
Real-time integrated prefetching and caching

Peter Sanders∗ Johannes Singler∗ Rob van Stee†

September 26, 2012

Abstract

The high latencies for access to background memory like hard disks or flash memory can be reduced
by caching or hidden by prefetching. We consider the problem of scheduling the resulting I/Os when the
available fast cache memory is limited and when we have real-time constraints where for each requested
data block we are given a time interval during which this block needs to be in main memory. We give
a near linear time algorithm for this problem which produces a feasible schedule whenever one exists.
Another algorithm additionally minimizes I/Os and still runs in polynomial-time.

For the online variant of the problem, we give a competitive algorithm that uses lookahead and
augmented disk speed. We show a tight relationship between the amount of lookahead and the speed
required to get a competitive algorithm.

1 Introduction

A classical technique for dealing with memory hierarchies is prefetching and caching. Prefetching hides
access latencies by loading pages into fast memory before they are actually required [7, 10, 13, 15]. Caching
avoids I/Os by holding pages that are needed again later [3, 5, 8, 14]. Since both techniques compete for
the same memory resources, it makes sense to look at the integrated problem [2, 6, 11, 9, 12]. Interestingly,
there is very little theoretical work on the real-time setting of this problem. We are only aware of [7] which
covers parallel disk prefetching in a read-once setting without caching. This is astonishing, since real-time
properties are essential for more and more important applications such as games, virtual reality, graphics
animations, or multimedia. Memory hierarchies get more and more important for these applications since
larger and larger data sets are considered and since mobile devices have only very limited fast memory
whereas the bulk of their memory is flash memory that is accessed in pages.

As a concrete (simplified) example, consider a flight simulator. Externally stored objects could be
topographical data, textures, etc. At any particular time, a certain set of objects is required in order to play
out the right screen content and sound without delays. A demo run could be preplanned resulting in an offline
version of the problem. User interactions will result in an online problem where we do not completely know
the future. However, we may be able to compute a lookahead containing a superset of the required objects
for a certain amount of time.

In Section 2, we propose to model real time aspects by associating a time window with each request
during which it needs to be in cache. As before we do prefetching and caching, and as soon as a fetch
for a page starts, this page occupies one slot in the cache. Time windows are a flexible abstraction of
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several effects occurring in practice. They efficiently model the amount of time a data block is needed for
processing and it is also possible to require several blocks to be available concurrently. The only simpler
model we could think of would use unit time windows. But then we would need many repeated requests
to model longer time windows. This would lead to exponentially longer problem descriptions in the worst
case.

We first prove some generally useful properties of the problem in Section 3. In Section 4 we then
introduce algorithm EAGER-LFD that is closely modeled after Belady’s algorithm [3] for offline caching.
This algorithm runs in linear time and finds a feasible schedule whenever one exists. However, surprisingly
and in contrast to the non-real-time situation, EAGER-LFD is not I/O-optimal, that is, it may perform many
more fetches than necessary. In Section 5 we solve this problem using a different “semi”-greedy approach
(LAZY-LFD). LAZY-LFD uses the frequently used basic trick to build the schedule backward in time
[12, 9]. Apart from this, however, it is a new algorithm. Its main invariant is that it uses as little space as
possible at all times and in order to achieve that, it has to move previously scheduled requests. The algorithm
therefore has quadratic worst case performance.

We additionally consider an online version of our problem in Section 6. In our online model, algorithms
have a certain amount of lookahead, input arrives incrementally, and a partial solution needs to be determined
without knowledge of the remaining input. We say that an algorithm has a lookahead of ℓ if at time t, it can
see all requests for pages that are required no later than at time t+ ℓ. In the resource augmentation model,
the online algorithm has more resources than the offline algorithm that it is compared to. There are several
ways to give an online algorithm more resources in the current problem: it can receive a larger cache, a
faster disk (so that fetches are performed faster), more lookahead, or a combination of these.

We show that competitive algorithms are possible using resource augmentation on the speed and looka-
head, and we provide a tight relationship between the amount of resource augmentation on the speed and
the amount of lookahead required.

Section 7 concludes with a short summary and some possible future questions.

More Related Work

In the model introduced by Cao et al. [6] and further studied by Kimbrel and Karlin [12] and Albers et
al. [2], the requests are given as a simple sequence without an explicit notion of time. It is assumed that
serving a request to a page residing in cache takes one time unit, and fetching a page from disk takes F time
units. When a fetch starts and the cache is full, a page must be evicted. If a page is not in cache when it is
required, the processor must wait (stall) until the page has been completely fetched. The goal is to minimize
the processor stall time.

Thus in this model, pages have implicit deadlines in the sense that each page should be in cache exactly
one time unit after the previous request. However, when the processor incurs stall time, these implicit
deadlines are shifted by the amount of stall time incurred. Additionally, this model does not cover the cases
where many pages are required in a small time interval and conversely, where more time may elapse between
two successive requests. Nor is it possible to model the case where a page is required over a certain time
interval.

Albers [1] considers the impact of lookahead in the classical non-real-time situation. She shows that in
order to be useful in a worst case sense, lookahead has to be measured in terms of the number of distinct
pages referred to in the lookahead. This can be a problem in practice since very long lookahead sequences
might be required if some blocks are accessed again and again. In our real-time setting the situation is
different and very natural — we can measure lookahead in terms of time.
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We therefore believe that, while these previous results are interesting in their own right, our new model
also has practical merit.

2 Problem Definition

We consider the problem of prefetching pages into a cache of fixed size k. The request sequence σ serves as
input and consists of pairs σi := (pi, [di, ei)) denoting a page and the interval in which it must reside in the
cache. The page ids pi are not necessarily different. The di are the deadlines, the ei are the evict times. At
time ei, page pi may (but does not have to) be evicted. Without loss of generality we may assume the input
is sorted such that d1 ≤ . . . ≤ dn for n = |σ|. Each fetch (transferring a page to the cache) takes time 1.
The earliest possible fetch time is t = 0.

The output is given by a sequence f1, . . . , fn of fetch times for the corresponding requests and implicitly
defines a schedule. One cache slot is occupied by pi in the time interval [fi, ei), and possibly longer. Multiple
requests of the same page can be served by the same fetch if there is enough room in the cache. That is, for
any given page p there may be several index sets I in a schedule such that pi = p and fi = f for all i ∈ I
and some value f . In such a case, the page p resides in the cache from time f until time maxi∈I ei.

For a given schedule, call a request σi primary if there is no previous request which also uses fetch time
fi. Non-primary requests are called free. A feasible schedule must satisfy ∀i ∈ {1, . . . , n} : fi + 1 ≤ di
to match the real-time requirements. The fetch time sequence also implicitly defines a cache content which
is {pi : fi ≤ t < ei} at time t. A feasible schedule must have a cache content of size at most k at all times.
Finally, no more than one page can be fetched at any one time — ∀i, j : |fi − fj | ≥ 1 ∨ pi = pj .

In our model, we have no additional assumptions on the tasks, e.g. regarding periodicity, or dependencies
between tasks (pages). Most of this paper is concerned with the case of a single disk (implying that exactly
one page can be downloaded in one time unit), though in Section 6 we also explore the case of parallel disks.

3 Problem Properties

To simplify the analysis, we first prove that there exist I/O-optimal schedules (i.e., with the optimal number
of fetches) with nice structural properties.

Definition 1 (FIFO property) A schedule satisfies the FIFO Property if its fetch times for primary requests
form an increasing sequence.

Definition 2 (BUSY property) A schedule satisfies the BUSY Property if, when it has a fetch at time f for
a page that is next required at time d, it defines fetches at all times f + i for i = 1, 2, . . . , ⌈d− f⌉ − 1.

Definition 3 (LFD property) A schedule satisfies the LFD Property if, whenever a page is evicted, this page
is one that is needed again the latest.

Lemma 1 Any feasible schedule for request sequence σ can be transformed to satisfy the FIFO, BUSY, and
LFD properties without increasing the number of fetches.

Proof: Consider an arbitrary feasible schedule. We can make three local updates:
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1. If we have a violation of the FIFO-property with primary requests σi and σj with i < j yet fi > fj ,
we have the following situation: di ≤ dj by definition of the input, fi ≤ di − 1 by definition of a
feasible schedule. Overall, fj < fi ≤ di − 1 ≤ dj − 1. We now swap fi and fj (for any later free
request with fk ∈ {fi, fj}, we update fk accordingly). The schedule remains feasible – all deadlines
are met including those of free accesses to pi or pj which all have deadlines ≥ di. The disk is busy
exactly the same times as before – only accessing different pages. Similarly, the cache occupancy
remains the same at all times.

2. If a fetch for page p ends at time t1, but page p is first requested at time t2 > t1, and moreover no new
fetch starts until time t3 > t1, we can move this fetch for p forward until it ends at time min(t2, t3).

3. If we have a violation of the LFD-property with pages pi and pj with ei < ej yet at time ei page i is
needed again before page j, then we just swap these evictions. The cache occupancy remains the same
and the contents of the cache outside the interval [ei, ej ] remain unchanged. If page j is requested at
some point t ∈ [ei, ej ], then by assumption page i is requested in the interval (ei, t), so must also be
fetched again in that interval since it was evicted at time ei. We simply replace this fetch by a fetch of
page j in the new schedule.

It now follows that if we cannot make any local improvement to a feasible schedule, it satisfies all three
properties. �

4 Algorithm EAGER-LFD

In this section we present an algorithm for the real-time integrated prefetching and caching problem, called
EAGER-LFD. It is derived from the Longest Forward Distance (LFD) algorithm known for the non-real-
time problem [4, page 35], i.e., whenever it evicts a page, it chooses one that is needed again the latest.

For this algorithm, we consider only the case that all deadlines and evict times are integers. In return,
EAGER-LFD will output integer fetch times. This is almost without loss of generality: If the integer con-
dition is not fulfilled, all times fetch times and deadlines can be rounded down and all evict times can be
rounded up. To maintain feasibility in this case, one additional cache slot is needed to hold the page that is
currently being fetched. Thus the integrality condition can be relaxed at the cost of requiring a very small
resource augmentation in the cache size.

EAGER-LFD (refer to Algorithm 1 for pseudo-code) simulates the development of cache content over
time. It maintains a set C of cache slots s for which it stores the page page(s) associated with the slot,
the time time(s) this page is fetched, and the time evict(s) when it can be evicted again. When request
(pi, [di, ei)) is processed, the easy case is when pi is already stored in some cache slot s. In this case, no
I/O is needed and we can simply set fi to fetch(s) and reserve the slot for request i by extending evict(s)
to cover ei. If pi is not cached, it is fetched as early as possible, i.e., immediately if there are pages in
cache that can be evicted or at the first point in time a page becomes evictable. If this time is too late to
finish fetching pi before its deadline di, the instance is rejected as infeasible. Among the pages p eligible
for eviction, the one with the longest forward distance is chosen, i.e., the one maximizing the next deadline
min {dj : j > i ∧ pj = p}.

Clearly, if Algorithm EAGER-LFD does not fail explicitly (in line 12), it will produce a feasible sched-
ule. Moreover, it produces a schedule with the FIFO property since it schedules primary requests in the
same order as the deadlines. However, we have to prove that a feasible schedule is actually found whenever
possible.
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Algorithm 1 EAGER-LFD
1: t := 0 \\everything is planned until time t
2: fill cache C with empty slots s all having page(s) = ⊥, fetch(s) = evict(s) = 0, next(s) = ∞
3: for i := 1 to n do \\build schedule incrementally
4: if ∃s ∈ C : page(s) = pi then \\pi is in cache
5: fi := fetch(s)
6: evict(s) := max(evict(s), ei) \\reserve s for request i.
7: next(s) := deadline of next request to pi or ∞ if no next request
8: else
9: t := max(t,min{evict(s) : s ∈ C}) \\earliest possible fetch time

10: if di < t+ 1 then \\deadline di will be missed
11: fail
12: choose the slot s ∈ C with evict(s) ≤ t which maximizes next(s) \\LFD rule
13: page(s) := pi; evict(s) := ei; fi := fetch(s) := t
14: t := t+ 1

Theorem 1 (EAGER-LFD is feasible) Algorithm EAGER-LFD is a real-time offline prefetching algorithm
which computes a feasible schedule if there exists one.

Proof: Consider any request sequence σ and any feasible schedule S for σ (specified by fetch times
f1, . . . , fn as discussed in Section 2). Wlog we can assume that the schedule has the FIFO property (see
Lemma 1). We show that algorithm EAGER-LFD computes a feasible schedule Slfd in this case. We prove
that S can be transformed to Slfd. The proof is inductive showing that a feasible FIFO schedule Si using
the same fetch times as Slfd for steps 1, . . . , i and having the same cache content at time maxj≤i fj . can be
transformed into a feasible FIFO schedule Si+1 using also the same fetch time and cache content for step
i + 1. In the following, when we change a fetch time t for a primary request to t′, we also change the free
requests that use fetch time t to t′.

Case i = 1: For S1 we simply set f1 := 0. Due to the FIFO property this is simply the old value of f1 or
all other fetch times are ≥ 2 so that the schedule remains feasible.

Case σi+1 is free in Si: By the induction hypothesis EAGER-LFD also has page pi+1 in cache and hence
σi+1 will also be a free request for it. Let σj , j ≤ i denote the last primary request of page pi+1 in Si.
By the induction hypothesis, fj has the same value as in the schedule produced by EAGER-LFD. Hence,
fi+1 = fj already has the right value for the induction step.

Case σi+1 is primary in Si: Let f ′ denote the fetch time EAGER-LFD would use for fi+1.

Case f ′ = fi+1: There is nothing to show.

Case f ′ > fi+1: EAGER-LFD selects the earliest possible time at which a page can be evicted as its next
fetch time f ′. Hence, f ′ > fi+1 implies that Si evicts a page pj with j ≤ i which is not evictable for
EAGER-LFD at time fi+1, i.e., fi+1 < ej . But this is impossible since Si behaves like EAGER-LFD for
requests σ1, . . . , σi.
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Figure 1: A periodic request sequence where EAGER-LFD (top) needs asymptotically twice the number of
I/Os as the optimal schedule (below).

Case f ′ < fi+1: In this case, since Si is a FIFO schedule, Si leaves the disk idle between maxj≤i fj + 1
and fi+1, in particular at time f ′. However, EAGER-LFD may evict a page pj (with j > i + 1) from the
cache which is still needed later. In this case, we set (fi+1, fj) := (f ′, fi+1), again obtaining a feasible
schedule with the same cache content after fi+1. Note that this may introduce a new primary fetch for σj .
If the page evicted by EAGER-LFD is not needed later, we only make the modification fi+1 := f ′. �

Theorem 2 Algorithm EAGER-LFD needs at most twice the number of I/Os than an optimal algorithm. On
the other hand, for every i ≥ 1 there are request sequences with |σ| = 2i where EAGER-LFD needs 2i I/Os
whereas an optimal algorithm needs only i+ 1 I/Os.

Proof: The first part of the theorem can be seen from the proof of Theorem 1 which shows how to convert
an optimal schedule to an LFD schedule introducing at most one additional fetch for each primary request
of the optimal schedule.

For the second part, consider k = 2 and any even size prefix of the sequence σ0σ1σ2 · · · with σj =
⟨(a, [6j+1, 6j+2)), (b, [6j+3, 6j+4)), (c, [6j+5, 6j+6))⟩ which periodically accesses the three pages
a, b, and c – one every other step. EAGER-LFD will compute the fetch time sequence ⟨0, 1⟩L1 · · ·Li−1

with Lj = ⟨2i, 2i + 2⟩ – using one fetch for each request. However, the sequence ⟨0, 1⟩F1 · · ·Fi−1 with
Fi = 4i, 4i− 4 is a feasible schedule that needs only i+ 1 I/Os. Figure 1 illustrates this situation. �

A major advantage of EAGER-LFD is that it can be implemented to run very efficiently. The exact
running time depends on the machine model and certain assumptions on the representation of the input. In
particular, we obtain deterministic linear time, if the page ID’s, deadlines, and evict times are integers that
are polynomial in n = |σ|:

In a preprocessing step we calculate for each request σi the deadline of the next request for the same
page. This can either be done by stably sorting σ by page id, or, for general page IDs, using a hash table of
size O(n). Using radix sort, this is possible in linear time. Using this sort (or hash) operation, we can also
rename the page ids to use integers in the range 1..n. This allows us during the main loop to keep a lookup
table telling us which pages are in cache.

A (minimum) priority queue stores the evict times of the cache slots while a (maximum) priority queue
stores the next deadlines of the evictable slots. The min-priority queue supports the minimum operation in
Line 9 and the max-priority queue supports the maximum operation in Line 12. Both priority queues have
integer keys and are monotone, i.e., their minimum/maximum is monotonically increasing/decreasing. This
allows a simple and efficient implementation. We can actually get the priority queue operations down to
amortized constant time by not using the actual times but only their rank in a sorted order of evict times
/ deadlines as keys for the priority queues. This way, simple bucket queues yield the desired result. The
required ranks can be determined by another preprocessing step using radix sort.
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Without any assumptions on the inputs we get O(n log n) execution time using sorting or expected time
O(n log n) using hashing. If σ does not fit into internal memory, we can nevertheless obtain an optimal
schedule since the preprocessing operations can be done using I/O-efficient sorting and the main loop –
using hashing – needs only space O(k). Note that all these optimizations can also be used for the non-
realtime LFD algorithm.

5 Algorithm LAZY-LFD

In this section we present the algorithm LAZY-LFD for the real-time integrated prefetching and caching
problem. This algorithm works by working backwards from the last deadline. For each new request, it
modifies the existing schedule to maintain I/O-optimality. While the schedule is being constructed, our
algorithm keeps track of a value t which is the time at which the earliest fetch of the current schedule starts.

Fetches are defined as late as possible, that is, just before the corresponding deadline or directly before
the next fetch. For each new request (starting from the end), we check whether there is a later fetch for
the same page which can be removed now. I.e., we check whether there is room in the cache to keep this
page loaded between the evict time of the current request and the fetch time of the next request. This check
is done in line 14 (after calculating the values next and full in line 5 and 10–13, respectively). We prove
that these conditions are correct in Section 5.1; in particular, Lemma 4 is crucial for the correctness proof.
Although it is perhaps not immediately obvious, as the name suggests LAZY-LFD also creates a schedule
with the LFD property, as we will show in Lemma 2.

LAZY-LFD uses a subroutine which is called CreateFetch(i,t,DoEvict) and is defined in Algorithm 2.

Algorithm 2 CreateFetch(i, t,DoEvict)
1: if there is a slot s ∈ C which is free at time t then
2: fi := t
3: fetch(s) := t
4: if DoEvict then
5: evict(s) := ei
6: if t < 0 or there exists a time at which there are at least k + 1 pages in cache then
7: Output FAIL
8: Set t := t− 1

The algorithm itself is defined in Algorithm 3. It uses the following definitions. We also define a concept
called slack which will be important later.

Definition 4 The cache is full if there are no empty slots in the cache (recall that a page occupies a slot
as soon as it starts being fetched) and moreover all pages in the cache are still needed at some point in the
future. Pages that are evicted at time t are not taken into consideration to determine whether the cache is
full or not at time t.

Definition 5 A tight fetch is a fetch which starts one time unit before the page is requested, i. e., at the latest
possible time.

Definition 6 The slack of a fetch is the amount of time between the end of the fetch and the corresponding
deadline.
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Algorithm 3 LAZY-LFD
1: Set t := ∞
2: for i := n downto 1 do
3: if t > di − 1 then
4: t := di − 1
5: if ∃j > i : pj = pi then
6: next := min{fj |pi = pj , j > i}
7: else
8: next := ∞
9: if next = ∞ then

10: CreateFetch(i, t, true)
11: else
12: if next > di − 1 then
13: if ei ≥ next or the cache is never full in [ei, next] then
14: full := ∞
15: else
16: full := the first time the cache is full in [ei, next].
17: if full≤next and there is a tight fetch which finishes in the interval [full, next] then
18: CreateFetch(i, t, true)
19: else
20: fj := −1 ∀j : fj =next \\Remove the fetch of page pi which starts at time next
21: s :=next−1
22: while ∃j : t < fj ≤ s do
23: j := argmax{fj |t < fj ≤ s} \\find last fetch in interval (t, s]
24: s := fj − 1 \\make interval smaller
25: m := max(min{fk|fk > fj},min{dk|pk = pj , k > i})-1 \\latest possible fetch time
26: fk := m ∀k : fk = fj
27: t :=min(min{fj |fj > 0, j > i}, di)− 1.
28: CreateFetch(i,t,false)
29: fj := t ∀j : fj = −1 \\Set fetch times that were set to -1 in line 20 correctly

Request Page di fi
1 a 2 0
2 e 2 1
3 d 3 2
4 c 5 3
5 b 5 4
6 a 5 -

Table 1: An example of the schedule produced by our algorithms for an input with k = 3. (Both algorithms
produce the same schedule if ties are broken in the same way.) The first two columns contain the input. (For
each request i, ei = di + 1.) The third and fourth column lists the times at which these algorithms start to
fetch these pages. A minus sign means that the page is not fetched (is already in the cache).
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Figure 2: Suppose k = 3, and consider the input from Table 1. LAZY-LFD treats the requests in order
of non-increasing deadline, starting from the end of the input sequence. Horizontal lines represent a cache
location which is occupied by the page at the interval indicated by the line. The small rectangles indicate
when each page is required to be in the cache. When LAZY-LFD gets to the request for page a at time 2,
without the optimization in lines 20–26 it would create the infeasible schedule on the left: there are four
pages in cache in the interval [2, 3]. However, LAZY-LFD removes the fetch for page a at time 4, the other
fetches move forward by 1 time unit, and the resulting schedule is feasible.

Note that the condition in line 9 of Algorithm 3 need not be satisfied even though deadlines are sorted:
if a fetch for a page pi is defined a long time before di, pi might be requested again between this fetch and
time di. We give an example of the execution of LAZY-LFD and EAGER-LFD for k = 2 in Table 1.

5.1 Analysis of LAZY-LFD

For convenience, we consider fetches to take place during half-open intervals of the form (f, f + 1].

Lemma 2 The schedule of LAZY-LFD has the FIFO, BUSY, and LFD properties throughout the execution
of LAZY-LFD.

Proof: The FIFO property holds because requests are treated in order of non-increasing deadlines and
fetches, once defined, are never reordered by LAZY-LFD.

We prove that the BUSY property is maintained by backwards induction, starting with the last request.
For the last request, there is nothing to prove: if its deadline is at time d, its fetch is scheduled at time d− 1,
at least initially (this fetch could be removed later).

By induction, the BUSY property holds before request i is handled. If next ≤ di−1 in line 9, we do not
change the schedule and are done by induction. This is also true if LAZY-LFD defines the new fetch one
time unit before the earliest current fetch (by induction) or at time di − 1, without changing the rest of the
existing schedule. This happens if the fetch is defined in line 10 or 18 of Algorithm 3, according to line 7 in
Algorithm 2 and line 4 of Algorithm 3. In lines 20–26, the next fetch to p is removed and all or some earlier
fetches are moved forward as far as possible, including the (currently) earliest one for p. Thus the BUSY
property holds again.

Finally, we consider the LFD property. Note that evictions always take place immediately after a request
for a page. The LFD property holds because whenever some page pi is evicted, all pages that are needed
again later than pi but requested before have already been evicted1: the fact that pi is evicted at time ei
means that the cache is full at some later point ti (before pi is needed again), and this means that a page
requested before time ei which is next needed after time ti can also not be kept in the cache. �

1Here we describe the final schedule of LAZY-LFD. The actual decision to evict such a page will be taken later in the algorithm
because it works backwards from the end of the input.
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Lemma 3 Suppose LAZY-LFD starts to fetch page pi with deadline di at time t. Then the number of pages
in the cache of LAZY-LFD at time t+ j is at least j for j = 1, . . . ,min(k, di − t).

Proof: By the FIFO property, every page j loaded in the interval [t, di] has ej ≥ dj ≥ di. By the BUSY
property, LAZY-LFD keeps loading pages in this interval. By its definition, LAZY-LFD does not evict any
page pj until after time ej (at the earliest). This proves the lemma. �

Theorem 3 If there exists a feasible schedule, LAZY-LFD computes an I/O-optimal one.

Proof: Let ALG(i) be the number of fetches that algorithm ALG defines to serve the sequence Ii consisting
only of the requests i, . . . , n. Denote an optimal algorithm by OPT, and without loss of generality assume it
satisfies the FIFO and BUSY properties. We use a proof by induction.

Hypothesis: The schedule of LAZY-LFD is I/O-optimal for any input consisting of at most i requests
that allows a feasible schedule, and there is no feasible schedule that fetches its first page later.

Base case: Consider an input consisting of a single request. LAZY-LFD defines a single fetch for it, at
the last possible time. Thus, LAZY-LFD is I/O-optimal, and no schedule can start its first fetch later than
LAZY-LFD.

Induction step: By the induction hypothesis, LAZY-LFD is optimal for Ii+1 (We assume that a feasible
schedule for the input exists, so it certainly exists for any subset of the input). Consider request i, for page
pi. We abbreviate pi by p in this proof. We need to check the following properties for each fetch we create.

I/O-OPT. LAZY-LFD does not define more than the optimal number of fetches

LAZY. The first fetch cannot start later in any feasible schedule that satisfies the FIFO and BUSY property

FEASIBLE. The schedule created by LAZY-LFD is feasible

MIN. At any time, an algorithm which is feasible and I/O-optimal cannot keep less pages in its cache than
LAZY-LFD.

Last fetch of p (Line 10): next = ∞, so the page is not fetched again after this time (i.e., p /∈ Ii+1).
I/O-OPT. LAZY-LFD defines one extra fetch and any feasible schedule requires an extra fetch compared

to input Ii+1.
LAZY. The first fetch for input Ii+1 cannot start later in any schedule by induction, and the new fetch

either starts immediately before it, or one time unit before p is due.
FEASIBLE. Suppose the new schedule is infeasible. If this is because we have defined a fetch before

time 0, there is no feasible schedule by LAZY. Suppose it is because not all pages fit in the cache at some
later time t. This means that at time t′ a fetch of a page starts, but after this time the k other distinct pages
loaded before time t′ (in particular page pi) are still required. Since MIN holds for Ii+1, k pages are in the
cache of the optimal algorithm at time t for the input Ii+1 (counting the one that starts getting fetched at
time t′). Since page pi is still required after time t′, no feasible schedule exists. We conclude that FEASIBLE

holds if the instance allows a feasible schedule.
MIN. Outside the interval [t, ei], nothing changes. For any t′ ∈ [t, ei], the cache now contains one more

page than before, namely p. The previous number of pages was minimal (for Ii+1) by induction and the first
fetch cannot start later in any schedule by LAZY. Since p /∈ Ii+1, MIN holds for t′ ∈ [di, ei].

If t = di − 1, there is one page in cache during [t, di) (recall that we count pages that are being fetched
as pages in the cache), which is clearly minimal. Else, by Lemma 3 and the fact that MIN holds for the
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input Ii+1, the number of pages in the optimal cache for the input Ii+1 is at least j at time t + j + 1 for
j = 1, . . . ,min(k, di+1− (t+1)). Since di ≤ di+1, adding one page which is not requested later (p /∈ Ii+1)
adds 1 to this number for all times t+ j, j = 1, . . . , di − t. Therefore MIN holds.

New fetch for p (Line 18): I/O-OPT. We have the following lemma, which shows that LAZY-LFD can
indeed evict page p at its evict time (and load it again later) and still be I/O-optimal.

Lemma 4 Let a fetch of page p (request i) start at time t. Suppose that p is again fetched later, and that this
happens for the first time at time next. Suppose there is at least one tight fetch in the interval [ei, next], and
denote the last time at which such a tight fetch finishes by tight. If the cache is full at some point no later
than tight, then OPT(i) = OPT(i+ 1) + 1.

Proof: We call the fetch which is running at time full the current fetch. Generally, there are three sets of
pages in the cache at time full:

1. k1 pages required during the current fetch

2. k2 pages already requested before, still needed after the current fetch

3. k3 pages that are needed only after time full.

Of course, k1 + k2 + k3 = k. Let us first consider the two easiest cases.

1. k2 = k3 = 0: k different pages have deadlines within an interval of length strictly less than 1 starting
at time full. By assumption, all these pages are different from p. This means that no algorithm can
have p in cache at time full, so Ii forces an extra fetch compared to Ii+1, and OPT(i) = OPT(i+1)+1.

2. k3 = 0, k2 > 0: All pages in the cache are either required during the current fetch, or before (these
pages were kept in cache to save a fetch on them). This means that LAZY-LFD has saved k2 accesses
to the k2 pages that were already required before this fetch. Suppose OPT(i) keeps p in its cache
throughout the interval [ei, next]. Then at least one of these k2 pages must be evicted by OPT, and
later loaded again. However, LAZY-LFD has the optimal number of fetches for the sequence Ii+1.
We have that OPT(i) has one fetch more than LAZY-LFD for the requests in Ii+1. Thus OPT(i) =
LAZY-LFD(i+ 1) + 1 = OPT(i+ 1) + 1.

If k3 > 0, we have the following situation: the cache is full at time full ∈ [ei, tight], but some pages
are already loaded solely in order to satisfy future requests (and not because they were requested before).
If there is any time t′ ∈ [t + 1, tight] at which the cache is full and case 1 or 2 above holds, we are done.
Otherwise, we let full be the last time the cache is full in (t+1,next], and define the current fetch accordingly.
If k3 > 0, some pages are loaded that are needed only later.

Suppose that in the optimal schedule, p is in the cache throughout [ei, next], so definitely at time full.
Then at least one of the pages that LAZY-LFD has in the cache at time full, say q, must be missing in the
optimal cache, since the cache of LAZY-LFD is full. Page q is not required to be in the cache at time full,
but there is a later need for it. If LAZY-LFD is saving an access on page q since q was requested before
time full as well, we are done: the optimal schedule still needs to load q, and without the request for p there
exists a schedule with one less fetch for q (namely, the one of LAZY-LFD), so OPT(i) = OPT(i + 1) + 1.
Otherwise, q is loaded only to satisfy a future request. In this case, consider the time starting from full.

Consider the k3 pages that are loaded purely to satisfy request intervals starting after time full. Say that
the last time such a page is first needed (after time full) is time t1, and denote that page by p1. (Possibly
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p1 = q.) At time t1, we can make a similar division into sets as above. If any pages are in cache at time
t1 such that the request interval for which they were loaded has not yet started, we can find a time t2 > t1
where the last such page (say p2) is first needed. We can continue this process until some time tℓ =: t∗,
which is defined as the earliest possible time after full such that all pages in cache were fetched to satisfy
a request at or before time t∗. (Some of these pages might have been kept in cache to also satisfy later
requests.)

We claim that LAZY-LFD fetches pages continuously in the interval [full, t∗]. This follows by applying
the BUSY property (Lemma 2) at time full, t1, t2, . . . successively until time t∗ is reached. Precisely, before
time full there is a fetch for p1 which is next required at time t1, and before time tj (j = 1, . . . , ℓ− 1) there
is a fetch for pj+1 which is next required at time tj+1.

Consider the last fetch that starts before time t∗. By definition of t∗, this fetch cannot be for a page that
is requested only after t∗. Thus this fetch must in fact be tight (no slack): if it were not tight and yet, no
other fetch starts after it and before time t∗, LAZY-LFD could (and would) have scheduled this fetch later
by property LAZY and induction. So

t∗ ≤ tight ≤ next.

Since the cache is not full in the interval (full, t∗] by definition of full, LAZY-LFD never fetches the
same page twice during (full, t∗] (pages are only evicted between two successive requests to it if the cache
is full between these requests by lines 13–14 and 17). All of these pages are needed in [full, t∗], including q.
Denote the set of pages fetched by LAZY-LFD in [full, t∗] by S.

We now repeatedly apply the pigeonhole principle, using the fact that LAZY-LFD is loading pages
continuously during [full, t∗]. The optimal schedule must load q at some time after full. So it must load at
least one page p(1) that LAZY-LFD loads in the interval [full, t∗] already before this interval, since there is
no time to fetch |S|+1 pages. This implies p(1) is not required during the fetch which runs at time full, and
LAZY-LFD does not have the pages {p, p(1)} in its cache at time full. Therefore LAZY-LFD has yet another
page q(1) in cache at time full that the optimal schedule does not, since its cache is full. We now repeat
this reasoning: if LAZY-LFD saves a request on q(1) since it was already requested before, we immediately
have OPT(i) = OPT(i + 1) + 1 (the optimal schedule must still pay for q(1)). Otherwise, we again find
that the optimal schedule must load q(1) in the interval [full, t∗], leading to yet another page p(2) that it must
load before the interval due to time constraints. Each such page p(i) implies an additional distinct page
q(i) that LAZY-LFD has in its cache at time full which the optimal schedule does not, because the pages
p, p(1), . . . , p(i) are all in the cache of the optimal schedule at time full and the cache of LAZY-LFD is full.
(Each time we find that LAZY-LFD does not have p(i) in its cache, because this page is requested in the
interval [full, t∗] and we know that LAZY-LFD loads it after time full: if p(i) were already in the cache at
time full, LAZY-LFD would never drop it since the cache is not full afterwards.)

Finally, after at most k steps we either run out of pages and find a contradiction, or we find a page that
LAZY-LFD saves a fetch on by keeping it in cache and that the optimal schedule must pay for, implying
that

OPT(i) = LAZY-LFD(i+ 1) + 1 = OPT(i+ 1) + 1.

This concludes the proof of Lemma 4. �

Lemma 4 immediately implies that I/O-OPT holds if LAZY-LFD creates a fetch in line 18.
LAZY. Since the optimal solution requires an additional fetch compared to the input i + 1, . . . , n, and

the first fetch could not start later for that input, LAZY holds.
FEASIBLE. The new schedule clearly does not violate deadlines. Thus if the new schedule is infeasible,

no feasible schedule can exist by induction: either the cache capacity constraint is violated in all possible
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schedules, but then the instance does not admit a feasible schedule because the schedule starting from the
next request was I/O-optimal and busy, or t < 0, but the next fetch already started as late as possible by
LAZY.

MIN. Follows from Lemma 4, LAZY and Lemma 3.

Change in partial schedule: p fetched earlier, kept in cache (Line 28), next ≤ ei: LAZY-LFD must
keep p in cache until the end of the interval that it fetches it for, i.e., until time ei ≥ next. LAZY-LFD sets
full = ∞ in Line 14 and continues to Line 20. We can remove the fetch at time next in line 20 since a new
fetch will be created at time t in line 28, and I/O-OPT holds by induction. The new schedule also satisfies
the FIFO and BUSY property. Thus if it is infeasible, no feasible schedule exists by induction and LAZY

(for this smaller input).
If every fetch between t and next gets postponed by 1 in line 26, LAZY and MIN hold by induction (the

number of pages in cache has not increased at any time). If there is a fetch which gets postponed less, this
can only happen because the deadline dj for the corresponding page pj is within 1 of the old end of the fetch.
However, in this case, we again get two independent input sequences (before and after time dj). Therefore,
we can apply induction on the part of the input sequence ending at time dj and conclude that LAZY and MIN

hold.

Line 28, cache is never full during [ei, next] : We can certainly keep p in the cache without overloading
it, and save an access. The schedule for the other pages may remain the same, or some fetches may now be
moved (Line 26). Similarly, if the cache is only full after the last fetch with slack less than 1, all the fetches
after that one can be postponed by 1 (after removing the access at time next) without violating any deadlines,
meaning that we can save one cache slot in every time step, and we can save one access by keeping p in
cache. An example of this situation can be seen in Figure 2.

In this case we do not increase the number of fetches in this step. Therefore, by induction the resulting
schedule is I/O-optimal (I/O-OPT) and by the reasoning above it is feasible (FEASIBLE). Also, the first fetch
in a feasible schedule cannot start later if the input becomes larger (LAZY) and the cache is not fuller at any
time than it was before handling this request (MIN).

Line 28, all fetches in [ei, next] have slack at least 1: There can be no interval in [ei, next] in which
no fetch takes place (because then the fetch immediately before that interval could be postponed, and
LAZY-LFD would have done this). Thus at all times, some page is being fetched. In this case all fetches
can be postponed by 1 as above after removing the access at time next. Clearly, the new schedule does not
violate cache capacity constraints or deadlines. We can show that LAZY and MIN hold as in the previous
case. If t < 0, then no feasible schedule exists. Else, FEASIBLE holds.

In all these cases, we find

LAZY-LFD(i) = LAZY-LFD(i+ 1) = OPT(i+ 1) = OPT(i)

(the last equality follows since OPT(i + 1) ≤ OPT(i) ≤ LAZY-LFD(i)). So I/O-OPT holds if LAZY-LFD
creates a fetch in line 28. This completes the proof of Theorem 3. �

When using LAZY-LFD in practice, e.g., for a soft real time system, it is a disadvantage that it fetches
requests as late as possible. In contrast, EAGER-LFD in some sense fetches request as early as possible
which is good since such a schedule is more resilient to fluctuations in fetch times2. Indeed, we can use a

2Which are very common for hard disks, whereas for SSDs – at least when only reading – it should be possible to have highly
deterministic disk access delays.
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combination of LAZY-LFD and EAGER-LFD that has the good features of both: For any feasible request
sequence σ, first find an I/O-optimal schedule S with LAZY-LFD. Then build a new request sequence σ′

that only contains the primary requests of σ for S but whose evict times are postponed to also cover the free
requests. More formally,

σ′ = ⟨(pi, [di,max {ek : fk = fi}) : σi is primary in S⟩ .

Now apply EAGER-LFD to σ′ thus moving fetches for σ′ as far ahead as possible. Since σ′ is feasible,
EAGER-LFD will also find a feasible schedule. Moreover, this schedule will keep all pages long enough in
cache to serve all the original requests in σ. Since it performs exactly |σ′| fetches, this new schedule is also
I/O optimal.

6 Online algorithms

In the pure online model, it is impossible for an online algorithm to handle the hard deadlines properly. In
fact, we have the following lemma which shows that even lookahead does not help much.

Lemma 5 Any finite amount of lookahead is insufficient by itself to provide feasible schedules.

Proof: Let the lookahead be n − 1 time units, and k = 2 (for simplicity). Consider the following request
sequence.

Page a b x1 x2 ... xn a (or b)
Deadline 1 2 3 4 ... n+ 2 n+ 2

At time 2 the online algorithm needs to decide whether it removes page a or page b from its cache to fetch
x1. However, with a lookahead of n− 1, it is impossible to know which page to evict. �

The explanation is that an online algorithm cannot handle more than 1 pages being requested per time
unit on average, because it will need to decide which pages to evict and will inevitably make the wrong
decisions. We see that the (single) disk is always busy in the above example. We therefore consider the
resource augmentation model.

An option is to give the online algorithm a larger cache than the offline algorithm it is compared to.
However, the example also shows that a larger cache does not really help: at some point a page must be
evicted, and this will be the page on which the algorithm fails later.

We can also allow the online algorithm to fetch pages faster than the offline algorithm. We show in the
following that this does allow for a competitive algorithm. In particular, we show that using a very simple
algorithm, we can handle any sequence of requests which allows a feasible schedule as long as we have a
lookahead of k and can fetch pages with twice the speed of the offline algorithm. That is, fetching a page
costs only half a time unit for the online algorithm. Equivalently, we can also give the online algorithm the
power to fetch two pages at the same time, by assuming that it has two parallel disks that both store all the
data that is required.

In order to analyze our algorithm, we first consider offline algorithms for this problem. There exists an
optimal offline algorithm with the following properties.

Assumption 1 No pages are evicted during a fetch.

It can be seen that evicting pages during fetches, instead of waiting until the end of the current fetch and
then evicting them, cannot help an algorithm with respect to deadlines of later requests.
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Assumption 2 At most one page is evicted at the start of a fetch.

Since at most one page can be loaded during a single fetch, it does not help to evict more than one page at
the start of a fetch, since only one slot can be filled with this fetch anyway. On the other hand, it also does
not harm to keep as many pages as possible in the cache, since at most one free slot is needed for any fetch.

Assumption 3 Pages are evicted only at the start of fetches.

Since at the beginning the cache is empty, and each fetch loads only one page, there is no need to evict pages
at any other time.

Lemma 6 The contents of the cache of the optimal offline algorithm change for at most one slot in any
(half-open) interval of length 1.

Proof: This follows immediately from the above assumptions. �

Lemma 7 In an instance that allows a feasible solution, in an interval I of length strictly smaller than
i ∈ N, there cannot be more than k + i− 1 requests for distinct pages.

Proof: At the deadline d of the last request in I , before any page is evicted, by the above assumptions k
of the requested pages in I are in the offline cache. During any fetch, the configuration of the offline cache
does not change. By Lemma 6 and Assumption 3, the configuration only changes at the end of fetches, and
only by one page. Thus in I , the configuration can only change at most i − 1 times before the final fetch.
This means that in total, at most k+ i−1 distinct pages are present in the cache during I (not all at the same
time, but overall). This is then an upper bound for the number of pages that can be requested in a feasible
problem instance. �

Remark 1 In any interval (0, t], at most ⌊t⌋ distinct pages can be requested in a feasible instance.

Consider a greedy algorithm for general k. See Figure 3. This algorithm simply loads pages in the order
in which they are requested, as early as possible, and evicts pages that it does not see in its lookahead.

At each time t, do the following.

1. If there is any page p in the cache that is not currently needed and that is not visible in the looka-
head, evict p.

2. If a request for page p becomes visible, schedule page p to be loaded at the earliest time at or after
t at which there is a free slot in the cache.

3. Load any pages that are scheduled to be loaded at time t.

Figure 3: A greedy online algorithm

Lemma 8 Greedy with a speed of s (i.e., that needs only 1/s time units for each page fetch) and a lookahead
of k/(s− 1) creates a feasible schedule for each input for which a feasible schedule exists.
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Proof: We prove by induction on the number of requests that the greedy algorithm provides a feasible
schedule, if one exists. Suppose the algorithm sees its first request at time t. Then this request has deadline
t+k/(s−1). If the algorithm fails at this point, there are at least k+1 pages required at time t+k/(s−1),
which means there is no feasible schedule.

Consider a fetch (of page p) that finishes at time t and suppose the algorithm did not fail yet. Greedy
plans to fetch the first requested page with deadline t or greater that is not in its cache. The only case in
which this fails is if there exists a page q with deadline smaller than t+ 1

s which is not in the cache of Greedy.
This page was already visible at time t + 1

s − k
s−1 . Greedy must have been loading pages throughout the

interval [t + 1
s − k

s−1 , t], loading s( k
s−1 − 1

s ) = sk
s−1 − 1 pages in this time. It was also loading a page

immediately before time t+ 1
s −

k
s−1 , since otherwise it would have started to load q sooner. But this means

that in the interval [t + 1
s − k

s−1 , t +
1
s ) there are sk

s−1 distinct pages requested (Greedy would not evict q
at time t + 1

s − k
s−1 anymore). However, by Lemma 7, there can be at most k + k

s−1 − 1 = sk−s+1
s−1 pages

requested in an interval of length less than k
s−1 , a contradiction. �

We now show a matching lower bound, showing a tight relationship between the amount of lookahead
and the amount of resource augmentation on the speed that is required for an online algorithm to provide
feasible schedules for feasible inputs.

Theorem 4 An online algorithm with a disk of speed s, or s parallel disks of speed 1, needs at least a
lookahead of k/(s− 1) in order to be able to create feasible schedules for all feasible inputs.

Proof: Consider an online algorithm A. Assume that the amount of lookahead is ℓ < k/(s − 1) and
consider the following instance. It consists of k pages required at time k, followed by new distinct pages
with deadlines at each time k+ i for i = 1, . . . , 2k. At time 3k− ℓ, A has at most k of the at least 2k pages
with deadline no later than 3k − ℓ in cache. We now add a request for k pages that A does not have in its
cache, but that were already requested, at time 3k + 1.

The optimal offline solution is the following: first load the k pages requested at time k in the interval
[0, k]. In each successive interval of length 1 until time 3k, load one page and evict one page that will not be
requested again. It can only happen once that there is no such page in cache, namely if all k pages in cache
are requested at time 3k + 1 (which is the only time at which requests are repeated). In that case, evict an
arbitrary page, and reload it in the interval [3k, 3k + 1]. In all cases, this produces a feasible solution.

In this instance, in the interval (3k− ℓ, 3k+ 1], there are deadlines for k+ ℓ distinct pages. Loading all
these pages takes at least (k + ℓ)/s time for A. Thus we find as condition for ℓ such that A might create a
feasible schedule that ℓ ≥ (k + ℓ)/s, or ℓ ≥ k/(s− 1). �

If we give the online algorithm parallel disks instead of a faster disk, we get slightly different results
because now loading k + ℓ distinct pages takes at least ⌈(k + ℓ)/s⌉ time, so the required lookahead may be
slightly larger depending on k, s and ℓ.

7 Conclusions

We have introduced a model for real-time prefetching and caching that is simple, seems to model practically
relevant issues, and allows fast and simple algorithms with useful performance guarantees in offline and
online settings. Although previous work from non-real-time models provides useful ideas for algorithms,
the situation in the real-time setting is often different (e.g., wrt to I/O optimality of LFD or how to measure
lookahead). Hence, given the importance of real-time applications, we expect that more work will be done
on this subject in the future.
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One interesting open question is the case of parallel disks. Although the hard real-time case we currently
consider is very important since hard real-time constraints are present in many safety critical systems (e.g.
avionics), we could also look at soft real-time where the applications remains viable when some requests
are missed but we want to minimize the number of missed requests (or the sum of importance weights given
for the missed requests). Finally, it could be interesting to consider the case where a page is modified while
it is in the cache and needs to be written back to disk.

Acknowledgment The authors would like to thank anonymous referees who pointed out some oversights
in the proofs in a previous version of this paper.
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