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Abstract

We consider the problem of maximizing the minimum load for machines that are controlled by selfish
agents, who are only interested in maximizing their own profit. Unlike the classical load balancing
problem, this problem has not been considered for selfish agents until now. The goal is to design a
truthful mechanism, i.e., one in which all users have an incentive to tell the truth about the speed of their
machines. This then allows us to find good job assignments. It is known that this requires monotone
approximation algorithms, in which the amount of work assigned to an agent does not increase if its bid
(claimed cost per unit work) increases.

For a constant number of machines, m, we show a monotone polynomial time approximation scheme
(PTAS) with running time that is linear in the number of jobs. It uses a new technique for reducing
the number of jobs while remaining close to the optimal solution. We use an FPTAS for the classical
problem, i.e., where no selfish agents are involved, to give a monotone FPTAS.

Additionally, we give a monotone approximation algorithm with approximation ratio min(m, (2 +
€)s1/8m) where € > 0 can be chosen arbitrarily small and s; is the (real) speed of machine 4. Finally
we give improved results for two machines.

1 Introduction

In this paper, we are concerned with a fair allocation of jobs to parallel related machines, in the sense that
each machine should contribute a ‘reasonable amount’ (compared to the other machines) to the processing of
the jobs. Specifically, we are interested in maximizing the minimum load which is assigned to any machine.
The minimum load is also known as the cover, as it is the amount to which all machines are “covered”. This
problem has been studied in the past on identical [11, 10, 21] as well as related machines [7] and also in
the online setting where jobs arrive one by one and need to be assigned without information about future
jobs [6]. It is also closely related to the max-min fairness problem [9, 16, 8], where we want to distribute
indivisible goods to players so as to maximize the minimum valuation.

In our case, the players (machines) have negative valuations for the jobs, since there is a cost incurred
in running the jobs. So our goal becomes maximizing the minimum loss, i.e., making sure that the cost
of processing is not distributed too unfairly. Moreover, the machines are controlled by selfish agents that
only care about maximizing their individual profit (or minimizing their individual loss). The speeds of the
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machines are unknown to us, but before we allocate the jobs, the agents will give us bids which may or may
not correspond to the real speeds of their machines.

Our goal in this paper will be to design truthful mechanisms, i.e., design games in such a way that truth
telling is a dominant strategy for the agents: it maximizes the profit for each agent individually. This is done
by introducing side payments for the agents. In a way, we reward them (at some cost to us) for telling us
the truth. The role of the mechanism is to collect the claimed private data (bids), and based on these bids
to provide a solution that optimizes our desired objective, and hand out payments to the agents. The agents
know the mechanism and are computationally unbounded in maximizing their utility.

The seminal paper of Archer and Tardos [3] considered the general problem of one-parameter agents.
The class of one-parameter agents contain problems where any agent ¢ has a private value ¢; and his valuation
function has the form w; - ¢;, where w; is the work assigned to agent 7. Each agent makes a bid depending
on its private value and the mechanism, and each agent wants to maximize its own profit. The paper [3]
shows the following key result, which we will use repeatedly in this paper: in order to achieve a truthful
mechanism for such problems, it is necessary and sufficient to design a monotone approximation algorithm.
An algorithm is monotone if for every agent, the amount of work assigned to it does not increase if its bid
increases. Formally, monotonicity is defined as follows.

Definition 1 An algorithm is monotone if given two vectors of length m, b,b’ which represent a set of m
bids, which differ only in one component i, i.e., b; > U, and for j # i, bj = b’, then the total size of the jobs
(the work) that machine i gets from the algorithm if the bid vector is b is never higher than if the bid vector
isb.

Using this result, monotone (and therefore truthful) approximation algorithms were designed for several
classical problems, like scheduling on related machines to minimize the makespan [3, 5, 1, 18], shortest
path [4, 14], set cover and facility location games [12], and combinatorial auctions [19, 2].

Formal definition Denote the number of jobs by n, and the size of job j by p; (j = 1,...,n). Denote
the number of machines by m, and the speed of machine i by s; (i = 1,...,m). As stated, each machine
belongs to a selfish user. The private value (t;) of user 7 is equal to 1/s;, that is, the cost of doing one unit
of work. The load on machine ¢, L;, is the total size of the jobs assigned to machine ¢ divided by s;. The
profit of user ¢ is P; — L;, where P; is the payment to user ¢ by the payment scheme defined by Archer and
Tardos [3]. Let b_; denote the vector of bids, not including agent :. We write b (the total bid vector) also as
(b—;, b;). Then the payment function for user ¢ is defined as

b;
Pi(b_i,b;) = hi(b_;) + biw;(b_;, b;) — / w;(b—s, u)du,
0

where w;(b_;, b;) is the work (total size of jobs) allocated to user ¢ given the bid vector b and the h; are
arbitrary functions (Theorem 4.2 in [3]).

Our goal is to maximize min L;. This problem is NP-complete in the strong sense [15] even on identical
machines. In order to solve it approximately, we will need to design monotone algorithms as explained
above, since we cannot hope to maximize min L; without knowing the true speeds. In order to analyze our
approximation algorithms we use the approximation ratio. For an algorithm A, we denote its cost by A as
well. An optimal algorithm is denoted by OPT. The approximation ratio of A4 is the infimum R such that
for any input, A < R - OPT. If the approximation ratio of an offline algorithm is at most p we say that it is a
p-approximation.



Previous results (non-selfish machines) For identical machines, Woeginger [21] designed a polynomial
time approximation scheme (PTAS). He also showed that the greedy algorithm is m-competitive. This is
optimal for deterministic online algorithms. Azar and Epstein [6] presented a randomized O(y/m log m)-
competitive online algorithm and an almost matching lower bound of O(y/m).

In [7], a PTAS was designed for related machines. For the semi-online case in which jobs arrive in
non-increasing order, [6] gave an m-competitive algorithm called BIASED-GREEDY and showed that no
algorithm could do better. For the case where jobs arrive in non-increasing order and also the optimal value
is known in advance, [6] gave a 2-competitive algorithm NEXT COVER.

For unrelated machines, Bezdkova and Dani [9] give several algorithms. One gives a solution value
which is at most OPT — pyax less than the optimum, where py,ax is the largest job size (on any machine).
Note that this result may be close to zero. Two other algorithms have performance guarantee n — m + 1.
Golovin [16] gave an algorithm which guarantees that at least a (1 — 1/k) fraction of the machines receive
jobs of total value at least OPT/k, for any integer k. In the same paper, he also gave an O(y/n)-approximation
for the case of restricted assignment (each job can only be assigned to a subset of the machines, and has the
same size on each allowed machine) where all job sizes are either 1 or some value X.

For the case of restricted assignment (without further restrictions on job sizes), Bansal and Sviri-
denko [8] provided an O(loglogm/ logloglog m)-approximation. Bezakova and Dani [9] showed that
no polynomial-time algorithm can have a performance guarantee better than 2 unless P=NP. In particular,
no PTAS is possible.

Our results In Section 3, we present a monotone (and hence truthful) strongly polynomial time approxi-
mation scheme (PTAS) for a constant number of related machines. Its running time is linear in the number
of jobs, n. To the best of our knowledge, the technique it uses for reducing the number of jobs while re-
maining close to the optimal solution is new. We then discuss non-selfish related machines (the classical
problem) by presenting an FPTAS for it in Section 4.1. Independently, an FPTAS for the more general case
of unrelated machines was given in [20]. We use our FPTAS to give a monotone FPTAS, in Section 4.2,
where the running time of the scheme is polynomial in n and € and the logarithm of sum of job sizes.

Additionally, we present a monotone approximation algorithm which is based on NEXT COVER and
achieves an approximation ratio of min(m, (2 + £)s1/s,,) in Section 5. This algorithm is strongly polyno-
mial-time for an arbitrary number of machines, and it is the first such algorithm that is monotone. We present
a simple m-approximation in Section 6. It seems difficult to design a monotone approximation algorithm
with a constant approximation ratio for an arbitrary number of machines. Finally, in Section 7 we study two
monotone algorithms for two machines, and analyze their approximation ratios as a function of the speed
ratio between them. These algorithms are very simple and in many cases faster than applying the PTAS or
FPTAS on two machines.

Sorting Throughout the paper, we assume that the jobs are sorted in order of non-increasing size (p; >
P2 > ... > pp), except in Section 3, and the machines are sorted in a fixed order of non-decreasing bids
(i.e. non-increasing speeds, assuming the machine agents are truthful, s; > s2 > ... > sp,), except for
Section 4.1 which contains an FPTAS which is not necessarily monotone.

2 Unsuccessful directions

To give a flavor of the problem, we begin by describing some algorithms that seem reasonable, but that have
a very high approximation ratio and/or are not monotone. First we note that it is known that any deterministic



algorithm which can be seen as a purely online algorithm (i.e., does not have any a-priori information on
jobs, and cannot perform sorting), cannot have finite approximation ratio [6]. It follows from the same
paper that algorithms which sort the jobs by non-increasing size but are otherwise online (i.e. after sorting,
no information about later jobs is used apart from the fact that they will not be larger than the current job)
cannot be better than m-competitive. Nor can online algorithms that only know the value of the optimal
cover do better.

The following natural algorithms are either not monotone, or have an infinite approximation ratio.

e Least Processing Time (LPT). This algorithm does not even have finite approximation ratio. Given
two machines of speeds 1 and 4, and two jobs of size 1, it will assign both jobs to the machine of
speed 4. But then the cover is 0. Moreover, it is known that LPT is not monotone but an adaptation
called LPT* is monotone [18]. However, the adaptation acts the same on this input and thus it cannot
be used for the current problem.

o A greedy algorithm which sorts the jobs first, and assigns every job, in turn, to the least loaded
machine, ignoring the effect of the new job on the schedule, has an infinite approximation ratio. This
can be seen from the following example. There are two machines, of speeds 1 and M (for a large
positive M) and two jobs of sizes M and 1. If the larger job is assigned to the slower machine and the
smaller on to the faster machine, we get an approximation ratio of M.

e Biased-Greedy is a a special case of the previous algorithm which prefers faster machines in case of
ties. As stated above, it cannot be better than m-competitive. Moreover, is not monotone. Consider
an example with three machines of speeds 10,9, 9 and four jobs of sizes 3, 3,2,2. One of the two
slowest machines receives two jobs of size 2. If the speed of this machines increases to 10, it would
only get one job of size 3.

e [LPT-Cover. This is a natural variant of LPT for the covering problem. It orders the jobs by size as
before, but now, assign each job to that machine where it improves the cover the most. In particular,
as long as there are empty machines, assign jobs there. This algorithm assigns job arbitrarily to empty
machines, therefore it is no better than the previous greedy algorithm. If it is defined to give preference
to faster machines, then it acts as Biased-Greedy on the input stated above.

Approach-Average To conclude this section, we state another direction that was not studied before and
initially seems promising, but fails. Calculate A = } . p;/>_; si. Assign jobs (ordered by size) to a
machine which after assignment of the job has load closest to A (which is an upper bound on OPT). This
algorithm also has unbounded approximation ratio. Consider the following input. There are m machines,
one of them has speed 1, the others have speed 1/m. There are m jobs of size 1. It can be seen that a cover
of (only) 1/m can be achieved. But A is slightly more than m /2, and the first m /2 jobs of size 1 will be
assigned to the fast machine, which results in a load of zero on at least one slow machine.

3 PTAS for constant m

To derive a PTAS, we would as usual like to reduce the number of options to be considered by rounding job
sizes. However, a main problem here is that the rounding should be independent of the bids, since otherwise
when one agent lies we get a different rounding and possibly a completely different set of jobs, making it
unlikely to give a monotone assignment and certainly very hard to prove monotonicity. This was the main
technical problem that we had to address in developing our PTAS.

4



This section is set up as follows. In Section 3.1, we prove some lemmas about the numbers of different
sizes of jobs. In Section 3.2, we show how to design a constant time simple optimal monotone algorithm
for an input where the number of jobs is constant (dependent on m and €). In Section 3.3, we show how to
reduce the number of jobs to a constant, allowing us to find the optimal value for this changed instance in
constant time. In Section 3.4, we show that due to this reduction, the optimal value is reduced by at most
3¢ - OPT. Finally in Section 3.5, we show that our algorithm has linear running time in the number of jobs.
Altogether, this proves the following theorem.

Theorem 1 There exists a monotone PTAS for machine covering on a constant number of related machines,

. . . 2 /.2
which produces an output of value at least (1—3¢)OPT in time O(n-+m*m+8m°/7)
of jobs.

, i.e. linear in the number

3.1 Numbers of jobs

We are given a fixed (constant) number of machines m of speeds s; > ... > s,,. (Since our PTAS will
turn out to be truthful, we may assume that we know the real speeds and can sort by them.) Without loss of
generality, we assume that s; = 1. Note that the total size of all jobs may be arbitrarily large. Let OPT be
the optimal value of the cover, i.e., the maximal minimum load that can be achieved for this input. Let ng be
the number of jobs of size strictly larger than OPT in the input. We begin by proving some auxiliary claims
regarding ng.

Claim1 ng <m — 1.

Proof Assume by contradiction that there are at least m jobs that are all larger than size OPT. Assigning
one job per machine, we get a load larger than OPT on all machines (since all speeds are at most 1), which
is absurd. U

Claim 2 The sum of sizes of all jobs that have size of at most OPT is at most 20PT(m — ny — 1) + OPT.

Proof Consider all jobs of size at most OPT. Assume by contradiction that the total size of these jobs is
more than 20PT(m — ng — 1) + OPT. Let A be an arbitrary set of jobs that some optimal algorithm puts
on some least loaded machine j € 1,...,m, and let B be all other jobs of size at most OPT. Since a least
loaded machine has load exactly OPT and therefore jobs of total size at most OPT (since all speeds are at
most 1), the total size of the jobs in B is more than 20PT(m — ny — 1). Since each job in B has size at
most OPT, it is possible to partition these jobs into sets, so that the total size of the first m — ng — 1 sets
is in (OPT, 20PT], and all remaining jobs are assigned to a set C' (which must be nonempty). This can for
instance be done by sorting the jobs in B in order of decreasing size. Assign each of the first m — ng — 1
sets to its own machine. Assign the ng job larger than OPT to ng machines, one per machine. Assign A and
C to the remaining empty machine. Since C' has nonzero size, we find an assignment with cover better than
OPT, a contradiction. OJ

3.2 Finding a monotone OPT

Let £ > 0 be a given constant. Without loss of generality we assume € < 1. The algorithm in the next
sections modifies the input so that we end up with a constant number of jobs (at most 4(m + 2m?/e2)).
The reason is that for this input, it is possible to enumerate all possible job assignments in constant time
(there are at most mAm+8m*/e? different assignments). Before enumeration, we define a fixed ordering on



the machines. This ordering does not need to depend on the speeds, and does not change even if machine
speeds are modified. Among all possible job assignments, we take the optimal assignment which is lexico-
graphically smallest among all optimal assignments (using the fixed ordering, and the known job sizes (not
the loads!)). To determine optimal assignments, we again deduce the speeds from the agents’ bids, assuming
that they are truthful. This works because we now show that our algorithm is indeed monotone (and hence
truthful). The usage of a fixed ordering to obtain a monotone optimal algorithm was already used for the
makespan scheduling problem [3].

We show that this gives a monotone algorithm by verifying the property given in Definition 1. That
is, we examine the effect of a single change in the vector of bids. Suppose machine ¢ claims to be faster,
but it is not the bottleneck, then nothing changes. The previous assignment is still optimal. A hypothetical
lexicographically smaller optimal assignment with the new speed would also reach a cover of the old optimal
value with the old speed, because the old speed was lower, a contradiction.

If machine ¢ is the bottleneck (its load is exactly OPT), then ¢ will only get more work if it claims a
higher speed. This follows because there are two options:

1. The algorithm concludes that the original assignment is still the best (though with a smaller cover C”
than before), then the amount allocated to ¢ remains unchanged, because we still use the lexicographically
smallest optimal assignment (and the position of machine 7 does not change in the ordering that we use if its
claimed speed changes).

2. The algorithm concludes that another assignment is now better, then ¢ clearly gets more work (to
reach a load above C’, which is what 7 would have with the old amount of work and the new, faster speed).

3.3 Reducing the number of jobs

We construct an input for which we can find an optimal job assignment which is the smallest assignment
lexicographically, and thus monotone. We build it in a way that the value of an optimal assignment for the
adapted input is within a multiplicative factor of 1 — 3¢ from the value of an optimal assignment for the
original input. This is done by reducing the number of jobs of size no larger than OPT to a constant number
(dependent on m and €), using a method which is oblivious of the machine speeds.

Let A = 2m?/e? + m. If the input consists of at most A jobs, then we are done. Otherwise, we keep
the A largest such jobs as they are. This set is denoted by .J;,. Let Jg be the rest of the jobs.

Let A be the total size of the jobs in Jg. Let a be the size of the largest job in Jg. If A < 3aA,
we combine jobs greedily to create mega-jobs of size in the interval [a, 3a]. Each mega-job is created by
combining jobs until the total size reaches at least a, this size does not exceed 2 - a. If we are left with a
remainder of size less than a, it is combined into a previously created job. The resulting number of mega-jobs
created from Jg is at most 3A.

Otherwise, we apply a “List Scheduling” algorithm with as input the jobs in Jg and A identical ma-
chines. These machines are only used to combine the jobs of Js into A mega-jobs and should not be
confused with the actual (m) machines in the input.

List Scheduling (LS) works by assigning the jobs one by one (in some order) to machines, each job is
assigned to the machine with minimum load (at the moment the job is assigned). LS thus creates A sets
of jobs and the maximum difference in size between two sets is at most a [17]. The jobs in each set are
now combined into a mega-job. Thus we get A mega-jobs with sizes in the interval [% —a, g + al. Since
g > 3a, we get that the ratio between the size of two such mega-jobs is no larger than 2.

It is straightforward to see that the following lemma holds in all three cases.

Lemma 3.1 After reducing the number of jobs as described in this section, there are at most A jobs and at



most 32 mega-jobs left, where A = 2m? /e? + m.

3.4 The optimal value of the modified instance
Lemma 3.2 The optimal cover of the modified instance is at least (1 — 3¢)OPT.

Proof If no mega-jobs were created then clearly we consider all possible job assignments and achieve
an optimal one for the original problem. (See Section 3.2 for an explanation as to why we can assume we
know the true speeds of the machines.) Consider therefore the two cases where we applied the jobs merging
procedure. Note that since the total size of all jobs of size at most OPT is at most 2mOPT by Claim 2, and
given the amount of jobs in .J;, (and using Claim 1), we have a < €20PT/m.

First assume A < 3aA. We use the following notations. OPT’ is the value of an optimal assignment
using the modified jobs. OPT” is the value of an optimal assignment using the modified jobs and only
machines of speed at least 2a/(c0PT) (called fast, whereas all other machines are called slow). Thus for
OPT” we assume that the slow machines are simply not present, making it easier to cover all the machines
to any given value. Clearly we have OPT” > OPT’ and OPT > OPT'.

We show that opT” > (1 — %s)OPT. Given an optimal assignment for the original instance, remove all
jobs assigned to slow machines. Remove all jobs that belong to Js (which are of size at most a) that are
assigned to fast machines, and replace them greedily by mega-jobs. The mega-jobs are assigned until the
total size of allocated mega-jobs is just about to exceed the total size of jobs of .J, that were assigned to this
machine. Since all mega-jobs are of size at most 3a, and each fast machine has load of at least OPT and thus
a total size of assigned jobs of at least 2a/e (since it is fast), the loss is at most a factor of %E of the total
load. The rest of the jobs (jobs of J;, removed from slow machines, and remaining mega-jobs) are assigned
arbitrarily.

We next show how to convert an assignment with value OPT” (ignoring the slow machines) into an
assignment which uses all machines. Since there are at least A jobs of size at least a (the jobs of J7,), and
these jobs are spread over at most m machines, at least one machine has at least A /m such jobs. From this
machine, remove at most 2m /e jobs of size at least a (the smallest ones among those that are large enough),
and assign 2 /¢ jobs to each machine that does not participate in the assignment of OPT”. The resulting load
of each such machine (taking the speed into account) has a load of at least OPT since it is slow: we have
% ~a/ (83%) = OPT. The loss of the fast machine where jobs were removed is at most a factor of ¢ of its
original load. Therefore we get that in the new job assignment each machine is either loaded by at least OPT
or by at least (1 — £)OPT”. Thus OPT’ > min{OPT, (1 — £)OoPT”}. Since OPT” > (1 — 3£)OPT, this proves
that OPT' > (1 — 3¢)OPT.

The second case is completely analogous, except that in this case we call machines with speed at least
(g — a) /(eoPT) fast. Thus each fast machine has total size of assigned jobs of at least (% —a)/e. We
define fast in this way because in this case, the mega-jobs have size in the interval [g - a, % + a]. When
we replace jobs by mega-jobs, such a machine then loses at most 2¢ of its original load. When we convert
the assignment of OPT”, we use that mega-jobs have size at least % — a, and there are A of them, so we can
now transfer 2m /e of them to slow machines and get the same conclusions as before. U

3.5 Running time

We reduce the number of jobs to a constant. Note in the reduction in Section 3.3, we are only interested in
identifying the A largest jobs. After this we merge all remaining jobs using a method based on their total
size. These things can be done in time linear in n. Finally, once we have a constant number of jobs, we only



need constant time for the remainder of the algorithm. Thus our algorithm has running time which is linear
in the number of jobs n.

4 FPTAS for constant m

In this section, we present a monotone fully polynomial-time approximation scheme for constant m. This
scheme uses as a subroutine a non-monotone FPTAS which is described in Section 4.1. We explain how this
subroutine can be used to create a monotone FPTAS in Section 4.2.

In the current problem, it can happen that some jobs are superfluous: if they are removed, the optimal
cover that may be reached remains unchanged. Even though these jobs are superfluous, we need to take
special care of these jobs to make sure that our FPTAS is monotone. In particular, we need to make sure that
these superfluous jobs are always assigned in the same way, and not to very slow machines. We therefore
needed to modify the FPTAS mechanism from [1] because we cannot simply use any “black box” algorithm
as was possible in [1].

4.1 An FPTAS which is not monotone

We describe an FPTAS for the classical problem, where the speeds of the machines are known. This FPTAS
can also easily be adapted to the case of unrelated machines.

Choose ¢ so that 1/¢ is an integer. We may assume that n > m, otherwise OPT = 0 and we assign all
jobs to machine 1. In the proof of Lemma 5.2 we show that this assignment is monotone. (Since we achieve
an optimal cover of 0 in this case, we see this as having an approximation ratio of 1.)

We give an algorithm which finds the optimal cover up to a factor of 1 — 2e. We can again use an
algorithm which is an m-approximation [6], therefore we can assume we can find OPT within a factor of m.
We scale the problem instance such that the algorithm of [6] returns a cover of size 1. Then we know that
OPT € [1,m]. We are now going to look for the highest value of the form j - ¢ (j = 1/¢,1/e +1,...,m/¢e)
such that we can find an assignment which is of value at least (1 — ¢)je. That is, we partition the interval
[1,m] into many small intervals of length €. We want to find out in which of these intervals OPT is, and find
an assignment which is at most one interval below it.

Given a value for j, we scale the input up by a factor of j% > - > 1. Now the target value (the
cover that we want to reach) for a given value of j is not je but S = n/e. For job k and machine i, let
0 =[pp/si] (k=1,...,n;i=1,...,m).

We use dynamic programming based on the numbers Ef . A load vector of a given job assignment is
an m-dimensional vector of loads induced by the assignment. Let T'(k, a) be a value between 0 and m for
k =0,...,n and an (integer!) load vector a. T'(k, a) is the maximum number such that job k is assigned
to machine 7'(k, a) and a load vector of a (or better) can be achieved with the jobs 1, ..., k. If the vector a
cannot be achieved, T'(k, a) = 0. If a (or better) can be achieved, T'(k, a) is a number between 1 and m.

We initialize 7(0,0) = m, representing that a cover of 0 can be achieved without any jobs (this is
needed for the dynamic program), and 7°(0,a) = 0 for any a > 0. For a load vector a = (ay,...,an),
T (k,a) is computed from T'(k — 1, a) by examining m values (each for a possible assignment of job k):

T(k, ) = max (0,{1' e {1,...,m}|ai— 5 >0 ATk - 1, (as, a; — I¥)) >0})

The notation (a_;, x) represents the load vector in which the ith element of @ has been replaced by x and
all other elements are unchanged. Each value T'(k, a) is set only once, i.e., if it is nonzero it is not changed



anymore. When a value T'(k, a) is set to a nonzero value z, we also set T'(k, (a—;,a; — y)) = x for every
y=1,...,1%¥ — 1 such that T(j, (a—;, a; — y)) = 0. This represents the fact that although a load vector of
precisely a cannot be achieved with this assignment, a load vector that dominates a (is at least as large in
every element) can be achieved by assigning job k to machine T'(k, a).

The size of the table T' for one value of k is (S + 1)™. The n tables are computed in total time
nmS(S + 1)™ = O(m(n/e)™*2). (The factor S is from updating the table after setting some T'(k,a) to
a nonzero value.) As soon as we find a value & < n such that T'(k, S,...,S) > 0, we can determine the
assignment for the first k jobs by going back through the tuples. Each time, we can subtract the last job from
the machine where it was assigned according to the value of the tuple to find the previous load vector. If
some element of the load vector drops below 0 due to this subtraction, we replace it by 0. If k¥ < n, the last
n — k jobs are assigned to machine 1 (the fastest machine).

If T'(n,S,...,S) = 0 after running the dynamic program, the target value cannot be achieved. In this
case we adjust our choice of j (using binary search) and try again. In this way, we eventually find the highest
value of j such that all machines can be covered to je using jobs that are rounded.

Note that the loss by rounding is at most n per machine (in the final scaled instance): if we replace the
rounded job sizes by the actual job sizes as they were after the second scaling, then the loss is at most 1 per
job, and there are at most n jobs on any machine. So the actual cover given by the assignment found by the
dynamic program is at least S — n. Since the target value S = n/e, we lose a factor of 1 — & with regard to
S. After scaling back (dividing by n/(je?) again) we have that the actual cover found is at least (1 — €)je.
On the other hand, due to the binary search a cover of (j + 1)e cannot be reached (not even with job sizes
that are rounded up). This implies that our cover is at least (1 —)(OPT — &) > (1 — 2¢)OPT since OPT > 1.

4.2 A monotone FPTAS-mechanism

Our FPTAS mechanism is displayed in Figure 1. It is a variation on the FPTAS-mechanism described in [1].
Their mechanism makes only one direct reference to the actual goal function (makespan in their case) and
relies on a black box algorithm to find good assignments. The only changes that we had to make are therefore
the following:

e Where the mechanism from [1] uses their black box algorithm, we use instead the subroutine described
in Section 4.1.

e We need a different value for ¢, which denotes the second highest power of 1 4 ¢ that is considered as
a valid bid. We explain below how to find this value.

o In the last step (testing all the sorted assignments), we do not return the assignment with the minimal
makespan but instead the assignment with the maximal cover.

As specified in [1], we will normalize the bids such that the lowest bid (highest speed) is 1. Assuming
the bids are truthful, i.e. b; = 1/s; for j = 1,...,m, a very simple upper bound for the optimal cover is
then U = )" | p;, the total size of all the jobs. (Placing all the jobs on the fastest machine gives load U on
that machine, and it is clear that the fastest machine cannot get more load than this.)

Consider a slower machine j. Suppose b; > U/p,. Then the load of this machine if it receives only job
n is at least U > OPT. This means that for our algorithm, it is irrelevant what the exact value of b; is in this
case, because already for b; = U/p,, an optimal cover is certainly reached by placing a single arbitrary job
on machine j. We can therefore change any bid which is higher than U /p,, to U/p,,.



Input: n jobs in order of non-decreasing sizes, a bid vector b = (by,...,by,), a parameter ¢ and a
subroutine, which is the FPTAS from Section 4.1.

1. Construct a new bid vector d = (dy, . .., d,,) by normalizing the bids such that the lowest bid is 1,
rounding up each bid to the closest value of (1 + ¢)?, and replacing each bid larger than (1 4 ¢)¢*!
by (1 +¢)+L.

2. Enumerate over all possible vectors d’ = ((1 4 €)™,..., (1 + €)'™), where i; € {0,...,¢ + 1}.
For each vector, apply the subroutine from Section 4.1 and sort the output assignment such that the
ith fastest machine in d’ will get the ith largest amount of work.

3. Test all the sorted assignments on d, and return the one with the maximal cover. In case of a tie,
choose the assignment with the lexicographically maximum assignment (where the machines are
ordered according to some external machine-id).

Figure 1: A monotone FPTAS-mechanism

Since the mechanism normalizes and rounds bids to powers of 1 + €, we can now define

Y 2 i1 Pi
t= ’Vlogl—l—e p-‘ = ’Vlogl—i-a pl-‘ :

n n

Plugging this in in the mechanism from [1], this gives us a fully polynomial-time approximation scheme for
the machine covering problem, since / is still (weakly) polynomial in the size of the input.

Theorem 2 The FPTAS-mechanism given in Figure I is monotone.

Proof We follow the proof of Andelman et al. [1]. We need to adapt this proof to our goal function.
Suppose that machine j increases its bid. First of all, if the increase is so small that the vector d’ remains
unchanged, the subroutine will give the same output, and in step 3 we will also choose the same assignment.
Thus the load on j does not change.

Ifdj > (1+ £)’, the assignment found by our algorithm will also not change when j slows down: the
vector d’ again remains the same and we can reason as in the first case.

Now suppose that d; < (1 + €)!, and the speed of j changes so that its rounded bid increases by a
factor of 1 + . (For larger increases, we can apply this proof repeatedly.) Suppose that j is not the unique
fastest machine. We thus consider the case where a normalized rounded bid rises from d; to (1 + €)d;, the
assignment changes from W to W', and we assume that the amount of work assigned to machine j increases
from w; to w} > w;. Denote the size of the cover of assignment W on bid vector d by C'. There are two
cases.

Suppose that the cover that our algorithm finds increases as j becomes slower. So all machines have
load strictly above C. Consider the new assignment W’ on the old speeds. All machines besides j do not
change their speeds and therefore still have a load strictly above C. Machine j receives more work than in
the old assignment W and therefore also has a load strictly above C, since it already had at least C' when
it was faster. This means that W' gives a better cover than W on the old speeds. However, our algorithm
would then have output W in the first place, because it checks all these speed settings, a contradiction.

Now suppose that the cover that our algorithm finds stays the same as j becomes slower. This means
that j is not the bottleneck machine (the unique least loaded machine). The old assignment W clearly has
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Input: guess value (7, m machines in a fixed order of non-increasing speeds, n jobs in order of non-
increasing sizes.

For every machine in the fixed order, starting from machine 1, allocate jobs to the machine according to
the sorted order of jobs until the load is at least G.

If no jobs are left and not all machines reached a load level of G, report failure. If all machines reached
a load of G, allocate remaining jobs (if any) to machine m, and report success.

Figure 2: Algorithm Next Cover (NC)

a cover of C also with the new speeds, so our algorithm considers it. It would only output W’ if W' were
lexicographically larger than W and also had a cover of C (or better). However, in that case W' again would
have been found before already exactly as above, a contradiction.

Finally, suppose that j is the unique fastest machine. Due to normalization, d; remains 1, bids between
1+ ¢ and (1 + ¢)* decrease by one step, and bids equal to (1 + £)**! can either decrease to (1 + ¢)* or
remain unchanged. We construct an alternative bid vector d as in [1] where we replace all bids of (14 ¢)*+!
in d’ with (1 + ¢). This is the point where we use the fact that we check “too many” speed settings.

Every machine that bids (1-+¢)* or more needs to receive only at least one arbitrary job to have sufficient
load. In such cases, our subroutine indeed puts only one job on such a machine, because it finds the minimum
amount of jobs k to get to a certain cover and puts all remaining jobs on the fastest machine. Therefore,
the cover that our algorithm finds for d will be the same as that for d’, and it will also give the same output
assignment. This is also optimal for (1 + s)d. The difference between (1 + E)cf and d is only that the bid d;
changes from 1 to 1 + €. We can now argue as before: whether the cover that our algorithm finds increases
or not as j becomes slower, a hypothetical new better assignment for af(l + ¢) would also be better for d,
but in that case the algorithm would have found it before. U

S Approximation algorithm SNC for arbitrary values of m

In this section, we present an efficient approximation algorithm for an arbitrary number of machines m. Our
algorithm uses Next Cover [6] as a subroutine. This semi-online algorithm is defined in Figure 2. Azar and
Epstein [6] showed that if the optimal cover is known, Next Cover (NC) gives a 2-approximation. That is,
for the guess G = OPT/2 it will succeed. NC also has the following property, which we will use later.

Lemma 5.1 Suppose NC succeeds with guess G but fails with guess G + €, where ¢ < %G. Then in the
assignment for guess G, the work on machine m is less than mw + €, where w > G is the minimum work
on any machine.

Proof Consider machine m. Suppose its work is at least mw + ¢, where ¢ < % < %

Suppose m is odd. We create a new assignment as follows. Place the jobs on machines 7,7 + 1 on
machine (i + 1)/2 fori = 1,3,5,...,m — 2. Cut the work on machine m into (m + 1)/2 pieces (without
cutting any jobs) that all have size at least w + € and at most 2w. Put these on the last (m + 1)/2 machines.

The proof that it is possible to cut the pieces in this way is analogous to that for set B in the proof of
Claim 2. The last piece then has size at least mw + € — mTfl - 2w = w + €. This means that NC succeeds
with guess w 4+ ¢ > G + ¢, a contradiction.

Now suppose m is even. This time we create a new assignment by placing the jobs on machines 7,7 + 1

on machine (i+1)/2 fori = 1,3,5,...,m— 3. Note that machine m — 1 already has jobs no larger than w.
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Input: parameter € € (0, 1/2), sorted set of jobs (p1 > ... > py), sorted machine bids (b; < ... < by,).
1. If there are less than m jobs, assign them to machine 1 (the machine of speed s;), output O and
halt.

2. Scale the jobs so that > " ; p; = 1. Run LPT on identical machines and denote the value of the
output by A. Set L = % and U = %A.

Apply Next Cover on identical machines with the guess G = /U - L.
If Next Cover reports success, set L = G, else set U = G.

IfU — L > 5L, go to step 3, else continue with step 6.

AT

Apply Next Cover on identical machines with the value L. Next Cover partitions the jobs in m
subsets, each of total size of jobs at least L. Sort the subsets in non-increasing order and allocate
them to the machines in non-increasing order of speed according to the bids.

Figure 3: Algorithm Sorted Next Cover (SNC)

That is true since some machine 7 among 1, ..., m — 1 has received work of exactly w, and all jobs assigned
to machines ¢, ..., m are no larger than w. We can consider the total work of the last two machines. This
load is at least (m + 1)w + ¢ and as shown before, it can be split into mTH = 3 + 1 parts of size at least
w + € each. The parts can be assigned in the appropriate order to machines %, ..., m. O

Our algorithm Sorted Next Cover (SNC) works as follows. A first step is to derive a lower bound and
an upper bound on the largest value which can be achieved for the input and m identical machines. To find
these bounds, we can apply LPT (Longest processing Time), which assigns the sorted (in non-increasing
order) list of jobs to identical machines one by one. Each job is assigned to the machine where the load
after this assignment is minimal. It was shown in [11, 10] that the approximation ratio of LPT is gz:% < %.
Thus we define A to be the value of the output assignment of LPT. We also define L = % and U = %A. We
have that A and U are clear lower an upper bounds on the optimal cover on identical machines. Since NC
always succeeds to achieve half of an optimal cover, it will succeed with the value G = L. Since a cover
of U is impossible, the algorithm cannot succeed with the value G = U. Throughout the algorithm, the
values L and U are such that L is a value on which NC succeeds whereas U is a failure value. We perform a
geometrical binary search. It is possible to prove using induction that if NC succeeds to cover all machines
with a guess value G, then it succeeds to cover all machines using a smaller guess value G’ < G. The
induction is on the number of machines and the claim is that in order to achieve a cover of G’ on the first 4
machines, NC uses the same subset or a smaller subset used to achieve G.

The algorithm has a parameter ¢ € (0,1/2) that we can set arbitrarily. See Figure 3. Since the ratio
between U and L is initially constant, it can be seen that the algorithm completes in at most O(m)
steps. The overall running time is O(n(logn + 1/log(1 + £/2))) due to the sorting. Note that Steps 2 and
6 are only executed once.

Lemma 5.2 SNC is monotone.

Proof The subsets constructed in step 3 and 6 do not depend on the speeds of the machines. If a machine
claims it is faster than it really is, the only effect is that it may get a larger subset. Similar if it is slower.
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If the algorithm halts in step 1, then we again have a situation that jobs are partitioned into sets, and the
sets are assigned in a sorted way. This is actually the output that steps 2—6 would produce if SNC was run
with a guess value 0. ([l

Theorem 3 For any 0 < ¢ < 1, SNC maintains an approximation ratio of min(m, (2 + €)s1/sm,).

Proof We start with the second term in the minimum. The load that SNC has on machine i is at least L/s;,
and Next Cover cannot find a cover above U < (1 + ¢/2)L on identical machines. So the optimal cover on
identical machines of speed 1 is at most 2(1 + ¢/2)L = (2 + &) L. Thus the optimal cover on machines of
speed sy, is at most (2+¢)L/s,, and the optimal cover on the actual machines can only be lower since s, is
the smallest speed. We thus find a ratio of at most ((2+¢)L/sm)/(L/s;) = (24€)si/sm < (2+¢€)s1/Sm.

We prove the upper bound of m using induction.

Base case: On one machine, SNC has an approximation ratio of 1.

Induction hypothesis: On m — 1 machines, SNC has an approximation ratio of at most m — 1.

Induction step: Recall that the jobs are scaled so that their total size is 1. Suppose each machine j has
work at least 1/(jm) (j = 1,...,m). Then the load on machine j is at least 1/(jms;). However, the
optimal cover is at most 1/(s1 + s2 + ... + sp,) < 1/(js; + (m — j)sm) < 1/(js;). Thus SNC maintains
an approximation ratio of at most m in this case.

Suppose there exists a machine i in the assignment of SNC with work less than 1/(im). Consider the
earliest (fastest) such machine 7. Due to the resorting we have that the work on machines 7, ..., m is less
than 1/(im). So the total work there is less than (m — i + 1)/(im). The work on the first i — 1 machines
isthenatleast 1 — (m —i+1)/(im) = (im—m+1i—1)/(im) = (i — 1)(m + 1)/(¢m) and the work on
machine 1 is at least (m + 1)/(im). This is more than m + 1 times the work on machine .

We show that in this case there must exist a very large job, which is assigned to a machine by itself. Let
L’ and U’ be the final values of L and U in the algorithm. Let w be the minimum work assigned to any
machine for the guess value L'. Since SNC gives machine ¢ work less than 1/(im), we have w < 1/(im).
We have U’ — L’ < §L'. SNC succeeds with L' and fails with U” and thus, since £ < % and by Lemma 5.1,
machine m receives at most mw + 5L’ < mw + 1L’ < (m+ })w < (m + 1)/(im) running NC with the
guess value L’. Moreover, NC stops loading any other machine in step 6 as soon as it covers L.

We conclude that the only way that any machine can get work more than (m + 1)L’ is if it gets a single
large job. This means that in particular the first (largest) job has size p; > (m + 1)w > 3w > 3L'. SNC
assigns this job to its first machine, and the remaining work on the other machines.

To complete the induction step, compare the execution of SNC to the execution of SNC with as input
the m — 1 slowest machines and the n — 1 smallest jobs. Denote the first SNC by SNC,,, and the second by
SNC,,—1. We first show that SNC,,,_; fails on U’. Since U’ < (1 + §)w < 2w, then SNC,, assigns only
p1 to machine 1, and thus SNC,,,_; executes exactly the same on the other machines. Since machine 1 is
covered, SNC,,, fails on some later machine, and then this also happens to SNC,,,_;. Therefore, SNC,,,_1
cannot succeed with U’ or any larger value. A similar reasoning shows that SNC,, 1 succeeds with any
guess that is at most L'. Finally, L' is at least the starting guess A/2. So p; > 3L’ > 2 A implies that LPT
also puts only the first job on the first machine, since its approximation ratio is better than 4/3. Therefore,
LPT gives the same guess value A for the original input on m machines as it would for the n — 1 smallest
jobs on m — 1 machines. This means that SNC,,, and SNC,,,_; maintain the same values U and L throughout
the execution, and then we can apply the induction hypothesis. g
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6 Round Robin

We show that if the speed ratio between the fastest and slowest machines is large, the following very simple
and efficient algorithm performs quite well.

Sort the machines and jobs by speed, so that the first machine has the largest speed and the first job has
the largest size. The Round Robin algorithm assigns jobs of indices ¢ + mk (in the sorted list) to machine %
(in the sorted list) for £ > 0 until it runs out of jobs. Comparing two successive machines, we see that the
7th job on machine ¢ + 1 is never larger than the jth job on machine ¢ (and may not even exist at all in case
we ran out of jobs). Thus the work is monotonically decreasing. Moreover, the job sets that are constructed
are independent of the speed, and the only effect of e.g. bidding a higher speed is to possibly get a larger set
of jobs. Thus this algorithm is monotone.

Claim 3 The approximation ratio of Round Robin is exactly m.

Proof It is easy to see that the ratio cannot be better than m. Consider m identical machines, m — 1 jobs of
size 1 and m jobs of size 1/m. Round Robin places only one job of size 1/m on the last machine and has a
cover of 1/m. By placing all the small jobs on the last machine, it is possible to get a cover of 1.

Consider the first machine in the ordering. It gets at least a fraction of 1/m of the total size of all jobs.
Consider now another machine, whose index in the ordering is <. We change the sequence in the following
way. Take the largest ¢ — 1 jobs and enlarge them to size co. Clearly, OPTcan only increase. Call these jobs
“huge”. Next, we claim that without loss of generality, huge jobs are assigned to the first ¢ — 1 machines
in the ordering by OPT. Otherwise, do the following process. For j = 1,...,¢7 — 1, if machine j has a huge
job, do nothing. Otherwise, remove a huge job from a machine x in ¢, ..., m (again, indices are in the sorted
list), and put it on machine j, put the jobs of machine j on machine x. Since j is not slower than z, the
cover does not get smaller. We got an assignment OPT’ > OPT. Consider now the assignment the algorithm
creates. Consider only the jobs which are not huge, we placed these jobs in a Round-Robin manner, starting
from machine i. Therefore, machine 7 received at least an 1/m fraction of these jobs (with respect to total
size). On OPT’, machine 7 does not have huge jobs, thus it can have at most m times as much work as in our
assignment. Thus we have a cover of at least OPT' /m > OPT/m. U

It should be noted that if we find an algorithm with a better guarantee than m, we cannot simply run both
it and SNC and take the best assignment to get a better overall guarantee. The reason that this does not work
is that this approach does not need to be monotone, even if this hypothetical new algorithm is monotone: we
do not know what happens at the point where we switch from one algorithm to the other.

7 Algorithms for small numbers of machines

We next consider the case of two machines. Even though previous sections give algorithms for this case
with approximation ratio arbitrarily close to 1, we are still interested in studying the performance of SNC
for this case. The main reason for this is that we hoped to get ideas on how to find algorithms with good
approximation ratios for m > 2 machines that are more efficient than our approximation schemes. How-
ever, unfortunately, several obvious adaptations of SNC are not monotone, and it seems we will need more
sophisticated algorithms for m > 2.

A first observation is that there are only n — 1 possible partitions of the jobs into two sets (since we
keep the jobs in sorted order), and thus there is no need to perform binary search. Let S; = (L; =
{1,...,i},R; = {i +1,...,n}) be a partition of the sorted list of jobs (p1 > pa... > py). Clearly, to
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Input: sorted set of jobs (p1 > ... > p,), sorted machine bids (b1 < b2)
Find ¢ such that min{o (i), o ( )} is maximal. If (i) > o2(7), assign L; to the first (faster) machine
and R; to the second. Else, assign L; to the second machine and R; to the first.

Figure 4: Algorithm Sorted Next Cover (SNC) on two machines

have a finite approximation ratio we only need to consider S; for ¢ = 1,...,n — 1. For a given partition S,
leto1(i) = 23:1 pj and o9 (’L) = Z;‘L:zﬁrl Dj-

SNC is defined for two machines as in Figure 4. From Theorem 3 it follows that SNC (which ignores
the speeds) has an approximation of at most 2. We next consider the approximation ratio as a function of
the speed ratio s > 1.

2s

Lemma 7.1 On two machines, SNC has an approximation ratio of Inax{ iy

Proof Assume without loss of generality that the speeds are s and 1, and the total work is 1. Then
OPT < +1
Let ¢ be the index such that the partition chosen by SNC is .S;. We have that the set of jobs which is

assigned to Mj, has the sum max{c1 (i), 02(i)} > 3. Thus if M; has a smaller load than M, this load is at

OPT 2s
1/(2s) S o1

To give a lower bound on the load of My, consider first the amount of jobs of size larger than % in the
input. If no such jobs exist, let 7 be the smallest index 1 <j<n-— 1, such that o1 (j) > é Clearly j exists
since o1(n) = 1. We would like to show that 01 (j) < %. If 01(j) = 3 we are done, otherwise, j > 2 since
< % Wehave 01(j — 1) < % and thus o1 (j) = Jl(j -1)+pj <3 + 3 2 . Thus

least 2—15 and we have an approximation ratio of at most

)]

oo\»a

min{oy (i), 02(i)} > minfo1 (), 02(j)} >

Consider the case where there are two such jobs, thus p; > p2 > % or there is a single such job p; but
p1 < %, we have 01(1) > % and o5(1) > % and thus again (1) holds. Finally, in case p; > %, clearly i = 1.
We get that OPT < 05(1) and thus M> has (at least) optimal load.

Suppose p; < % Then by (1) we have o2 (1) > =. This implies that if M5 has load smaller than M;, we
have an approximation ratio of at most ?/P:,)T <3 +1
To show that the bound is tight consider the following sorted sequences. The first sequence consists of

and the two jobs 5 and s+1 if s >3 (ord 55 sl s—L_if s < 3). An optimal assignment assigns

(s+1) +1’ 2(s+1)
S +1 to M5 and the other two jobs to M, thus OPT = 1. However, SNC partitions the input into two sets
whose sizes are 2, and so the approximation ratio is Sisl

3 11 2s—1 2-s
The second sequence needs to be shown only for s < 5. We use the sorted sequence 3, 3, 3.3 3,73

(this is a sorted sequence for any s < 2). There are two possible best partitions, but for both of them, the
minimum work is on My and is 4 5. However, an optimal assignment assigns one job of size 5 and a job of
size gz;},’ to M, and the other jobs to M», getting a cover of . We get an approximation ratio of 5. [

Below we prove that the fact that SNC ignores the speeds 1s crucial for its monotonicity in the general
case. However, if m = 2, we can define an algorithm SSNC which takes the speeds into account and is
monotone as well. SSNC is defined in Figure 5.
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Input: sorted set of jobs (p1 > ... > p,), sorted machine bids (b1 < b2)

Let r = ba/b; > 1 be the speed ratio between the two machines according to the bids. Find i such that
min{ @) ,02(7)} is maximal. If oy(i) > o02(i), assign L; to the first (faster) machine and R; to the
second. Else, assign L; to the second machine and R; to the first.

Figure 5: Algorithm Speed-aware Sorted Next Cover (SSNC) on two machines

Lemma 7.2 Let ¢ indicate the partition that SSNC outputs for speed ratio r. Then

"ﬂfi) > o3(i) — pi1 2
and
o1(i) — pi < roa(i). 3)

L oa(i)} > min{%, 02(i) — pi+1}- Since pit1 > 0, this
implies mln{ﬂ 09(i1) — piy1} = 02(i) — pit1. Filling this in in the inequality proves (2).

Similarly, we have min{UIT(i), oo(i)} > min{%, o2(%) + p; } which implies min{%, oa(i) +
pi} = 2972 eading to (3). O

Theorem 4 SSNC is monotone on two machines.

Proof As a first step we show the following. Let s; > s2 and q1 > ¢2 be two speed sets such that
Ty = % >ry = %' Let is and ¢, be the partitions which SSNC outputs for r; and r, respectively.

We show the following: max{o(is),02(is)} > max{o1(iq),02(iq)} and min{o(is), 02(is)} <
min{o(iq), 02(iq) }. Since o1 (is) + 02(is) = 01(iq) + 02(ig), it is enough to show one of the two proper-
ties. Clearly, if ¢, = i, this holds, therefore we assume that s # 7,. Furthermore, we show that in this case
we have ig > ig4.

Assume that i5 < . Then 01(is) < 01(iq) and 02(is) > 02(iy). By definition of the algorithm we
have min{ > ol(i ,09(is)} > min{ JlT’Q),ag(z’q)} and min{%js) o9(is)} < min{%;q), o2(iq)}. To avoid
contradiction, we must have min{~ 7f ,02(iq)} = 02(iq) and min{* UI(ZS ,oa(is)} = "1(’5) . Filling this in

in the inequalities gives % > o9(iq) and Ul(q“) < 02(iq). This 1mp11es rq > Tsa contradlctlon.

We may conclude min{o1(is), 02(is)} < 02(is) < 02(iq) — pi,+1 < 01(iq), Where the last inequality
follows from (2), and 02 (is) < 02(iq), thus min{oy(is), 02(is)} < min{oy(iq), o2(iq)}.

Suppose My becomes slower. Then the speed ratio between the two machines becomes larger. Ms is
still the slower machine and thus by the above, the amount of work it gets cannot increase.

Now suppose M7 becomes slower. We may assume M7 remains faster than Mo. Otherwise, we divide
the slowing down into three parts. The first part is where M is still faster than Ms. In the middle part, the
speeds do not change, but we change the order of the machines. Clearly, at this point the work on M7 does
not increase. Finally M; slows down further, but now we can use the analysis from above because it is like
M getting slower.

Thus M is still faster than M5 but the speed ratio decreases. By the statement above, we get that the
amount of work that M, gets cannot increase. g

Theorem 5 On two machines, SSNC has an approximation ratio of at most min{1 + a1+ %}
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Proof Consider an optimal assignment. Without loss of generality, the total work is 1. Let u be the
sum of jobs assigned to M; by this assignment. The sum of jobs assigned to My is 1 — p and OPT =

min{£, 1 —pu} < S_‘%l

Consider first the case s > ¢. We claim that there exists an integer 1 < i/ < n — 1 such that

T <o) < T (1) 4)

Consider the smallest index j of an item p; < 1 — p. Clearly, j < n — 1 since the optimal assignment we

consider assigns an amount of exactly 1 — M to Mg, and moreover, by the same reasoning, o2(j) > 1 — p.

If j satisfies the condition (4), we define ¢/ = j and we are done. If o9(j) < < S(zLPlT we find OPT =
min{£, 1 —pu} <1—p<o(j) < SSFP;T < OPT, a contradiction.

We are left with the case o2(j) > sgliT + (1 — ). Let 5/ such that j < j/ < n be the smallest index for

which o5(j') < % (note that we allow j' = n which does not give a valid partition). Since j' > j, we
SOPT+1 . In this case define i/ = 7/ —1 < n—1.

have pjs < 1— p and thus o5(j" — 1) =02(j" ) +pj <

-OPT
We next show that o (i') > s? 1

, and later show that this implies the approximation ratio. Note that

by the deﬁnition of ' we have o1(7') > p — sng;T There are two cases. If y > %5, we have OPT =
OPT _ 24 _ s2.0PT
1—p < 47. Wethen find 01 (i) > 1 —OPT — * 75~ > (54—1—12 i1) OPT = szl SRR oPT = S
OPT -OPT
If p < m,wehaveOPT— £ Thusal( N>s- OPT—SST > =
o2(i)} > min{ =~ o1 ,02( N>« (ET, where i is the partition that SSNC

chooses for speed s. If o1 (i ) > 02( ), then the sets of jobs are not resorted, and M (resp. Ma) receives a
total of o1 () (resp. o2(7)), so we are done. Otherwise, M receives a load of ”25(1) > 015( ) > 53_}? nd

. . o1(i) s-OPT
M3 receives a load of o (i) > == > *5=.

For the case s < ¢, consider several cases. In the sequel, if s = 1, we consider an optimal assignment
whose work on M is no smaller than its work on M5. Note that M is always assigned max{o1(i),092(i)} >
i 5 by the algorithm Since OPT < an optimal algorithm assigns at most 5 to M; and we get a ratio
Of 251 <1+

Suppose first that there exists a job of size at least % Clearly, this is the first job and it belongs to the
first set found by SSNC, which has a larger size than the second set. Also, for all other jobs i > 2 we have
pi < % Therefore oy (7) > % and since OPT < 1, M; gets sufficient load. If « = 1, we are done since in
the optimal assignment, the work on My is at most o5(1) = 1 — p;. Otherwise > 2. Using (3) we have
oa(i) > (01(i) — p;)/s > (2/3)/s and thus o5 (i) /OPT > Z S_IH =242 > 2> 14 5

Now suppose all jobs have size less than 2/3. If p; < 1/3 (and thus p;4; < 3 as Well) we get from (2)
that 0(i) — pip1 = 1 — 01(i) — piy1 < 01(i)/s, which implies o1 (i)(s + 1) > s(1 — p;1) > %. Further,
we get from (3) that (1 — 01(i))s > o1(i) — pi, implying o1(2) < (s + p;)/(s + 1) and therefore o9(i) =
1—01(i) > (1 —pi)/(s+1)>2/(3s+3). Thus min{oi (i), 02(:)} > 3(53-1) > 20PT > (1+ +17)OPT.

Ifp; > 1/3,butp; < %, we have 1 = 1 or ¢ = 2, since there are at most two jobs larger than % If: =1,
we have min{o(1),02(1)} = min{p;,1 —p1} > % > %OPT > (1+ S_%)OPT. If i = 2, then p; > %, and
by (3) we have 0(2) > 2022 — L We have 1 = p; + pa + 09(2) < 2p1 + 02(2) < (25 + 1)oa(2).
Therefore OPT/02(2) < SJ%I/%}T =1+ 5. O

It follows that on two machines, SSNC is better than SNC in general. However, the following lemma
shows that SNC is better than SSNC for s < 1 + v/2.

T
Thus M; gets sufficient load. Let ¢ indicate the partition Which is chosen by SSNC.
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Figure 6: The approximation ratigs : : s X highest speed s. The approxima-
tion ratio of SNC has a minimum of 6 /5 for’s = 3/2 and tends to 2 for large s. The approximation ratio of
SSNC has a maximum of ¢ for s = ¢, and is monotonically decreasing (to 1) afterwards.

Lemma 7.3 The approximation ratio of SSNC is not better than min{1 + sfr—l, 1+ %} on two machines.

Proof Suppose s < ¢. Consider the following input instance for some € > 0: jobs of size ﬁ, ﬁ — &,

and many small jobs of total size 1 — 23_‘?1 + €. It is always possible to distribute these jobs in a ratio of

s : 1, so the optimal coveris 1/(s +1). Forany 0 < ¢ < 5%, SSNC will combine the first two jobs on the

fast machine, and on the slow machine it will have a load of only 1 — 25211 +e= ﬁ + ¢. Taking ¢ — 0,

this shows that for s < ¢, the approximation ratio of SSNC2 is not better than H% 251+1 = QSSEI.
Now suppose s > ¢. In this case we use the jobs (Sjil)Q — &, 57%1 + ¢, and ﬁ These jobs are in

order of decreasing size if s > ¢. Again SSNC puts the first two jobs on the fast machine, and has a cover
—2~. The optimal assignment is to combine the first and third jobs on the fast machine for a cover

of only i
1

For a comparison of the approximation ratios of SNC and SSNC, see Figure 6.

In the following, we show that SSNC or simple adaptations of it are not monotone on more than two
machines. In our examples we use a small number of machines. The examples can be extended to a larger
number of machines by adding sufficiently many very large jobs.

For three or more machines, SSNC works as follows. We use the following guess values: G; =

g:l pi/s1. Run Next Cover (Figure 2) for each guess value GG, using machine speeds which are based on
the bids, and return the largest guess value for which Next Cover succeeds. (SSNC can be made faster by
using binary search.)

Let ¢ > /2. We use a job set which consists of five jobs of sizes a®,a® — 1,a®> — 1,a® — 1, 1. There
are three machines of speeds a?, a, 1. Running SSNC results in the sets {a3}, {a® — 1}, {a? — 1,a%> — 1,1}
for a cover of a. It is easy to see that changing the first set into {a>, a® — 1} so that the load on the fastest
machine becomes strictly larger than @ results in a second set {a? — 1,a? — 1} and the third machine gets a
load which is too small.

Assume now the speed of fastest machine decreases from a? to a. SSNC finds the sets {a%}, {a® —
1,a% — 1}, {a2 — 1, 1} for a cover of a?. So the size of the largest set can increase (in this case, from a® to
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a3 + a® — 2) if the fastest machine slows down.

This example shows that not only the above algorithm is not monotone, but also a version of it which
rounds machine speeds to power of a is not monotone. In previous work, machine speeds were rounded to
powers of relatively large numbers (e.g., 2.5 in [1]). Thus it seems unlikely that rounding machine speeds
to powers of some number smaller than v/2 would give a monotone algorithm.

Another option would be to round job sizes. We show that this approach results in a non-monotone
algorithm already for two machines (the example can again be extended for more machines).

Assume that we round job sizes to powers of b > ¢. Let a be a number such that b < a < b+ 1. This is
a constant used to define machine speeds (the same example may be used to show that the combination of
rounding both machine speeds and job sizes is not monotone either, since rounding speeds into powers of
a would leave the speeds unchanged). We consider the following problem instance with two machines and
five jobs. The speeds of both machines are « initially, and the job sizes are (1 + €)b, b, b, 1, where we take
e <1/b.

Our algorithm sees the job sizes as b2, b, b, 1 and initially places b? on machine 1 and the remaining jobs
on machine 2. Note that putting the first job of size b also on machine 1 only gives a cover of (b + 1)/a,
whereas the first option gives b? /a (and b > ¢). The algorithm then uses the actual job sizes (which it needs
to do in order to resort the job sets accurately), and puts only the job of size (1 + £)b on the second machine.

Now the speed of machine 2 decreases from a to 1. The new job sets are {b?, b}, {b, 1}, to get a (rounded)
cover of (b2 + b)/a > b. This hold since (b* + b)/a < b+ 1. Keeping the old sets would give only a cover
of b?/a < b. Taking the sets {b, b, b} and {1} would give only a cover of 1. However, this means that the
actual size of the first set is now (2 + €)b, whereas the size of the second set is b + 1, which is less. So
the size of the smallest set is now b + 1, which is larger than before ((1 4 £)b), so the work on machine 2
increases although its speed decreased.

8 Open questions

After the preliminary version of our paper appeared, a randomized monotone PTAS for general m was
given by Dhangwatnotai et al. [13]. As is the case for the makespan problem, the question of providing a
deterministic monotone PTAS for general m remains open.
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earlier version of our approximation scheme in Section 3, another referee who helped improve the presenta-
tion, and Motti Sorani for helpful discussions.
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