which depends onε). The number of trees with at most1/ε2

nodes can be computed as follows. For a given number of nodesj, the number of different trees is at
most the number of ways to choosej − 1 edges (some of these ways do not result in a tree), that is, at

most
(

j(j−1)
2
j

)

≤ (j2)j ≤ ( 1
ε4
)

1
ε2 . This gives at most1

ε2
· ( 1

ε4
)

1
ε2 trees. There arep − 1 possible groups

for each node, so there are at most1
ε2

· ( 1
ε4
)

1
ε2 · p

1
ε2 patterns. For a given pattern, the process of packing

is defined as above. A pattern isvalid if the packing process applied on it (that is, on the item sizes
defined by its vector) leads to all items being packed into a single tree (without splitting the tree, which
would imply that the tree is not minimal), and without violating any cardinality constraints. That is, if
the representation of the resulting packing is exactly the original tree.

Finding an approximate solution Recall that there is a constant number of patterns. For each one of
them, we check its validity (including minimality) in constant time, resulting in a list of validpatterns.
Thus we get a constant size set of valid patterns which we denote byP. For a valid patternq ∈ P we
denote byn(g, q) the number of items of groupg which are packed inq. For every groupg, we denote
by n(g) the number of items in this group inI ′′. For a patternq ∈ P, we denote bysizeq the number
of bins which are needed to pack the items in patternq, that is,sizeq is the smallest integer which is at
least the total size of the items in the patternq. We next formulate a linear program where each variable
zq (for q ∈ P) indicates the number of times we use a patternq. The role of the constraints is to verify
that all items of groups2, 3, . . . , p are packed.

min
∑

q∈P
sizeqzq

s.t.
∑

q∈P
n(g, q)zq ≥ n(g) ∀g = 2, 3, . . . , p

zq ≥ 0 ∀q ∈ P.

Consider the optimal solution to this linear program and without loss of generality assume that it
is a basic solution. Denote it by(z∗q )q∈P . The number of non-integer components in the solution is at
most the number of constraints (neglecting the non-negativity constraints),i.e., at mostp − 1. We pick
⌊z∗q⌋ times the patternq, and as a result, we are left with at mostp−1

ε2
items which are not completely

packed; these are the items whose packing is done in the fractional part ofthe basic solution to the
linear program, at most1

ε2
items for each patternq for which z∗q is not an integer. Packing these items

in separate bins costs us at mostp
ε3

additional bins since every item has size at most1
ε . Since the cost

of z∗ is at mostOPT′(I ′′) ≤ (1 + 2ε)OPT(I ′′) ≤ (1 + 2ε)OPT(I ′) (using Lemma 5 and Lemma 7), we
conclude that the resulting feasible solution toI costs at most(1 + 2ε)OPT(I ′) + 2n

pε + p
ε3

by Lemma 6.

Our EPTAS is summarized in Figure 2. Recall thatp = 1
ε4

, so the solution obtained by our algorithm
costs at most

(1 + 2ε)OPT(I ′) +
2n

pε
+

p

ε3
= (1 + 2ε)OPT(I ′) + 2nε3 +

1

ε7
≤ (1 + 2ε)OPT(I ′) + 3εn

≤ (1 + 8ε)OPT(I ′) ≤ (1 + 10ε)OPT(I),

where we have applied the definition ofp, n ≥ 1
ε10

, OPT(I ′) ≥ n
2 , and Lemma 2 in this order, as well as

ε ≤ 1
20 .
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Input: I.

1. Apply the modification of Section 2.1 to get the inputI ′. That is, for every itemX of size
x > 1/ε, replace it with⌊εx⌋ items of size1/ε and possibly one additional item of size
x− 1

ε⌊εx⌋, if ⌊εx⌋ < εx.

2. If k ≥ ε · n or n ≤ 1
ε10

, apply the algorithm described in Lemma 3.

3. Else, ifk > 1
ε2

, apply the algorithm in Lemma 4.

4. If no algorithm was applied so far, apply the modification of Section 2.4 to get the inputI ′′.
That is, put the items into a collection ofp = 1

ε4
groups, remove the items of the first (largest)

group and round up the item sizes as in Fernandez de la Vega and Lueker[5]. All items in a
group have the same size.

5. Apply the following steps. Fork = 2 the steps are defined in Section 2.5 and for the case
2 < k ≤ 1

ε2
they are defined in Section 2.6.

(a) Determine the set of valid patterns (trees plus specification of groups of nodes).

(b) Solve a linear program for determining the forest (combination of patterns) which uses
the least number of bins and which packs all the items.

(c) Round down the fractional solution to the linear program.

(d) Assign the items ofI ′′ according to the rounded solution. Pack the remaining items into
dedicated bins.

(e) Convert the tree representation into a packing into bins.

6. If the algorithm was applied onI ′′, use Lemma 6 to convert it into a packing ofI ′. That is,
replace the rounded items by the original items and pack remaining items using separate bins.

Output: the packing ofI ′ (which is also a packing ofI).

Figure 2: The EPTAS.

Theorem 1 There exists an efficient polynomial-time approximation scheme for cardinality constrained
bin packing of splittable items where each bin is allowed to have at most two itemsor parts of items.

Proof The approximation ratio follows by the above argument. We next consider thetime complexity
of the scheme for the casen > 1

ε10
andW ≤ n2, since otherwise we can calculate an exact solution in

strongly polynomial time by Lemmas 1 and 3. UsingW ≤ n2, the pre-processing of step 1 is done in
O(n2). Therefore, the number of items inI ′ is alsoO(n2). The linear grouping in step 4 takes a time
linear in the number of items inI ′. The time complexity of the remaining steps is clearly polynomial
in the number of valid patterns (trees plus specification of groups of nodes). As mentioned above, the

number of patterns is no larger than1
ε2

·
(

1
ε4

)
1
ε2 · p

1
ε2 . Sincep = 1

ε4
, we conclude that the number of

patterns is a function of1ε . Therefore, the time complexity of steps 5(b)–5(e) is a constant which is some
exponential function of1ε . The claim holds since step 6 takes time which is linear in the number of items
in I ′. �
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2.6 An EPTAS for 3 ≤ k ≤ 1
ε2

In this section we present an approximation scheme for3 ≤ k ≤ 1
ε2

. In this section we deal with the
input I ′′.

Our EPTAS for constantk is similar to the one fork = 2, however, the major difference is that
we need to implement Step 5(a) for this more general case. For this purposewe use a modified graph
representation. If a bin contains parts of the itemsY1, . . . , Yk, then we order them in some way and
create edges only between successive items in this ordering. Thus the edges in this case, if the items are
ordered as above, are(Y1, Y2), . . . , (Yk−1, Yk). Each item is still represented by a single node, thus one
node might be involved in a number of such chains, where each chain represents one bin.

In this case we no longer have a one-to-one correspondence of edges and bins. Instead we have the
property that there are at least as many edges as there are bins. Note that the order of the parts inside
a bin has no meaning and we can reorder the parts in a chain arbitrarily. Thismay result in a different
graph representation for the same packing into bins. It is now more difficultto construct a packing into
bins from a given graph. Before we proceed, we prove several important properties.

Lemma 9 There exists an optimal packing whose corresponding graph representation does not contain
any cycles.

Proof We use a repacking process similar to the one used in the proof of Lemma 1 from [4]. Consider
a representation in which the parts of items in every bin are ordered in an increasing order of indices.
The packing which we consider is one with a minimal number of edges, that is, where the total number
of parts is minimal. Assume by contradiction that there is a cycle in the associated graph. Consider the
sequence of items in a cycle. The cycle must contain edges of at least two bins. We temporarily replace
every maximal sub-path of the cycle, whose edges correspond all to onebin, by a single edge, thus
removing some items from the sequence. Denote the resulting sequence byX0,X1,. . . ,Xt−1,Xt = X0,
where t ≥ 2. Each itemXj , for 0 ≤ j ≤ t, is therefore split into two parts of sizesxj andx′j
(and possibly, some additional parts), where the part of sizexj is packed with the part of sizex′j−1,
for 1 ≤ j ≤ t (sinceX0 andXt are the same item, it holds thatx0 = xt andx′0 = x′t). Let µ =
min{min

1≤i≤t
xi, min

1≤i≤t
x′i}, i.e., the smallest part out of the considered2t parts. Assume without loss of

generality thatx0 = µ. We split each part of sizexi into a part of sizeµ, and possibly an additional part
(in the casei = 0, this second part does not exist). The part of sizeµ of xi is moved to the bin which
contains the item of sizex′i. Since parts of the same size were moved cyclically, no bin exceeds a total
size of1. The packing is valid since each bin already contained a part of the item which was moved
into it. No new edges are created. However, as a result, there is a bin, outof which a part of an item
was removed completely, and the number of parts of items in this bin is reduced by1. Thus, in order
to represent this bin, the number of edges in the graph representation is reduced by1, which contradicts
minimality. �

We next prove that it is possible to assume again that the number of items in a connected component
is upper bounded by a polynomial in1ε , and it is at most1

ε4
. We now denote byOPT′(I ′′) an optimal

solution for the case where there is an additional constraint that all trees that are created in the packing
must have size of at most1/ε4.

Lemma 10 OPT′(I ′′) ≤ OPT(I ′′) + 3nε3.

Proof We apply a process similar to the one in the proof of Lemma 7, however, if a part of an item
(which is a centroid, in our case) is removed from a bin, if this part used to have two edges to items
which have parts in the same bin, an edge should be added between these twoitems, to keep the items
which have parts in this bin connected in a path, or otherwise the bin must be split into two bins.

At a time that a centroid has just been removed, and before any edges areadded, some number of
connected components is created, while the edges that need to be added form a matching between these
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components (each edge of the matching corresponds to a bin where the part of the removed centroid
was neither first nor last in the chain). It is possible to add all edges, except for possibly one such edge,
without creating components of size larger than half the size of the original tree. This can be proved
as follows. Letν be the number of connected components after the centroid is removed and letρ the
number of edges in the matching. Clearly,ν ≥ 2ρ. If ρ = 1 then the claim holds since no edges need
to be added. Otherwise, temporarily add all the edges of this matching. This results inν − ρ ≥ ρ ≥ 2
connected components. At most one of them has a size which exceeds the required upper bound. The
edge of the matching which created this component is removed, resulting in sufficiently small connected
components. Since one edge is not added, one additional bin is created bysplitting one bin into two
bins.

Let us assume that the packingOPT(I ′′) contains a tree of sizeS > 1/ε4. We repeatedly remove a
centroid from large trees, along with all its outgoing edges and loops. We then return edges connecting
resulting connected components, except for one edge, as described above, that is, an edge is put between
a pair of components, which have a total size of at mostS

2 and the edges connecting them to the centroid
correspond to the same bin. This process is applied on each tree, as long as a tree of size larger than
1
ε4

exists. Every item under concern, which was removed as a centroid of some tree, is packed into
dedicated new bins. Each time that a centroid is removed, the size of the resulting trees is at most half
the size of the previous tree.

Similarly to the casek = 2, if the number of nodes in the original tree isS, then the number of
removed centroids (along all iterations) is at most2Sε4. For all trees, the number of removed centroids
is at most2nε4. The removal of each centroid causes the creation of at most1

ε + 1 bins (at most1ε bins
for the centroid, and one additional bin due to one removed edge), so the resulting solution costs at most
OPT(I ′′) + 3nε3. �

From a tree to a packing of I ′′ We further modify our graph representation, and let each item be
represented byυ nodes if and only if it is split intoυ parts in the packing. The parts of one item are
connected by a simple chain (usingitem edges), as are the parts that are in one bin (usingbin edges). We
can then start packing bins from the leaves of the tree and repeatedly remove leaves similar to before.
There are now two cases, depending on whether the edge that connectsthe leaf to the tree is an item
edge or a bin edge.

If it is a bin edge, then the leaf represents the last part of someitem, which is now packed inside the
bins it is assigned to. Also, we assign the item at the other end of this edge to thisbin.

If it is an item edge, then the leaf represents the last part that is packed intoa particularbin (possibly
a new bin), which is now filled up (entirely, unless it is the root) by this leaf.

Using this packing process, it can be seen that Lemma 8 also holds for this case. If some item does
not fit where it is supposed to, violates the cardinality constraint, or does not fill up a bin that it should,
the tree we are considering is not valid. In order to apply this process, wedo not only need to know the
group to which each node belongs but alsowhichof the items of that size is packed there. Again, we let
the type of a tree be a pair(j, E) wherej is the number ofnodesin the tree (as mentioned above, there
is one node in the tree for every part of an item) andE is a set ofj − 1 edges.

We now need a vector(α, β) for each node (to get a pattern for the tree). Thus,α is the group
(α ∈ {2, 3, . . . , p}, wherep is the number of groups as in Section 2.5.2 andβ is the number of the item
of this group in this tree (β ≤ 1/ε4). In a valid tree, the nodes of type(α, β) for any fixedα andβ must
be in a chain, since they represent parts of one item. The maximum length of such a chain is bounded
by the following Lemma.

Lemma 11 The length of a chain representing one item in a valid pattern is at most1/ε4 + 1/ε.

Proof There can be at most1
ε4

nodes in the chain that have an edge to another item, because otherwise
there would be two nodes having edges to the same item, giving a cycle.
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There can be at most1ε nodes in the chain that do not have an edge to another item, since each such
node has a bin to itself and such a bin (apart from at most one) will be fully packed in an optimal solution
by Lemma 8. The size of an item is at most1

ε . �

Let g(1ε ) be the maximum number of nodes in such a tree, then the number of different tree topolo-
gies on at mostg(1ε ) nodes is again a constant denoted byf(1ε ). Hence, the number of patterns is

bounded byf(1ε ) ·
( p
ε4

)g( 1
ε
)
, and so it is a constant sincep = 1

ε4
.

We can now construct in polynomial time a linear program which is the same as in the previous
EPTAS (with the difference that the notion of feasible patternsP is now different). Again, we solve this
linear program and round down the resulting fractional basic solution. Then we pack each remaining
item in its own set of bins. The analysis of the approximation ratio follows the samelines as the case
k = 2. Using the value ofp, Lemma 10, Lemma 5,n > 1

ε10
, OPT≥ nε2 (see (2)), Lemma 2 andε ≤ 1

20 ,
(applied in this order) we get the following inequalities:

OPT′(I ′′) +
2n

pε
+

2p

ε3
≤ OPT(I ′′) + 5nε3 +

2

ε7
≤ OPT(I ′) + 7ε3n

≤ (1 + 7ε)OPT(I ′) ≤ (1 + 9ε)OPT(I),

and therefore the resulting scheme is indeed a PTAS. Note that the time complexityis again of the form
F (1/ε) · POLY(LENGTH(I)), and hence we got an EPTAS for the values ofk considered in this section.
Thus in Section 2 we have established the following theorem.

Theorem 2 For any k = o(n), there exists an efficient polynomial-time approximation scheme for
cardinality constrained bin packing of splittable items where each bin is allowedto have at mostk items
or parts of items.

3 Dual approximation schemes

3.1 A dual PTAS for k = 2

In this section we present approximation schemes where the number of bins isno larger than in an
optimal solution, while the bins are slightly larger. Thus, the modifications ofI into I ′ andI ′′ from
before cannot be used, and we act on the inputI. As discussed in Section 2, an optimal packing can
be represented by a graph which is a forest together with some loops. In this section, an item is called
small, if its size is at most12 . An item of size in(12 , 1] is calledmedium. All other items (i.e., items of
size strictly above1) are calledlarge. We may still assumeW ≤ n2 by Lemma 1.

Our algorithm tries to find a good way to cut items, i.e., split them into parts. The cuts are performed
in two stages. As a first step we cut a single piece off medium and large items. Our algorithm performs
an enumeration on such possible cuts. Clearly, these are not the only cuts that an optimal algorithm
may perform on these items for its packing. However, by Lemmas 12 and 13 below, no further cuts are
required for items of size at most 1.

Lemma 12 There exists an optimal packing represented by a forest in which all items of size at most
1/2 are leaves.

Proof Consider a packing represented by a forest where the sum of degrees a of small items is minimal,
and assume by contradiction that there is a non-leaf small itemB. Note that if two small items are
adjacent, but at least one of them is not a leaf, then the packing can be changed so that these two items
form a separate connected component, which is a tree with two nodes and a single edge. This would
increase the number of small items which are leaves, and thus would lead to a contradiction. Thus we
may assume that all neighbors ofB are medium or large items.
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Consider two arbitrary neighborsA1 andA2 of B. Denote the corresponding bins by 1 and 2, and
denote the sizes of the corresponding neighboring parts ofB by a1 anda2, and the parts ofB by b1 and
b2. We haveb1 + b2 ≤ 1/2. If b1 ≤ a2 (see figure 3 for illustration), we cut off a part of sizeb1 from the
part of sizea2 and put it in bin 1, while putting the part of sizeb1 in bin 2. This removes the neighbor
A1 from the small itemB. A new edge is created betweenA1 andA2, none of which is small. Since the
edge betweenB andA1 is removed, a cycle cannot be created.

Figure 3: The caseb1 ≤ a2 in the proof of Lemma 12. On the left side the packing of the items and the
corresponding tree before the change, and on the right side the packing and the tree after the change.

Otherwise,a2 < b1 ≤ 1/2 (see figure 4 for illustration), which means that we can putb1 into bin 2
without taking anything out of bin 2: we havea2 < 1/2 andb1 + b2 ≤ 1/2. Again,A1 is no longer a
neighbor ofB. Moreover, no new edges are created.

Thus we successfully removed one neighbor fromB, keeping the forest structure. The degree of
B was reduced by1 while no other degrees of small items were changed. This results in an optimal
packing with a smaller sum of degrees of small items, which is a contradiction. �

The next lemma can be seen as a generalization of Lemma 12.

Lemma 13 There exists an optimal packing which is represented by a forest in which any item of size
in ((i− 1)/2, i/2] has at mosti neighbors for alli ≥ 2.

Proof For a given tree, we root it at some item. We need to modify the packing of every item, for
which the number of its parts is too large. These items are considered level bylevel, starting from the
root (considered as the highest level). We apply an iterative process where items are being repacked
without increasing the number of bins used.

Thus, assuming that all items of previous levels are packed into a small enough number of bins,
consider an itemX of size at mosti/2, which is packed intoi′ > i bins. Neglecting the bin that contains
its parent, i.e., the uplevel item (if any), there are at leasti bins into which the item is packed. Consider
the two bins among them (1 and 2) with the two smallest parts ofX, of sizesx1 andx2 such that
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Figure 4: The caseb1 > a2 in the proof of Lemma 12. On the left side the packing of the items and the
corresponding tree before the change, and on the right side the packing and the tree after the change.

x1 ≤ x2. By the size constraint onX, we have

x1 + (i− 1)x2 ≤ i/2 .

Let x1 = 1
2 − γ. We get12 − γ ≤ x2 ≤ 1

2 + γ
i−1 . Thusγ ≥ 0 andx2 ≤ 1

2 + γ, sincei ≥ 2. This gives
x1 + x2 ≤ 1.

Let the total size of parts of items in the second bin, including the part of sizex2 beg ≤ 1. If any
of the two parts of sizesx1 andx2 is packed alone, the second part can be moved to join it, since their
total size is at most1. Else, ifx1 + g − 1 ≤ 0, then moving the part of sizex1 into bin 2 results in a
total size ofg + x1 ≤ 1. Otherwise, the part of an itemY , packed with the part of sizex2 has a size of
g−x2 ≥ g− 1

2 −γ = g−1+x1. We can splitY into a part of sizex1+g−1 and possibly another part,
and swap the part of sizex1+ g−1 with x1 in the first bin. This reduces the number of bins that contain
X and gives a valid packing (with no more than two parts in any bin). Note that theitem of whichY
is a part, may receive a new neighbor, though the connected component remains a tree. The two items
whose parts were packed with the parts of sizesx1 andx2 of X are treated later if necessary, since they
are items of a lower level of the tree. �

Thus in particular, each medium item has at most two neighbors in the tree corresponding to an
optimal packing. When we perform cuts on items, our algorithm considers thetwo resulting parts to
be two independent items and thus allows to cut them further (for parts that have size more than 1)
while creating a packing. The enumeration considers a set of cut options which cover sufficiently many
packings to find a very good one. The options include “no cut”.

We do this initial cutting in order to simplify the tree structure. We would like to work with trees
that contain at most one large item, and each tree is a star rooted at a large itemor a part of a large item.
We now show that by cutting off a piece of size at most 1 from each item whichis medium or large, and
treating this piece as an independent item, we get a packing which has this property without increasing
the number of bins required to pack the input. Note that these techniques areuseful only for the dual
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PTAS and not for the PTAS since the modification of the input is done by cuttingsome items, and a
rounding on the sizes is applied. We later use the fact that we can slightly increase the sizes of bins in
order to efficiently enumerate the possible cutting points.

We next show that there exists some set of cuts where each medium or largeitem is cut at most once,
that converts an optimal solution, which is a set of trees, into a set of stars.Later we show how we can
restrict ourselves to a small set of possible cuts which results in the need ofslightly larger bins.

Lemma 14 It is possible to modify the input in such a way that an optimal packing for the new input
requires the same number of bins as the old input, and there exists an optimal packing for the new input
such that all medium items have degree 1.

Proof Consider an optimal packingP for the original input. For each medium item in this packing,
create one or two new items with sizes depending on where (and whether) thisitem is cut into parts.
Two parts are sufficient by Lemma 13. An optimal packing for the modified input requires the same
number of bins. First, we can use the packingP , so we do not need more bins. Second, if there were a
better packing for the new set, it could also have been used for the original instance. In the packingP
for the modified input, each newly created item is a leaf. �

Lemma 15 It is possible to modify the input in such a way that the optimal packing for the new input
requires the same number of bins as the old input, and there exists an optimal packing for the new input
such that each tree contains at most one large item.

Proof Given a tree with more than one large itemX, rooted at an arbitrary node (see Figure 5 for an
illustration), consider a large item of maximum distance from the root. Compute thepart of this item
that should be combined with each of its children. The sum of these parts andthe number of loops of
X equals the part that should be cut off in order to split the node of the largeitem into two nodes, one
which is the root of a new tree that has no large item besidesX and the other one is a leaf of the old tree
(which is now smaller).

The second part of the item has the remaining size (less than 1!) which should be combined in a bin
with the item of the uplevel edge. Repeat this process until there is only one (entire) large item in the
tree. Since each such process for one large item results in a new tree where one part of the item is its
root, and the other part is a leaf in the original tree, each large item is cut atmost once. �

We conclude that by modifying the input appropriately, there exists an optimalpacking which con-
sists of stars with large items in the root (where such a large item which is a rootof a star might be
smaller by at most 1 than the corresponding large item in the original input), single edges, and loops.
We will look for a packing that has this structure.

3.1.1 Description of the algorithm

Our dual PTAS works as follows. It is summarized in Figure 6. We use a parameterδ which is based
on ε, and which is the inverse of some odd integer. Specifically, we letK = 2

ε + 1 andδ = 1/K. We
begin by rounding item sizes (of all items that are not large) up to the nearest multiple of δ. There are
K + 1 possible sizes of such items. For a given tree, we can fill the bins starting withthese items. This
means that each cut of an item will now occur at an integer multiple ofδ. This also holds for a tree that
contains no small items but does contain medium items. By the above, if a tree contains no items of size
at most 1, it consists of only a loop (a single item).

Denote the number of items of sizeiδ byMi for i = (K + 1)/2, . . . ,K. For each size of a medium
item, we guess how many items of this size are cut at each integer multiple ofδ which is at most1/2.

Denote the number of large items byL. For convenience of notation, we will also denote this
number byM(K−1)/2 (the index ofM(K−1)/2 will be used later in a similar way to the indices ofMi

for i = (K + 1)/2, . . . ,K). We guess how many pieces of each size of at most 1, which is an integer
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Figure 5: An illustration for the proof of Lemma 15. On the left side the tree before the change, and on
the right side the tree after the change.

multiple of δ, are cut off. Note that a large item may stop being large when some part of itis cut off.
However, in our algorithm, we still group it among the large items (and in particular, allow it to be cut
further). The cuts can be represented by a vector of size(K+1)2/4+(K+1), which tells us how many
items of each size(K + 1)δ/2, . . . ,Kδ are cut off at each point, and how many pieces of each size are
cut off from the large items. We will cut each large item at most once, and then find a forest consisting
of stars, and then the final packing of the items allows each large item to be cutfurther.

Construction of the graph (Figure 7) For every possible set of cuts, we construct a layered graph
which represents possible packings. The graph starts at a single source node, then there areL layers
which correspond to theL large items, and finally there is a sink. We maintain asummary vectorwhich
describes how many unpacked (parts of) items there are of every sizeiδ (i = 0, . . . ,K) (including parts
of large items!). This vector is denoted bys(u) for a nodeu. Additionally, we maintain acutoff vector
which contains unpacked parts of size less than 1 of large items. This vectoris denoted byc(u) for a
nodeu. We concatenate both vectors into a singlepacking vectorof length2(K +1) which contains all
relevant information needed to find the optimal packing for these parts.

For two nonnegative integer vectorsa andb of lengthℓ, we say thata ≥ b if ai ≥ bi for i = 1, . . . , ℓ.
We say thata → b if there exists a uniquej such thataj = bj + 1 andai = bi for i ∈ {1, . . . , ℓ}\{j}.

The cost of an edge(u, v) that is mentioned in Step 4 of Figure 7 can be computed as follows. This
step creates a star rooted at a given large item (thei-th item in the list of large items is associated with
layeri). The size of the large item that needs to be packed is given by its original size minus the size of
the part of item which corresponds to the nonzero entry ofc(u) − c(v). This item is to be packed with
items specified bys(u)−s(v). The only item that we cut further at this point is the large item associated
with the current layer. Moreover, that is the only item that may be combined withother items. Thus, if
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1. LetK = 2
ε + 1 andδ = 1/K.

2. Round each item size which is no larger than1 up to the nearest multiple ofδ. Let the number
of items of sizeiδ beMi for i = (K + 1)/2, . . . ,K.

3. For each medium item size, guess how many items of this size are cut atjδ for j = 0, . . . , (K−
1)/2.

4. Guess how many items of sizejδ are cut off from large items forj = 0, . . . ,K.

5. Create a graph withL layers, plus source and sink. The construction of the graph is shown in
Figure 7. This graph represents all possible packings for the currentset of guesses. Find a path
with minimal cost from the source to the sink. This is the cost of packing the input with these
guesses.

6. Use the packing of this guess to create a packing for the original instance.

Figure 6: The dual PTAS fork = 2

we denote the sizes of items specified bys(u)− s(v) by a1, . . . , ap and the size of the part of the large

item that needs to be packed byX, then the number of bins ismax{p,
⌈

X+
∑p

i=1 ai
1+δ

⌉

}.

The cost of an edge(u, v) that is mentioned in Step 5 of Figure 7 can be computed as follows. The
items to pack here are specified bys(u). These items are not split further, they are packed in bins of size
1+2δ containing one or two of these items. We apply the First Fit Decreasing (FFD)algorithm with the
restriction that no bin can contain more than two items. By Lemma 16, this gives an optimal packing.

Lemma 16 FFD is an optimal algorithm for cardinality constrained bin packing fork = 2.

Proof We modify the input as follows. For an itemx > 0 let x′ = (x + 1)/3. Then1/3 < x′ ≤ 2/3.
Three modified items clearly do not fit together, and for two itemsx′ + y′ ≤ 1 ⇐⇒ x+ y ≤ 1.

Thus the number of bins required to pack the modified input is the same as for the original input.
We now have an input where all items are larger than1/3. It is known [20] that for such an input, FFD
gives an optimal solution. �

Packing the original input Once we have found the set of cuts that allows the best packing, it is easy
to find the packing for the original input items. Say large item 1 (in our ordering) is packed into bins
together with parts of sizek1δ, k2δ, . . . , ka1δ. Using the original vector that represents the set of cuts,
we find the firsti such that there exists an item of sizeiδ < 1 which is cut atk1δ, or at(i − k1)δ, and
the part of sizek1δ that is created by this cut is so far unpacked. We then mark this part as packed and
continue. (For each item size less than 1, we keep track of how many first and second parts are packed
of each size.)

The correct part of this item of size less than 1 is put in bin 1. Bin 1 is filled with some part of large
item 1 (namely,1 + 2δ − k1δ). Then we find an unpacked part for bin 2 in the same manner, etc. At the
end we have some part of the large item left, exactly how large this is determinedby what piece was cut
off from the first large item. If this part has a positive size, it is packed in consecutive bins, and we move
to the next large item. Finally, we find parts that are paired up in the same manner.

Lemma 17 The running time of this algorithm isnO(1/ε2).

Proof As stated above, a set of cuts can be represented by a vector of length(K + 1)2/4 +K + 1.
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1. Layer 0 and layerL+1 contain a single node. The node in layer 0 is labeled with the packing
vector, while the node in layerL is labeled with the all-zero vector.

2. Define a fixed ordering on the large items. Each large item is associated witha layer between
1 andL. Each of these layers contains one node forevery(nonnegative, integer) vector that is
smaller than the original packing vector.

3. For a nodeu, denote the cutoff vector byc(u) and the summary vector bys(u). For any
nodeu in layer i (i = 0, . . . , L − 1), there is an arc to every nodev in layer i + 1 such that
c(u) → c(v) ands(u) ≥ s(v).

4. The cost of arc(u, v), whereu is in layeri (i = 0, . . . , L − 1), is the cost of packing theith
large item excluding a piece of size specified by the nonzero entry inc(u) − c(v) (this size
may be 0), together with the items specified bys(u)− s(v).

5. For every nodeu in layerL, there is an arc to the single node in layerL+ 1. The cost of this
arc is the cost of packing all items ins(u).

Figure 7: Construction of the layered graph for one set of guesses (cuts)

The total number of options for such a vector is

(

L+K − 1

L

) K
∏

i=(K+1)/2

(

Mi +K − 1

Mi

)

≤





K
∏

i=(K−1)/2

(Mi +K − 1)





(K+3)/2

whereL+
∑

Mi ≤ n. This implies
∑

i(Mi+K−1) ≤ n+K+3
2 (K−1) and therefore

∏

i(Mi+K−1) ≤

( 2n
K+3 +K − 1)(K+3)/2 which means we have at most( 2n

K+3 +K − 1)(K+3)2/4 options to cut the input
items. This is an upper bound for the number of graphs that we need to consider, and it is polynomial in
n.

How many nodes are there in layer 1 of one of these graphs? Denote the number of parts of sizeiδ in
the summary vector byni, and in the cutoff vector bymi. We have

∑K
i=0 ni = n+L and

∑K
i=0mi = L.

For entryi in the summary vector, there areni + 1 possibilities, and similarly in the cutoff vector. This
gives us

K
∏

i=0

((ni + 1)(mi + 1))

possibilities overall. This number is upper bounded by

(

2n

K + 1
+ 1

)2(K+1)

,

which is polynomial inn. There are at mostn layers in the graph. Thus, the overall size of the graph is

bounded byn
(

2n
K+1 + 1

)2(K+1)
, which means that we can find the path with minimal cost in time

n2

(

2n

K + 1
+ 1

)4(K+1)

.
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Overall this gives a running time of

(

2n

K + 3
+K − 1

)(K+3)2/4

n2

(

2n

K + 1
+ 1

)4(K+1)

≤n2

(

2n

K + 1
+K − 1

) 1
4
K2+ 11

2
K+6 1

4

= nO(1/ε2).

�

Lemma 18 This algorithm uses at mostOPT(I) bins of size1 + 2δ to pack the inputI.

Proof An optimal solution of the original instance (in bins of size 1) can be adapted topack the rounded
items in the same number of bins of size1 + 2δ, using only cuts at multiples ofδ. Denote this packing
byP . The PTAS tries all possible packings of this form for the rounded items andthus tries the packing
P at some point. Therefore, it manages to pack the original items in bins of size1+2δ, needing at most
the optimal number of bins for these items. �

Taken together, these two lemmas prove the following theorem.

Theorem 3 For any ε > 0, there exists a polynomial-time algorithm for cardinality constrained bin
packing of splittable items where each bin is allowed to have at most two items orparts of items. This
algorithm packs the items in the optimal number of bins, but uses bins of size1 + ε.

3.2 A dual PTAS for constantk

We give an algorithm for packing the input items into the optimal number of bins, but where the bins
have size1 + ε. In fact we will pack the items in bin of size1 + kδ, whereδ = ε

k . Therefore, we only
have a dual PTAS for the case wherek is constant. We chooseε so thatδ is the inverse of some odd
integer. LetM = 1/δ + k. All items of size more than1 + kδ = Mδ are called large.

We will again use the fact that there is an optimal packing which is a forest (Lemma 9). We modify
the input in two steps.

Sizes of items and parts.A first step will be a revision of sizes of items and parts of items. We take
an optimal packing, and replace any item of sizex with an item of size⌈xδ ⌉δ. Specifically, we consider
all of its parts one by one (in some order) and round each part up or down to the nearest multiple of
δ, maintaining the invariant that the total new sizex′i of all parts considered so far is at least the total
original sizexi, and at most⌈xi

δ ⌉δ. As a result, the total size of parts in any one bin can increase by at
mostkδ. All parts in the packing now have sizes that are multiples ofδ. Note that it could happen that
the number of bins used decreases, if there are bins where all the piecesin it have their size reduced to 0.
We use bins of size1 + kδ. Denote the resulting rounded instance byI ′. In I ′ we allow an algorithm to
use bins of size1 + kδ but we force it to cut items only in integer multiple ofδ. Therefore, we showed
that

OPT(I ′) ≤ OPT(I).

Large items.As in the previous Section (Lemma 15), we would like to pack the large items one by
one and not combine them together into bins. Note that we showed in Section 3.1that Lemma 8 still
holds in this case. We have the following lemma.

Lemma 19 It is possible to modify the input in such a way that the optimal packing for the new input
requiresOPT(I ′) bins, and there exists an optimal packing for the new input such that each tree contains
at most one large item.
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Proof Consider the set of itemsS resulting fromOPT(I ′), in which we replace each non-large item by
the set of parts (of it) as inOPT(I ′). We consider the tree representation of the optimal packing ofS such
that each item ofS is represented in a single node of the tree. That is, each large item is represented by
a single node (but the non-large items are already cut), and each edge connects two items sharing a bin.
We can now apply the proof of Lemma 15, using the value1 + kδ instead of 1 as bin size and as lower
bound for the size of a large item. �

Thus we find that for each large item, it is sufficient to cut off one part ofsize at most1+kδ in order
to pack them into separate trees, and moreover this part does not need to be cut further later.

Non-large items.We now consider the non-large items (of size at most1 + kδ). We need to allow
these items (except non-large parts cut off from large items) to be cut at every integer multiple ofδ. This
is sufficient since inOPT(I ′) all parts have sizes that are integer multiples ofδ. The number of cuts for
each item is therefore at mostM − 1.

Description of the dual PTAS We begin by rounding up all items into integer multiples ofδ. To
convert our packing into a packing ofI, for each item of original sizey we need to decrease the size of
at most one of its parts by⌈yδ ⌉δ − y (this amount may be zero). From now we only discussI ′.

After rounding, the non-large items in the input can be represented by a vector withM components
whoseith component indicates how many items of sizeiδ exist. For each size, the number of parts cut
off from those items of a particular smaller size can also be represented by avector. We need to try all
possibilities for these cutoff vectors. For each possibility, we will enumerateall possible packings of the
items of size at most1 + kδ into bins of size1 + kδ such that no bin is empty. Here we use the fact
that there is only a constant number of different packings of one bin (patterns), and a packing can be
specified by giving how often each pattern is used.

For each such packing, we will construct a layered graph similar to the onein the previous section,
with one layer for each large item. Each node now represents a subset ofthe bins of the current packing.
The cost of an edge between two nodes is determined by the difference between the packing vectors and
by the size of the large item of the current layer.

Guess vectors We construct a guess vector with at mostM(2 + 2M−1) entries. For each non-large
size, there are at most2 + 2M−1 entries. We have a first entry which is the number of such items in the
input. A second entry is a number of large items from which this size of non-large item is cut off. The
other entries are numbers of items of this size that are cut according to a given pattern. There are2M−1

options for the cut set of each item. Therefore there are at most2M−1 possible patterns (actually the
number is less for smaller items). A guess vector is valid if the following conditionshold.

• The number of items of each non-large size inI ′ is identical to the respective first entries.

• The sum of second entries is at most the number of large items. (Some large itemsmight not have
a part cut off.)

• The sum of other entries (not first or second) of each size is equal to the first entry for this size.

The number of non-large items is at mostn, therefore no component in the guess vector exceedsn,
and there aren + 1 options for each component. Therefore there are at most(n + 1)M(2+2M−1) valid
guess vectors. This number is polynomial inn for constantε andk.

Short guess vectors Once a guess vector is given, we can summarize its contents as follows. We have
a summary vector withM entries, where entryi is the total number of parts of sizeiδ. Additionally, we
have a cutoff vector withM + 1 entries, where entryi denotes the number of non-large items of size
(i − 1)δ that are cut off from the large items fori = 1, . . . ,M + 1. For i > 1, this is taken from the
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second entry for the(i−1)th size in the guess vector. The first entry is simply the number of large items
minus the sum of the other entries in the cutoff vector, and is the number of large items that do not have
a non-large item cut off from them. We concatenate these vectors into ashort guess vectorof length
2M +1. We can build a packing based on the short guess vector, and later specify which items the parts
belong to (the parts of items which have the same size are interchangable in the packing).

Patterns A pattern is a list ofk + 1 integersi1, . . . , ik that indicate where the different parts end:
the jth part in this bin starts atij−1δ and ends atijδ (let i0 = 0). Note that the bin may contain less
thank parts (in this case we writeij = 0 up to somej) and/or be partially empty (so we cannot omit
the numberik). For each numberij , there areM + 1 options. Thus the number of patterns is at most
T = (M + 1)k, which is constant (that is a function ofk andε).

Guess packings In order to be able to use a layered graph, we will need to build guess packings. A
packing is a set of bins which are partially packed. Each bin is packed according to a pattern. Note that
the total number of parts ofnon-largeitems to be packed does not exceednM , since each non-large
item is cut into at mostM parts.

A guess packing vector is a vector of lengthT where entryi denotes the number of bins packed
according to patterni for i = 1, . . . , T . A guess packing vector is valid for a given short guess vector if
the total number of parts of each size is the same in both. The number of possible guess packing vectors
that need to be checked for each short guess vector is at most(nM + 1)T . Since no bin is empty in
the packing, the total number of bins which involve packing of parts of non-large items, is at mostnM .
Therefore this number is polynomial inn for a fixed constant value ofε.

The required information in order to pack the remaining large items via a layeredgraph is the guess
packing vector, and the cutoff vector (second part of the short guess vector). We concatenate these two
vectors into a singlefinal vector of lengthT +M + 1.

Layered graph Finally, we show how to define a layered graph as before, where layers1, . . . , L
correspond to theL large items. Bins with exactlyk items in the guess packing vector are full, and
others can receive parts of large items in the scheme. Therefore the full bins do not need to participate in
the scheme, and are removed from the guess packing vector before we construct the graph (noting how
many such bins we remove).

We use|L|+1 layers. The nodes of each layer are vectors that are smaller than the final vector (i.e.,
including the cutoff vector). Layer zero has a single node which corresponds to the given packing guess
vector, and the full set of cut off parts. All other layers have all possible vectors that are smaller than
this vector.

A nodev in layeri is connected to a nodeX in layeri+ 1 if the following conditions hold.

• The cutoff part ofv minus the cutoff part ofX is a unit vector (i.e., all components are zero,
except for one the is1). Denote the (non-large) size associated with the nonzero component bya.
Note thata may be 0.

• Let z be the size of the large item. Letz′ = z − a. The size that is left to be packed isz′. (The
part of sizea is packed in some other step.) Consider now the guess packing part ofv minus the
guess packing part ofX. We require that there are no negative entries in the difference vector.
This difference relates to a set of packed bins withk − 1 or less parts. Denote the total empty
space in these bins byb. If z′ ≤ b, this means that the large item can be packed entirely in these

bins. In this case the edge costs0. Otherwise, the cost of the edge is
⌈

z′−b
1+kδ

⌉

. This is the number

of bins still needed to complete the packing.
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• We are interested in the shortest path from layer zero to any node in the lastlayer. (This is the
reason we do not count the bins in the guess packing vector in the cost ofthe edges: they are fixed
and we are only interested in the extra cost of packing the large items.)

• The cost of the packing is the cost of the path, plus the number of bins in the packing guess vector,
including the full bins that do not participate in the scheme.

Naturally, we choose the best solution ever found, and translate it to a packing of parts of items. Com-
pletely analogously to the proof of Lemma 18, it can be shown that we find a solution with the optimal
number of bins.

4 Conclusions

In this paper, we provided approximation schemes for bin packing of splittable items with cardinality
constraints for almost all values ofk. We provided dual approximation schemes as well. It should be
noted that our upper bounds are absolute, i.e. there is no additive term in the definition of the approxi-
mation ratio. We leave an interesting open problem which is to develop a dual PTAS for non-constant
values ofk.
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