
Combinatorial algorithms for
packing and scheduling problems

Habilitationsschrift Universiẗat Karlsruhe 2006

Rob van Stee

Contents

1 Introduction 1
1.1 Approximation algorithms 2
1.2 On-line algorithms .. 2
1.3 Multidimensional packing 4
1.4 Scheduling . 6
1.5 Outline of the thesis .. . 8
1.6 Credits . 9

I Multidimensional packing 13

2 Multidimensional packing problems: a survey 15
2.1 Next Fit Decreasing Height 16
2.2 Strip packing . 18

2.2.1 Online results . 18
2.2.2 Offline results . 18
2.2.3 Rotations . 20

2.3 Two-dimensional bin packing 20
2.3.1 Online results . 20
2.3.2 Offline results . 22
2.3.3 Resource augmentation .23
2.3.4 Rotations . 23

2.4 Column (three-dimensional strip) packing 23
2.4.1 Online and offline results .. 23
2.4.2 Rotations . 24

2.5 Three- and more-dimensional bin packing 24
2.6 Vector packing . 25
2.7 Variations . 27

2.7.1 Rectangle stretching .27
2.7.2 Items appear from the top . 27
2.7.3 Dynamic bin packing . 28
2.7.4 Packing rectangles in a single rectangle 28

i

ii Contents

3 An approximation algorithm for square packing 31
3.1 Subroutines for the algorithm 31
3.2 Algorithm . 33
3.3 Approximation ratio .. . 34

4 Optimal online algorithms for multidimensional packing 37
4.1 Packing hypercubes .. 38
4.2 Packing hyperboxes .. 44
4.3 Variable-sized packing 49
4.4 Resource augmented packing 53

4.4.1 The asymptotic performance ratio 53
4.5 Conclusions . 55

5 Packing with rotations 57
5.1 Strip packing . 58

5.1.1 A3/2-approximation algorithm . 59
5.1.2 An asymptotic polynomial-time approximation scheme. 61

5.2 Two-dimensional bin packing 67
5.3 This side up . 74
5.4 Further applications 77

5.4.1 Three-dimensional strip packing 77
5.4.2 Three-dimensional bin packing 79

5.5 Conclusion . 80

II Scheduling 81

6 Minimizing the total completion time online on a single machine, using restarts 83
6.1 Algorithm RSPT . 84
6.2 Global assumptions and event assumptions 86
6.3 Definitions and notation 88
6.4 Amortized analysis .. 90

6.4.1 Credit requirements .92
6.4.2 The invariant . 93
6.4.3 Analysis of an event . 96

6.5 Interruptions .. 98
6.6 Job completions .106

6.6.1 OPT runs at least three jobs beforeARRIVE 109
6.7 Interruptions,s < x/2 . 111

7 Online scheduling of splittable tasks 117
7.1 A greedy algorithm .118
7.2 Computing the optimal makespan 119

7.2.1 Offline algorithm forℓ ≥ (m + 1)/2 120

Contents iii

7.3 Algorithm HIGH(k,R) . 120
7.3.1 Many splits . 121
7.3.2 The case off = m − 1 fast machines 123
7.3.3 Few splits on identical machines 126

7.4 A special case: four machines, two parts 127
7.5 Conclusion . 131

8 Speed scaling of tasks with precedence constraints 133
8.1 Motivation . 133
8.2 Summary of results .134

8.2.1 Related results . 135
8.3 Formal problem description 135
8.4 No precedence constraints 136
8.5 Main results . 137

8.5.1 One speed for all machines .137
8.5.2 The power equality . 137
8.5.3 Algorithm . 142
8.5.4 Analysis . 144

9 Real-time integrated prefetching and caching 147
9.1 Problem definition .148
9.2 Problem properties .. 149
9.3 Algorithm REALM ISER . 149

9.3.1 Analysis of REALM ISER . 151
9.4 Online algorithms .. 156
9.5 Conclusions . 158

Chapter 1

Introduction

This thesis is concerned with various optimization problems in the field of packing and schedul-
ing. We will develop algorithms for these problems that are guaranteed to give solutions that
are not too far away from the optimal solution. There are two main approaches developing such
algorithms. The first isLP-basedalgorithms, where the problem is first modeled as a linear
program (LP) by relaxing some of the constraints. The solution of this linear program is then
rounded to find a feasible solution to the original problem, and we compare this solution to the
optimal solution to get a performance guarantee for the algorithm.

The second approach iscombinatorialalgorithms. This is the approach that we will focus on
in this thesis. Here, we analyze the combinatorial structure of a problem in order to find general
rules that can be proven to give good results for all problem instances.

In this thesis we will consider both approximation algorithms (Section 1.1), that are given
a complete problem instance but need to generate a solution in polynomial time, and online
algorithms (Section 1.2). Online algorithms receive theirinput incrementally and need to make
decisions without knowing the rest of the input. Such algorithms are required in situations where
solutions need to be generated over time and the input is onlycompletely known at the end of
processing.

The first part of our thesis is concerned with multidimensional bin packing. Bin packing is
one of the oldest and most well-studied problems in computerscience [42, 53]. The study of this
problem dates back to the early 1970’s, when computer science was still in its formative phase—
ideas which originated in the study of the bin packing problem have helped shape computer
science as we know it today. The influence and importance of this problem are witnessed by the
fact that it has spawned off whole areas of research, including the fields of online algorithms and
approximation algorithms. We introduce this part in Section 1.3.

The second part of our thesis deals with another classical area in computer science: schedul-
ing. This area has been studied intensively since the 1960’s[83] and many different problem
settings have been studied, for instance machines with different speeds (related machines) or
with availability constraints [149], jobs that have precedence constraints, jobs that need to be
executed in parallel, jobs that cannot be executed in parallel, jobs with different stages and
many, many other settings. We introduce this problem area inSection 1.4.

An outline of the results described in this thesis can be found in section 1.5.

1

2 Chapter 1. Introduction

1.1 Approximation algorithms

It can be shown for many important problems that determiningan optimal solution may be
extremely time-consuming due to their computational complexity. The class of NP-complete
problems represents a large collection of such problems, which are all related in the sense that
a polynomial-time solution of one of them implies the polynomial-time solvability of the whole
class. Up to now, no polynomial-time algorithm for an NP-complete problem is known. For
more background about the complexity classes P and NP, see for instance Garey and John-
son [80].

Example Given an input ofn jobs of different sizes, assign them tom machines such that the
maximum load is minimized, where the load of a machine is the total size of the jobs assigned
to it. This problem is strongly NP-hard.

For such problems, we can try to find relatively simple algorithms that are guaranteed to find
“nearly” optimal solutions. Anapproximation algorithmshould have a polynomial running time
and produce a feasible solution with cost at most some factoraway from the optimal cost. This
factor is calledapproximation ratio. We have the following definitions. We denote the cost of
an algorithmALG on an inputI by ALG(I). The optimal cost of this input is denoted byOPT(I).

Definition 1.1 An algorithmA for a minimization problemΠ has an approximation ratio ofρ

A(I) ≤ ρOPT(I)

for any problem instanceI of Π.

The definition for maximization problems is analogous, except that we now requireOPT(I) ≤
ρA(I) for any inputI. Thus the approximation ratio is always a number which is greater than
1. After all, an approximation ratio of 1 is not possible for NP-complete problems, unless P
= NP. We call an algorithm that runs in polynomial time and has approximation ratioρ a ρ-
approximation algorithm.

Some problems have the property that for everyε > 0, it is possible to find a solution which
has cost within a factor of1 + ε of the optimal cost.

Definition 1.2 A family of algorithms which takes as input a problem instance I and a desired
accuracyε > 0, runs in time which is polynomial in the size of the input for any ε > 0 and
gives as output a solution which has cost at most(1 + ε)OPT(I) is called apolynomial-time
approximation scheme(PTAS).

A fully polynomial-time approximation scheme is a PTAS which has running time polyno-
mial in both the size of the inputI and in1/ε.

1.2 On-line algorithms

In many situations, decisions need to be made without full knowledge of the problem at hand.
This holds in particular, when the result of a decision depends on future events. We can model

1.2 On-line algorithms 3

such situations by online problems. An online problem is characterized by an incrementally
appearing input, where the input needs to be processed in theorder in which it becomes available
and without knowledge of the rest of the input. An online algorithm is simply a list of rules for
processing such an input.

There are two ways in which an input can appear incrementally. The input can be given as a
list, where the remainder of the list (including its length)is hidden from the online algorithm, or
events can occur over time. We will encounter both of these types of inputs in this thesis.

Example A natural and important example of a problem with incompleteinformation ispag-
ing, the problem of maintaining a small cache of fast memory in a computer system. In this
problem, a controller has to decide which page to eject from the cache when a program re-
quests a page that is not currently in the cache. If future requests are known, this is solved
optimally by ejecting the page which will be requested the last among all pages in the cache.
However, in real-life applications the sequence of future requests will not be known, and the
decision has to be made in some other way. This problem has received a lot of attention over the
years [3, 20, 23, 38, 103, 146].

There are many ways of measuring the performance of online algorithms. In this thesis, we
will focus on the worst-case behaviour of algorithms. Sincethe cost for a particular instance
may be arbitrarily high, the behaviour of an algorithm should be compared to other algorithms
to get meaningful results. In particular, it is important toknow how much worse an algorithm
performs relative to anoptimalalgorithm, in other words, how much worse it is than the optimal
solution for any given problem instance. This kind of analysis is known ascompetitive analysis,
which was introduced by Sleator and Tarjan [146]. It involves comparing the performance of
an on-line algorithm to the performance of an off-line algorithm that knows the entire problem
instance in advance. We do not impose limits on the computational complexity of either the off-
line or the on-line algorithm. Therefore the off-line algorithm can always generate an optimal
solution.

This type of analysis can be viewed as a game between two players, an on-line algorithm
and anadversarythat both generates the problem instance and serves it as an off-line algorithm.
The adversary tries to maximize its performance relative tothe on-line algorithm.

Many problems have been studied using competitive analysis. Apart from the paging prob-
lem, these include a variety of scheduling problems, bin packing, routing and admission control
on a network [8, 22, 83, 3, 71, 7].

The competitive ratio We consider both algorithms that seek to minimize a cost and algo-
rithms that seek to maximize a benefit. We denote the cost or benefit of an algorithmA on an
input sequenceσ by A(σ). (The input sequence can appear over time or sequentially.)The
optimal off-line cost for an input sequenceσ is denoted byOPT(σ).

We compare the ouptut of an on-line algorithmA to OPT(σ) using thecompetitive ra-
tio [146], which for algorithms that try to minimize a certain cost is defined as follows:

R(A) = sup
σ

A(σ)

OPT(σ)

4 Chapter 1. Introduction

where the supremum is taken over all possible inputs. For algorithms that try to maximize a
certain benefit, we define the competitive ratio as

R(A) = sup
σ

OPT(σ)

A(σ)
.

In both cases, the best on-line algorithm for a problem is theone that has the lowest possible
competitive ratio, and this ratio is at least 1 for any problem.

The competitive ratio of a problem is defined asinfAR(A). The goal is to find an algorithm
with competitive ratio close toinfAR(A).

The competitive ratio is clearly a worst-case measure, and by determining the competitive
ratio of a certain problem, one can determine the benefit of knowing the entire problem instance
in advance. An advantage of such a comparison is that if one can prove that an algorithm has
a competitive ratio ofR, then any other algorithm can do at most a factor ofR better on any
input.

The asymptotic performance ratio In bin packing problems, we are usually interested in the
performance of algorithms on “typical” instances, for which the optimal cost increases with the
size of the inputn. To this end, we now define theasymptotic performance ratio(approximation
ratio). For a given input sequenceσ, let costA(σ) be the number of bins used by algorithmA on
σ. Let cost(σ) be the minimum possible number of bins used to pack items inσ. Theasymptotic
performance ratiofor an algorithmA is defined to be

R∞
A = lim sup

n→∞
sup

σ

{

costA(σ)

cost(σ)

∣

∣

∣

∣

cost(σ) = n

}

.

Note that this ratio can be calculated both for online and foroffline problems. It is also known
as theasymptotic worst-case ratio.

1.3 Multidimensional packing

In the simplest (one-dimensional) version of this problem,we receive a sequenceσ of pieces
p1, p2, . . . , pn. Each piece has a fixed size in(0, 1]. We have an infinite number of bins each
with capacity 1. Each piece must be assigned to a bin. Further, the sum of the sizes of the pieces
assigned to any bin may not exceed its capacity. The goal is tominimize the number of bins
used.

The study of multidimensional packing problems gained an increasing interest in the last
few years [17, 28, 47]. A main trend was the study of offline andonline packing algorithms for
oriented items which are rectangles or boxes. Given a large supply of bins which are squares,
or cubes, or a strip of infinite height, the goal is to pack items efficiently, without rotation, such
that the sides of all items are aligned with the sides of the strip or the bins.

There are thus two main versions ofd-dimensional packing problems:

1.3 Multidimensional packing 5

• Strip packing (d = 2 or d = 3). Here the items need to be packed into a strip of
unbounded height (the base is a unit interval or a unit square). Thus each item must be
assigned a position such that the item is entirely containedwithin the strip and does not
overlap with any other item. The goal is to minimize themaximum height usedfor any
item. The strip packing problem has many applications, for instance cutting objects out of
a strip of material in such a way that the amount of material wasted is minimized.

• Box packing. We have an infinite number ofbins, each of which is ad-dimensional unit
hyper-cube. Each itemp = (s1(p), . . . , sd(p)) must be assigned to a bin and a position
(x1(p), . . . , xd(p)), where0 ≤ xi(p) andxi(p) + si(p) ≤ 1 for 1 ≤ i ≤ d. Further, the
positions must be assigned in such a way that no two items in the same bin overlap. A
bin is empty if no item is assigned to it, otherwise it is used.The goal is to minimize the
number of bins used.

We also consider the version whererotationsare allowed. Although the possibility of al-
lowing rotations was already mentioned by [43], there has been relatively little research into
this subject from a worst-case perspective until recently.In the above-mentioned application of
strip packing, allowing rotations corresponds to assumingthat the material used for cutting is
featureless (i.e., the orientation of the items on the stripdoes not matter). In practice, it is often
important that cutting takes place along horizontal or vertical lines. We therefore focus on the
case where only90◦ rotations are allowed.

In thebounded spacevariant of the box packing problem, an algorithm has only a constant
number of bins available to accept items at any point during processing. The bounded space
assumption is a quite natural one, especially so in online box packing. Essentially the bounded
space restriction guarantees that output of packed bins is steady, and that the packer does not
accumulate an enormous backlog of bins which are only outputat the end of processing.

Known results Offline bin packing has received a great deal of attention, for a survey see [42].
The most prominent results are as follows: Johnson [98] was the first to study the approximation
ratios of both online and offline algorithms. Fernandez de laVega and Lueker [67] presented
the first approximation scheme for bin packing. Karmarkar and Karp [104] gave an algorithm
which uses at most cost(σ) + log2(cost(σ)) bins.

The classic (one-dimensional) online bin packing problem was first investigated by Ull-
man [153]. He showed that the FIRST FIT algorithm has performance ratio17

10
. This result was

then published in [79]. Johnson [99] showed that the NEXT FIT algorithm has performance
ratio 2. Yao showed that REVISED FIRST FIT has performance ratio5

3
, and further showed that

no online algorithm has performance ratio less than3
2

[159]. Brown and Liang independently
improved this lower bound to 1.53635 [25, 123]. The lower bound currently stands at1.54014,
due to van Vliet [156]. Define

πi+1 = πi(πi − 1) + 1, π1 = 2,

and

Π∞ =

∞
∑

i=1

1

πi − 1
≈ 1.69103.

6 Chapter 1. Introduction

Lee and Lee presented an algorithm called HARMONIC, which usesm > 1 classes and uses
bounded space. The fundamental idea of HARMONIC is to first classify items by size, and
then pack an item according to its class (as opposed to letting the exact size influence packing
decisions).

For the classification of items, we need to partition the interval (0, 1] into subintervals. The
standard HARMONIC algorithm usesM − 1 subintervals of the form(1/(i + 1), 1/i] for i =
1, . . . , M − 1 and one final subinterval(0, 1/M]. Each bin will contain only items from one
subinterval (type). Items in subintervali are packedi per bin fori = 1, . . . , M −1 and the items
in intervalM are packed in bins using NEXT FIT(i.e. a greedy algorithm that opens a new active
bin whenever an item does not fit into the current active bin, and never uses the previous bins).

For anyε > 0, there is a numberM such that the HARMONIC algorithm that usesM classes
has a performance ratio of at most(1 + ε)Π∞ [114]. Lee and Lee also showed there is no
bounded space algorithm with a performance ratio belowΠ∞.

In Chapter 2, we present a survey on multidimensional packing.

1.4 Scheduling

In the standard scheduling problem,n jobs with different processing requirements are to be
scheduled on one machine or onm parallel identical machines. Jobs arrive over time and each
job has to be assigned to one of the machines and run there continuously until it is completed.
Each machine can only run one job at a time. In the online problem, the online algorithm only
becomes aware of a job when it arrives. We also consider the case where the jobs arrive one by
one (in a list) and each job arrives only after the previous one has been assigned.

The input is a job sequenceσ = {J1, . . . , Jn}. Each jobJi arrives at itsrelease timeri and
needs to be run forwi time on one of the machines (wi is thesizeor weightof Ji). Ji is completed
after it has been running forwi time, and the time at which this happens is itscompletion time
ci. The output of an algorithm is a scheduleπ that for each job determines when and on which
machine it is run.

Problem variations We can allow an algorithm topreempta job, halting its execution and
continuing it later, possibly on a different machine. We will also considerrelated machines,
where each machine has a speed which determines how long it takes to complete a job: on a
machine with speeds, a job of sizew completes inw/s time. Furthermore, we will consider
variable-speedmachines, where the speed of a machine can be changed at any time, but the
required power grows with some power of the speed. The exact relationship between power and
speed depends on the device at hand, but for most devices it isof the formsα for some value
α > 1. We will assume that there is a predetermined amount of totalenergy available, and it
needs to be allocated to machines and jobs to optimize the schedule. Our results hold for any
value ofα > 1.

In some applications, jobs are not independent of eachother, but instead some jobs may only
start after certain other jobs have run. We model this byprecedence constraints. These can be

1.4 Scheduling 7

represented by a graph, where there is a directed edge between two nodes if the job associated
with the second node may only start after the job associated with the first node has finished.

Optimality criteria We will discuss several criteria by which machine scheduling algorithms
can be measured. This is first of all the maximum completion timemax ci, the time at which
the last job completes. This is also known as themakespan. In the case that jobs arrive in a
list in stead of over time, the problem of minimizing the maximum makespan is equivalent to
minimizing the maximum load over all the machines:load balancing. Here a job size does not
represent the time that the job is running, but rather the amount that this job adds to the load
of a machine when it is assigned to it. We consider the situation where jobs can be split into a
limited amount of parts, and give online algorithms for machines of two speeds that are in some
cases optimal.

For problems where jobs arrive over time, we also consider the total completion time
∑

ci.
In particular, we consider the question of how to userestartseffectively to minimize

∑

ci in an
online environment on a single machine. A restart is weaker than a preemption in that the work
done on a job is lost in case of a restart, and the job has to be run again from scratch. Prior to
our work, nothing positive was known about this.

Prefetching and caching We also consider a related problem which is called prefetching and
caching. This is a classical technique for dealing with memory hierarchies. Prefetching hides
access latencies by loading pages into the cache before theyare actually required [65, 100, 111,
155]. Caching avoids I/Os by holding pages that are needed again later [20, 23, 69, 135]. Since
both techniques compete for the same memory resources, it makes sense to look at the integrated
problem [4, 27, 101, 91, 108].

As a concrete (simplified) example consider a flight simulator. Externally stored objects
could be topograhical data, textures, etc. At any particular time, a certain set of objects is
required in order to play out the right screen content and sound without delays. A demo run
could be preplanned resulting in an offline version of the problem. User interactions will result
in an online problem where we have a certain lookahead because an action of the user will
predetermine the screen content for some small amount of time.

Known results Minimizing themakespanfor the case that the jobs arrive one by one (load
balancing) was considered in a series of papers [83, 84, 19, 102, 3]. Graham [83] introduced
the algorithm GREEDY. This algorithm schedules each arriving job on the least loaded machine.
The load of a machine is the sum of the loads of the jobs that areassigned to it. Graham showed
that GREEDY has a competitive ratio of2 − 1/m, which is optimal form = 2 andm = 3.
Currently, the best upper bound for generalm is 1 +

√

(1 + ln 2)/2 ≈ 1.920 due to Fleischer
and Wahl [71] and the best lower bound is1.853 [82] based on Albers [3].

Chakrabarti, Phillips, Schulz, Shmoys, Stein and Wein [32]gave a 4-competitive algorithm
for minimizing thetotal completion timeon parallel machines when jobs arrive over time, while
Vestjens [154] showed a lower bound of 1.309. For a single machine, Hoogeveen and Vest-

8 Chapter 1. Introduction

jens [90] gave a 2-competitive on-line algorithm and showedthat it is optimal. Two other opti-
mal algorithms were given by Phillips, Stein and Wein [136] and Stougie [151].

Using randomization, it is possible to give an algorithm of competitive ratioe/(e − 1) ≈
1.582 [33] which is optimal [152]. Vestjens showed a lower bound of1.112 for deterministic
algorithms that can restart jobs [154]. This was improved to1.2108 by Epstein and van Stee
[60].

The offlinesplittable jobsproblem was studied by [144]. They showed that the problem is
NP-hard (already for identical machines) and gave a PTAS foruniformly related machines. The
problem was also studied by [112] who gave an exact algorithmwhich has polynomial running
time for any constant number of uniformly related machines.A different model that is related to
our model is scheduling of parallel jobs. In this case, a job has several identical parts that must
run simultaneously on a given number of processors [66, 133].

We discuss previous work on prefetching and caching problems in Chapter 9.

1.5 Outline of the thesis

Having discussed the topics of this thesis, we now give an outline of the thesis and its main
results.

Part I: Multidimensional packing

• Survey (Chapter 2). In this chapter, we give a survey of the results that have appeared for
the several versions of multidimensional bin packing.

• Square packing (Chapter 3). In this problem, all input itemsare squares, which need to be
packed into bins (unit squares) using only orthogonal packings. We present an algorithm
for square packing with an absolute worst-case ratio of 2, which is optimal provided P6=
NP.

• Bounded space multidimensional bin packing (Chapter 4). Items are now hyperboxes and
need to be packed into multidimensional bins. We present a bounded space algorithm and
show that this algorithm is also optimal, with an asymptoticperformance ratio of(Π∞)d.
This solves the problem of how to pack hyperboxes using only bounded space, which had
been open since 1993. Additionally, we present optimal online bounded space algorithms
for several variations of this problem.

• Strip and bin packing with rotations (Chapter 5). Here, it isallowed torotate the items
to be packed by90◦. We give results for six different packing problems with rotations:
two-dimensional strip and bin packing, three-dimensionalstrip and bin packing, and the
so-called ”This side up” problem in a three-dimensional strip and in three-dimensional
bins.

1.6 Credits 9

Part II: Scheduling

• Minimizing the total completion time (Chapter 6). We show how to use restarts on a single
online machine to get an algorithm with competitive ratio3/2. Without restarts, a ratio
better than 2 is not possible, and there are algorithms that have a ratio of 2 [90, 136, 151].
Ours is the first algorithm to break the barrier of 2 and thus the first algorithm that uses
restarts efficiently for this goal function.

• Splittable tasks (Chapter 7). We consider jobs that need to be scheduled onm machines
and that can be split into at mostℓ parts. On identical machines, we show how to improve
on a simple greedy-type algorithm. For the case where a subset of the machines has speed
s > 1, we give an algorithm which is optimal for sufficiently largeℓ.

• Speed scaling (Chapter 8). We give anO(log m)-approximation algorithm for minimizing
the makespan for job with precedence constraints onm parallel variable-speed machines,
where there is a global bound on the amount of energy available.

• Prefetching and caching (Chapter 9). We present a new theoretical model for this problem.
For this model, we present an I/O-optimal algorithm which uses a “semi”-greedy approach
and runs in quadratic time. Additionally we consider the online problem. We show that
competitive algorithms are possible using resource augmentation on the speedand looka-
head, and we provide a tight relationship between the amountof resource augmentation
on the speed and the amount of lookahead required.

An overview of the most important notations is given in Table1.5.

1.6 Credits

In this section we list the papers on which the chapters are based.
Chapter 2 is based on Leah Epstein and Rob van Stee, Multidimensional packing problems,

to appear in Teofilo Gonzalez (Editor),Approximation Algorithms and Metaheuristics.
Chapter 3 is based on Rob van Stee, An approximation algorithm for square packing,Oper-

ations Research Letters, 32(6):535–539, 2004.
Chapter 4 is based on Leah Epstein and Rob van Stee, Optimal online algorithms for multi-

dimensional packing problems,SIAM Journal on Computing, 35(2):431–448, 2005.
Chapter 5 is based on Klaus Jansen and Rob van Stee, On strip packing with rotations, in

Proc. of 37th ACM Symposium on Theory of Computing (STOC 2005), p. 755–761, ACM,
2005, and on Leah Epstein and Rob van Stee, This side up!ACM Transactions on Algorithms,
2(2):228-243, 2006.

Chapter 6 is based on Rob van Stee and Johannes A. La Poutré, Minimizing the total com-
pletion time on a single on-line machine, using restarts,Journal of Algorithms, 57(2):95–129,
2005.

Chapter 7 is based on Leah Epstein and Rob van Stee, Online scheduling of splittable tasks,
ACM Transactions on Algorithms, 2(1):79–94, 2006.

10 Chapter 1. Introduction

A an (approximation or online) algorithm
σ input sequence for the algorithm, e. g. a job sequence

A(σ) cost or benefit of algorithmA on inputσ
OPT optimal (off-line) algorithm
R(A) competitive ratio ofA

n number of items in the inputσ

pi theith item to be packed (square, box, hyperbox)
sj(p) size of itemp in thejth dimension
v(p) volume (or area) of itemp
xj(p) position of itemp in thejth dimension (in a certain packing)
w(p) weight of itemp
wj(p) weight of itemp in thejth dimension (where applicable)
t(p) type of itemp
tj(p) type of itemp in thejth dimension

m number of machines (or number of off-line machines)
Ji theith job
ri its release time
wi its size or weight
ci its completion time
si the speed at which it runs (in Chapter 8)
pi the power at which it runs (in Chapter 8)

Table 1.1: An overview of the notation. The top section defines notation for the entire thesis,
the middle section is for Part I (multidimensional packing)and the third section is for part II
(scheduling).

1.6 Credits 11

Chapter 8 is based on Kirk Pruhs, Rob van Stee and Patchrawat Uthaisombut, Speed scaling
of tasks with precedence constraints, inProc. 3rd Workshop on Approximation and Online
Algorithms (WAOA 2005), p. 307–319, volume 3879 ofLecture Notes in Computer Science,
Springer, 2006. To appear inTheory of Computing Systems.

Chapter 9 is based on Peter Sanders, Johannse Singler, and Rob van Stee, Real-time prefetch-
ing and caching, manuscript.

12 Chapter 1. Introduction

Part I

Multidimensional packing

13

Chapter 2

Multidimensional packing problems: a
survey

As stated in the Introduction, there are several ways to generalize the bin packing problem to
more dimensions. In this chapter, we consider two- and three-dimensional strip packing, and
bin packing in dimensions two and higher. Finally we consider vector packing and several other
variations.

In the most common two-dimensional version, the items are rectangles or squares, and the
bins are unit squares. In the strip packing probem, instead of bins, we are given a strip of
width 1 and unbounded height. In higher dimensions, the rectangles are replaced by boxes
(or hyperboxes), the squares by cubes (or hypercubes), and the unit square by a unit cube (or
hypercube of the relevant dimension). Strip packing becomes column packing.

A striking difference between one-dimensional bin packingand its multidimensional gener-
alizations is that while for one-dimensional bin packing, offline algorithms clearly outperform
online algorithms, this is not always the case in more dimensions. There are several cases where
an online algorithm was at one point the best known approximation algorithm, or remains the
best known approximation until today. Most likely, this simply reflects the fact that we do not
understand the multidimensional case as well as the one-dimensional case. One the other hand,
some results simply cannot be generalized. For instance, wenow know that there cannot be an
APTAS for two-dimensional bin packing [17], or for two-dimensional vector packing [158].

An important special case in multidimensional bin and strippacking is the case where (hyper-
)cubes need to be packed. For this case, better results are known than for the general case. In
particular, the offline version of this problem admits an APTAS [17, 47].

As is the case for one-dimensional bin packing, most attention has gone to the asymptotic
worst-case ratio, but in the course of this chapter we will encounter some results on the absolute
ratio as well.

Rotations When packing of rectangle or boxes is considered, there are several ways to define
the problem. In the oriented problem, items have a fixed orientation, and cannot be rotated. In
the rotatable (or non oriented) version, an item can be rotated and placed in any position such
that its sides are parallel to the sides of the bin. Finally there are mixed versions where items

15

16 Chapter 2. Multidimensional packing problems: a survey

can be rotated in certain directions, but not all directions. One such three-dimensional model
where items can be rotated to the left or to the right but the top and bottom must remain such is
the “z-oriented” packing [129, 131] studied by Miyazawa andWakabayashi, also known as the
“This Side Up” problem.

An illustration of the difference between the two problems is given in Figure 2.1. In this
figure we see packings of rectangles of sides3

5
and 2

5
. If the rectangles are oriented so that their

height is3
5

and cannot be rotated, we can pack at most two such items in onebin. However, if
rotation is allowed, we can pack as much as four such rectangles together in one bin.

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

Figure 2.1: A comparison between the oriented and the rotatable models

This chapter is organized as follows. We begin by presentingthe algorithm Next Fit Decreas-
ing Height (NFDH), which is a fundamental algorithm for two-dimensional packing problems, in
Section 2.1. We then discuss results on multidimensional packing problems, in order of increas-
ing dimension. That is, we start with strip packing in Section 2.2 and move to two-dimensional
bin packing in Section 2.3. We then discuss column packing inSection 2.4 and three- and
more-dimensional bin packing in Section 2.5. Finally, we mention results on vector packing in
Section 2.6 and discuss several variations on multidimensional packing in Section 2.7.

2.1 Next Fit Decreasing Height

In 1968, Meir and Moser [126] introduced an algorithm for packing d-dimensional cubes into
a d-dimensional hyperbox, which they called Next Fit Decreasing (NFD). This algorithm sorts
the cubes by decreasing volume and packs them into layers. The authors show that if the sides
of the cubes are denoted byx1, x2, . . ., and they are packed into a hyperbox of sidesa1, . . . , ad

wherex1 ≤ ai for i = 1, . . . , d, then the cubes can be packed into the hyperbox as long as their
total volume is at most

xd
1 +

d
∏

i=1

(ai − x1).

For d = 2 (packing squares into a rectangle), the algorithm works as follows. The largest
square is put in the bottom left corner of the rectangle. The height of the first layer is equal to
the side of this square. The next squares are put in this layer, next to each other and touching
each other and the bottom of the layer, until one does not fit. At this point we define a new
layer above the first layer, with height equal to the side of the first square packed into it. This

2.1 Next Fit Decreasing Height 17

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
����������������������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������

Figure 2.2: An illustration of a packing of NFDH (left) and ofa shelf packing algorithm (right).

continues until all squares are packed, or there is not enough room to pack some item (it does
not fit into the current layer, and the last layer that is left is either empty or not high enough).

This algorithm (for two dimensions) was extended to an algorithm for packing rectangles
into a rectangle (or a strip) by Coffman, Garey, Johnson and Tarjan [43], which was called Next
Fit Decreasing Height (NFDH). It sorts the rectangles by decreasing height and then packs them
as above.

They showed that if this algorithm is applied to pack rectangles into a strip (of unbounded
height), then the height used to pack the rectangles is at most twice the optimal height, plus
an additive constant which is equal to the height of the highest rectangle. (Thus its absolute
worst-case ratio is 3.)

The proof is quite straightforward. In each level, there maybe wasted space to the right of
the rightmost item, and above all items except the first. The height of a level is the height of the
first item in it. This item did not fit on the previous level. This implies that the total area of the
items in leveli plus the first item in leveli+1 is at least the height of leveli+1 (since the width
of the strip is 1). (If we move all items in leveli up to leveli + 1, and shift the first item in level
i + 1 to the right, then leveli + 1 is entirely covered by items.)

Adding up the heights of all levels, this is upper bounded by twice the area of the packed
items plus the height of the first level. This explains the performance bound including the addi-
tive constant, since the total area is an obvious lower boundfor the optimal height.

This fundamental algorithm was used in many later papers as asubroutine. It works espe-
cially well when all rectangles are guaranteed to have a small width (relative to the width of the
strip), and this property was for instance used by Kenyon andRémila [107] in their approxima-
tion scheme for strip packing.

Meir and Moser also showed the following important result inthe same paper [126].

Theorem 2.1 Any set of rectangles with sides at mostx and total areaA can be packed into any
rectangle of sizea × b if a ≥ x andab ≥ 2A + a2/8. This result is best possible.

18 Chapter 2. Multidimensional packing problems: a survey

For packing rectangles into a unit square, this result states that any set of rectangles of total
area at most7/16 (and sides not larger than 1) can be packed into a unit square.

2.2 Strip packing

2.2.1 Online results

Baker and Schwarz [13] were the first to study two-dimensional online strip packing. They in-
troduced a class of algorithms calledshelf algorithms. A shelf algorithm uses a one-dimensional
bin packing algorithmA and a parameterα ∈ (0, 1). Items are classified by height: an item is in
classs if its height is in the interval(αs−1, αs]. Each class is packed in separateshelves, where
we useA to fill a shelf and open a new shelf when necessary. Note that the algorithmA is not
necessarily on-line. See Figure 2.2 for an illustration of ashelf algorithm.

Baker and Schwarz showed that the algorithm FIRST FIT SHELF,which uses FIRST FIT
as a subroutine, has an asymptotic performance ratio arbitrarily close to 1.7. Csirik and Woegin-
ger [52] showed that by using HARMONIC as a subroutine, it is possible to achieve an asymp-
totic performance ratio arbitrarily close toh∞ ≈ 1.69103. Moreover, they show that any shelf
algorithm, online or offline, has a performance ratio of at leasth∞. The idea of the lower bound
is that items are given that could be combined nicely next to each other, but which end up
in different height classes and are therefore packed in separate shelves. So basically, the best
thing one can do is to use a bounded space algorithm (which hasa constant number of simul-
taneously active bins) like HARMONIC as the subroutine. Finally they mention that from the
one-dimensional lower bound of van Vliet [156] together with the insights of Baker, Brown and
Katseff [10] implies a general lower bound for online algorithms of 1.5401. It remains an open
problem how to improve the upper bound of Csirik and Woeginger. It does not seem easy to
find a good on-line algorithm that does not use shelves. As forthe absolute performance ratio,
Brown, Baker and Katseff [26] showed a lower bound of2 for any algorithm. They also show
some lower bounds for algorithms that may sort they items.

2.2.2 Offline results

The strip packing problem was introduced in 1980 by Baker, Coffman and Rivest [12]. They
developed the first offline approximation algorithms for this problem, and give an upper bound
of 3 on the absolute performance ratio. This bound was later improved to2 independently by
Schiermeyer [138] and by Steinberg [150], using different approaches. In the same issue of
SIAM Journal on Computing, Coffman, Garey, Johnson and Tarjan [43] showed that NFDH has
an asymptotic performance ratio of 2, FFDH achieves a value of 1.7, and an algorithm called
Split-Fit has3/2. Also in 1980, Sleator [147] gave an algorithm with asymptotic performance
ratio 2.5, but absolute performance ratio of 2, which is better than that of Split-Fit, which has
3. In 1981, Baker, Brown and Katseff [10] gave an offline algorithm with asymptotic worst
case ratio5/4. Finally, Kenyon and Rémila [107] designed an asymptotic fully polynomial time
approximation scheme.

This scheme uses some nice ideas, which we describe below.

2.2 Strip packing 19

Fractional strip packing A fractional strip packing ofL is a packing of any listL′ obtained
from L by subdividing some of its rectangles by horizontal cuts: each rectangle(wi, hi) is
replaced by a sequence of rectangles(wi, h

1
i), (wi, h

2
i), . . . , (wi, h

ki
i) such that

∑ki

j=1 hj
i = hi.

In the case thatL contains only items ofm distinct widths in(ε′, 1], whereε′ > 0 is some
constant, it is possible to find a fractional strip packing ofL which is within 1 of the optimal
fractional strip packingFSP(L) in polynomial time. Moreover, it is possible to turn this packing
into a regular strip packing at the loss of only an additive constant2m. Denote the height of the
optimal strip packing forL by OPT(L). We conclude that we find a packing with height at most

FSP(L) + 1 + 2m ≤ OPT(L) + 2m + 1 (2.1)

Modified NFDH (Next Fit Decreasing Height) This is a method for adding narrow items
(items of width at mostε′) to a packing of wide items such as described above. Such a packing
leaves empty rectangles at the right hand side of the strip. Each of these rectangles is packed
with narrow items using NFDH (starting with the highest narrow item in the first rectangle).
When all rectangles have been used, the remaining items (if any) are packed above the packing
using NFDH on the entire width of the strip.

First Fit Decreasing Height (FFDH) FFDH is a natural variation on NFDH, which each time
uses First Fit to find a level for the current item to be packed.The following theorem was proved
by Coffman et al. [43].

Theorem 2.2 Let L be any list of rectangles ordered by non-increasing height such that no
rectangle inL has width exceeding1/m for somem ≥ 2. Then

FFDH(L) ≤ (1 + 1/m)A(L) + 1,

whereA(L) is the total area of the items inL.

Grouping and rounding This method is a variation on the linear rounding defined by Fernan-
dez de la Vega and Lueker [67]. It works as follows.

We stack up the rectangles ofL by order of non-increasing widths to obtain a left-justified
stack of total heighth(L). We definem−1 threshold rectangles, where a rectangle is a threshold
rectangle if its interior or lower boundary intersects someline y = ih(L)/m for somei ∈
{1, . . . , m− 1}. We cut these threshold rectangles along the linesy = ih(L)/m. This createsm
groups of items that have height exactlyh(L)/m.

First, the widths of the rectangles in the first group are rounded up to 1, and the widths of
the rectangles in each subsequent group are rounded up to thewidest width in that group. This
definesL+.

Second, the widths of the rectangles in each group are rounded down to the widest width of
the next group (down to 0 for the last group). This definesL−.

It is easy to find a strip packing forL− using a reduction to fractional strip packing. More-
over, it can be seen that the stack associated withL+ is exactly the union of a bottom part of

20 Chapter 2. Multidimensional packing problems: a survey

width 1 and heighth(L)/m and the stack associated withL−. Thus

FSP(L) ≤ FSP(L+) = FSP(L−) + h(L)/m. (2.2)

Partial ordering We say thatL ≤ L′ if the stack associated toL (used for the grouping above),
viewed as a region of the plane, is contained in the stack associated toL′. Note thatL ≤ L′

implies thatFSP(L) ≤ FSP(L′). As an example, in the grouping above we haveL− ≤ L ≤ L+.

2.2.3 Rotations

The upper bound of 2 of NFDH and Bottom Leftmost Decreasing Width (BLDW) remain valid if
orthogonal rotations are allowed, since the proofs use onlyarea arguments. Miyazawa and Wak-
abayashi [131] presented an algorithm with asymptotic approximation ratio of 1.613. In Chapter
5, Section 5.1.1, we present a simpler algorithm which achieves an asymptotic approximation
ratio of3/2. This algorithm packs items that are wider and higher than1/2 optimally, and packs
remaining items first next to this packing (where possible) and finally on top of this packing. In
this way, the resulting packing is either optimal, or almostall heights a width of2/3 is occupied
by items. Finally, approximation schemes were given by Jansen and van Stee [94]. We present
the combinatorial polynomial-time approximation scheme from this paper in Chapter 5, Section
5.1.2.

2.3 Two-dimensional bin packing

We saw in section 2.2.1 that we can use a one-dimensional bin packing algorithm as a subrou-
tine for a strip packing algorithm, basically without a lossin (asymptotic) performance ratio.
Similarly, a two-dimensional bin packing algorithm can be used as a subroutine to create a
three-dimensional strip packing algorithm, and this also holds for higher dimensions.

On the other hand, ad-dimensional strip packing algorithm can also be used to create ad-
dimensional bin packing algorithm at a cost of a factor of twoin the performance ratio. The idea
is to cut the packing generated by the strip packing algorithm into pieces of unit height. For each
piece we do the following. Items that are completely contained in the piece are put together in
one bin. Items that are partially in the next piece are put together in a second bin. See Figure
2.3.

Say we have a guarantee ofR on the asymptotic performance ratio of the strip packing
algorithm. Then this method gives us2R · OPT(L) + C bins for an inputL, whereOPT(L) is the
height of the optimal strip packing. On the other hand, therecannot be abin packing into less
thanOPT(L) bins, because this packing could be trivially turned into a strip packing of height
less thanOPT(L). This explains the factor of two loss.

2.3.1 Online results

Coppersmith and Raghavan were the first to study the online version of this problem. They
gave an online algorithm with asymptotic performance ratioof 3.25 ford = 2 (and 6.25 for

2.3 Two-dimensional bin packing 21

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
��������������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Figure 2.3: Converting a packing in a strip into a packing in bins

d = 3) [46]. This result was improved by Csirik et al., who presented an algorithm with perfor-
mance ratio 3.0625 [50]. In the same year, Csirik and van Vliet showed an online bin packing
algorithm for arbitrary dimensions, which achieves a performance ratio ofhd

∞, whered is the
dimension [51]. Note that already ford = 2, this improves over the previous result, since
h2
∞ ≈ 2.85958. (See also [118] ford = 2, 3.) Finally, Seiden and van Stee [141] gave an

algorithm with ratio 2.66013 for two-dimensional bin packing.
In Chapter 4, Section 4.2, we describe a new technique for packing small multidimensional

items online, enabling us to achieve the asymptotic performance ratio ofhd
∞ [51] using only

bounded space.
Galambos [75] was the first to give a lower bound for this problem which was higher than

the best known lower bound for one-dimensional bin packing.His bound was 1.6. This was
later successively improved to 1.808 by Galambos and van Vliet [77], 1.851 by van Vliet [157],
and finally to 1.907 by Blitz, van Vliet, Woeginger [21]. The gap between the upper and lower
bounds remains relatively large to this day, and it is unclear how to improve either of them
significantly.

An interesting special case is where all items are squares. Coppersmith and Raghavan [46]
showed that their algorithm has an asymptotic performance ratio of 2.6875 for this case, and
gave a lower bound of4/3. This lower bound actually holds for the more general problem
of packing hypercubes. Seiden and van Stee [141] showed thatthe algorithm HARMONIC×
HARMONIC, which uses the HARMONIC algorithm to find slices for items, and then uses the
HARMONIC algorithm again to find bins for slices, has an asymptotic performance ratio of at
most 2.43828. They gave a lower bound of 1.62176 for any online algorithm, and also showed
a lower bound of 2.28229 for bounded space algorithms using the same instances.

22 Chapter 2. Multidimensional packing problems: a survey

Epstein and van Stee [62] give an algorithm with asymptotic performance ratio at most
2.24437, and improved the lower bound to 1.6406. The upper bound was recently improved
to 2.1439 by Han, Ye and Zhou [88]. Here too, the gap between the lower and the upper bounds
remains disappointingly large. Finally, Epstein and van Stee [63] give bounds for the perfor-
mance of the optimal bounded space algorithm from Chapter 4,Section 4.1, showing that its
performance ratio lies between 2.3638 and 2.3692.

2.3.2 Offline results

As mentioned at the start of this chapter, Bansal and Sviridenko proved that the two-dimensional
bin packing problem is APX-hard [17]. Thus, there cannot be an asymptotic polynomial time
approximation scheme for this problem.

Chung, Garey and Johnson [40] were the first to give an approximation algorithm for this
problem. It has an asymptotic approximation ratio of 2.125.As mentioned above, the APTAS
for strip packing by Kenyon and Rémila implies a(2+ε)-approximation for anyε > 0. In 2002,
Caprara [28] gave ah∞-approximation.

Leung et al. [115] proved that the special case of packing squares into squares is still NP-hard
(for general two-dimensional bin packing, this follows immediately from the one-dimensional
case). Ferreira, Miyazawa, and Wakabayashi [68] gave a 1.988-approximation for this problem,
which uses as a subroutine an optimal algorithm for packing items with sides larger than1/3.
They conjecture that packing items with sides larger than1/4 is already NP-hard. Indepen-
dently of eachother, Kohayakawa et al. [109] and Seiden and van Stee [141] gave a(14/9 + ε)-
approximation(1.5555 . . .+ ε). However, the first result is more general in that it actuallygives
a (2− (2/3)d + ε)-approximation for packingd-dimensional hypercubes. The idea of both these
algorithms is to find an optimal packing for large items (items with sides larger thanε) and to
add the small items to this packing. Specifically, any bins inthe optimal packing which contain
only a single item with sides larger than1/2 are filled with small items using the algorithm Next
Fit Decreasing (NFD) from Meir and Moser (see Section 2.1). It is shown that all other bins are
already “reasonably full”, leading to the approximation guarantee.

In the same year, Caprara [28] gave an algorithm with performance ratio in the interval
(1.490, 1.507) provided a certain conjecture holds. Two years later, Epstein and van Stee [61]
gave a(16/11 + ε)-approximation(1.4545 . . . + ε). Simultaneously and independently of each
other, Bansal and Sviridenko [17] and Correa and Kenyon [47]presented an asymptotic poly-
nomial time approximation scheme for this problem, which also works for the more general
problem of packing hypercubes.

Recently, Bansal, Lodi and Sviridenko [15] showed another special case of the two-dimen-
sional bin packing problem which admits an APTAS. This is rectangle packing, where the pack-
ing of each bin must be possible to achieve using guillotine cuts only. That is a sequence of edge
to edge cuts, parallel to the edges of the bin. Even more special cases, where the number of
stages in the sequence of guillotine cuts is limited, were studied by Caprara, Lodi and Monaci
[30]. They designed an APTAS for the two stage problem. Note the shelf packing described
above actually uses two stages of guillotine cuts. Kenyon and Rémila [107] point out that their
approximation scheme uses five stages of guillotine cuts.

2.4 Column (three-dimensional strip) packing 23

As regards the absolute performance ratio, Zhang [162] gavean approximation algorithm
with absolute worst-case ratio of 3 for two-dimensional binpacking. In Chapter 3, we present
an absolute 2-approximation for square packing, which is optimal by the result of Leung et
al. [115].

2.3.3 Resource augmentation

Since there cannot be an approximation scheme for general two-dimensional bin packing, sev-
eral authors have looked at the possibility of resource augmentation, i.e., giving the approxima-
tion algorithm slightly larger bins than the offline algorithm that it is compared to. Correa and
Kenyon [47] give a dual polynomial time approximation scheme. That is, they give a polynomial
time algorithm to pack rectangles into thek bins of size1 + ε, where these rectangles cannot
be packed in less thank bins of size 1. Bansal and Sviridenko [18] showed that it is possible to
achieve this even if the size of the bin is relaxed in one dimension only.

2.3.4 Rotations

For the case where rotations are allowed, Epstein [58] showed an online algorithm with asymp-
totic performance ratio of 2.45. The online problem was studied before by Fujita and Hada [74].
They presented two online algorithms and claimed asymptotic performance ratios of at most
2.6112 and 2.56411. Epstein [58] mentioned that the proof in[74] only shows that the first algo-
rithm has an asymptotic performance ratio of at most 2.63889and that the proof of the second
algorithm is incomplete.

Two years later, Miyazawa and Wakabayashi [131] gave an offline algorithm with asymptotic
performance ratio 2.64. In Chapter 5 (Section 5.2), we present an approximation algorithm with
asymptotic performance ratio 2.25. It divides the items into types and combines them into bins
such that in almost all bins, an area of4/9 is occupied. Correa [48] adapted the dual polynomial
time approximation scheme from [47] to rotatable items.

2.4 Column (three-dimensional strip) packing

2.4.1 Online and offline results

Li and Cheng were the first to consider this problem. In their paper [119] from 1990, they
showed that three-dimensional versions of NFDH and FFDH have unbounded worst-case ratio.
They gave several approximation algorithms, the best of which has an asymptotic performance
ratio of 3.25. Their first algorithm sorts the items by heightand then divides them into groups
of area (in the first two dimensions) at most7/16, so that they can be packed into a single layer
by Theorem 2.1. They improve on this by classifying items with similar bottoms, and packing
similar items together into layers. Two items have similar bottoms if both their length and their
width fall into the same class when classified by the HARMONICalgorithm. For the case where
all items have square bottoms, the ratio improves to 2.6875.

24 Chapter 2. Multidimensional packing problems: a survey

Two years later, the same authors [117] presented an online algorithm with asymptotic per-
formance ratio arbitrarily close toh2

∞ ≈ 2.89 for three-dimensional strip packing. At the time,
there was no betterofflineapproximation known. This algorithm uses the HARMONIC algo-
rithm as a subroutine in both horizontal dimensions (i.e. tofind a strip for a two-dimensional
item, and a place inside a strip for a one-dimensional item),and a geometric rounding for the
heights. The paper actually discusses several online algorithms for this problem and only men-
tions the use of HARMONIC in the summary section. The authorsnote that the improvement
in the asymptotic performance ratio compared to the approximation algorithm from their earlier
paper [119] only comes at the cost of a high additive constant.

In 1997, Miyazawa and Wakabayashi [128] improved the offlineupper bound to 2.66994
(2.36 for items with square bottoms). This algorithm placescolumns of similar items next to
eachother in the strip, thus avoiding the layer structure ofthe previous algorithms. The algorithm
is quite involved and its description takes three pages. This remains the best result to date.

2.4.2 Rotations

In the case where rotations are allowed, it becomes relevantwhat exactly the dimensions of
the strip are. In two-dimensional strip packing, this does not really play a part, but in column
packing, the base of the column might not be a square.

However, if the base is not a square but may be an arbitrary rectangle, then having the ability
to rotate items horizontally (leaving the top side unchanged) does not help, as was shown by
Miyazawa and Wakabayashi [129]. The idea is that in this caseit is possible to scale the input
so that the smallest width of an item is still larger than the length of the base of the strip, so that
no item can be rotated and still fit inside the strip. For this reason, in this section we focus on
the case where the base of the strip is a square.

In Chapter 5 (Section 5.4.1), we give an approximation algorithm with asymptotic worst-case
ratio of9/4 = 2.25, improving on the upper bound of 2.76 by Miyazawa and Wakabayashi [131].
The special case where only rotations that leave the top sideof items at the top are allowed has
received more attention. It was introduced by Li and Cheng [116] as a model for a job scheduling
problem in partitionable mesh connected systems. Here eachjob i is given by a triple(xi, yi, ti),
meaning that jobi needs a submesh of dimensionsxi × yi or yi × xi for ti time units. They give
an algorithm for minimizing the makespan (i.e., the height of the packing) which has asymptotic
performance bound44

7
. This was improved to 2.543 by Miyazawa and Wakabayashi [131]. In

Chapter 5 (Section 5.3), we present a 2.25-approximation.

2.5 Three- and more-dimensional bin packing

At present, the online bounded space algorithm from Chapter4, Section 4.2 is the best (online
or offline) algorithm for packing multidimensional items into bins for any dimensiond ≥ 3.
Clearly, this problem is APX-hard as well since it includes the two-dimensional bin packing
problem as a special case [17].

Blitz, van Vliet, and Woeginger [21] gave a lower bound of 2.111 for online algorithms for

2.6 Vector packing 25

d = 3. However, there is no good lower bound known for larger dimensions: nothing above 3.
It appears likely that the asymptotic performance bound of any online algorithm must grow with
the dimension.

For the special case of packing hypercubes online in dimensionsd ≥ 4, there is no bet-
ter lower bound than the4/3 given by Coppersmith and Raghavan [46] (which works in any
dimensiond ≥ 2).

The bounded space algorithm from Chapter 4, Section 4.1 for this problem has a performance
ratio which is sublinear ind: it is O(d/ log d) andΩ(log d).

For d = 3 (online cube packing), Miyazawa and Wakabayashi [130] showed that the algo-
rithm of Coppersmith and Raghavan [46] has an asymptotic performance bound of 3.954. Ep-
stein and van Stee [62] give an algorithm with asymptotic performance ratio at most 2.9421, and
a lower bound of 1.6680. The upper bound was improved to2.6852 by Han, Ye and Zhou [88].
Furthermore, Epstein and van Stee [63] give bounds for the performance of the bounded space
algorithm from Chapter 4, Section 4.1, showing that its performance ratio lies between 2.95642
and 3.0672.

As was seen in section 2.3.2, we can do even better offline. Before Bansal and Sviri-
denko [17] and Correa and Kenyon [47] gave their asymptotic polynomial time approximation
scheme for any dimensiond ≥ 2, Miyazawa and Wakabayashi [130] gave two approximation
algorithms, of which the best had an asymptotic performanceratio of 2.6681. Soon afterwards,
Kohayakawa et al. [109] presented their paper which we discussed in section 2.3.2 as well. For
d = 3, its asymptotic performance bound is46/27 + ε ≈ 1.7037 . . . + ε.

2.6 Vector packing

In this section we discuss the non-geometric version of multidimensional bin packing. Thed-
dimensional “vector packing”, or “vector bin packing” problem is defined as follows. The bins
are instances of the “all-1” vector(1, 1, . . . , 1) of lengthd. Items ared-dimensional vectors,
whose components are all in[0, 1]. A packing is valid if the vector sum of all items assigned
to one bin cannot exceed the capacity of the bin (i.e., 1) in any component. Since all bins are
identical, the goal is to minimize the number of bins used.

The problem can be seen as a scheduling problem with limited resources. The machines
(with correspond to bins) have fixed capacities of several resources as memory, running time,
access to other computers etc. The items in this case are jobsthat need to be run, each job
requires a certain amount of each resource. Another application arises from viewing the problem
as a storage allocation problem. Each bin has several qualities as volume, weight etc. Each item
requires a certain amount of each quality. Both applications are relevant to both offline and
online environments.

For many years there were very few results on this problem. Inthe first paper which obtained
an APTAS for classical bin packing [67], Fernandez de la Vegaand Lueker implies a(d + ε)-
approximation for the vector packing problem. This improved very slightly on some online
results. These results were an upper bound ofd + 1 on the performance ratio of any algorithm
for which the output never has two bins that can be combined, given by Kou and Markowsky

26 Chapter 2. Multidimensional packing problems: a survey

[110], and a tight bound on the performance of First Fit ofd + 7
10

, given by Garey et al. [78].
Note that this is a generalization of the tight bound of17

10
for First Fit in one dimension.

Since these results were obtained, for a while there was hopethat an APTAS would be found
for this problem. However, Woeginger proved in [158] that unlessP = NP , there cannot be
such an APTAS, already for two-dimensional vectors. Clearly, more restricted classes of vectors
may still admit an APTAS. One such type of input is one where there is a total order on all
vectors. In [29], Caprara, Kellerer and Pferschy showed that an APTAS for this problem indeed
exists.

The offline result for the general case was finally improved byChekuri and Khanna [35].
They designed an algorithm of asymptotic performance1 + εd + O(ln 1

ε
). If d is seen as a

constant, the best ratio achieved in this way isO(ln d). They proved that for an arbitraryd, it is
APX-hard to approximate the problem within a factor ofd

1

2
−ε for every fixed positiveε. This

was shown using a reduction from graph coloring.
The online result was not improved since 1976. Lower bounds on the performance ratio of

online algorithms, that tend to2 asd grows, were shown by Galambos, Kellerer and Woeginger
[76]. Improved lower bounds were given by Blitz, van Vliet, and Woeginger [21], but this
construction also tends to2 asd grows.

As for the absolute approximation ratio, Kellerer and Kotov[105] designed an algorithm
for two-dimensional vector packing with absolute approximation ratio of at most2. Recently,
Erlebach [64] showed a non-constant lower bound for on the absolute performance ratio for this
problem. Interestingly, the method is similar to the one used by Chekuri and Khanna to show
the hardness of approximation. The lower bound holds for theasymptotic performance ratio if
d is not seen as a constant, i.e., for arbitraryd.

As for variable sized packing, the online problem was studied by Epstein [57]. In this prob-
lem, the algorithm may use bins out of a given finite subset. This subset contains the standard
“all-1” vector, and possibly other vectors. The cost of a binis the sum of its components. She
showed that there exists a finite set where an online algorithm can achieve performance ratio
1+ ε (by defining the class of bins to be dense enough), whereas foranother set (which contains
except for the “all-1” bin only bins that have relatively small components), the ratio must be
linear. Clearly, no matter what the set is, there exists a simple algorithm with linear performance
ratio.

Analogously to the bin covering problem, we can define the vector covering problem, where
the vector sum of all vectors assigned to one bin isat least1 in every component. This problem
was studied by Alon et al. [5]. In this paper it was shown that the performance ratio of any
online algorithm is at leastd + 1

2
. A linear upper bound of2d is achieved by an algorithm which

partitions the input into classes. The same paper contains offline results as well. An algorithm
of performance guaranteeO(log d) is presented as well as a simple and fast 2-approximation for
d = 2.

In [56] some results on variable sized vector covering are given. These results focus on cases
where all bins are vectors of zeros and ones. The benefit of a covered bin is the sum of its non-
zero components. The considered cases for the bins set are asfollows. A set which consists of
a single type of bin, a set of all unit vectors (all componentsare zero except for one), unit prefix
vectors (some prefix of the vector consists of ones only) and the set of all zero-one vectors.

2.7 Variations 27

2.7 Variations

2.7.1 Rectangle stretching

Imreh [92] studied an oriented online strip packing problemwhere rectangles can be stretched
in a way that results in a larger height but the original area.Note that allowing stretching that
increases the width makes the problem trivial as all items would be stretched to have the same
width as the bin. He showed that the offline problem is polynomially solvable, and that if the
online problem is considered under the asymptotic performance ratio measure (and assuming an
upper bound of 1 on the original height of any rectangle), then the performance ratio can be made
arbitrarily close to 1. Therefore, the main results are for the absolute performance ratio. There
are algorithms of performance ratios6 and4, and a lower bound of1.73 on the performance
ratio of any online algorithm.

2.7.2 Items appear from the top

A “Tetris like” online model was studied in a few papers. Thisis similar to strip packing,
however, in this model, a rectangle cannot be placed directly in its designated area, but it arrives
from the top as in the Tetris game, and should be moved continuously around only in the free
space until it reaches its place, (see figure 2.4), and then cannot be moved again.

In [9], the model was introduced by Azar and Epstein. In that paper, both the rotatable
and the oriented models were studied. For the rotatable model, a 4-approximation algorithm
was designed. The situation for the oriented problem is moredifficult, as no algorithm with
constant approximation ratio exists for unrestricted inputs. If the width of all items is bounded

below byǫ and/or bounded above by1 − ǫ, the authors showed a lower bound ofΩ(
√

log 1
ǫ
) on

the performance ratio of any online algorithm for any deterministic or randomized algorithm.
Restricting the width, they designed anO(log 1

ǫ
)-approximation algorithm.

Figure 2.4: The process of packing an item in the “Tetris like” model

The oriented version of the problem was studied by Coffman, Downey and Winkler [44].
They assume a probabilistic model where item heights and widths are drawn from a uniform
distribution on[0, 1]. They show that any online algorithm which packsn items has an asymp-
totic expected height of at least0.313827n and design an algorithm of asymptotic expected
height of0.369764n.

28 Chapter 2. Multidimensional packing problems: a survey

2.7.3 Dynamic bin packing

A multidimensional version of a dynamic bin packing model, which was introduced in [41] for
the one-dimensional case, was studied recently by Epstein and Levy [59]. This is an online
model where items do not only arrive but may also leave. Each event is an arrival or a departure
of an item. Durations are not known in advance, i.e., an algorithm is notified about the time that
an items leaves only upon its departure. An algorithm may re-arrange the locations inside bins,
but the items may not migrate between bins. In [59], the same problem was studied in multiple
dimensions.

In two dimensions, they designed a 4.25-approximation algorithm for dynamical packing
of squares, and provided a lower bound of2.2307 on the performance ratio. For rectangles
the upper and lower bounds are8.5754 and3.7 respectively. For three-dimensional cubes they
presented an algorithm which is a5.37037-approximation, and a lower bound of 2.117. For
three-dimensional boxes, they supplied a35.346-approximation algorithm and a lower bound of
4.85383. For higher dimensions, they define and analyze the algorithm NFDH for the offline box
packing problem. This algorithm was studied before for rectangle packing (two-dimensional
only) [43], and for square and cube packing for any dimension[126, 109], but not for box
packing. Ford-dimensional boxes they provided an upper bound of2 · 3.5d and a lower bound
of d + 1. Note that, as already mentioned in this survey, the best bound known for the regular
offline multi-dimensional box packing problem is exponential as well. Ford-dimensional cubes
they provided an upper bound ofO

(

d
lnd

)

and a lower bound of2.
One older paper by Coffman and Gilbert [45] studies a relatedproblem. In this problem,

squares of a bounded size, which arrive and leave at various times, must be kept in a single bin.
The paper gives lower bounds on the size of such a bin, so that all squares can fit. It is not
allowed to re-arrange the locations in the bin.

2.7.4 Packing rectangles in a single rectangle

Another version is concerned with maximizing the number, area, or weight of a subset of the
input rectangles, that can be packed into a larger rectangle(of given height and width). The max-
imization problem with respect to the number of rectangles was studied already in 1983 by Baker
et al. [11]. They designed an asymptotic4

3
-approximation. This offline problem was recently

studied by Jansen and Zhang [96, 95]. The first paper considered the case of weighted rectan-
gles, and maximizing the total weight packed, whereas the second one considered unweighted
rectangles, and maximizing the number of packed rectangles. The problem is considered without
rotation.

In [96], Jansen and Zhang proved that there exists an asymptotic FPTAS, and an absolute
PTAS, for packing squares into a rectangle. For rectangles they gave an approximation algorithm
with asymptotic ratio of at most two, and a simple one with an absolute ratio of2 + ε. In [95],
Jansen and Zhang gave a more complicated algorithm for the weighted case with an absolute
ratio of2 + ε. This algorithm has higher running time than the one for the unweighted problem.
A special case of weights is simply the area of rectangles. The area maximization problem was
studied by Caprara and Monaci [31]. They designed an algorithm with (absolute) approximation

2.7 Variations 29

ratio3 + ε.
An online version was studied by Han, Iwama and Zhang [87]. Inthis version, we are given a

unit square bin, rectangles arrive online, and the algorithm needs to decide whether to accept an
arriving rectangle or not. The goal is again to maximize the packed area. They showed that if the
algorithm is not allowed to remove rectangles accepted in the past, no algorithm with constant
approximation ratio exists. This holds already for squares. It is easy to see that this holds
with the following example. Take a first square which is very small, and another one which
fills the bin completely. An algorithm must accept the first square and therefore cannot accept
the larger one. Next, they show that there is no algorithm with constant approximation ratio
exists for rectangles, even if the algorithm is allowed to remove previously accepted rectangles.
Therefore, the paper studies removable square packing. Before describing the results, we discuss
a related paper which was used in this paper.

Januszewski and Lassak [97] studied a similar problem from the point of view of finding a
thresholdα ≤ 1 such that a set of squares of total area of at mostα can be always packed online
in a bin, without re-arranging the contents of the bin. They showed that 5

16
is a lower bound

on α. Moreover, the considered this problem for multidimensional cubes, and showed a lower
bound of 1

2d−1
for d ≥ 5. For the packing they used a nice tool which they called bricks. A

brick is a rectangle, where the ratio of the maximum between height and width to the minimum
between the two remains the same after cutting the rectangleinto two identical parts. Clearly,
this can work if the ratio is

√
2.

Han, Iwama and Zhang [87] adopted this method. They showed that any algorithm has
performance ratio of at leastφ + 1 ≈ 2.618. They designed a matching algorithm for the case
where re-arranging is allowed, and a 3-approximation algorithm without re-arranging. A direct
consequence is that a lower bound onα for two dimensions is1

3
.

Finally, another related problem is packing squares or rectangles into a square or rectangle
of minimum size, where arbitrary rotations are allowed (notjust over90◦). For example, five
unit squares can be packed inside a square with side2 + 1

2

√
2, by placing four squares in the

corners and one in the center at a45◦ angle. For a survey on packing equal squares into a square,
see [72]. Novotný [134] showed that any set of squares with total area 1 can be packed in a
rectangle of area at most 1.53 (without rotations).

30 Chapter 2. Multidimensional packing problems: a survey

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

Figure 2.5: The optimal packing for five unit squares

Chapter 3

An approximation algorithm for square
packing

Square packing is a special case of two-dimensional bin packing where all the input items are
squares. These items need to be packed into bins which are unit squares using only orthogonal
packings. The items must be assigned positions in such a way that no two items in the same bin
overlap. The goal is to minimize the number of bins used.

Most of the previous work on bin packing has focused on theasymptotic performance ratio
(approximation ratio), where the focus is on the long-term behavior of algorithms. In contrast,
in the current chapter we consider theabsoluteapproximation ratio [138, 150].

Attaining an absolute approximation ratio ofR is more difficult than attaining an asymptotic
approximation ratio ofR, because in the second case an algorithm is allowed to “waste” a
constant number of bins, which allows e.g. the classification of items followed by a packing
where each class is packed separately.

Leung et al. [115] showed that it is NP-hard to determine whether or not a given set of squares
can be packed in a single bin. This implies that there cannot be a polynomial-time algorithm
with an absolute approximation ratio less than 2, unless P= NP. Such an algorithm could be
used to determine (in polynomial time) whether a set of squares fits into a single bin: for a given
set of items, if that algorithm packs them into two bins, theycannot be packed in a single bin
because the absolute approximation ratio is strictly less than 2.

We now present an algorithm for square packing with an absolute approximation ratio of 2,
which is optimal provided P6= NP.

3.1 Subroutines for the algorithm

We define thesizeof a squarep, denoted bys(p), as the length of one of its edges. We classify
items according to their size.Huge items have size greater than2/3. Big items have size in
(1/2, 2/3]. Medium-sizeditems have size in(1/3, 1/2]. Finally, small items have size at most
1/3.

All the non-small items will be packed using the algorithm FIRST FIT DECREASING SIZE

31

32 Chapter 3. An approximation algorithm for square packing

(FFDS). This algorithm works as follows. First, huge and bigitems are packed into bins: one
item per bin, in order of increasing size. Each item is placedin a corner of its bin. This gives a
list B of bins. Next, the medium-sized items are sorted in order of decreasing size, giving a list
L′.

The algorithm now does the following repeatedly. It checks whether the first three items of
L′ can be packed together with the first bin inB, i.e. the one that contains the smallest big item.
If the three items fit there, they are placed there; otherwisethe first four items fromL′ are put
in a new, empty bin. The packed items are then removed fromL′, the first bin is removed from
B if it was used to pack them, and the algorithm continues in thesame way. IfB = ∅ at some
point, the remaining items inL′ are packed four to a bin in new bins, until all items are packed.

Ferreira, Miyazawa, and Wakabayashi [68] define FFDS and prove the following.

Lemma 3.1 (Ferreira, Miyazawa, Wakabayashi [68])Let L be a list of squares that all have
size greater than1/3. Then the algorithm FFDS applied toL generates a packing where each
bin, except possibly one, contains

• One big or huge item and no medium-sized items, or

• One big item and three medium-sized items, or

• Four medium-sized items

The remaining bin, if there is one, contains at most three items, including at most one big item.
The packing that FFDS generates is an optimal packing forL.

To pack the small items, we will use the algorithm NEXT FIT DECREASING (NFD) as a
subroutine. The version of the algorithm considered here packs squares into a rectangle of size
a × b. The idea of this algorithm is very simple. First we sort the squares into non-increasing
order. We pack items into slices. The width of a slice isb. We use NEXT FIT on the sorted list
of items, considering the slices as bins. When a new slice is allocated, its height is set equal to
the height of the first item placed in it. Since the items are packed in order of non-increasing
size, subsequent items fit in the slice. Slices are allocatedfrom the rectangle going from bottom
to top. The algorithm halts either when all items are packed,or when it is impossible to allocate
a slice. In the later case, some items remain unpacked.

Meir and Moser [126] introduce NEXT FIT DECREASINGand prove the following Lemma:

Lemma 3.2 (Meir & Moser [126]) LetL be a list of squares with sidesx1 ≥ x2 ≥ . . . ThenL
can be packed in a rectangle of heighta ≥ x1 and widthb ≥ x1 usingNEXT FIT DECREASING

if one of the following conditions is satisfied:

• the total area of items inL is at mostx2
1 + (a − x1)(b − x1).

• the total area of items inL is at mostab/2.

3.2 Algorithm 33

3.2 Algorithm

In this section, we give a detailed description of the algorithm. We start by applying the algo-
rithm FFDS from [68] to the items of size greater than1/3. After this, only the small items
remain to be packed. These items are packed in three steps. Ifat some point during these three
steps, all small items are already packed, the algorithm halts.

1. Bins containing only a big item and no medium-sized items are filled further with small
items.

2. A bin containing at most three medium-sized items, or a bigitem and at most two medium-
sized items, is used if it exists. There can be at most one suchbin by Lemma 3.1.

3. Finally, if there are still small items left, they are packed into bins by themselves.

The details of these three steps are described below.

Step 1 Bins with one big item, but no medium-sized items.The big item is placed into the
lower left corner of the bin. Denote its size byx. The remaining area can be divided into two
rectangles, one of dimensions1 by 1− x at the top of the bin and one of dimensions1 − x by x
next to the big item. Use Next Fit Decreasing to pack the first rectangle. Continue until an item
can no longer be placed, place that item in the second rectangle. Note that this is possible since
the big item has size at most2/3 and small items have size at most1/3.

Step 2A A bin with only one medium-sized item.Pack items as in Step 1, the medium-sized
item in the lower left corner.

Step 2B A bin with two items, at least one medium-sized.Place the largest item, of sizex1, in
the lower left corner of the bin. Place the second largest item next to it, aligned with the bottom
of the bin and as far to the left as possible. There is an unoccupied region of dimensions 1 by
1 − x1 at the top of the bin. Pack small items into this region using NFD.

Step 2C A bin with three items, at least two medium-sized.Place the first two items as in Step
2B. Place the third item, of sizex3, on top of the first one, aligned with the left edge of the bin
and as far down as possible. This leaves an unoccupied regionof dimensions1 − x3 by 1 − x1

in the top right corner of the bin. Pack small items into this region using NFD.

Step 3 Bins with only small items.Pack items into new bins using NFD, opening a new bin
whenever items can no longer be placed in the current bin.

34 Chapter 3. An approximation algorithm for square packing

3.3 Approximation ratio

Lemma 3.3 If there are any unpacked small items left after Step 2, each bin that is packed so
far contains a total area of at least4/9.

Proof The lemma clearly holds for any bins with huge items.
Bins that are packed in Step 1 or 2 are packed exactly as in the proof of Lemma 4.3 in [141].

Step 1 and 2A correspond to Case 2 from that proof, Step 2B corresponds to Case 4 and 2C
corresponds to Case 5.

It follows immediately from that proof that in all cases, theused area is at least4/9. �

Lemma 3.4 Consider a bin that is packed in Step 3. If after packing this bin, there are still
unpacked small items left, it contains a total area of at least 9/16.

Proof We distinguish between cases. Since all items have size at most1/3, at least nine items
can be packed together in the bin, and NFD allocates at least three slices.

Case 1 The first slice contains at least four items.
Denote the size of the largest item byx, the size of the largest item in the second slice byy

and the size of the first item that can no longer be placed byz. Denote the total area of items
starting from the second slice byf . By Lemma 3.2, we havef + z2 > y2 + (1− y)(1− x− y).
Therefore in the entire bin we pack at least

x2 + 4y2 + (1 − y)(1 − x − y) − z2 ≥ x2 + 3y2 + (1 − y)(1 − x − y) = g.

We have∂g
∂x

= 2x + y − 1, which is negative for0 ≤ x < 1/3 and0 ≤ y ≤ 1/3. We find that
g has a minimum of29/48 > 9/16 for {(x, y) ∈ R

2|0 ≤ x ≤ 1/3, 0 ≤ y ≤ 1/3}, which is
attained forx = 1/3 andy = 5/24.

In the remaining cases, the four largest items do not fit next to each other in a bin.

Case 2 The first slice contains three items, but the second slice contains at least four items.
Denote the sizes of the first items in the first three slices byx, y andz, respectively. Denote

the sizes of the other items in the first slice byx1, x2. Again using Lemma 3.2, we pack at least

x2 + x2
1 + x2

2 + y2 + 3z2 + (1 − z)(1 − x − y − z).

We are interested in its minimum under the conditions that0 < z ≤ y ≤ x2 ≤ x1 ≤ x ≤ 1/3
andx + x1 + x2 + y ≥ 1. By distinguishing between the casesy ≤ 2/9 andy > 2/9, we find
that this function has a minimum of743/1296 > 0.5733 > 9/16 which is attained forx = 1/3,
x1 = x2 = y = 2/9 andz = 13/72.

3.3 Approximation ratio 35

Case 3 The first two slices both contain three items.
Denote the size of the largest item byx, the size of the largest item in the second slice by

y and the size of the second largest item in the second slice byz. By Lemma 3.2, any set of
squares with total area at most(1−x−y)/2 can be packed by NFD starting from the third slice.
Thus NFD packs at least(1 − x − y)/2− z2 in that region, and in total at least

x2 + 3y2 + z2 + (1 − x − y)/2.

We havex > 1/4, y > 1/4, andz > (1 − y)/3 since there are only three items in the first two
slices. The expression is monotonically increasing inx, y andz on this domain, and we find that
it is at least9/16 (attained forx = y = z = 1/4). �

Theorem 3.1 The algorithm has an absolute approximation ratio of 2.

Proof Denote the number of bins with a huge item byh, the number of bins that have a big item
(but no medium-sized items) byb, the number of bins with medium-sized items (and possibly a
big item) bym and the number of bins with (only) small items of total area atleast9/16 by s.
Our algorithm may generate one bin (the last one) that has only small items but with total area
less than9/16. Thus the number of bins produced by the algorithm is at most

h + b + m + s + 1.

Since FFDS is an optimal algorithm, for the optimal solutionOPT we findOPT ≥ h+ b+m.
Thus as long ass + 1 ≤ h + b + m, our algorithm uses at most twice as many bins as an optimal
solution.

Supposes ≥ h + b + m. First of all, if h + b + m = 0, then by Lemma 3.4 we have
OPT ≥ 9

16
s. If s = 0, thenOPT = 1 (assuming nonzero input) and the algorithm is optimal.

Otherwise,OPT > s/2, and thereforeOPT ≥ (s + 1)/2.
Supposes ≥ h + b + m ≥ 1. This implies that there are bins packed with only small

items. In other words, we do not run out of items while packingsmall items in Steps 1 or 2.
Lemma 3.3 guarantees that in this case, all bins packed so farcontain a total area of at least4/9.
Furthermore, all bins with only small items, except possibly the last one, have total area at least
9/16 by Lemma 3.4.

Thus in the case thats ≥ h + b + m, each bin except possibly the last one is on average
strictly more than half full, since4/9 + 9/16 > 1 ands ≥ 1. (Note that if the last bin with only
small items does not contain at least an area of9/16, it is not counted ins.) This implies that
any packing of this input requires strictly more than(h + b + m + s)/2 bins, and therefore at
least(h + b + m + s + 1)/2 bins. This concludes the proof. �

36 Chapter 3. An approximation algorithm for square packing

Chapter 4

Optimal online algorithms for
multidimensional packing

This chapter is concerned with online multidimensional packing problems. Apart from the stan-
dardd-dimensional packign problem which was defined in the Introduction, we also consider
the following variants:

• In the hypercube packingproblem we have the restriction that all items are hypercubes,
i.e. an item has the same size in every dimension.

• In variable-sizedbin packing, bins of various sizes are available to be used for packing
and the goal is to minimize the total size of all the bins used.

• In resource-augmentedbin packing, the online algorithm has larger bins at its disposal
than the offline algorithm, and the goal is to minimize the number of bins used.

The offline versions of these problems are NP-hard, while even with unlimited computational
ability it is impossible in general to produce the best possible solution online. We consider online
approximation algorithms.

The on-line one-dimensional variable-sized bin packing problem was first investigated by
Friesen and Langston [73]. Csirik [49] proposed the VARIABLE HARMONIC algorithm and
showed that it has performance ratio at mostΠ∞. Seiden [139] showed that this algorithm is
optimal among bounded space algorithms.

The on-line one-dimensional resource augmented bin packing problem was studied by Csirik
and Woeginger [54]. They showed that the optimal bounded space asymptotic performance ratio
is a functionρ(b) of the sizeb of the bins of the online algorithm.

Our Results:

• We begin by presenting a bounded space algorithm for the packing of hypercubes. An
interesting feature of the analysis is that although we showthe algorithm is optimal, we
do not know the exact asymptotic performance ratio. The asymptotic performance ratio is
Ω(log d) andO(d/ log d).

37

38 Chapter 4. Optimal online algorithms for multidimensionalpacking

• We then extend this algorithm to a bounded space algorithm for general hyperbox packing
and show that this algorithm is also optimal, with an asymptotic performance ratio of
(Π∞)d. This solves the problem of how to pack hyperboxes using onlybounded space,
which had been open since 1993.

• We present a bounded space algorithm for the variable-sizedmultidimensional bin pack-
ing problem. As for the first algorithm above, we do not know the exact asymptotic
performance ratio.

• We then give an analogous algorithm for the problem of resource augmented online bin
packing. This algorithm is also optimal, and it has an asymptotic performance ratio of
∏d

i=1 ρ(bi) whereb1 × · · · × bd is the size of the bins that the online algorithm uses.

We will use the well-known technique of weighting functions. This technique was originally
introduced for one-dimensional bin packing algorithms [153, 98]. In [141], it was demonstrated
how to use the analysis for one-dimensional algorithms to get results for higher dimensions. In
contrast, in the current chapter we will define weighting functions directly for multidimensional
algorithms, without using one-dimensional algorithms as subroutines.

New Technique:To construct the bounded space algorithm we adapt some of theideas used in
previous work. Specifically, the algorithm of [51] also required a scheme of partitioning bins
into sub-bins, and of sub-bins into smaller and smaller sub-bins. However, in order to keep a
constant number of bins active, we had to introduce a new method of classifying items. Our key
improvement is that there is not one single class of “small” items like all the standard algorithms
have, but instead we partition the items into an infinite number of classes that are grouped into a
finite number of groups. The hypercube packing algorithm uses an easier scheme for the same
purpose. This is a more direct extension of the method used in[46].

4.1 Packing hypercubes

In this section we define the algorithm for hypercubes, denoted byALGε. In the next section we
extend it to deal with hyperboxes. Let thesizeof hypercubep, s(p) be the length of each side of
the hypercube.

The algorithm has a parameterε > 0. Let M ≥ 10 be an integer parameter such that

M ≥ 1/
(

1 − (1 − ε)1/(d+1)
)

− 1.

We distinguish between “small” hypercubes (of size smalleror equal to1/M) and “big” hyper-
cubes (of size larger than1/M). The packing algorithm will treat them in different ways.

All largehypercubes are packed using a multidimensional version of HARMONIC [114]. The
hypercubes are assigned a type according to their size: typei items have a size in the interval
(1/(i + 1), 1/i] for i = 1, . . . , M − 1. The bins that are used to pack items of these types all
contain items of only one type. We use the following algorithm to pack them. A bin is called
activeif it can still receive items, otherwise it isclosed.

4.1 Packing hypercubes 39

Algorithm A SSIGNL ARGE(i) At all times, there is at most one active bin for each type. Each
bin is partitioned intoid hypercubes (sub-bins) of size1/i each (the sub-bins create a grid ofi
strips in each dimension). Each such sub-bin can contain exactly one item of typei. On arrival
of a typei item it is assigned to a free sub-bin (and placed anywhere inside this sub-bin). If all
sub-bins are taken, the previous active bin is closed, a new active bin is opened and partitioned
into sub-bins.

Thesmallhypercubes are also assigned types depending on their size,but in a different way.
Consider an itemp of sizes(p) ≤ 1/M . Let k be the largest non-negative integer such that
2ks(p) ≤ 1/M . Clearly2ks(p) > 1/(2M). Let i be the integer such that2ks(p) ∈ (1/(i +
1), 1/i], i ∈ {M, . . . 2M − 1}. The item is defined to be of typei. Each bin that is used to pack
small items contains only small items with a given typei. Note that items of very different sizes
may be packed together in one bin. We now describe the algorithm to pack a new small item
of type i for i = M, . . . , 2M − 1. A sub-bin which received a hypercube is said to beused. A
sub-bin which is not used and not cut into smaller sub-bins iscalledempty.

Algorithm A SSIGNSMALL (i) The algorithm maintains a single active bin. Each bin may
during its use be partitioned into sub-bins which are hypercubes of different sizes of the form
1/(2ji). When an itemp of type i arrives we do the following. Letk be the integer such that
2ks(p) ∈ (1/(i + 1), 1/i].

1. If there is an empty sub-bin of size1/(2ki), then the item is simply assigned there and
placed anywhere within the sub-bin.

2. Else, if there is no empty sub-bin of any size1/(2ji) for j < k inside the current bin, the
bin is closed and a new bin is opened and partitioned into sub-bins of size1/i. Then the
procedure in step 3 is followed, or step 1 in casek = 0.

3. Take an empty sub-bin of size1/(2ji) for a maximumj < k. Partition it into2d identical
sub-bins (by cutting into two identical pieces, in each dimension). If the resulting sub-bins
are of size larger than1/(2ki), takeoneof them and partition it in the same way. This is
done until sub-bins of size1/(2ki) are reached. The new item is assigned into one such
sub-bin.

Finally, the main algorithm only determines the type of newly arriving items and assigns
them to the appropriate algorithms. The total number of active bins is at most2M − 1. In order
to perform a competitive analysis, we prove the following claims.

Claim 4.1 For a giveni ≥ M , consider an active bin of typei. At all times, the number of
empty sub-bins in it of each size except1/i is at most2d − 1.

Proof Note that the number of empty sub-bins of size1/i decays fromid to zero during the
usage of such a bin. Consider a certain possible sizer of a sub-bin in it. When a sub-bin of some
sizer is created, it is due to partition of a larger sub-bin. This means that there were no empty

40 Chapter 4. Optimal online algorithms for multidimensionalpacking

sub-bins of sizer before the partition. Afterwards, there are at most2d − 1 of them for each
size that has been created during the partitioning (for the smallest size into which the sub-bin is
partitioned,2d sub-bins created, but one is immediately used). �

Claim 4.2 For a giveni ≥ M , when a bin of typei is about to be closed, the total volume of
empty sub-bins in the bin is at most1/id.

Note that the above claims bound the volume of sub-bins that are not used at all. There is
some waste of volume also due to the fact that each item does not fill its sub-bin totally. We
compute this waste later.
Proof For i ≥ M , when a bin of typei is to be closed, there are no empty sub-bins of size1/i
in it. There are at most2d − 1 empty sub-bins of each other size by Claim 4.1. This gives a total
unused volume of at most(2d − 1)

∑

k≥1(2
ki)−d = 1/id. �

Claim 4.3 The occupied volume in each closed bin of typei ≥ M is at least1 − ε.

Proof A hypercube which was assigned into a sub-bin of size1/(2ki) always has size of at least
1/(2k(i + 1)). Therefore the ratio of occupied space and existing space ineach used sub-bin is
at leastid/(i + 1)d. When a bin is closed, the total volume of used sub-bins is at least1 − 1/id

by Claim 4.2. Therefore the occupied volume in the bin is at least id/(i + 1)d(1 − 1/id) =
(id − 1)/(i + 1)d. We usei ≥ M andMd ≥ M + 1 to get

(id − 1)/(i + 1)d ≥ (Md − 1)/(M + 1)d ≥ (
M

M + 1
)d+1 ≥ 1 − ε.

�

Now we are ready to analyze the performance. We define a weighting function forALGε.
Each itemp with type1 ≤ i ≤ M − 1 has weightwε(p) = 1/id. Each itemp′ of higher type has
weightwε(p

′) = (s(p))d/(1 − ε) which is the volume of the item divided by(1 − ε). We begin
by showing that this weighting function is valid for our algorithm.

Lemma 4.1 For all input sequencesσ,

costALGε(σ) ≤
∑

p∈σ

wε(p) + 2M − 1.

Proof Each closed bin of type1 ≤ i ≤ M−1 containsid items. All sub-bins are used when the
bin is closed, and thus it contains a total weight of 1. Each closed bin of typeM ≤ i ≤ 2M − 1
has occupied volume of at least1 − ε by Claim 4.3, and therefore the weights of the items in
such a bin sum up to at least 1. At most2M − 1 bins are active. Thus the total number of bins
used byALGε for a given input sequenceσ is upper bounded by the total weight of the items
plus2M − 1. �

By this Lemma, for any givenε > 0, the asymptotic performance ratio of our algorithm can
be upper bounded by the maximum amount of weight that can be packed in a single bin: for
a given input sequenceσ (with fixed weightw), the offline algorithm minimizes the number of
bins that it needs to pack all items inσ by packing as much weight as possible in each bin. If

4.1 Packing hypercubes 41

it needsk bins, the performance ratio on this input isw/k, which is also the average weight per
offline bin.

Therefore we need to find the worst case offline bin, i.e. an offline bin which is packed with
a maximum amount of weight. However, for the case of cubes, weonly haveM + 1 different
types of items. All large items of typei have the same weight. All small items have the same
ratio of weight to volume. Therefore the exact contents of a bin are not crucial. In order to define
a packed bin, we only need to know how many items there are of each type, and the volume of
the small items. To maximize the weight we can assume that thelarge items are as small as
possible (without changing their type), and the rest of the bin is filled with small items.

Formally, we define apatternas a tupleq = 〈q1, . . . , qM−1〉, where there exists a feasible
packing into a single bin containingqi items of typei for all 1 ≤ i ≤ M − 1. This generalizes
the definition from [140]. The weight of a patternq is at most

wε(q) =

M−1
∑

i=1

qi

id
+

1

1 − ε

(

1 −
M−1
∑

i=1

qi

(i + 1)d

)

. (4.1)

Note that for any given pattern the amounts of items of typesM, . . . , 2M − 1 are unspecified.
However, as mentioned above, the weight of such items is always their volume divided by1−ε.
Therefore (4.1) gives an upper bound for the total weight that can be packed in a single bin for
a given patternq. Summarizing, we have the following Theorem.

Theorem 4.1 The asymptotic performance ratio ofALGε is upper bounded bymaxq wε(q),
where the maximum is taken over all patternsq that are valid forALGε.

In order to use the Theorem, we need the following geometric Claim. We immediately
formulate it in a general way so that we can also apply it in thenext section.

Claim 4.4 Given a packing of hyperboxes into bins, such that componentj of each hyperbox is
bounded in an interval(1/(kj +1), 1/kj], wherekj ≥ 1 is an integer forj = 1, . . . , d, then each
bin has at most

∏d
j=1 kj hyperboxes packed in it.

Proof We prove the claim by induction on the dimension. Clearly ford = 1 the claim holds.
To prove the claim ford > 1, the induction hypothesis means that a hyperplane of dimension
d − 1 through the bin which is parallel to one of the sides (the sidewhich is the projection of
the bin on the firstd − 1 dimensions) can meet at most

∏d−1
j=1 kj hyperboxes. Next, take the

projection of the hyperboxes and the bin on the last axis. We get short intervals of length in
(1/(kd + 1), 1/kd] (projections of hypercubes) on an main interval of length1 (the projection of
the bin). As mentioned above, each point of the main intervalcan have the projection of at most
∏d−1

j=1 kj items. Consider the short intervals as an interval graph. The size of the largest clique is

at most
∏d−1

j=1 kj. Therefore, as interval graphs are perfect, we can color theshort intervals using
∏d−1

j=1 kj colors. Note that the number of intervals of each independent set is at mostkd (due to

length), and so the total number of intervals is at most
∏d

j=1 kj. �

42 Chapter 4. Optimal online algorithms for multidimensionalpacking

Lemma 4.2 Let
α = lim inf

ε→0
max

q
wε(q),

where the maximum is taken over all patternsq that are valid forALGε. Then the asymptotic
performance ratio of any bounded space algorithm is at leastα.

Proof We show that there is no bounded space algorithm with an asymptotic performance ratio
strictly belowα. For anyε′ > 0, there exists anε ∈ (0, ε′) such thatR∞(ALGε) ≤ (1 + ε′)α.
Consider the patternq for which wε(q) is maximal. We writewε(q) = (1 + ε′′)α for some
ε′′ ∈ [0, ε′].

Note that a pattern does not specify the precise sizes of any of the items in it. Based onq,
we define a set of hypercubes that can be packed together in a single bin. For each item of type
i in q, we take a hypercube of size1/(i + 1) + δ for some smallδ > 0. Take

Vδ = 1 −
M−1
∑

i=1

qi

(

1

i + 1
+ δ

)d

.

We add a large amount of small hypercubes of total volumeVδ, where the sizes of the small
hypercubes are chosen in such a way that they can all be packedin a single bin together with the
large hypercubes prescribed byq. By the definition of a pattern, such a packing is feasible forδ
sufficiently small.

Define the following input for a bounded space algorithm. LetN be a large constant. The
sequence containsM phases. The last phase contains a volumeNVδ of small hypercubes. Phase
i (1 ≤ i ≤ M − 1) containsNqi hypercubes of size1/(i + 1) + δ. After phasei, almost
all hypercubes of this phase must be packed into closed bins (except a constant number of
active bins). Each such bin may contain up toid items, which implies that in each phasei,
Nqi/i

d − O(1) bins are closed. The last phase contributes at leastVδ − O(1) extra bins. The
cost of the online algorithm is

M−1
∑

i=1

Nqi

id
+ Vδ − O(M).

But the optimal offline cost is simplyN . Takingδ = 1/N and lettingN grow without bound,
N becomes much larger thanM and the asymptotic performance ratio of any bounded space
on-line algorithm is lower bounded by

∑M−1
i=1 qi/i

d + V0. Note that the weight of this set of
hypercubes according to our definition of weights tends to

M−1
∑

i=1

qi

id
+

V0

1 − ε
= wε(q) = (1 + ε′′)α

asδ → 0. Therefore

M−1
∑

i=1

qi

id
+ V0 ≥ (1 − ε)(1 + ε′′)α ≥ (1 − ε′)α.

�

4.1 Packing hypercubes 43

This Lemma implies that our algorithm is the best possible bounded space algorithm. More
precisely, for everyε′ > 0, there exists anε ∈ (0, ε′) such thatR∞(ALGε) ≤ (1 + ε′)α,
and no bounded space algorithm has an asymptotic performance ratio below(1 − ε′)α. This
also implies that our weighting function cannot be improvedand determines the asymptotic
performance ratio exactly. However, we have no general formula for this ratio. We do have the
following bounds.

Theorem 4.2 There exists a value ofM such that the asymptotic performance ratio ofALGε is
O(d/ logd). Any bounded space algorithm (in particularALGε) has an asymptotic performance
ratio of Ω(log d).

Proof We first show the upper bound. TakeM = 2d/ log d. The occupied area in bins of small
types is at least(M

M+1
)d+1 by the proof of Claim 4.3. This is greater than

(

M + 1

M

)−d

=

(

1 +
1

M

)−d

=

(

1 +
log d

2d

)−d

,

which tends toe−(log d)/2 = (elog d)−1/2 = 1/
√

d for d → ∞.
Suppose the input isI. Denote byIi the subsequence of items of typei (i = 1, . . . , M),

where we consider all the small types as a single type. Then wehave

ALG(Ii) = OPT(Ii) ≤ OPT(I) for i = 1, . . . , M − 1,

since if items of only one type arrive, our algorithm packs them perfectly. Moreover,

ALG(IM) = O(
√

d) · OPT(IM) = O(
√

d) · OPT(I).

Thus

ALG(I) =

M
∑

i=1

ALG(Ii) ≤ (M − 1)OPT(I) + O(
√

d)OPT(I) = O(d/ log d)OPT(I).

We now prove the lower bound. Consider the following lower bound construction. (This
lower bound can also be shown using the weighting function.)We use⌈log d⌉ phases. In phase
i, N((2i − 1)d − (2i − 2)d) items of size2−i(1 + δ) arrive, whereδ < 2−⌈log d⌉ ≤ 1/d. OPT can
place all these items in justN bins by using the following packing scheme. Each bin is packed
identically, so we just describe the packing of a single bin.The first item is placed in a corner
of the bin. We assign coordinates to the bin so that this corner is the origin and all positive axes
are along edges of the bin. (The size of the bin in each dimension is 1.)

Consider any coordinate axis. We reserve the space between(1 − 21−i)(1 + δ) and(1 −
2−i)(1 + δ) for items of phasei. Note that this is exactly the size of such an item. By doing
this along every axis, we can place all(2i − 1)d − (2i − 2)d items of phasei. (There would be
room for(2i − 1)d items if we used all the space until(1− 2−i)(1 + δ) along each axis; we lose
(2i − 2)d items because the space until(1 − 21−i)(1 + δ) is occupied.)

44 Chapter 4. Optimal online algorithms for multidimensionalpacking

The minimum number of bins that any bounded space online algorithm needs to place the
items of phasei is

N
(2i − 1)d − (2i − 2)d

(2i − 1)d
= N

(

1 −
(

2i − 2

2i − 1

)d
)

.

Note that the contribution of each phasei to the total number of bins required to pack all items
is strictly decreasing ini. Consider the contribution of the last phase, which is phase⌈log d⌉.
Since⌈log d⌉ ≤ 1 + log d, it is greater than

N

(

1 −
(

2d − 2

2d − 1

)d
)

= N

(

1 −
(

1 − 1

2d − 1

)d
)

≥ N(1 − e−1/2) > 0.39N

for all d ≥ 2. Thus all⌈log d⌉ terms all contribute at least0.39N , and the total number of bins
required is at least0.39N(⌈log d⌉). This implies a lower bound ofΩ(log d) on the asymptotic
performance ratio of this problem. �

In [63], we give specific upper and lower bounds for dimensions2, . . . , 7.

4.2 Packing hyperboxes

Next we describe how to extend the algorithm for hypercubes to handle hyperboxes instead of
hypercubes. This algorithm also uses the parameterε. The value ofM as a function ofε is
picked so that

M ≥ 1/
(

1 − (1 − ε)1/(d+2)
)

− 1.

Similarly to the previous algorithm, the hyperboxes are classified into types. An arriving hyper-
boxp of dimensions(s1(p), s2(p), . . . , sd(p)) is classified as one of(2M − 1)d types depending
on its components: a type of a hyperbox is the vector of the types of its components.

There are2M − 1 types of components. A component larger than1/M has typei if 1/(i +
1) < si(p) ≤ 1/i, and is called large. A component smaller than1/M has typei, where
M ≤ i ≤ 2M − 1, if there exists a non-negative integerfi such that

1

i + 1
< 2fisi(p) ≤ 1

i
.

Such components are called small.
Each of the(2M − 1)d types is packed separately and independently of the other types. The

algorithm keeps one active bin for each type(t1, . . . , td). When such a bin is opened, it is split
into

∏d
i=1 ti identical sub-bins of dimensions(1/t1, . . . , 1/td). On arrival of a hyperboxh, after

classification into a type, a sub-bin has to be found for it. Ifthere is no sub-bin in the current bin
that is larger thanh in every dimension, we close the bin and open a new one. Otherwise, we
take an empty sub-bin that has minimum volume among all sub-bins that can containh.

Now consider the components ofh one by one. If thei-th component is large, the sub-bin has
the correct size in this dimension: its size is1/ti whereas the component is in(1/(ti + 1), 1/ti].

4.2 Packing hyperboxes 45

If the i-th component is small, the size of the sub-bin in thei-th dimension may be too large.
Suppose its size is1/(2f ′

ti) whereas the hyperbox has size∈ (1/(2f(ti + 1), 1/(2fti)] in this
dimension for somef > f ′. In this case, we divide the sub-bin into two equal parts by cutting
halfway (across thei-th dimension). If the new sub-bins have the proper size, take one of the
two smallest sub-bins that were created, and continue with the next component. Otherwise, take
one of the new sub-bins and cut it in half again, repeating until the size of a created sub-bin is
1/(2fti).

Thus we ensure that the sub-bin that we use to pack the itemh has the proper size in every
dimension. We then place this item anywhere inside the sub-bin.

We now generalize the proofs from the previous section for this algorithm.

Claim 4.5 Consider a type(t1, . . . , td), and its active bin. For every vector(f1, . . . , fd) 6= 0 of
nonnegative integers such thatfi = 0 for each large componenti, there is at most one empty
sub-bin of size(1/(2f1t1), . . . , 1/(2fdtd)).

Proof Note that the number of sub-bins of size(1/t1, . . . , 1/td), is initialized to be
∏d

i=1 ti,
and decays until it reaches the value zero. The cutting process does not create more than a single
empty sub-bin of each size. This is true for all the sub-bins created except for the smallest size
that is created in any given process. For that size we create two identical sub-bins. However,
one of them is filled right away.

Furthermore, no sub-bins of existing sizes are created due to the choice of the initial sub-bin.
The initial sub-bin is chosen to be of minimum volume among the ones that can contain the item,
and hence all the created sub-bins (all of which can contain the item) are of smaller volume than
any other existing sub-bin that can contain the item. �

Claim 4.6 The occupied volume in each closed bin of type(t1, . . . , td) is at least

(1 − ε)
∏

i∈L

ti/(ti + 1),

whereL is the set of large components in this type.

Proof To bound the occupied volume in closed bins, note that a sub-bin which was assigned
an item is full by a fraction of at least

d
∏

i=1

ti
ti + 1

≥
(

M

M + 1

)d−|L|
∏

i∈L

ti
ti + 1

.

Considering sub-bins that were empty when the bin was closed, by Claim 4.5 there may
be one empty sub-bin of each size(1/(2f1t1), . . . , 1/(2fdtd)), with the restrictions thatfi is a
nonnegative integer fori = 1, . . . , d, fi = 0 for each large componenti, and there exists some
i ∈ {1, . . . , d} such thatfi 6= 0.

If there are no small components, there can be no empty sub-bins because large components
never cause splits into sub-bins, so all sub-bins are used when the bin is closed. This gives a
bound of

∏

i∈L ti/(ti + 1).

46 Chapter 4. Optimal online algorithms for multidimensionalpacking

If there is only one small component, the total volume of all empty sub-bins that can exist is

1

t1 . . . td
·
(

1

2
+

1

4
+ . . .

)

≤ 1

t1 . . . td
≤ 1

M
,

since one of the components is small (type is at leastM) and all other components have type at
least 1. The occupied volume is at least

(

1 − 1

M

)

· M

M + 1

∏

i∈L

ti
ti + 1

≥
(

M

M + 1

)d+2
∏

i∈L

ti
ti + 1

.

This holds for anyd ≥ 2 andM ≥ 2.
If there arer ≥ 2 small components, the total volume of empty sub-bins is at most

2r − 1

t1t2 . . . td
≤ 2r − 1

M r
≤ 2r

M r
.

(We get the factor2r − 1 by enumerating over all possible choices of the valuesfi.) We get that
the fraction of each bin that is filled is at least

(

1 − 2r

M r

)(

M

M + 1

)r
∏

i∈L

ti
ti + 1

=
M r − 2r

(M + 1)r

∏

i∈L

ti
ti + 1

≥
(

M

M + 1

)r+2
∏

i∈L

ti
ti + 1

≥
(

M

M + 1

)d+2
∏

i∈L

ti
ti + 1

.

The first inequality holds forM r − 2r ≥ M r+2/(M + 1)2, which holds for anyr ≥ 2 and
M ≥ 4. Using

(
M

M + 1
)d+2 ≥ 1 − ε

we get the Claim. �

We now define a weighting function for our algorithm. The weight of a hyperboxp with
components(h1, . . . , hd) and type(t1, . . . , td) is defined as

wε(p) =
1

1 − ε

∏

i/∈L

hi

∏

i∈L

1

ti
,

whereL is the set of large components in this type.

Lemma 4.3 For all input sequencesσ,

costalg(σ) ≤
∑

h∈σ

wε(h) + O(1).

4.2 Packing hyperboxes 47

Proof In order to prove the claim, it is sufficient to show that each closed bin contains items
of total weight of at least1. Consider a bin filled with hyperboxes with type(t1, . . . , td). It is
sufficient to consider the subsequenceσ of the input that contains only items of this type, since
all types are packed independently. We build an inputσ′ for which both the behavior of the
algorithm and the weights are the same as forσ, and show the claim holds forσ′. Let δ < 1/M3

be a very small constant.
For a hyperboxh ∈ σ with components(h1, . . . , hd) and type(t1, . . . , td), let h′ = (h′

1, . . . ,
h′

d) ∈ σ′ be defined as follows. Fori /∈ L, h′
i = hi. For i ∈ L, h′

i = 1/(ti + 1) + δ < 1/ti. As h
andh′ have the same type, they require a sub-bin of the same size in all dimensions. Therefore
the algorithm packsσ′ in the same way as it packsσ. Moreover, according to the definition of
weight above,h andh′ have the same weight.

Let v(h) denote the volume of an itemh. For h ∈ σ, we compute the ratio of weight and
volume of the itemh′. We have

wε(h
′)

v(h′)
=

1

1 − ε

∏

i/∈L

h′
i

∏

i∈L

1

ti

/

d
∏

i=1

h′
i

=
1

1 − ε

∏

i∈L

1

tih′
i

>
1

1 − ε

∏

i∈L

ti + 1

ti + M2δ
.

As δ tends to zero, this bound approaches the inverse of the number in Claim 4.6. This means
that the total weight of items in a closed bin is no smaller than 1. �

Just like in Section 4.1, this Lemma implies that the asymptotic performance ratio is upper
bounded by the maximum amount of weight that can be packed in asingle bin. We now prove a
technical lemma that implies that this weighting function is also “optimal” in that it determines
the true asymptotic performance ratio of our algorithm.

Definition 4.1 Thepseudo-volumeof a hyperboxh = (h1, . . . , hd) is defined as
∏

i/∈L hi, where
L is the set of large components ofh.

Suppose that for a given set of hyperboxesX, we can partition the dimensions into two sets,
S andT , such that for each dimensionj in S, we have that thej-th components of all hyperboxes
in X are bounded in an interval(1/(kj + 1), 1/kj]. There are no restrictions on the dimensions
in T . (Thus such a partition can always be found by takingS = ∅.)

For a hyperboxp ∈ X, define thegeneralized pseudo-volumeof the components inT by

ṽ(p, T) =
∏

j∈T

sj(p),

wheresj(p) is thejth component ofp. Define the total generalized pseudo-volume of all hyper-
boxes in a setX by ṽ(X, T) =

∑

p∈X ṽ(p, T).

48 Chapter 4. Optimal online algorithms for multidimensionalpacking

Claim 4.7 For a given setX of hyperboxes, for sufficiently largeN , any packing ofX into bins
requires at least

ṽ(X, T)

(

1 − 1

N

)|T |
/

∏

i∈S

ki

bins, whereS andT form a partitioning of the dimensions as described above.

Proof We prove the claim by induction on the number of dimensions inT . For |T | = 0, we
find that the total generalized pseudo-volume ofX is simply the number of hyperboxes inX
(since the empty product is 1) and thus the claim is true usingClaim 4.4.

Assume the claim is true for|T | = 0, . . . , r − 1. Suppose|S| = d − r < d. Take any
dimensioni ∈ T . We replace each hyperboxp, with componentsi(p) in dimensioni, by⌊N2hi⌋
hyperboxes that have1

N2 as theiri-th component, and are identical top in all other components.
HereN is taken sufficiently large, such that1

N
< hi. Clearly, the new inputX ′ is no harder to

pack, as we split each item into parts whose sum is smaller than or equal to the original items.
The total generalized pseudo-volume of the hypercubes inX ′ is at most a factor of

1 − 1

N2si(p)
≥ 1 − 1

N

smaller than that ofX. So if we writeT ′ = T\{i}, we have

ṽ(X ′, T ′) · 1

N2
≥ ṽ(X, T)

(

1 − 1

N

)

.

By induction, it takes at least

ṽ(X ′, T ′) ·
(

1 − 1

N

)r−1
/

∏

j∈S∪{i}

kj

bins to pack the modified inputX ′. Using thatki = N2, this is

ṽ(X, T) ·
(

1 − 1

N

)r/
∏

j∈S

kj

bins. �

Lettingγ = 1−(1− 1
N

)d, we get that the required number is at leastṽ(X, T)(1−γ)/
∏

j∈S kj

bins, whereγ → 0 asN → ∞. In the remainder, we will takeS to be the dimensions where
the components of the hyperboxes inX are large, andT the dimensions where they are small.
Note that this choice ofS satisfies the constraints onS above, and that this reduces the gener-
alized pseudo-volume to the (normal) pseudo-volume definedbefore. We are ready to prove the
following Lemma.

Lemma 4.4 Let ε > 0. Suppose the maximum amount of weight that can be packed in a single
bin is αε. Then our algorithm has an asymptotic performance ratio ofαε, and the asymptotic
performance ratio of any bounded space algorithm is at least(1 − ε)αε.

4.3 Variable-sized packing 49

Proof The first statement follows from Lemma 4.3. We show a lower bound of value which
tends toαε on the asymptotic performance ratio of any bounded space algorithm.

Consider a packed bin for which the sum of weights isαε. Partition the hyperboxes of this
bin intoMd types in the following way. Each component is either of a typein {1, . . . , M − 1}
or small (i.e. of a typei, i ≤ M). Let N ′ be a large constant. The sequence consists of phases.
Each phase consists of one item from the packed bin, repeatedN ′ times. The optimal offline
cost is thereforeN ′. Using Claim 4.7 we see that the amount of bins needed to pack aphase
which consists of an itemp repeatedN ′ times is simply

N ′wε(p)(1 − γ)(1 − ε).

Therefore the cost of an on-line algorithm is at least

N ′αε(1 − γ)(1 − ε) − O(1),

which makes the asymptotic performance ratio arbitrarily close to(1 − ε)αε. �

Furthermore, we can determine the asymptotic performance ratio of our algorithm for hy-
perbox packing. Comparing to the unbounded space algorithmin [51] we can see that all the
weights we defined are smaller than or equal to the weights used in [51]. So the asymptotic per-
formance ratio is not higher. However, it can also not be lower due to the general lower bound
for bounded space algorithms. This means that both algorithms have the same asymptotic per-
formance ratio, namely(Π∞)d, whereΠ∞ ≈ 1.691 is the asymptotic performance ratio of the
algorithm HARMONIC [114].

4.3 Variable-sized packing

In this section we consider the problem of multidimensionalpacking where the bins used can
have different sizes. We assume that all bins are hypercubes, with sidesα1 < α2 < . . . < αm =
1. In fact our algorithm is more general and works for the case where the bins are hyperboxes
with dimensionsαij (i = 1, . . . , m, j = 1, . . . , d). We present the special case of bins that are
hypercubes in this thesis in order to avoid an overburdened notation and messy technical details.

The main structure of the algorithm is identical to the one inSection 4.2. The main problem
in adapting that algorithm to the current problem is selecting the right bin size to pack the items
in. In the one-dimensional variable-sized bin packing problem, it is easy to see which bin will
accommodate any given item the best; here it is not so obvioushow to select the right bin size,
since in one dimension a bin of a certain size might seem best whereas for other dimensions,
other bins seem more appropriate.

We begin by defining types for hyperboxes based on their components and the available bin
sizes. Once again we use a parameterε. The value ofM as a function ofε is again picked so that
M ≥ 1/(1− (1−ε)1/(d+2))−1. An arriving hyperboxp of dimensions(s1(p), s2(p), . . . , sd(p))
is classified as one of at most(2mM/α1 − 1)d types depending on its components: a type of a
hyperbox is the vector of the types of its components. We define

Ui =

{

αi

j

∣

∣

∣

∣

j ∈ N,
αi

j
≥ α1

2M

}

, U =

m
⋃

i=1

Ui.

50 Chapter 4. Optimal online algorithms for multidimensionalpacking

Let the members ofU be

1 = u1 > u2 > . . . > uq′ =
α1

M
> . . . > uq =

α1

2M
.

The intervalIj is defined to be(uj+1, uj] for j = 1, . . . , q′. Note that these intervals are disjoint
and that they cover(α1/M, 1].

A component larger thanα1/M has typei if si(p) ∈ Ii, and is called large. A component
smaller thanα1/M has typei, whereq′ ≤ i ≤ q − 1, if there exists a non-negative integerfi

such that
ui+1 < 2fisi(p) ≤ ui.

Such components are called small. Thus in total there areq − 1 ≤ 2mM/α1 − 1 component
types.

Bin selection We now describe how to select a bin for a given type. Intuitively, the size of this
bin is chosen in order to maximize the number of items packed relative to the area used. This is
done as follows.

For a given component typeti and bin sizeαj , write F (ti, αj) = max{k | αj/k ≥ uti}.
Thus for a large component,F (ti, αj) is the number of times that a component of typeti fits in
an interval of lengthαj . This number is uniquely defined due to the definition of the numbers
ui. Basically, the general classification into types is too finefor any particular bin size, and we
useF (ti, αj) to get a less refined classification which only considers the pointsui of the form
αj/k.

Denote byL the set of components in type(t1, . . . , td) that are large. IfL = ∅, we use a bin
of size 1 for this type. Otherwise, we place this type in a bin of any sizeαj which maximizes1

∏

i∈L

F (ti, αj)

αj
. (4.2)

Thus we do not take small components into account in this formula. Note that for a small
component,F (ti, αj) is not necessarily the same as the number of times that such a component
fits into any interval of lengthαj. However, it is at leastM for any small component.

When such a bin is opened, it is split into
∏d

i=1 F (ti, αj) identical sub-bins of dimensions
(αj/F (t1, αj), . . . , αj/F (td, αj)). These bins are then further sub-divided into sub-bins in order
to place hyperboxes in “well-fitting” sub-bins, in the manner which is described in Section 4.2.

Similarly to in that section, the following claim can now be shown.

Claim 4.8 The occupied volume in each closed bin of typet = (t1, . . . , td) is at least

Vt,j = (1 − ε)αd
j

∏

i∈L

F (ti, αj)

F (ti, αj) + 1
,

whereL is the set of large components in this type andαj is the bin size used to pack this type.

1For the case that the bins are hyperboxes instead of hypercubes, we here get the formula
∏

i∈L(F (ti, αij)/αij),
and similar changes throughout the text.

4.3 Variable-sized packing 51

We now define a weighting function for our algorithm. The weight of a hyperboxp with
components(s1(p), . . . , sd(p)) and type(t1, . . . , td) is defined as

wε(h) =
1

1 − ε

(

∏

i/∈L

si(p)

)(

∏

i∈L

αj

F (ti, αj)

)

,

whereL is the set of large components in this type andαj is the size of bins used to pack this
type.

In order to prove that this weighting function works (gives avalid upper bound for the cost of
our algorithm), we will want to modify componentsti to the smallest possible component such
thatF (ti, αj) does not change. (Basically, a component will be rounded toαj/(F (ti, αj) + 1)
plus a small constant.) However, with variable-sized bins,when we modify components in this
way, the algorithm might decide to pack the new hyperbox differently. (Remember thatF (ti, αj)
is a “less refined” classification which does not take other bin sizes thanαj into account.) To
circumvent this technical difficulty, we will show first thatas long as the algorithm keeps using
the same bin size for a given item, the volume guarantee stillholds.

For a given typet = (t1, . . . , td) and the corresponding setL and bin sizeαj , define an
extended typeExt(t1, . . . , td) as follows: an itemp is of extended type Ext(t1, . . . , td) if each
large componentsi(p) ∈ (

αj

F (ti,αj)+1
,

αj

F (ti,αj)
] and each small componentsi(p) is of typeti.

Corollary 4.1 Suppose items of extended typeExt(t1, . . . , td) are packed into bins of sizeαj .
Then the occupied volume in each closed bin is at leastVt,j .

Proof In the proof of Claim 4.8, we only use that each large component si(p) is contained in
the interval(αj

F (ti,αj)+1
,

αj

F (ti,αj)
]. Thus the proof also works for extended types. �

Lemma 4.5 For all input sequencesσ,

costalg(σ) ≤
∑

h∈σ

wε(h) + O(1).

Proof In order to prove the claim, it is sufficient to show that each closed bin of sizeαj contains
items of total weight of at leastαd

j . Consider a bin of this size filled with hyperboxes of type
(t1, . . . , td). It is sufficient to consider the subsequenceσ of the input that contains only items
of this type, since all types are packed independently. Thissubsequence only uses bins of size
αj so we may assume thatno other sizes of bins are given. We build an inputσ′ for which both
the behavior of the algorithm and the weights are the same as for σ, and show the claim holds
for σ′. Let δ < 1/M3 be a very small constant.

For a hyperboxp ∈ σ with components(s1(p), . . . , sd(p)) and typet = (t1, . . . , td), let
p′ = (s′1(p), . . . , s′d(p)) ∈ σ′ be defined as follows. Fori /∈ L, s′i(p) = si(p). For i ∈ L,

s′i(p) =
αj

F (ti, αj) + 1
+ δ <

αj

F (ti, αj)
.

Note thatp′ is of extended type Ext(t1, . . . , td). Since only one size of bin is given, the
algorithm packsσ′ in the same way as it packsσ. Moreover, according to the definition of
weight above,p andp′ have the same weight.

52 Chapter 4. Optimal online algorithms for multidimensionalpacking

Let v(p) denote the volume of an itemp. For p ∈ σ, we compute the ratio of weight and
volume of the itemp′. We have

wε(h
′)

v(p′)
=

wε(h)

v(p′)
=

1

1 − ε

(

∏

i/∈L

s′i(p)

)(

∏

i∈L

αj

F (ti, αj)

)/

d
∏

i=1

s′i(p)

=
1

1 − ε

∏

i∈L

αj

F (ti, αj)s′i(p)

>
1

1 − ε

∏

i∈L

F (ti, αj) + 1

F (ti, αj) + M
αj

α1
δ
.

Here we have used in the last step that a component with a largetype fits less thanM times in
a (one-dimensional) bin of sizeα1, and therefore less thanM αj

α1
times in a bin of sizeαj ≥ α1.

As δ tends to zero, this bound approachesαd
j/Vt,j . We find

wε(p) ≥ αd
j

v(p′)

Vt,j
for all p ∈ σ.

Then Corollary 4.1 implies that the total weight of items in aclosed bin of sizeαj is no smaller
thanαd

j , which is the cost of such a bin. �

Suppose the optimal solution for a given input sequenceσ usesnj bins of sizeαj . Denote
theith bin of sizeαj by Bi,j . Then

∑

h∈σ wε(p)
∑m

j=1 αd
jnj

=

∑m
j=1

∑nj

i=1

∑

h∈Bi,j
wε(p)

∑m
j=1 αd

jnj

=

∑m
j=1

∑nj

i=1

∑

h∈Bi,j
wε(p)

∑m
j=1

∑nj

i=1 αd
j

.

This implies that the asymptotic performance ratio is upperbounded by

max
j

max
Xj

∑

p∈Xj

wε(p)/αd
j , (4.3)

where the second maximum is taken over all setsXj that can be packed in a bin of sizeαj.
Similarly to Section 4.2, it can now be shown that this weighting function is also “optimal” in
that it determines the true asymptotic performance ratio ofour algorithm.

In particular, it can be shown that packing a set of hyperboxes X that have the same type
vectors of large and small dimensions takes at least

∑

p∈X

∏

i/∈L

pi

αj

/

∏

i∈L

F (ti, αj)

bins of sizeαj , wheresi(p) is theith component of hyperboxp, ti is the type of theith compo-
nent, andL is the set of large components (for all the hyperboxes inX). Since the cost of such a
bin isαd

j , this means that the total cost to packN ′ copies of some itemp is at leastN ′wε(p)(1−ε)

4.4 Resource augmented packing 53

when bins of this size are used. However, it is clear that using bins of another sizeαk does not
help: packingN ′ copies ofp into such bins would give a total cost of

N ′

(

∏

i/∈L

si(p)

)(

∏

i∈L

αk

F (ti, αk)

)

.

Sinceαj was chosen to maximize
∏

i∈L(F (ti, αj)/αj), this expression cannot be less than
N ′wε(p)(1 − ε). More precisely, any bins that are not of sizeαj can be replaced by the ap-
propriate number of bins of sizeαj without increasing the total cost by more than 1 (it can
increase by 1 due to rounding).

This implies that our algorithm is optimal among online bounded space algorithms.

4.4 Resource augmented packing

The resource augmented problem is now relatively simple to solve. In this case, the online
algorithm has bins at its disposal that are hypercubes of dimensionsb1 × b2 × . . . × bd. We can
use the algorithm from Section 4.2 with the following modification: the types for dimensionj are
not based on intervals of the form(1/(i+1), 1/i] but rather intervals of the form(bj/(i+1), bj/i].

Then, to pack items of type(t1, . . . , td), a bin is split into
∏d

i=1 ti identical sub-bins of
dimensions(b1/t1, . . . , bd/td), and then subdivided further as necessary.

We now find that each closed bin of type(t1, . . . , td) is full by at least

(1 − ε)B
∏

i∈L

ti
ti + 1

,

whereL is the set of large components in this type, andB =
∏d

j=1 bi is the volume of the bins
of the online algorithm.

We now define the weight of a hyperboxp with components(s1(p), . . . , sd(p)) and type
(t1, . . . , td) as

wε(p) =
1

1 − ε

(

∏

i/∈L

hi

bi

)(

∏

i∈L

1

ti

)

,

whereL is the set of large components in this type.
This can be shown to be valid similarly as before, and it can also be shown that items can

not be packed better. However, in this case we are additionally able to give explicit bounds for
the asymptotic performance ratio.

4.4.1 The asymptotic performance ratio

Csirik and Woeginger [54] showed the following for the one-dimensional case.
For a given bin sizeb, define an infinite sequenceU(b) = {u1, u2, . . .} of positive integers

as follows:

u1 = ⌊1 + b⌋ and r1 =
1

b
− 1

u1
,

54 Chapter 4. Optimal online algorithms for multidimensionalpacking

and fori = 1, 2, . . .

ui+1 = ⌊1 +
1

ri

⌋ and ri+1 = ri −
1

ui+1

.

Define

ρ(b) =
∞
∑

i=1

1

ui − 1
.

Lemma 4.6 For every bin sizeb ≥ 1, there exist online bounded space bin packing algorithms
with worst case performance arbitrarily close toρ(b). For every bin sizeb ≥ 1, the boundρ(b)
cannot be beaten by any online bounded space bin packing algorithm.

The following lemma was proved in Csirik and Van Vliet [51] for a specific weighting func-
tion which is independent of the dimension, and is similar toa result of Li and Cheng [116].
However, the proof holds for any positive one-dimensional weighting functionw. We extend
it for the case where the weighting function depends on the dimension. For a one-dimensional
weighting functionwj and an input sequenceσ, definewj(σ) =

∑

p∈σ wj(p). Furthermore de-
fineWj = supσ wj(σ), where the supremum is taken over all sequences that can be packed into
a one-dimensional bin.

Lemma 4.7 Let σ be a list ofd-dimensional rectangles, and letQ be a packing which packs
these rectangles into ad-dimensional unit cube. Letwj (j = 1, . . . , d) be arbitrary one-
dimensional weighting functions. For eachp ∈ σ, we define a new hyperboxp′ as follows:
sj(p

′) = wj(sj(p)) for 1 ≤ j ≤ d. Denote the resulting list of hyperboxes byσ′. Then there
exists a packingQ′ which packsσ′ into a cube of size(W1, . . . , Wd).

Proof We use a construction analogous to the one in [51]. We transform the packingQ = Q0

of σ into a packingQd of σ′ in a cube of the desired dimensions. This is done ind steps, one for
each dimension. Denote the coordinates of itemp in packingQi by (xi

1(p), . . . , xi
d(p)), and its

dimensions by(si
1(p), . . . , si

d(p)).
In stepi, the coordinates as well as the sizes in dimensioni are adjusted as follows. First we

adjust the sizes and setsi
i(p) = wi(si(p)) for every itemp, leaving other dimensions unchanged.

To adjust coordinates, for each itemp in packingQi−1 we find the “left-touching” items,
which is the set of itemsg which overlap withp in d − 1 dimensions, and for whichxi−1

i (g) +
si−1

i (g) = xi−1
i (p). We may assume that for each itemp, there is either a left-touching item or

xi−1
i (p) = 0.

Then, for each itemp that has no left-touching items, we setxi
i(p) = 0. For all other

itemsp, starting with the ones with smallesti-coordinate, we make thei-coordinate equal to
max(xi

i(g) + si
i(g)), where the maximum is taken over the left-touching items ofp in packing

Si−1. Note that we use the new coordinates and sizes of left-touching items in this construction,
and that this creates a packing without overlap.

If in any stepi the items need more thanWi room, this implies a chain of left-touching items
with total size less than 1 but total weight more thanWi. From this we can find a set of one-
dimensional items that fit in a bin but have total weight more thanWi (using weighting function
wi), which is a contradiction. �

4.5 Conclusions 55

As in [51], this implies immediately that the total weight that can be packed into a unit-
sized bin is upper bounded by

∏d
i=1 Wi, which in the present case is

∏d
i=1 ρ(bi). Moreover, by

extending the lower bound from [54] tod dimensions exactly as in [51], it can be seen that the
asymptotic performance ratio of any online bounded space bin packing algorithm can also not
be lower than

∏d
i=1 ρ(bi).

4.5 Conclusions

An open question left by this chapter is what the asymptotic performance ratio of the bounded
space hypercube packing problem is. We can show that it isΩ(log d), and we conjecture that it
is Θ(log d). Giving a explicit expression for the competitive ratio in variable sized packing (as a
function of the bin sizes) would be harder. Already in [139] where an optimal one-dimensional
bounded space algorithm was given for the variable sized problem, its ratio is unknown. It is
interesting to find out whether in the multidimensional casethe worst case occurs when only
unit sized bins are available.

56 Chapter 4. Optimal online algorithms for multidimensionalpacking

Chapter 5

Packing with rotations

In this chapter, we consider several two- and three-dimensional packing problems with rota-
tions. This is also known as “packing of non-oriented items”[55]. Usually oriented items are
considered, but in many applications, there is no reason to exclude the option of changing the
orientation of items before assignment. Some applicationsmay allow rotation only in certain
directions.

The two-dimensional bin packing problem with rotations is defined as follows. The bins are
unit squares and the items are rectangles that may be rotatedby90◦ (so their sides are still aligned
with sides of the bin). In the strip packing version, the strip is two-dimensional, with a base of
width one and infinite height. In the three-dimensional bin packing problem with rotations,
the bins are three-dimensional cubes, and the items are non-oriented three-dimensional boxes,
rotatable by90◦ in all possible directions. In the strip packing version we pack these items into
a three-dimensional strip with a base which is a unit square,and again, infinite height.

In three dimensions, we can also consider the case of items that may be rotated so that the
width and length are interchanged, however the height is fixed. We call this problem “This Side
up”, as it has applications in packing of fragile objects, where a certain face of the box must
be placed on top. This three-dimensional problem, as the rotatable problems has two versions:
packing into a three-dimensional strip (also called “thez-oriented 3-D packing problem” [129])
and packing into three-dimensional bins. We reserve the name This Side Up for the strip packing
version. Miyazawa and Wakabayashi [131] consider several problems with rotatable items and
give an upper bound of 2.64 for the This Side Up problem, whichwas also considered by Li and
Chen [120].

In all problems, the dimensions of the items to be packed are all at most 1. Miyazawa and
Wakabayashi [129] demonstrate a reduction from the generalthree-dimensional strip packing
problem with rotations to the This Side Up problem in a strip,but this reduction does not hold
for the case considered in this paper, where the three-dimensional strip always has a square base
of side 1.

We improve upon the best known results for all the above problems.

• A simple and fast algorithm of asymptotic performance ratio3/2 = 1.5 for two-dimensio-
nal rotatable strip packing. This improves on the bound1.613 from [131]. Additionally,
we give an asymptotic approximation scheme for this problem.

57

58 Chapter 5. Packing with rotations

• An algorithm of asymptotic performance ratio9/4 = 2.25 for two-dimensional rotatable
packing into bins. This improves on the on-line algorithm from [58] that has an asymptotic
performance ratio of slightly less than2.45. Although this algorithm basically consists of
many (easy) cases, it has the advantage that it can easily be adapted to the more complex
problems listed below. This is the main reason for includingthis algorithm here; the result
itself can be improved as a consequence of our results for strip packing.

• An algorithm which combines methods of the two above algorithms and has asymptotic
performance ratio9/4 = 2.25 for the “This side up” problem in a strip. This improves the
bound of [131] which is2.64.

• An adaptation of the previous algorithm to packing of rotatable items in a three-dimensio-
nal strip, with the same asymptotic performance ratio9/4 = 2.25. This improves the
bound of [131] which is2.76.

• A simple adaptation of the two previous algorithms for the bin packing versions of these
problems, with asymptotic performance ratio9/2 = 4.5. This improves the bound of [131]
for three-dimensional bin packing of rotatable items, which is4.89.

5.1 Strip packing

We begin by giving a simple algorithm with an upper bound of3/2 in Section 5.1.1. This
improves on the bound1.613 from [131]. Our main result is the following. We denote by
OPT(L) the height of the optimal strip packing ofL which is a list of rotatable items.

Theorem 5.1 There is an algorithmALG which, given a listL of n rectangles with side lengths
at most 1 that can be rotated90◦, and a positive numberε < 1/2, produces a packing ofL in a
strip of width 1 and heightALG(L) such that

ALG(L) ≤ (1 + ε)OPT(L) + O

(

1

ε2

)

.

The time complexity ofALG is polynomial inn.

We use the algorithm from [107] as a subroutine. Basically wedo a preprocessing step to
obtain a modified list of items with only a constant number of different widths and heights.
Then the number of orientations for this modified set of itemsis polynomial inn. For any fixed
orientation, we can apply the algorithm from [107]. The crucial point of the proof is to show that
we do not lose too much in the preprocessing step, and therefore have a good approximation.
The additive constant for this APTAS isO(1/ε3). It is possible to get an additive constant of
O(1/ε2) also in this case, but at the cost of a significantly more complex preprocessing step.
The rounding procedure as presented here is due to Claire Kenyon [106].

These results immediately imply an asymptotic(2 + ε)-approximation algorithm for two-
dimensional bin packing with rotations (that runs also in time polynomial in1/ε).

5.1 Strip packing 59

We already described some of the methods used in [107] and [43] which are also important
in the current chapter in Chapter 2, Section 2.2.2. We then first give a simple and fast3/2-
approximation in Subsection 5.1.1. We describe and analyzeour APTAS in Subsection 5.1.2

5.1.1 A3/2-approximation algorithm

In the next subsection, we will give an asymptotic approximation scheme for this problem. How-
ever, we believe that the algorithm presented in the currentsection is of independent interest;
ideas from it are also used in the algorithm for the “This sideup” problem.

Our algorithm places big items in reverse orientation and all other items in standard orienta-
tion.

1. The big items are stacked at the bottom of the strip, in order of decreasing width and
aligned with the left side of the strip. Denote the height needed for this packing byh1.

2. Denote the height at which the first item of width at most2/3 is packed byh′
1 (0 ≤ h′

1 ≤
h1). If h′

1 < h1, define a substrip of width1/3 that starts at heighth′
1, at the right side

of the strip. Pack items that have widths in(0, 1/6] inside this strip using FFDH, until
all these items are packed or until the next item to be packed would be placed (partially)
above heighth1.

3. If all items that have width in(0, 1/6] have now been packed:

(a) Stack items of widths in(1/6, 1/2] at the right side of the strip, on top of the substrip
from step 2. Place these items in order ofincreasing width. Each item is placed as
low as possible, at the extreme right of the strip, under the constraint that it does not
overlap with previously placed items. Do this until all suchitems are packed or the
next item to be packed would be placed (partially) above height h1.

(b) Place the unpacked items of width in(1/3, 1/2] in two stacks starting at heighth1 by
each time adding an item to the shortest stack. Pack the unpacked items of width in
(1/6, 1/3] using FFDH.

4. Else, place all remaining items above heighth1 using the algorithm FFDH.

Theorem 5.2 For this algorithm, we haveALG1(L) ≤ 3
2

OPT(L) + 3 for any input listL.

Proof We start with the simple inequality. We have

OPT(L) ≥ h1 (5.1)

because the packing in step 1 is optimal for the big items. If no items are packed in step 3(b) or
4 (all items are already packed) then it follows that the algorithm gives an optimal packing.

Denote the list of items packed in stepi by Li, and the height of that packing byhi. By
Theorem 2.2, for Step 4 we haveh4 ≤ 3

2
A(L4) + 1 and therefore

A(L4) ≥
2

3
(h4 − 1). (5.2)

60 Chapter 5. Packing with rotations

Denote the height of the substrip in step 2 byh2 (the top of the substrip is at heighth1 or at
the top of the highest item placed inside it), and the list of items packed in it byL2. Note that all
items placed inside this substrip have width at most half thewidth of the substrip.

Suppose we multiply all the widths of items in the substrip by3, as well as the width of
the substrip itself. Denote the new area of the listL2 by A′(L2). Then Theorem 2.2 implies
h2 ≤ 3

2
A′(L2) + 1. SinceA′(L2) = 3A(L2), we can conclude

A(L2) ≥
2

9
(h2 − 1). (5.3)

Case 1 No items are packed in Step 3.
The only interesting case is where some items are packed in Step 4. Consider Step 2. Below

the substrip, a width of at least2/3 is covered everywhere by packed items. Next to the substrip,
a width of at least1/2 is covered, and in the substrip, we have (5.3). On this part ofthe strip we
have therefore packed items of total area at least

1

2
h2 +

2

9
(h2 − 1) ≥ 2

3
(h2 − 1).

We can conclude that on the main strip, we have packed items oftotal area at least2
3
(h1 − 2)

below a height ofh1, sinceh2 ≥ h1 − h′
1 − 1 in the present case. In summary, we have

that our algorithm packs items to a height ofh1 + h4, and the area of these items is at least
2
3
(h1 − 2 + h4 − 1) by (5.2). This implies that

OPT(L) ≥ 2

3
(h1 + h4 − 3)

and therefore

ALG1(L) ≤ 3

2
OPT(L) + 3.

Case 2 Some items are packed in Step 3. Denote the height of the packing in Step 3(b) byh3

(i.e. the extra height that is packed aboveh1). We haveALG1(L) = h1 + h3.
In Step 3(a), some item(s) may not always be placed directly on top of the previous item.

This happens if they would overlap with an item from Step 1. Suppose each item placed in Step
3(a) is placed directly on top of the previous item in that Step. Then a width of1/2+1/6 = 2/3
is everywhere covered by items aboveh′

1 and belowh1 −1. Belowh′
1, a width of2/3 is covered

everywhere.
Aboveh1, a width of at least2/3 is covered in the part of the strip that is used in Step 3(b),

apart from at most two parts of total height at most 2. We find

OPT(L) ≥ 2

3
(h1 − 1 + h3 − 2)

and therefore

ALG1(L) = h1 + h3 ≤
3

2
OPT(L) + 3.

5.1 Strip packing 61

Now suppose there is an item placed in Step 3(a) that is not placed on top of its predecessor,
or the first item in Step 3(b) would have been placed in Step 3(a) if its width had been smaller
(i.e. it is placed in 3(b) because of its width, not because ofits height). Denote the width of the
last such item byw, and the height at which this item is placed byh′

3 ∈ [h′
1, h1]. Then up to

heightmin(h′
3, h1−1), a width of at least1−w is covered by items from Step 1. Ifh′

3 < h1−1,
then above heighth′

3 and until height at leasth1 − 1 there are everywhere items from Step 3 and
therefore a width of at least1/2 + 1/6 = 2/3 is covered by items.

Supposew > 1/3. Then only items of width in[w, 1/2] ⊂ (1/3, 1/2] remain to be packed
in Step 3(b). Ifh′

3 < h1 − 1, we have

OPT(L) ≥ (1 − w)h′
3 +

2

3
(h1 − 1 − h′

3) + 2w(h3 − 1) (5.4)

≥ (1 − w)(h1 − 1) + 2w(h3 − 1) (5.5)

If h′
3 ∈ (h1 − 1, h1], then we have (5.5) immediately. By combining (5.5) with (5.1), it can be

seen that

ALG1(L) = h1 + h3 ≤
3

2
OPT(L) + 2.

Supposew ≤ 1/3. Then a width of at least2/3 is covered in the part of the strip that is used
in Step 3(b), apart from at most two parts of total height at most 2. We find

OPT(L) ≥ 2

3
(h1 − 1 + h3 − 2)

and therefore

ALG1(L) = h1 + h3 ≤
3

2
OPT(L) + 3.

�

It is straightforward to see that the complexity of our algorithm is O(n log n), wheren is
the number of items to be packed, since apart from sorting by width or height all the steps in
the algorithm take linear time. We conjecture that the complexity of any algorithm with an
approximation ratio strictly below3/2 is substantially higher thanO(n logn).

5.1.2 An asymptotic polynomial-time approximation scheme

Since the input rectangles may be rotated, we define arbitrarily that the width is theshorterside
of the rectangle. (It may be that the item is packed such that the width is the vertical size.) Thus
for each rectangle,0 < wi ≤ hi ≤ 1.

The algorithm in the previous section packs only items that are wider than1/2 optimally.
We define

HL =

n
∑

i=1

hi .

This is the height of a stack of the items inL when all these items are placed withhi as their
vertical dimension, and is an upper bound for the height of any stack of items inL.

62 Chapter 5. Packing with rotations

Let A(L) denote the total area of the items inL. This is independent of rotations.
We need to pack the items inL into a strip of width 1 and unbounded height. We will use

the following constants in our algorithm:ε′ which is the cutoff width for “small” rectangles,
andm = (1/ε′)3 which is the number of groups used in the rounding described in the previous
section. The valueε′ will be determined by the desired approximation accuracyε.

Few and wide items

We are givenn items withm1 different heights andm2 different widths. All widths (and heights)
are at leastε′ and at most 1. There are at mostm1m2 groups of items, where each group contains
identical items. Denote the number of items in groupi by ni (i = 1, . . . , m1m2). Then for group
i, there are at mostni + 1 possibilities with regard to the rotation. If the items in this group are
squares, the orientation of the items does not matter (thereis only one orientation). Otherwise,
we can placeki items such that the width is the vertical dimension andni − ki items such that
the height is the vertical dimension, for eachki = 0, 1, . . . , ni.

In total, this implies we have
m1m2
∏

i=1

(ni + 1)

distinct possibilities for the orientations of the items. Each such possibility is called an orienta-
tion of the input listL. It can be represented by a vectorv with m1m2 coordinates.

After an orientation of the list has been fixed, we can find a nearly optimal solution for
packing these items using a reduction to fractional strip packing as in [107]. Since

∑m1m2

i=1 ni =
n, the number of orientations is polynomial in the number of items: it is at most

(

n

m1m2
+ 1

)m1m2

which is polynomial inn for given (fixed)m1 and m2. Thus we can find the (nearly) best
possible packing for these items in polynomial time by solving all the fractional strip packing
problems.

Equation (2.1) implies that for a given, fixed orientationv of the items, this gives us a packing
with height at most

FSP(L, v) + 2m(v) + 1 ≤ OPT(L, v) + 2m(v) + 1, (5.6)

whereFSP(L, v) and OPT(L, v) are the optimal fractional strip packing and the optimal strip
packing for the input listL using orientationv, respectively, andm(v) ≤ m1m2 is the number
of distinct widths in orientationv.

Rounding procedure

First, the input listLgeneral will be partitioned into two sublists.Lnarrow will contain all items
with width at mostε′ andL will contain all other items. The items inLnarrow will be ignored

5.1 Strip packing 63

for the time being. The dimensions of the items inL are going to be rounded up according to a
procedure which we will now describe.

We are going to start by applying a geometric rounding to bothheights and widths. In this
way, we obtain an input instance with a limited number of distinct heights and widths, of which
the total area is still close to the total area of the originalinput instance.

However, this is by itself not enough to ensure that the solution of the (fractional) strip
packing problem for this modified problem instance is close to the real solution. Suppose we fix
an orientation and the problem instance contains many itemsof horizontal size just smaller than
1/2. If these widths get rounded up to a value which is just largerthan1/2, it is clear that the
height of the optimal strip packing may change by an arbitrarily high amount.

In the original paper [107], this problem was solved by transforming adjustments of the
widths (horizontal sizes) into avertical adjustment of the problem instance, for which it was
trivial to calculate the effect on the height of the optimal strip packing. To enable us to do this
in the current problem, we are going to do something similar:in fact our rounding is going to
be a mixture of geometric rounding and the grouping and rounding method from [107]. We
formalize this idea below.

Let I be the setL ∪ rotate(L). That is, for each rectangle(wi, hi) in L, I contains both
(wi, hi) and(hi, wi). Thus|I| = 2|L|.

FromI we can obtain a modified listI+ such thatI ≤ I+, as described in section 2.2.2. We
usem − 1 threshold rectangles at heightsy = ih(I)/m for i = 1, . . . , m − 1.

Consider a rectangle(wi, hi) in L. Suppose that inI, the first corresponding rectangle
(wi, hi) has been rounded to(w′

i, hi) while the other rectangle,(hi, wi), has been rounded to
(h′

i, wi). We then round the original rectangle(wi, hi) to

(min(w′
i, w̃i), min(h′

i, h̃i)),

wherex̃ is the first power of1/(1 + ε′) greater than or equal tox.

Property 5.1 The number of groups created in the rounding procedure is bounded by a constant.

Proof The rounding is only applied to items that have height and width larger thanε′. Thus the
highest class that can contain items ism′ which is the solution of(1 + ε′)−m′

= ε′. We find

m′ =
− log ε′

log(1 + ε′)
≈ 1

ε′
log

1

ε′
<

m

50

for ε′ < 1/12 (recall thatm = (1/ε′)3). The grouping and rounding allows at mostm additional
different widths and heights, since there arem − 1 threshold rectangles.

This implies that the number of different widths, as well as the number of different heights,
is bounded by

m + m′ <
51

50
m

for ε′ < 1/12. �

64 Chapter 5. Packing with rotations

Parameter: ε′, the threshold between narrow and wide. We useε′ = ε/5.
Input: a list Lgeneral of rotatable rectangles. Each rectangle is denoted by(wi, hi) where
0 < wi ≤ hi ≤ 1.

1. Let Lnarrow be the set of itemsi in Lgeneral for which wi ≤ ε′, and let L =
Lgeneral\Lnarrow.

2. For each item inL, round up the height and the width according to the rounding proce-
dure described in Section 5.1.2.

3. For every possible orientation of the rounded listL′, do the following:

(a) Find a nearly optimal packing forL′, using the fractional bin packing solution.

(b) Add narrow rectangles to layers using Modified NFDH.

4. Output the best packing found in Step 3.

Figure 5.1: The APTAS summarized

Algorithm

The algorithm is summarized in Figure 5.1.

Analysis of the APTAS

In this subsection, we will prove the following theorem.

Theorem 5.3 There is an algorithmALG which, given a listL of n rectangles with side lengths
at most 1 that can be rotated90◦, and a positive numberε < 1/2, produces a packing ofL in a
strip of width 1 and heightALG(L) such that

ALG(L) ≤ (1 + ε)OPT(L) + O

(

1

ε3

)

.

The time complexity ofALG is polynomial in n.

The remarks in Subsection 5.1.2 immediately imply that the running time of our algorithm
is polynomial inn for any fixedε > 0. It is left to show the upper bound on the asymptotic
performance ratio. We begin by proving two auxiliary lemmas.

Lemma 5.1 Denote byM the set of rectanglesL in optimal orientation, i.e. the orientation
which allows the shortest strip packing. The listL′ obtained after the grouping in Step 2 of the
algorithm, considered in the same orientation asM , is such that

FSP(L′) ≤
(

1 + ε′ +
4

(ε′)2m

)

FSP(M)

5.1 Strip packing 65

and

A(L′) ≤
(

1 + ε′ +
4

(ε′)2m

)

A(M).

Proof FromM we can obtain a modified listM+, as described in Subsection 2.2.2. This time
we definemε′/2 threshold rectangles intersecting the lines

y =
2HM

ε′m
i i = 0, . . . ,

mε′

2
.

We defineM+ by increasing the width of each rectangle to the width of thesecondthreshold
rectangle below it. By (2.2), we have

FSP(M+) ≤ FSP(M) +
4HM

ε′m
. (5.7)

However, we do not necessarily have thatL′ ≤ M+, because item sizes were rounded up in both
dimensions to getL′. To get a larger list, we multiply the vertical sizes of all items inM+ by
1 + ε′. This gives us a listM++. It is clear that an equal scaling of thevertical size of all the
items implies that the optimal fractional strip packing solution is scaled up by the same amount,
i.e. by1 + ε′. We conclude

FSP(M++) = (1 + ε′)FSP(M+). (5.8)

We claim thatM++ ≥ L′.
Clearly, the stack forL′ is not higher than the stack forM++, since both dimensions of items

in L′ were increased by at most a factor of(1 + ε′). To see that the stack is also nowhere wider
than the stack ofM++, consider the width of an itemi in L′. This width is at most equal towj,
the width of a threshold rectanglej in the stack forI (and not forL′). Note that itemsi andj
are separated by a stack of height at mostHI/m in theI-stack.

The M-stack is a subset of theI-stack, and in theM-stack, itemi is separated from its
second-below threshold rectangle by a stack of height at least

2HM

ε′m
.

Finally, we have
HM ≥ ε′HL ≥ ε′HI/2,

where the first inequality follows because all items have width at leastε′, and the second in-
equality follows because in theL-stack, all items are placed with their height (largest dimension)
vertically.

This implies that2HM/(ε′m) ≥ HI/m. Therefore the width of the second threshold rectan-
gle below itemi in theM-stack has width at leastwj, which shows that the itemi in L′ does not
extend further to the left than inM . This proves

M++ ≥ L′. (5.9)

66 Chapter 5. Packing with rotations

We conclude that

FSP(L′) ≤ FSP(M++) by (5.9)

= (1 + ε′)FSP(M+) by (5.8)

≤ (1 + ε′)

(

FSP(M) +
4HM

ε′m

)

by (5.7).

It can be seen that these statements are also valid if we replace FSP(·) by A(·) everywhere.
Since all rectangles have width at leastε′, we haveε′HM ≤ A(M) ≤ FSP(M). This implies the
statements of the lemma. �

The following lemma follows from Lemma 4 in [107].

Lemma 5.2 For a fixed orientation, letL′′ = L′ ∪ Lnarrow. If the heighthf at the end of Step
3(b) is larger than the heighth′ of the packing forL′, then

hf ≤ A(L′′)

1 − ε′
+

102

25
m + 1.

Proof The proof in [107] shows that in this case, nearly all the areain the packing is covered
by items, apart from an additive constant which is determined by the number of different widths
in the input sequence.

We now find 102
25

m + 1 instead of the original4m + 1 because by Property 1, there are at
most51

50
m different widths in any orientation. By the results in [107], the number of layers in the

strip packing forL′ is bounded by twice the number of different widths, and at each interface
between layers, there is a height of at most 2 which is not usedby NFDH. �

Lemma 5.1 implies that

A(L′′) ≤ A(Lgeneral)

(

1 + ε′ +
4

(ε′)2m

)

.

Therefore ifhf > h′, we have

hf ≤ A(Lgeneral)

1 − ε′

(

1 + ε′ +
4

(ε′)2m

)

+
102

25
m + 1. (5.10)

We are now ready to prove Theorem 5.3. Consider the orientation of the items inL in the
optimal strip packing, i.e. the listM . At some point, our algorithm will try an orientation ofL′

which corresponds to this orientation. From here on, we onlyconsider the height of the packing
that our algorithm finds for this particular orientation. Clearly, the height that it outputs in Step
4 cannot be higher than this.

By (5.10), we have eitherALG(L) ≤ h′ or

ALG(L) ≤
(

1 + ε′ +
4

(ε′)2m

)

A(Lgeneral)

1 − ε′
+

102

25
m + 1

5.2 Two-dimensional bin packing 67

whereh′ is the height of the strip packing produced in Step 3(a) of thealgorithm. By (5.6) and
Lemma 5.1, using as in Lemma 5.2 that the number of different widths is at most51

50
m in any

orientation, we find

h′ ≤ FSP(L′) +
51

25
m + 1

≤
(

1 + ε′ +
4

(ε′)2m

)

FSP(M) +
51

25
m + 1

≤
(

1 + ε′ +
4

(ε′)2m

)

OPT(M) +
51

25
m + 1

≤
(

1 + ε′ +
4

(ε′)2m

)

OPT(Lgeneral) +
51

25
m + 1.

SinceA(Lgeneral) ≤ OPT(Lgeneral), this implies

ALG(L) ≤
(

1 + ε′ +
4

(ε′)2m

)

OPT(Lgeneral)

1 − ε′
+

102

25
m + 1.

Takingm = (1/ε′)3 andε′ = ε/(6 + ε), this implies that

ALG(Lgeneral) ≤ (1 + ε)OPT(Lgeneral) +
1121

ε3
+ 1

for ε < 1/2. This proves Theorem 5.3. We note that it is even possible to give afully polynomial
time approximation scheme using an LP-based approach [94].

5.2 Two-dimensional bin packing

To begin, consider again the approximation schemes from theprevious section. Takẽε = ε/2.
Suppose our algorithm with as input parameterε̃ gives a strip packing with a height ofH for a
given set of items. Denote the height of the optimalstrip packing byH ′. We have

H ≤ (1 + ε̃)H ′ + O

(

1

ε̃2

)

.

Given this strip packing, we can define cuts at all integer heights. Then starting from the cut
at height 1, we can allocate the items to square bins as follows: put all the items below this cut
into a separate bin (the upper edge of some of these items may coincide with the cut), and put
all the items that intersect the cut into another bin. Continue with the next higher cut until all
items are packed into bins.

Using the above method, we put the items into at most2H bins. Additionally, there does not
exist a packing into bins which uses less thanH ′ bins, because such a packing could trivially be
turned into a strip packing that uses a height at mostH ′ − 1, which is a contradiction.

Thus the number of bins that we use to pack the items is at most2 + 2ε̃ = 2 + ε times the
optimal number of bins required for these items, plus an additive constant.

68 Chapter 5. Packing with rotations

In the current section, we define an alternative approximation algorithm which is slightly
worse. However, it has the advantage that it can easily be adapted to the more complex problems
listed below. Moreover, it is much faster.

Items that have width and height greater than1/2 are calledbig. The following definitions
will be used throughout this chapter and the next.

Definition 5.1 An item is instandard orientationif its height is at least as large as its width,
otherwise it is inreverse orientation.

All items are placed in standard orientation. Since we are going to use this algorithm as a
subroutine for three-dimensional problems, we denote the dimensions of the items by widths
andlengths(instead of heights) from now on to avoid confusion later. Webegin by partitioning
the items into types. We use the following intervals.

• (2/3, 1] (type0)

• (1/2, 2/3] (type1)

• (1/(i + 1), 1/i] for i = 2, . . . , 8 (typei)

• (0, 1/9] (type9)

A two-dimensional item is of type(i, j) if its width is of typei and its length is of typej. Clearly
i ≥ j due to the orientation we defined. In some cases, we will use a finer classification for type
1. We let type1a = (1/2, 11/20], type1b = (11/20, 3/5] and type1c = (3/5, 2/3].

Large types There are four types which we will calllarge. We will begin by defining their
packing. Each such type is packed independently of the otherones. We pack items of types
(1, 1), (1, 0) and(0, 0) one per bin, always in the left bottom corner of the bin and in standard
orientation. The items of type(2, 1) are further classified according to their length (largest
dimension). Items of type(2, 1a) are packed two per bin, both in reverse orientation, touching
the same edge of the bin and each other, with one of them in the left bottom corner of the bin.
The same holds for items of type(2, 1b) and(2, 1c) (but the items of these three subtypes are
not packed together in any bin).

Medium types There are also fourmediumtypes. Items of type(2, 2) are packed four per bin
(the bin is first partitioned into four identical sub-bins).Items of type(i, 0) are packedi per bin
for i = 2, 3, 4.

After the packing of the large and medium types is completed,smaller items are added. They
are first added into bins which contain large items. If some items remain unpacked after those
bins are considered, they are packed into empty bins.

Bins containing items of the types(0, 0), (2, 2), (2, 0), (3, 0) and(4, 0) do not receive smaller
items. We note that all these bins are packed so that a fraction of at least4/9 of their area is
occupied, except possibly the last bin for each of the last four types. This follows from the types
and the amounts of items per bin.

5.2 Two-dimensional bin packing 69

Approximation ratio The performance bound of9/4 follows from one of the two following
reasons.

1. If no new bins are opened for smaller items, we use a weighting function for the analysis.
Those functions are usually useful in analyzing on-line algorithms. Here we use it to
analyze an offline algorithm.

2. If at least one bin was opened for smaller items, we use an area based analysis. We show
that all bins except a constant number have items of total area of at least4/9. Then we get
OPT ≥ (4/9)(ALG2 − c) which implies the performance ratio.

Case 1 The weighting function is defined in the following way. Smallitems get weight 0.

Type (0, 0) (1, 0) (1, 1) (2, 1) (2, 0) (2, 2) (3, 0) (4, 0)
Weight 1 1 1 1/2 1/2 1/4 1/3 1/4

The following claim is immediate from the definitions, and explains our choice of weighting
function.

Claim 5.1 All bins packed by our algorithm with large items, except possibly the last one for
each (sub)type, contain a weight of 1.

Claim 5.2 A bin can contain at most nine items of both width and length larger than1/4.

Proof See Chapter 4, Claim 4.4. �

It follows from the same result that a bin can contain at most twenty-five items of both width
and length larger than1/6.

Claim 5.3 A bin can contain at most 9/4 of weight.

Proof Consider a bin with a certain amount of weight. We may assume there is no item of type
(0, 0) or (1, 0), because the smaller type(1, 1) also has weight 1, and also no item of type(2, 0)
because(2, 1) gives the same weight.

We will use Claim 5.2 to determine the highest possible weight in a bin by expressing all
items as multiples of items of width and length just larger than 1/4 or 1/6. For instance, by
cutting a (1,1) item halfway both horizontally and vertically, it can be seen that other items of
‘worth’ at most 5 items of width and length just larger than1/4 can be placed with it in one bin
(otherwise this cutting would create a packing with more than 9 such items, contradicting Claim
5.2).

70 Chapter 5. Packing with rotations

An overview can be found in the following table. Here the heading ‘items> 1/4’ means
‘number of items of length and width more than1/4 that items of this type contain’, etc.

Type items> 1/4 items> 1/6 weight weight per
item > 1/6

(1, 1) 4 9 1 1/9
(2, 1) 2 6 1/2 1/12
(2, 2) 1 4 1/4 1/16
(3, 0) 2 4 1/3 1/12
(4, 0) 0 4 1/4 1/16

If there is no item of type(1, 1), then by the last column, the weight per ‘virtual’ item of width
and length larger than1/6 is at most1/12 which gives total weight of at most25/12 < 9/4.

Otherwise, by the second column and Claim 5.2, at most 2 itemsof type(2, 1) or (3, 0) can
be in the bin together with the item of type(1, 1). To get maximum weight, we should maximize
the number of virtual items that have weight1/12 per item. We can have at most 12 such virtual
items because there can be at most 2 items that cover 6 of them.This leaves at most 4 virtual
items with weight per item1/16, giving additional weight of1/4. The total weight therefore is
at most 1 (from the largest item)+1 (from the(2, 1) items)+1/4 = 9/4. �

Case 2 It is left to show how small items are packed to keep a4/9 fraction of each bin occupied
(except for a constant number of bins). Each bin will containitems of a given small type or set
of types. For each type or set of types, we need to show how theyare packed in the following
three cases.

A. A bin that already contains a(1, 0) item, or two(2, 1) items.

B. A bin that already contains a(1, 1) item.

C. An empty bin.

Consider the area left for further packing in the three cases. See Figure 5.2. For many small
types, summarized in Table 5.1, the packing of the small items does not depend on the exact size
of the large items that they are packed with.

In type A bins, there is a strip of width1/3 and length 1 that does not contain any items.
Such a bin already contains an area of at least1/3.

In type B bins, the area outside of a square of2/3 by 2/3 in the left bottom corner does not
contain any items. We partition this L-shaped area in two rectangles, one of dimensions1 and
1/3 and the other of dimensions2/3 and1/3. The orientation is not important since rotations
are allowed. We pack some number of small items in the larger rectangle and some number in
the smaller rectangle; the numbers are written as a sum in the‘items’ column for type B. These
bins already contain an area of at least1/4.

In type C bins, we use the so-called side-by-side packing [58] to pack items. I.e., for type
(i, j) items, we placeij of these items in ani by j grid at the bottom of the bin, and then (when
possible) add some extra items in reverse orientation at thetop of the bin.

5.2 Two-dimensional bin packing 71

A B C
Type items area= 1/3+ items area= 1/4+ items area

(3, 1) 1 1/8 1 + 1 1/4 4 1/2
(3, 2) 2 1/6 2 + 1 1/4 6 1/2
(4, 2) 2 2/15 2 + 1 1/5 8 8/15
(i, j) 3 ≤ j ≤ i ≤ 4 3 3/25 3 + 2 1/5 ij 9/16
(5, j) j = 3, 4, 5 5 5/36 5 + 3 2/9 5j 5/8
(i, 1) i = 6, 7, 8 2 1/9 2 + 2 2/9 8 4/9
(i, 2) i = 6, 7, 8 4 4/27 4 + 2 2/9 12 12/27
(i, 3) i = 6, 7, 8 6 1/6 6 + 4 5/18 18 1/2
(i, j) i = 6, 7, 8 8 4/27 8 + 4 2/9 24 4/9

j = 4, 5
(i, j) 6 ≤ j ≤ i ≤ 8 12 12/81 12 + 8 20/81 36 4/9

Type shelves area= 1/3+ shelves area= 1/4+ shelves area
(9, i) i = 2, . . . , 8 i 2/3 · 2/9 i + 1 2/9 i 8/9 · 2/3

Table 5.1: All types that are combined on a single line of the table are packed together, except
the types(i, j) for 3 ≤ j ≤ i ≤ 5 in empty bins (type C bins) and the(9, i) types.
For the(9, i) types, shelves of length1/i and width1/3 are created in type A and B bins. They
are all filled to a length of1/(i + 1) and a width of2/9. In bins of type B, one extra shelf is
created in the smaller part of the L-shape. In bins of type C, shelves of width 1 are created; they
are filled to a width of8/9.

72 Chapter 5. Packing with rotations

Type Bins Condition items area
(4, 1) A subtype(4, 1)a 1 1/3 + 9/80

w > 11/20 1 11/30 + 1/10
w ≤ 11/20 2 1/3 + 2/10

B 1 + 1 1/4 + 1/5
C 5 1/2

(5, 0) A 1 1/3 + 1/9
B w > 3/5 1 + 0 9/25 + 1/9

w ≤ 3/5 2 + 0 1/4 + 2/9
C 5 5/9

(5, 1) A w > 3/5 1 2/5 + 1/12
w ≤ 3/5 2 1/3 + 1/6

B w > 3/5 1 + 1 9/25 + 1/6
w ≤ 3/5 2 + 1 1/4 + 1/4

C 6 1/2
(5, 2) A 2 1/3 + 1/9

B w > 3/5 2 + 1 9/25 + 3/18
w ≤ 3/5 4 + 1 1/4 + 5/18

C 10 5/9
(i, 0), i = 6, 7, 8 A 2 1/3 + 4/(3i + 3)

B subtype(i, 0)a 2 + 1 1/4 + 2/(i + 1)
subtype(i, 0)b 2 + 0 1/4 + 2 i−1

i
1

i+1

C i 2/3 · i/(i + 1)

Type Bins Condition shelves area
(9, i), i = 0, 1 A 1 1/3 + 2/9 · 1/2
(9, 0) B w > 11/20 1 121

400
+ 2

3
2
9

w ≤ 11/20 1 1/4 + (9
20

− 1
9
)

(9, 1) B 2 1/4 + 4/9 · 1/2
(9, i), i = 0, 1 C 1 1/2 · 8/9

Table 5.2: The variablew in the Condition column refers to the width of the big item(s)in the
current bin of typeA or B. Recall that the width is thesmallestsize of an item.
The type(4, 1)a contains items of width in the interval(9/40, 1/4]. The type(i, 0)a (i = 6, 7, 8)
contains items of width in(2/3, i−1

i
], the type(i, 0)b contains items of width in(i−1

i
, 1]. The

types(i, 0) (i = 4, . . . , 8) are packed separately (in type B bins: both subtypes separately), the
types(9, 0) and(9, 1) are packed together in type A and C bins. For the(9, 1) items in type B
bins, we use two shelves of length 1 and2/3, both of width1/3. In both shelves, at least a width
of 2/9 and length of1/2 will be occupied.

5.2 Two-dimensional bin packing 73

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

A B C

Figure 5.2: Unused areas in bins of types A, B and C. Small items are packed here

Table 5.2 contains the items that are slightly more complicated to pack, at least in Type A
and Type B bins. Here it is usually important what the exact width of the large items is. This is
the reason that we classified type (2,1) items further: we cannow be assured that if one of them
has e.g. widthw ≤ 3/5, the other one has this as well. (Note: to keep the analysis uniform, for
these items we let the width be thelargestsize. The width of a pair can be taken arbitrarily as
either the width of the first or the second item, due to our classification.)

We explain the column marked ’Condition’. The entries marked ’subtype’ are explained in
the caption. An entryw ≤ x or w > x refers to the width of the large item(s) in this bin; in the
cases markedw ≤ x, we use vertical strips of width1 − x to pack small items, instead of width
1/3. The horizontal strips (in type B bins) always have width1/3. For items of type(6, 0), (7, 0)
and(8, 0), the width of the vertical strip in type B bins depends on the width of thesmall items
packed in there.

The area that is already in a type A or B bin is of course different if we put restrictions on
the width of the large items; it is given by the first term of thesum in the ‘area’ column. Finally,
there is one type that still remains to be packed. This type,(9, 9), is described below.

Type (9, 9) We show how to pack these items into square sub-bins of width and length1/3 so
that inside each such sub-bin at least4/9 of its area is occupied. We begin by showing that this
is a dense enough packing in all three cases.

A. We can create three sub-bins. We get a total area of1/3 + 12/81 = 13/27 > 4/9.

B. The item already packed in this bin has length and width no larger than2/3. Therefore we
can create five sub-bins. The total occupied area would be1/4+5·4/81 = 161/324 > 4/9.

C. We create nine sub-bins and get a total area of4/9.

Next we explain the packing into sub-bins. We use Next Fit Decreasing Length (NFDL) to
pack items into these sub-bins. All items are put in standardorientation (length≥ width), and
then sorted by decreasing length. Then, the items are packedinto levels using Next Fit, where
the length of each level is the length of the first item placed in it. When the next item does not
fit in the current level anymore, a new level is started, if necessary in a new sub-bin.

74 Chapter 5. Packing with rotations

Since all items have width at most1/9, we find that each level is filled to a width of at least
2/9. Denote the length of leveli by Hi. Let k be the number of levels in the current bin. The
first item that does not fit has lengthHk+1. All items in leveli have length at leastHi+1.

Then for each sub-bin except the last, the packed area is at least

2

9
(H2 + ... + Hk+1) > 2/9(1/3 − H1) > 4/81.

This is a4/9 fraction of the area of the sub-bin which is1/9.

Theorem 5.4 For any input listL, we have

ALG2(L) ≤ 9/4 · OPT(L) + 41.

Proof If no new bins are opened for small items, we have from Claim 5.1 that there are at
most 7 bins with weight less than 1 (this cannot occur for the types(0, 0), (1, 0) and (1, 1)).
Combining this with Claim 5.3 gives

ALG2(L) ≤ 9/4 · OPT(L) + 7.

If there are new bins opened for small items, then almost all bins contain an area of at least
4/9. By the above analysis, this holds in this case for all bins that contain small items, except
possibly the last such bin for each type that is packed separately. Note that it is also possible that
we run out of a certain small type while we are packing a bin of type A, in this case this bin is
not used further and has a bad area guarantee. Counting the number of types packed separately,
there are 21 such types in Table 5.1 and 12 in Table 5.2. (Note that the type(4, 1) can only cause
a single bin with a low area guarantee, because this cannot happen for subtype(4, 1)a or for a
bin of type A withw > 11/20.) Finally there is the type(9, 9).

Moreover, there can be at most 7 bins with large items that have no small items and area less
than4/9: these are the bins that had weight less than 1 after packing the large items. Since the
total area of the items is a lower bound on the optimal number of bins required to pack them, we
find in this case

ALG2(L) ≤ 9/4 · OPT(L) + 41.

�

5.3 This side up

We now show how to use the algorithm in the previous section toget a9/4-approximation algo-
rithm for the This Side Up problem. Naively, one might think that one could simply group items
of similar height and pack each group using the algorithm from the previous section (ignoring
the height of the items). However, the problem with this is that some groups might contain only
large items and other groups only small items. In this case, the groups with large items will have
poor volume guarantees, and we will not get a good approximation ratio.

We therefore have to be more careful. Our algorithm works as follows. All items are clas-
sified into types as in the previous section, where the heightof the items is (for now) ignored.
We then begin by packing the large items. The(0, 0) items are stacked in some way, nothing is
placed next to this stack.

5.3 This side up 75

Subtypes For the(1, 0), (1, 1) and(2, 1) items, we classify them further along a dimension
that has type 1, using the types1a, 1b and1c that were defined at the start of section 5.2. Thus we
have in total nine subtypes (the(1, 1) items are only classified further along their width (smallest
size)). We sort the items by subtype, items of subtypes of(2, 1) are further sorted by decreasing
height.

For each subtype, the items are stacked in the strip so that one corner of each item is directly
above a designated corner of the base of the strip, and all items are oriented in the same way.
Pairs of(2, 1) items are considered as a single(1, 0) item in this step, where the width is one
of the lengths (largest sizes) of the pair. Thus we have six stacks of items on top of each other:
three for the(1, 1) items and one each for items of types(1x, 0) and(2, 1x) for x = a, b, c. Here
we rotate the(2, 1) items such that their length is oriented along the width of the (1, 0) items,
and a free strip is left next to these items along one side of the main strip.

Packing small items If we view any one of these stacks from above, it leaves eitheran L-
shaped area or one strip. We can now start using this extra volume for the small items, using
the six stacks one by one. The small items are also packed per type. Within each type, the
items are sorted in order of decreasing height. Then the items are packed in layers, where each
layer is packed as in section 5.2 next to the current stack. This is not directly possible for the
(9, 9)-items, we discuss these separately below. The height of a layer is the height of the first
item packed in it.

Because this stack contains items of only one large subtype (by considering pairs of(2, 1)
items as(1, 0) items), and the layers contain items from one small type, thepacking uses the
same unique method on all layers that are used for this small type. It is for this reason that we
can ignore the single large items in the stack and only care about the height of the stack. If
we did not use this distinction into subtypes for the large items, we might need to change the
packing method many times, and we would leave much vertical space unused.

We continue creating layers until we run out of items for thissmall type or the next small
item does not fit next to the current stack (its height would behigher than the height of the stack).
In this last case, the remaining items of this type are packednext to the next stack of large items.
I.e., the next layer for this type is not created immediatelyabove the previous layer, but instead
at the height where the next stack starts. Also, the packing method might be changed at this
point.

Finally, if all six stacks are used in this way, or the small items are all packed, we pack the
remaining medium and/or small items according to the methods for packing items into empty
bins. That is, for each (medium or small) type, the items are sorted according to height and then
packed in order of decreasing height using the methods from section 5.2, using as many layers
as necessary.

The (9, 9)-items These items are sorted by decreasing length in section 5.2, but now we need
to sort them by height. We therefore pack them as follows. Consider the sequence of unpacked
(9, 9)-items, sorted by decreasing height. We assume the items arenumbered1, 2, . . . , n1. Using
binary search, we find the largesti such that the items1, . . . , i can be packed into a sub-bin. To
find a packing for a given set of items (i.e. a given value ofi) in a sub-bin, we use NFDL. In this

76 Chapter 5. Packing with rotations

way, each item packed in a given sub-bin is no lower than each item in the next sub-bin with
(9, 9)-items.

Moreover, since we use NFDL within a sub-bin, we still have the area guarantee of4/9. To
prove this, consider an indexi such that the items1, . . . , i can be packed into a sub-bin, whereas
the items1, . . . , i, i + 1 can not. Consider the packing which would be created by NFDL on the
items1, . . . , i, i + 1. Since these items do not actually fit into the sub-bin, the last non-empty
shelf is overloaded, i.e., the total width of items in it is strictly larger than 1. We show that
removing the item of indexi + 1 from the packing still leaves a packed area of at least4/9.
Note that the packing of NFDL for these items may be differentand we are just proving the area
guarantee for the items that can clearly be packed using NFDL.

We use the indices1, 2, . . . , s for the shelves, where the shelfs is empty or of height zero.
Let j be the shelf on which the item of indexi + 1 is packed. If the removal of this item leaves
the shelf with total width of at least2/3, we stop. Otherwise, assume first thatj < s − 1. Take
the leftmost itemz from shelfj + 1, and move it to shelfj. Note that this item fits into the
shelf since its height is at least the height of the moved itemz. Moreover, the total width of
the previous contents of shelfj (before removing an item from there) together withz is larger
than 1 (otherwise,z would have been packed on shelfj). Therefore the total width without the
removed item is at least2/3 (since the width ofz is at most1/3). The total width withz but
without the removed item is at most1, since the width after the removal is less than2/3. We let
j = j + 1 (since now shelfj + 1 is lacking one removed item) and repeat this until either the
process is stopped, orj = s − 1. Since shelfs − 1 is overloaded, a removal of one item does
not decrease its total width below2/3 (note that it may be still overloaded after the removal).
We get that all shelves have a total width of at least2/3, and the contents of each shelft < s
are at least of the height of shelft + 1 (since we only moved the highest rectangle of each shelf
one shelf down). Therefore, also a height of2/3 is covered, which implies an occupied area of
at least4/9.

Theorem 5.5 For any input listL, we have

ALG3(L) ≤ 9/4 · OPT(L) + 45.

Proof We begin by making a general remark. Whenever items are packed into layers in order of
decreasing height, some height in each layer is lost becausethe first item on the layer determines
the height of the layer, and the next items might have smallerheight. However, if we denote the
heights of the layers byH1, . . . , Hk, we have that all items on layeri have height at leastHi+1.
To see how much area is occupied, we can move all items from each layeri to layeri + 1. Then
layeri+1 is completely covered by items for eachi, and only layer 1 is left empty. This implies
that when we consider the height of the entire packing for these items, at most a height ofH1

does not contain any items. We have two cases in our analysis.

Case 1 All the small items fit next to the six created stacks. In this case, we can ignore the
small items in the analysis because they do not add to the total height used. In this case, we can
use the weighting technique from section 5.2.

5.4 Further applications 77

The weight of an item is now defined as the vertical size divided by the number of times that
the ’horizontal item’ fits in a square. To give a bound on the performance ratio, we introduce
a new concept which is theweight densityof an item. This is the weight of an itemper unit of
vertical dimension, i.e. it is the weight of the two-dimensional item that we getwhen we ignore
the vertical dimension of an item. The weight density of an arbitrary horizontal plane through a
packing of items is the sum of the weight densities of the items which intersect with this plane.
We will examine the weight densities at arbitrary horizontal planes through the packings of our
algorithm and of the optimal packing.

We find that for each large (sub)type, if it is packed in layersbetween heightsh1 andh2, the
weight density is 1 at all heightsh ∈ [h1, h2] apart from a total height of at most 1. For(0, 0) and
the subtypes of(1, 1) and(1, 0), there is even a weight density of 1 at the entire height of their
stacks, because all these items are placed directly on top ofeach other. In the optimal solution,
according to Claim 5.3, there can not be a weight density of more than9/4 at any height. Since
we use seven types that do not have a weight of 1 everywhere (four medium types and the three
subtypes of(2, 1)), we find that

ALG3(L) ≤ 9/4 · OPT(L) + 7.

Case 2 Some small items need to be packed above the large items. Consider some large
(sub)type (one stack) and a single small typet. Suppose all items from this type are placed next
to this large subtype, between heightsht andh′

t. Since the small items are sorted by decreasing
height, and the large items are all stacked on top of each other, we have for each heightht ≤
h ≤ h′

t an area guarantee of4/9 using the proof from section 5.2, apart from a total height ofat
most 1.

A small type may also be split among two large stacks, or amongone stack and layers of
its own (not next to any stack). In this case, some height at the top of the first stack might not
contain small items. We can assign this additional height loss to the large (sub)type of that stack.
We then find that for each large and small (sub)type, there is aheight of at most 1 at which we
do not have an area guarantee of4/9. In total we have 10 large (sub)types in separate stacks and
21 + 13 + 1 = 35 small (sub)types and we find

ALG3(L) ≤ 9/4 · OPT(L) + 45.

�

5.4 Further applications

5.4.1 Three-dimensional strip packing

To pack items in a three-dimensional strip, we place each “large” item such that its weight,
defined as in the previous section, is minimized. Note that this does not mean simply placing
it with its smallest dimension vertical, because the numberof times that the implied horizontal
item fits in a square might depend on the orientation.

78 Chapter 5. Packing with rotations

Extending the standard orientation from before, letw, ℓ, andh be the smallest, second small-
est and third smallest dimension of an item. We describe in the table below how the items which
we will call large are placed.

Type Condition Vertical dimension Weight Type (2d)
(0, 0, 0), (1, 0, 0) w w (0, 0)

(1, 1, 0)∗ w w (1, 0)∗

(1, 1, 1)∗ w w (1, 1)∗

(2, 0, 0) ℓ ≤ 2w ℓ ℓ/2 (2, 0)
ℓ > 2w w w (0, 0)

(2, 1, 0) ℓ ℓ/2 (2, 0)
(2, 1, 1)∗ ℓ ℓ/2 (2, 1)∗

(2, 2, 0) h ≤ 2w h h/4 (2, 2)
h > 2w w w/2 (2, 0)

(2, 2, 1) h h/4 (2, 2)
(2, 2, 2) w w/4 (2, 2)
(3, 0, 0) ℓ ≤ 3w ℓ ℓ/3 (3, 0)

ℓ > 3w w w (0, 0)
(4, 0, 0) ℓ ≤ 4w ℓ ℓ/4 (4, 0)

ℓ > 4w w w (0, 0)

Table 5.3: How to pack large items in a three-dimensional strip

As an example, consider the items of type(2, 0, 0). For these items we havew ∈ (1/3, 1/2]
andℓ > 2/3. The most efficient packing for these items depends on the ratio ℓ : w. If this ratio is
at least 2, the items are relatively long and it is best to place them with their smallest dimension
(w) vertical. However, if the ratio is less than 2, we can place two items side by side and need
only a height ofℓ to place two such items, whereas withw as vertical dimension we would need
2w > ℓ since then we cannot place the items next to eachother. Thus within each type in the
table, all items are placed as efficiently as possible.

The last column contains the type of the item when the vertical dimension is ignored. For
each line of the table, all items are stacked in layers in order of decreasing height. Naturally items
that map to the same two-dimensional type can be stacked together in a single stack (e.g. items
in lines 1, 5, 13 and 15). The height of a layer is the height of the first item placed in that layer.

All types not mentioned in this table are placed with theirlargestdimension,h, vertically,
leaving a small two-dimensional type. These items are called small. Small items are combined
with some large items (the ones marked with * in the table) exactly as in the This Side Up
algorithm from the previous section. That is, for eacha andb such that(a, b) is a small type, all
types of the form(a, b, x) are combined into a single type. Items are sorted in order of decreasing
height and packed into layers next to existing stacks, or at unused heights.

Theorem 5.6 For any input listL, we have

ALG3(L) ≤ 9/4 · OPT(L) + 45.

5.4 Further applications 79

Proof As before, we have two cases. Suppose first that all small items can be placed next to
the large items. It can be seen that our algorithm has a weightdensity of 1 at all heights apart
from a total height of at most 7, as before. For the optimal packing, we use an unusual definition
of the weights and let the weight of any large item be the vertical size of this itemas packed in
the optimal packing, divided by the number of times that the ’horizontal item’ fits in a square.
Denote the sum of the weights of the large items in input listL when packed by algorithmA as
WA(L). Since our algorithm places the large items such that their weight is minimized, we have
for the total weights thatWALG4

(L) ≤ WOPT(L).
Moreover, it is still the case that the weight density at any horizontal plane through the

optimal packing is at most9/4, since this is still equal to the total weight of the corresponding
two-dimensional items packed in the square at that height. Thus we findOPT(L) ≥ 4/9 ·
WOPT(L).

We have

ALG4(L) ≤ WALG4
(L) + 7 ≤ WOPT(L) + 7 ≤ 9/4 · OPT(L) + 7.

Now suppose that some small items are placed above all large items. In this case, we find
as in the analysis of the This Side Up problem that at all heights apart from a total height of at
most 45, an area of at least4/9 is occupied by items. Since the optimal algorithm must pack the
entire volume, the performance ratio of9/4 again follows:ALG4(L) ≤ 9/4 · OPT(L) + 45. �

5.4.2 Three-dimensional bin packing

Finally, we can turn the packing generated byALG4 into a packing for the fully rotatable three-
dimensional bin packing problem. This is done by making horizontal cuts at all integer heights.
Then, for each cut starting from the bottom we do the following:

• all items below this cut and above the next lower cut are packed into an empty bin

• all items that are intersected by this cut are packed into an empty bin

Finally, all items above the last cut are packed into an emptybin. Since all items have height
at most 1, it is clear that this generates a valid packing. Moreover, if we place the bins on top
of each other in a stack, it is clear that the height of the highest bin is at most twice the height
achieved byALG4 plus 1, and the number of bins required to packL can not be smaller than the
optimal height to packL in a strip.

We conclude
ALG5(L) ≤ 9/2 · OPT(L) + 91.

Although almost all our algorithms are based onALG2, this is the only direct reduction where
no further modifications to the algorithm are required. Moreformally, any algorithm for three-
dimensional strip packing with rotations that has performance ratioR can be turned into an
algorithm for three-dimensional bin packing with rotations that has performance ratio2R.

The above algorithm and analysis can be also applied to the “This side up” problem in bins.

80 Chapter 5. Packing with rotations

5.5 Conclusion

In this paper we design offline algorithms for six packing problems. Most of these problems
were not studied in on-line environments, which can be interesting as well. It might be the
case that some of the bounds in this chapter can be improved. Specifically we are interested
in improving the constant for packing in three-dimensionalbins (both for rotatable items and
for the “This Side Up” problem). This can be done by designingalgorithms for these problems
directly instead of adaptation of algorithms for other problems.

Part II

Scheduling

81

Chapter 6

Minimizing the total completion time
online on a single machine, using restarts

We examine the scheduling problem of minimizing the total completion time (the sum of com-
pletion times) online on a single machine, using restarts. Each job has a size which is the amount
of time it needs to be run in order to complete. Allowing restarts means that the processing of
a job may be interrupted, losing all the work done on it. In this case, the job must be started
again later (restarted), until it is completed without interruptions. We study the online problem,
where algorithms must decide how to schedule the existing jobs without any knowledge about
the future arrivals of jobs.

We compare the performance of an online algorithmA to that of an optimal off-line algo-
rithm OPT that knows the entire job sequenceσ in advance. The total completion time of an
input σ given to an algorithmALG is denoted byALG(σ). The competitive ratioR(A) of an
online algorithmA is defined as

R(A) = sup
σ

A(σ)

OPT(σ)
.

Known results For the case where all jobs are available at time 0, the shortest processing time
algorithmSPT [148] has an optimal total completion time. This algorithm runs the jobs in order
of increasing size. Hoogeveen and Vestjens [90] showed thatif jobs arrive over time and restarts
are not allowed, the optimal competitive ratio is 2, and theygave an algorithmDSPT (‘delayed
SPT’) which maintained that competitive ratio.

We are aware of three previous instances where restarts wereproven to help. First, in [145]
it was shown that restarts help to minimize the makespan (themaximum completion time) of
jobs with unknown sizes onm related machines. Here each machine has its own speed, which
does not depend on the job it is running. The algorithm in [145] obtains a competitive ratio of
O(logm). Without restarts, the lower bound isΩ(

√
m).

Second, [1] shows that restarts help to minimize the maximumdelivery time on a single
machine, obtaining an (optimal) competitive ratio of3/2 while without restarts,(

√
5 + 1)/2 is

the best possible. In this problem, each job needs to be delivered after completing, which takes
a certain given extra time.

83

84 Chapter 6. Minimizing the total completion time online on a single machine, using restarts

Third, in [89] it is shown that restarts help to minimize the number ofearly jobs (jobs that
complete on or before their due date) on a single machine, obtaining an (optimal) competitive
ratio of 2 while without restarts, it is not possible to be competitive at all (not even with preemp-
tions).

Our results Until now, it was not known how to use restarts in a deterministic algorithm for
minimizing the total completion time on a single machine to get a competitive ratio below 2,
whereas a ratio of 2 can be achieved by an algorithm that does not restart. We give an algorithm
RSPT (‘restartingSPT’) of competitive ratio 3/2. This ratio cannot be obtained without restarts,
even with the use of randomization.

Our algorithm is arguably the simplest possible algorithm for this problem that uses restarts:
it bases the decision about whether or not it will interrupt arunning jobJ for an arriving jobJ ′

solely onJ andJ ′. It ignores, for example, all other jobs that are waiting to be run. We show
in section 6.1 that the analysis of our algorithm is tight andthat all “RSPT-like” algorithms have
a competitive ratio of at least1.48. This suggests that a more complicated algorithm would be
required to get a substantially better competitive ratio, if possible.

6.1 Algorithm RSPT

We present our online algorithmRSPT for the problem of minimizing the total completion time
on a single machine, using restarts. See Figure 6.1. We definea jobJ to berunning at timet if
it started at times < t, it did not complete before timet and no other job started to run in(s, t).

Figure 6.1: The algorithmRSPT

RSPT maintains a queueQ of unfinished jobs. A job is put intoQ when it arrives. A job is
removed fromQ when it is completed. For any timet, RSPTdeals first with all arrivals of jobs
at timet before starting or interrupting any job.
At any timet where eitherRSPTcompletes a job, or one or more jobs arrive whileRSPT is idle,
RSPT starts to run the smallest (remaining) job inQ. If Q = ∅, RSPT is idle (until the next job
arrives).
Furthermore, if at timer a jobJ is running that started (most recently) at times < r and has
sizex, and if at timer a new jobJ ′ arrives with sizew, thenRSPT interruptsJ and starts to run
J ′ if and only if

r + w ≤ 2

3
(s + x). (6.1)

Otherwise,RSPTcontinues to runJ (andJ ′ is put intoQ).

RSPThas the following properties (whereJ , x, s, r andw are defined as in Figure 6.1).OPT

is any optimal off-line algorithm (there can be more than one).

R1 RSPTonly interrupts a jobJ for jobs that are smaller and that can finish earlier thanJ .
Proof. If there is an interruption,w ≤ 2

3
(s + x) − r < 2

3
x − 1

3
s ≤ x andr + w < s + x.

6.1 Algorithm RSPT 85

R2 If RSPTdoes not interruptJ for a job of sizew that arrives at timer, thenr+w > 2
3
(s+x).

Furthermore, ifRSPT is still runningJ at timer + w, it runsJ until completion.
Proof. The first claim holds by condition (6.1) in the algorithm. To see the other claim,
observe that any jobJ ′ that arrives after timer+w satisfiesr′+w′ ≥ r′ ≥ r+w > 2

3
(s+x)

in this case, and does not cause an interruption. �

R3 Suppose thats ≤ t ≤ 2
3
(s + x), andRSPT has been runningJ continuously from time

s until time t. Then at timet, all jobs smaller thanJ that are completed byOPT are also
completed byRSPT.
Proof. The property holds fort = s by definition of RSPT. For t > s, a smaller job
that OPT completed andRSPT did not, can thus only have arrived after times. But then
it would have caused an interruption ofJ before timet, since it can be completed before
time 2

3
(s + x). �

R4 Suppose thats < t ≤ 2
3
(s + x), andRSPT has been runningJ continuously from time

s until time t. Then at timet, OPT has completed at most one job thatRSPT has not
completed.
Proof. By R3, the only jobs thatOPT can have already completed at timet thatRSPThas
not, have size at leastx. However, we havet < 2x, sincet ≥ 2x ⇒ 2

3
(s + x) ≥ 2x ⇒

s ≥ 2x ⇒ 1
3
s ≥ 2

3
x ⇒ s ≥ 2

3
(s + x) ⇒ t > 2

3
(s + x), a contradiction. Before time

t < 2x, OPT can complete at most one job of size at leastx and therefore at most one job
thatRSPThas not yet completed. �

R5 At any timet, RSPTonly interrupts jobs that it cannot finish before time3
2
t. Hence,RSPT

does not interrupt any job with a size of at most half its starting time.
Proof. If there is an interruption at timet, then a job arrived at timet for which t + w ≤
2
3
(s+x), hence without interruptionsJ would have finished at times+x ≥ 3

2
(t+w) ≥ 3

2
t.

�

To explain some of the intuition behind the definition ofRSPT, we define a family of similar
algorithms and prove that none of them can do much better thanRSPT. We define a family of
algorithms,{RSPT(α)}, α ∈ [0, 1] as follows:RSPT(α) behaves exactly likeRSPT, but (6.1) is
replaced by

r + w ≤ α(s + x).

It is possible thatRSPT(α) outperformsRSPT for some value ofα. However, we show that the
improvement could only be very small, if any. Therefore, to keep the analysis manageable, we
analyze onlyRSPT.

Lemma 6.1 For all 0 < α < 1, R(RSPT(α)) ≥ 1.48.

Proof. We consider three job sequences. We use a small constantε > 0.
1) A job of size 1 arrives at time 0, andN jobs of size 0 arrive at timeα + ε. RSPT will

run these jobs in order of arrival time and have a total completion time ofN + 1. However, it is
possible to obtain a total completion time of(α + ε)(N + 1) + 1 by running the jobs of size 0
first. By lettingN grow without bound, the competitive ratio tends to1/α for ε → 0.

86 Chapter 6. Minimizing the total completion time online on a single machine, using restarts

Sequence 1) shows thatR(RSPT(α)) ≥ 3/2 for α ≤ 2/3. For the remainder of this proof,
assume thatα > 2/3.

2) A job J1 of size 1 arrives at time 0, a jobJ2 of size α at time ε, a job J3 of size 0
at timeα (causing an interruption inRSPT(α)). Then, at timeα + ε one final jobJ4 of size
α(2α) − α arrives. For this sequence, the optimal cost tends to4α2 + 2α + 1 (using the job
sequenceJ2, J3, J4, J1) whereasRSPT(α) completes the jobs in the orderJ3, J2, J4, J1 and pays
4α2 + 5α + 1.

3) As 2), but after jobJ4, at time2α2 another jobJ5 of size 0 arrives, causingRSPT(α) to
interrupt jobJ2 which it is running at that time. Starting at time2α2, RSPT(α) runs the jobs
J5, J4, J2 andJ1 in this order. The optimal order of the jobs isJ2, J3, J4, J5, J1. In the limit,
RSPT(α) pays14α2 + 1 whereas the optimal cost is6α2 + 2α + 1.

This implies that

R(RSPT(α)) ≥ max

(

1

α
,
4α2 + 5α + 1

4α2 + 2α + 1
,

14α2 + 1

6α2 + 2α + 1

)

> 1.48008.

�

From the first job sequence in the proof, we have the followingcorollary.

Corollary 6.1 R(RSPT) ≥ 3/2.

We will return to sequences similar to 2) and 3) in Section 6.7.
To analyze the competitive ratio ofRSPT, we will use amortized analysis [22]. Each job

that arrives receives a certain amount of credit, based on its (estimated) completion time in the
optimal schedule and inRSPT’s schedule. We will show that each time thatRSPT starts a job,
we can distribute the credits of the jobs so that a certain invariant holds, using an induction. The
calculations of the credits at such a time, and in particularof the estimates of the completion
times in the two schedules, will be made under the assumptionthat no more jobs arrive later.

We first need to show that the invariant holds at the first time thatRSPTstarts a job. Then, we
need to show that at each later job start, the invariant keepsholding when we take into account
the jobs that arrived in the meantime (updating calculations where necessary!) and assume no
more jobs arrive. Finally, we need to show that if the invariant holds at the last time thatRSPT

starts a job, thenRSPTmaintains a competitive ratio of3/2.
There will be one special case where the invariant does not hold again immediately. In that

case, we will show the invariant is restored at some later time before the completion ofσ. This
case will be analyzed in Section 6.7.

6.2 Global assumptions and event assumptions

Definition 6.1 An eventis the start of a job byRSPT.

Definition 6.2 An event has the property STATIC if no more jobs arrive after this event.

6.2 Global assumptions and event assumptions 87

At the time of an event,RSPTcompletes a job, interrupts a job, or is idle.
In our analysis, we will use ‘Global assumptions’ and ‘Eventassumptions’. We show that we

can restrict our analysis to certain types of input sequences and schedules and formulate these
restrictions as Global assumptions. Then, when analyzing an event (from the remaining set of
input sequences), we show in several cases that it is sufficient to consider events with certain
properties, and make the corresponding Event assumption. The most important one was already
mentioned in Section 6.1:

Event assumption 1 The current event has the property STATIC.

There can be more than one optimal schedule for a given inputσ. For the analysis, we fix
some optimal schedule and denote the algorithm that makes that schedule byOPT. We use this
schedule in the analysis of every event. Hence,OPT takes into account jobs that have not arrived
yet in making its schedule, butOPT does not change its schedule between successive events: the
schedule is completely determined at time 0.OPT does not interrupt jobs, because it can simply
keep the machine idle instead of starting a certain job and interrupting it later, without affecting
the total completion time. We can make the following assumption aboutRSPTandOPT, because
the cost ofOPT andRSPTfor a sequence is unaffected by changing the order of jobs of the same
size in their schedules.

Global assumption 1 If two or more jobs inσ have the same size,RSPTandOPTcomplete them
in the same order.

Definition 6.3 An input sequenceσ has propertySMALL if, wheneverRSPT is running a job of
some sizex fromσ, only jobs strictly smaller thanx arrive.

Lemma 6.2 For every input sequenceσ, it is possible to modify the arrival times of some jobs
such that the resulting sequenceσ′ has the propertySMALL , the schedule ofRSPT for σ′ is the
same as it is forσ, andOPT(σ′) ≤ OPT(σ).

Proof. At any timer that a jobJ arrives that is at least as large as the job thatRSPT is running
at that time, we modifyσ as follows. If there has been an interval before timer in which RSPT

was idle, defineu as the end of the last such interval beforer; otherwise setu = 0. Definer′ as
the last time in the interval(u, r) that a job larger thanJ was interrupted or completed. If there
is no such time, setr′ = u. We change the release time ofJ to r′.

WhenRSPT is run on the resulting sequenceσ′, it does not consider runningJ during the
interval [r′, r]: it is running smaller or equal-sized jobs in that entire interval. (For the equal-
sized jobs, see Global assumption 1.) Hence the schedule ofRSPT for σ′ is the same as it is for
σ, andOPT(σ′) ≤ OPT(σ) since the optimal cost can only decrease if the arrival timesdecrease
or remain the same. �

This Lemma implies that ifRSPT maintains a competitive ratio of 3/2 on all the sequences
that have propertySMALL, it maintains that competitive ratio overall. Henceforth,we make the
following assumption.

Global assumption 2 The input sequenceσ has property SMALL.

88 Chapter 6. Minimizing the total completion time online on a single machine, using restarts

By this assumption, ifRSPT is running a job of sizex, the first job of sizey ≥ x can only
arrive onceRSPTstarts a job of some sizez > y, or whenRSPTbecomes idle.

6.3 Definitions and notation

After these preliminaries, we are ready to state our main definitions. A job J arrives at its
release timer(J) and has processing time denoted byw(J). For a jobJi, we will usually
abbreviater(Ji) asri andw(Ji) aswi, and use analogous notation for jobsJ ′, J∗ etc. When
RSPT is running a jobJ , it can have bothJ-large unfinished jobs, that are at least as large as
J , andJ-small unfinished jobs, that are smaller, in its queue. To distinguish between these
two sets of jobs, the unfinishedJ-large jobs will be denoted byJ1 = J, J2, J3, . . . with sizes
x1 = x = w(J), x2 = w(J2), x3 = w(J3), . . . while the J-small jobs will be denoted by
J1, J2, . . . with sizesw1, w2, . . .

We letQ(t) denote the queueQ of RSPTat timet.

Definition 6.4 A run-intervalis a half-open intervalI = (s(I), t(I)], whereRSPTstarts to run
a job (denoted byJ(I)) at times(I) and runs it continuously until exactly timet(I). At time
t(I), J(I) is either completed or interrupted. We denote the size ofJ(I) byx(I).

The input sequenceσ may contain jobs of size 0. Such jobs are completed instantlywhen
they start and do not have a run-interval associated with them. Thus we can divide the entire
execution ofRSPT into run-intervals, completions of 0-sized jobs, and intervals whereRSPT is
idle. The following lemma follows immediately from the definition of RSPT.

Lemma 6.3 All jobs in σ arrive either in a run-interval or at the end of an interval inwhich
RSPT is idle.

Definition 6.5 For any run-intervalI, we denote the set of jobs that arrive during this interval
by ARRIVE(I) = {J1(I), . . . , Jk(I)(I)}, We writeri(I) = r(Ji(I)) andwi(I) = w(Ji(I)) for
1 ≤ i ≤ k(I). The jobs are ordered such thatw1(I) ≤ w2(I) ≤ . . . ≤ wk(I)(I). We denote the
total size of jobs in ARRIVE(I) byW (I), and writeWi(I) =

∑i
j=1 wi(I) for 1 ≤ i ≤ k(I).

RSPTwill run the jobs inARRIVE(I) in the orderJ1(I), . . . , Jk(I)(I) (using Global assump-
tion 1 if necessary) and we havewk(I)(I) < x(I) using Global assumption 2. Of course it is
possible thatARRIVE(I) = ∅. In that caseI ends with the completion of the jobRSPT was
running, and we havet(I) = s(I) + x(I).

Lemma 6.4 If RSPT interrupts jobJ(I), thent(I) = r1(I).

Proof. We havet(I) ∈ {r1(I), . . . , rk(I)(I)}. Note thatt(I) < r1(I) is not possible, since
all jobs inARRIVE(I) arrive on or before timet(I). Supposet(I) = ri(I) > r1(I) for some
i > 1, thenri(I) + wi(I) ≤ 2

3
(s(I) + x(I)). By the ordering of the jobs inARRIVE(I) we

havewi(I) ≥ w1(I) and thusr1(I) + w1(I) < ri(I) + wi(I) ≤ 2
3
(s(I) + x(I)). But thenRSPT

interruptsJ(I) no later than at timer1(I), sot(I) ≤ r1(I), a contradiction. �

6.3 Definitions and notation 89

Definition 6.6 For the jobs in ARRIVE(I), we writeτi(I) = ri(I) + wi(I) − 2
3
(s(I) + x(I))

(i = 1, . . . , k(I)).

We haveτi(I) > 0 for i = 2, . . . , k(I), andτ1(I) > 0 if J(I) completes at timet(I), τ1(I) ≤ 0
if it is interrupted at timet(I).

Definition 6.7 We definefOPT(I) as the index of the job thatOPT completes first among the
jobs from ARRIVE(I).

Definition 6.8 An interruption byRSPTat timet is slow if OPT starts to run a job which is in the
set ARRIVE(I) strictly before timet; in this case,fOPT(I) > 1 andJfOPT(I)(I) did not cause
an interruption when it arrived. Otherwise the interruption is fast.

We call such an interruption slow, because in this case it could have been better for the total
completion time ofRSPT if it had interruptedJ(I) for one of the earlier jobs inARRIVE(I)
(i. e. faster); now, at timet, RSPT still has to run all the jobs inARRIVE(I), whereasOPT

has already partially completedJfOPT(I)(I). Note that whether an interruption is slow or fast
depends entirely on whenOPT runs the jobs inARRIVE(I). It has nothing to do withRSPT.

We now define some variables that can change over time. We willneed their values at time
t when we are analyzing an event at timet. They represent a snapshot of the current situation.

Definition 6.9 If job J has arrived but is not completed at timet, st(J) is the (next) time at
which RSPT will start J , based on the jobs that have arrived until timet. For a job J that is
completed at timet, st(J) is the last time at whichJ was started (i.e. the time when it was started
and not interrupted anymore). For a jobJ that has not arrived yet at timet, st(J) is undefined.

Lemma 6.5 For every event and every jobJ , st(J) is at least as high as it was during the
previous event.

Proof. Consider an event at timet and a jobJ . If J completes before or at timet, thenst(J)
is unchanged since the previous event. Any other jobJ at timet, for which st(J) was already
defined during the previous event, is larger than the jobs inARRIVE(I) by definition ofRSPT

and by Global assumption 2. ThereforeJ will complete after the jobs inARRIVE(I), i.e. no
earlier than previously calculated. �

By this Lemma, for a jobJ in Q(t), st(J) is the earliest possible time thatRSPTwill start to
runJ .

Definition 6.10 A jobJ is interruptibleat timet, if st(J) < 2w(J) andt ≤ 2
3
(st(J) + w(J)).

I. e. a jobJ is interruptible if it is still possible thatRSPTwill interruptJ after timet (cf. Property
R5).

Definition 6.11 BEFORE t(J) is the set of jobs thatRSPTcompletes beforest(J) (based on the
jobs that have arrived at or before timet). bt(J) is the total size of jobs inBEFORE t(J). ℓt(J)
is the size of the largest job inBEFORE t(J).

90 Chapter 6. Minimizing the total completion time online on a single machine, using restarts

Clearly,bt(J) andℓt(J) can only increase over time, andℓt(J) ≤ bt(J) for all timest and
jobsJ .

During our analysis, we will maintain anestimateon the starting time of each jobJ in
the schedule ofOPT, denoted bysOPT

t (J). We describe later how we make and update these
estimates. We will maintain the following inequality as part of our invariant, which will be
defined in section 6.4.2. Denote the actual optimal completion time of a jobJ by OPT(J). Then
at the timet of an event,

∑

J :r(J)≤t

OPT(J) ≥
∑

J :r(J)≤t

(sOPT
t (J) + w(J)) (6.2)

This equation implies that at the end of the sequence,OPT(σ) ≥ ∑

J(sOPT
t (J) + w(J)). We

will use the following lemma to calculate initial values ofsOPT
t (J) for arriving jobs in such a

way that (6.2) holds.

Lemma 6.6 For a given timet, denote the most recent arrival time of a job byt′ ≤ t. Denote
the job thatOPT is running at timet′ byΦ(t′), and its remaining unprocessed jobs byΨ(t′). The
total completion time ofOPT of the jobs inΨ(t′) is at least the total completion time of these jobs
in the schedule where those jobs are run consecutively in order of increasing size afterΦ(t′) is
completed.

Proof. The schedule described in the lemma is optimal in case no morejobs arrive after timet
(Event assumption 1). If other jobs do arrive after timet, it is possible that another order for the
jobs inΨ(t′) is better overall. However, since this order is suboptimal for Ψ(t′), we must have
that the total completion time of the jobs inΨ(t′) is then not smaller. �

The fact that the optimal schedule is not known during the analysis of an event is also the
reason that we check that (6.2) is satisfied instead of tryingto maintainOPT(J) ≥ sOPT

t (J) +
w(J) for each jobJ separately.

Definition 6.12 Dt(J) = st(J) − sOPT
t (J) is thedelayof jobJ at timet.

6.4 Amortized analysis

The credit of jobJ at timet is denoted byKt(J). A job will be assigned an initial credit at the
first event on or after its arrival. At the end of each run-interval I = (s, t], each jobJi(I) in
ARRIVE(I) receives an initial credit of

1

2

(

sOPT(Ji(I)) + wi(I)
)

− D(Ji(I)) i = 1, . . . , k(I). (6.3)

If at time t a (non-zero) interval ends in whichRSPT is idle, or t = 0, then supposeQ(t) =
{J1, . . . , Jk} wherew1 ≤ . . . ≤ wk. The initial credit of jobJi in Q(t) is then

1

2
t +

1

2

i
∑

j=1

w(Jj) i = 1, . . . , k(I). (6.4)

6.4 Amortized analysis 91

This is a special case of (6.3): by Lemma 6.6 and Event assumption 1, OPT will run the jobs in
Q(t) in order of increasing size, hencesOPT

t (Ji) ≥ st(Ji) for i = 1, . . . , k. ThereforeD(Ji) ≤ 0
for i = 1, . . . , k. Moreover, by definition ofRSPTwe havest(Ji) = t+

∑i−1
j=1 wi for i = 1, . . . , k.

The idea is that the credit of a job indicates how much its execution can still be postponed
by RSPTwithout violating the competitive ratio of3/2: if a job hasδ credit, it can be postponed
by δ time.

For the competitive ratio, it does not matter how much crediteach individual job has, and we
will often transfer credits between jobs as an aid in the analysis. During the analysis of events,
apart from transferring credits between jobs, we will also use the following rules.

Rule C1.If st(J) increased byδ since the previous event, thenK(J) decreases byδ.
Rule C2. If the estimatesOPT

t (J) increased byδ since the previous event, thenK(J) in-
creases by3

2
δ.

st(J) cannot decrease by Lemma 6.5. We will only adjust (increase)sOPT
t (J) in a few

special cases, where we can show that (6.2) still holds if we increasesOPT
t (J). Both rules

follow directly from (6.3): it can be seen that ifst(J) or sOPT
t (J) increases,J should have

received a different amount of credit initially. (The amount thatJ can be postponed changes.)

Theorem 6.1 Suppose that afterRSPT completes any input sequenceσ, the total amount of
credit in the jobs is nonnegative, and (6.2) holds. ThenRSPT maintains a competitive ratio of
3/2.

Proof. We can ignore credit transfers between jobs, since they do not affect the total amount of
credit. Then each job has at the end credit of

K(J) =
1

2
(sOPT

t (J) + w(J)) − (st(J) − sOPT
t (J)),

where we use the final (highest) value ofsOPT
t (J) for each jobJ , and the actual starting time

st(J) of each job inRSPT’s schedule. This follows from (6.3) and the rules for adjusting job
credits mentioned above. Thus if the total credit is nonnegative, we have

∑

J

(st(J) − sOPT
t (J)) ≤ 1

2

∑

J

(

sOPT
t (J) + w(J)

)

⇒
∑

J

st(J) ≤ 3

2

∑

J

sOPT
t (J) +

1

2

∑

J

w(J)

⇒ RSPT(σ) =
∑

J

(st(J) + w(J)) ≤ 3

2

∑

J

(sOPT
t (J) + w(J)) ≤ 3

2
OPT(σ). �

Calculating the initial credit The only unknowns in (6.3) aresOPT
t (Ji(I)) (i = 1, . . . , k(I)).

If there is an interruption at timet, Lemma 6.6, together with the job thatOPT is running at
time t, gives us a schedule forOPT that we can use to calculate valid estimates (lower bounds)
sOPT

t (Ji(I)) for all i. We also use the following Event assumption.

92 Chapter 6. Minimizing the total completion time online on a single machine, using restarts

Event assumption 2 If the run-intervalI ends in a completion, all jobs in ARRIVE(I) arrive
no later than the time at whichOPT completesJfOPT(I)(I).

We briefly explain this assumption. By definition, all jobs inARRIVE(I) arrive no later than
at timet(I). By the timeOPT completesJfOPT(I)(I), RSPTwill not interruptJ(I) anymore by
Property R2. Whether other jobs inARRIVE(I) arrive at that time or at some later time≤ t(I)
does not affectRSPT’s decisions or its total completion time. Event assumption2 enables us
to apply Lemma 6.6 to calculate lower bounds for the completion times ofOPT of the jobs in
ARRIVE(I). Some release times might actually be higher, but the optimal total cost forσ cannot
be lower in that case. Therefore (6.2) holds.

Note that if we were to modify the sequenceσ by actually decreasing release times until
Event assumption 2 holds (similarly to in Lemma 6.2), the optimal schedule for the resulting
sequence might be quite different. In particular,fOPT(I) may change! This is the reason we use
this assumption only locally, to get some valid lower boundson the optimal cost.

Note also that both after a completion and after an interruption, the schedule ofOPT is not
completely known even with these assumptions, because we donot know which jobOPT was
running at timet. Therefore we still need to consider several off-line schedules in the following
analysis.

6.4.1 Credit requirements

In this section, we describe three situations in which credit is required, and try to clarify some
of the intuition behind the invariant defined in Section 6.4.2.

Interruptions Suppose a jobJ of sizex is interrupted at timer1, because jobJ1 arrives, after
starting at times. Thens < 2x. J1 will give away credit toJ, J2, J3 andJ4 as described in
Table 6.1, and nothing to any other jobs. We briefly describe the intuition behind this. We have
the following properties.

INT1 The amount of lost processing time due to this interruption is r1 − s. This is at most
2
3
(s + x) − s = 2

3
x − s

3
, which is monotonically decreasing ins.

INT2 The size ofJ1 is w1. This is at most2
3
(s + x) − r1 < 2

3
(s + x) − s = 2

3
x − s

3
, which is

monotonically decreasing ins.

So, in Table 6.1,J1 appears to give away more credit ifs is larger, but a) it has more (this
follows from (6.3); b) it needs less (we will explain this later); and c)r1 − s is smaller.

From Table 6.1 we can also see how much credit is still missing. For instance ifs < x and
x < r1, thenJ2 receivesr1 − x from J1, but it lostr1 − s because it now startsr1 − s time
later. We will therefore require that in such a case,J2 has at leastx − s of credit itself, so that
it still has nonnegative credit after this interruption. Ingeneral, any job that does not get all of
its lost credit back according to the table above, must have the remaining credit itself. We will
formalize this definition in Section 6.4.2.

J1 will only give credit to jobs that actually exist (at this time). By Global assumption 2, a
J-large job which does not yet exist can only arrive during theexecution of an even larger job,

6.4 Amortized analysis 93

s [0, x] [0, x] (x, 3
2
x] (x, 3

2
x] (3

2
x, 2x)

r1 [0, x] (x, 4
3
x] (x, 3

2
x] (3

2
x, 5

3
x] (3

2
x, 2x)

To J r1 − s r1 + w1 − s r1 + w1 − s r1 + w1 − s r1 + w1 − s
To J2 0 r1 − x r1 − s r1 − s r1 − s
To J3 0 0 0 r1 − 3

2
x r1 − s

To J4 0 0 0 r1 − 3
2
x r1 − s

Total r1 − s 2r1 + w1 2(r1 − s) + w1 4r1 + w1 4(r1 − s) + w1

−(s + x) −2s − 3x

Table 6.1: Credit given byJ1 to other jobs

or whenRSPTbecomes idle. In both of these cases, we will calculate the initial credit for such a
job at the point at which it arrives, based on its arrival time, and we will not use the credit that
it might have received from this jobJ1. Thus any credit that according to this table would be
given to a non-existing job (a job that has not arrived yet, orwill not arrive) is simply lost.

Completions Suppose a jobJ completes at times +x. We give the following property without
proof.

COM1 The jobs inARRIVE(I) (whereI = (s, s + x]) need to get at most1
2
(x − bs(J)) of credit

from J .

By this (“needing” credit) we mean that the amount of credit those jobs receive initially, together
with at most1

2
(x−bs(J)), is sufficient for these jobs to satisfy the conditions that we will specify

in the next section.

Small jobs As long as a jobJ has not been completed yet, it is possible that smaller jobs
thanJ arrive that are completed beforeJ by RSPT. If OPT completes them afterJ , thenDt(J)
increases.

6.4.2 The invariant

From the previous section we see that for a job, sometimes credit is required to pay for inter-
ruptions of jobs that are run before it, (e.g. on page 92 below, J2 paysx − s for an interruption
of J), and sometimes to make sure that jobs that arrive during itsfinal run have sufficient credit
(COM1). We will make sure that each job has enough credit to pay both for interruptions of jobs
before it and for its own completion (i.e. for jobs that arrive during its final run).

For a jobJ , we define theinterrupt-delayassociated with an interruption as the amount of
increase ofDt(J) compared to the previous event. This amount is at mostt − s at the end of a
run-interval(s, t]. (It is less for a jobJ if sOPT(J) also increases).

Credit can also be required because the situation marked “Small jobs” in Section 6.4.1 oc-
curs. Thesmall job-delayof J associated with an event at timet is the total size of jobs smaller
thanJ in ARRIVE(I) that are completed beforeJ by RSPTand afterJ by OPT.

From Table 6.1, we can derive bounds for the amount of credit thatJ2 and later jobs should
have themselves so that they still have nonnegative credit after this interruption. We denote this

94 Chapter 6. Minimizing the total completion time online on a single machine, using restarts

amount byNINT (Ji, t) at timet (Needed credit forINTerruptions).
Consider an event at timet. SupposeQ(t) = {J1, . . . , Jk}, wherew1 ≤ w2 ≤ . . . ≤ wk. We

write si = st(Ji) = t +
∑i−1

j=1 wj. From Table 6.1 it can be seen that

NINT (Ji, t) = max(0, wi−1 − si−1) + max(0,
3

2
wi−2 − si−2) + max(0, 2wi−4 − t), (6.5)

where each maximum only appears if the corresponding job exists. For the third maximum
in this equation, note that the total interrupt-delay ofJi caused by interruptions of the jobs
J1, . . . , Ji−4 is at most2wi−4 − t after timet, sinceRSPT starts to runJ1 at timet and does
not interrupt any of the jobsJ1, . . . , Ji−4 after time2wi−4 by Property 4. Using a simple case
analysis, we can see that in all cases

NINT (Ji, t) ≤ max(0, wi−1 +
1

2
wi−2 +

1

2
wi−4 − t). (6.6)

For any existing jobJ /∈ Q(t), i.e. it has already been completed, we defineNINT (J, t) = 0.
When a jobJ completes, it will transfer its credit to the jobs that arrived during the last run

interval in which it was running. In Section 6.6, we will describe in detail how this credit is
distributed. JobJ will never give away more than1

2
(w(J)− bt(J)) if it completes at timet. We

therefore defineNCOM(Ji, t) (Needed credit forCOMpletions) as follows: for a jobJi ∈ Q(t),
we have

NCOM(Ji, t) = max

(

0,
1

2
(wi − bt(Ji))

)

. (6.7)

For any jobJ that is already completed at timet, we defineNCOM(J, t) = 0.
For all jobsJ that have arrived at timet, we will maintain

Kt(J) ≥ NCOM(J, t) + NINT (J, t). (6.8)

Invariant We now define our invariant, that will hold at specific timest in the execution, and
in particular when a sequence is completed:

Invariant: At time t, for all jobs that have arrived, (6.8) holds; furthermore, (6.2) holds.

Theorem 6.2 R(RSPT) = 3/2.

Proof outline. The proof consists of a case analysis, which makes up the restof this paper.
In the rest of this section we show that (6.2) can be maintained and that (6.8) holds for large
jobs. In section 6.5 and beyond, we consider all possible interruptions and completions. “All
possible” refers to both the times at which these events occur, and the possible schedules of the
off-line algorithm.

For every possible event, we will give a time at which the above invariant holds again, as-
suming that it held after the previous event. This will be no later than at the completion of the
last job inσ. At that time, the invariant implies that all completed jobshave nonnegative credit,

6.4 Amortized analysis 95

since for completed jobs we haveNCOM(J, t) = NINT (J, t) = 0. Also, (6.2) holds. We can
then apply Theorem 6.1.

We divide the analysis into the following cases.

1. An interruption of a jobJ (Lemmas 6.12, 6.13, 6.14) in all but one case, Case 3 below

2. Completion of a jobJ (Lemmas 6.15, 6.16, 6.17, 6.18)
3. A slow interruption of a jobJ of sizex in the case thatRSPT started it before time2x/3

(Section 6.7), andOPT does not run anyJ-large jobs beforeARRIVE(I).

For almost all events, it will be the case that the invariant holds again immediately after
the current event. However, there is one event for which it takes slightly longer: this is a slow
interruption of a jobJ , wheres(J) ≤ 2

3
w(J). If such an event occurs at some timet, we will

show that the invariant is restored no later than whenRSPT has completed the second-smallest
job in ARRIVE(I). (This job exists by Lemma 6.4 and Definition 6.8.)

In order to ensure that the invariant holds again after an event, we will often transfer credits
between jobs. Also, we will use the credit that some jobs musthave because the invariant was
true previously, to pay for their interrupt-delay or for their completion. We need to take into
account thatNINT (J, t), sOPT

t (J) etc. of some jobs that arrived before or at the previous event
can change as a result of the arrival of new jobs, compared to the calculations in that event (that
were made under the assumption that STATIC held). By the discussion following Theorem 6.1,
(6.2) holds at each event if it held at the previous event and if sOPT

t (J) is not changed for any
job J that arrived at or before the previous event. We also have thefollowing lemma.

Lemma 6.7 SupposeQ(t) = {J1, . . . , Jk}, wherew1 ≤ w2 ≤ . . . ≤ wk, andRSPTstartsJ1 at
timet. A jobJi satisfies (6.8) in any of the following situations.

1. Kt(Ji) ≥ max(0, 1
2

∑i
j=1 wj − t).

2. Kt(Ji) ≥ 1
2
(wi − wi−1) + 1

2

∑i−2
j=1 wj andt ≥ wi−1

3. Kt(Ji) ≥ 1
2
(wi − wi−1) + 1

2

∑i−2
j=1 wj + (wi−1 − t) andt < wi−1

4. Kt′(Ji) ≥ 1
2
(wi − wi−1) andJi starts to run at timet′

Proof. Note first of all thatwi−1 ≤ ℓt(Ji) becauseRSPTruns the jobs in order of increasing size.
1. We have1

2

∑i
j=1 wj − t = 1

2
(wi − wi−1) + wi−1 + 1

2

∑i−2
j=1 wj − t ≥ 1

2
(wi − ℓt(J)) +

NINT (Ji, t) ≥ NCOM(Ji, t) + NINT (Ji, t).
2. Here we haveNINT (Ji, t) ≤ 1

2
(wi−2 + wi−4), sincet ≥ wi−1 ≥ wi−2 ≥ wi−4. Hence

Kt(Ji) ≥ 1
2
(wi − wi−1) + 1

2

∑i−2
j=1 wj ≥ NCOM(Ji, t) + NINT (Ji, t).

3. NowNINT (Ji, t) ≤ 1
2
(wi−2 + wi−4) + (wi−1 − t) and we are done similarly.

4. This can only happen ifJ1, . . . , Ji−1 are completed, becauseRSPT runs jobs in order of
size. We haveNINT (Ji, t

′) = 0 by (6.6), sincet′ ≥ ∑

J ′:J ′ completedw(J ′). Furthermore, since
wi−1 ≤ ℓt′(Ji), Kt′(Ji) ≥ 1

2
(wi − ℓt′(Ji)) ≥ NCOM(Ji, t). �

96 Chapter 6. Minimizing the total completion time online on a single machine, using restarts

Notation Definition Long notation
t time of the current event
s start of the most recent run-intervalI = (s, t]
J job thatRSPTwas running inI = (s, t] J(I)
x its size w(J(I))
ARRIVE jobs that arrive inI ARRIVE(I)
k number of jobs inARRIVE k(I)
W total size of jobs inARRIVE Wk(I)(I)
J1 smallest job that arrives inI J1(I)
r1 its arrival time r1(I)
w1 its size w1(I)
f index of job inARRIVEthatOPT runs first fOPT(I)

Table 6.2: Notations

Corollary 6.2 SupposeRSPT starts to run jobs at timet, wheret = 0 or t is the end of a
(nonzero) interval in whichRSPTwas idle. Then (6.8) and (6.2) hold for the jobs that arrive at
timet.

Proof. This follows directly from (6.4) and Lemma 6.7, Case 1. �

We can apply this corollary at the arrival time of the first jobin σ, and anytime afterRSPThas
been idle.

6.4.3 Analysis of an event

As described in the previous subsection, for the analysis ofRSPT we need to analyze every
possible event that can occur during its execution, i. e. show that the invariant holds after the
event, if it holds after the previous event. For each event, we will focus on the credits of jobs
at the time of the current event, denoted byt. Generally, we will drop the subscriptt and write
K(Ji) for each jobJi. Furthermore, the job that was interrupted or completed at the time of the
event will be denoted byJ , and the set of smaller jobs that arrived during the most recent run ofJ
will be denoted byARRIVE= {J1, . . . , Jk}. The most recent starting time ofJ will be denoted
by s. We will call J-large jobslarge, and otherssmall. Remember thatfOPT, abbreviated byf ,
is the index of the job inARRIVEthatOPT completes first. Our notation is summarized in Table
6.2.

Lemma 6.8 After OPT completesJf , then if STATIC holds,OPT does not run anyJ-large job
until all jobs in ARRIVE are completed.

Proof. This is a direct consequence of Lemma 6.6 and Event assumptions 1 and 2: afterJf ,
OPT will complete first the remaining jobs inARRIVEin order of increasing size, and then the
remaining large jobs - as long as no new jobs arrive. �

Using this lemma, the schedule ofOPT is completely determined by which large jobs it runs
beforeARRIVE(the rest will be run after, in order of increasing size).

6.4 Amortized analysis 97

Lemma 6.9 Suppose that there is a jobL thatRSPTcompletes on or before timet, whereasOPT

completes it after a jobJi in ARRIVE. ThenL has 3
2
wi of credit that was not taken into account

before.

Proof. In the analyses of previous events,ARRIVEwas not taken into account when considering
the credit of jobL. Compared to that analysis, we have thatsOPT(L) increases by at leastwi.
Rule C2 implies thatL now has3

2
wi more credit than calculated at the previous events. �

Since for a completed jobL we haveNCOM(L, t) = NINT (L, t) = 0, we can give this credit
of 3

2
wi to other jobs, whileL still satisfies (6.8).
Suppose thatOPT runs at least one large jobJ ′ beforeARRIVE. In this case we will not use

any lower bound on the optimal starting time ofJ ′ (except that it is at least 0). This enables us
to make the following assumption.

Event assumption 3 If OPT runs at least one large job before ARRIVE (i.e., at least one job
from the set{J1 = J, J2, J3, . . .}), thenJ is one of these jobs.

We explain why we can make this assumption without loss of generality. SupposeOPT runs
J ′ 6= J beforeARRIVE, but notJ . By Global assumption 1,J ′ then has some sizey > x where
x is the size ofJ . This can only increase the optimal starting time of jobs inARRIVEcompared
to the situation whereOPT does runJ beforeARRIVE: if OPT runs onlyJ beforeARRIVE, it
can start to run the jobs inARRIVEat timex, whereas withJ ′ it can only start to run them at
timey > x. A similar statement holds ifOPT runs two (or more) large jobs beforeARRIVE.

Consider an event at timet, whereJ is interrupted or completed after starting at times. We
will calculate how some relevant variables change from times to time t in this situation (i.e.
OPT runsJ afterARRIVEandJ ′ before it). First of all, we havesOPT

t (J) ≥ sOPT
s (J) + W , so

by Rule C2,

Kt(J) ≥ Ks(J) +
3

2
W (minus interrupt-delayt − s in case of an interruption) (6.9)

Second,st(J
′) = ss(J

′) + W (plus interrupt-delay) so by Rule C1,

Kt(J
′) = Ks(J

′) − W (minus interrupt-delay). (6.10)

Third, it can be seen that

NINT (J ′, t) ≤ NINT (J ′, s) +
1

2
W. (6.11)

We briefly explain why. If there is an interruption at timet, then sincey > x there is at least
one job (J) betweenARRIVEandJ ′ in RSPT’s schedule, and (6.11) follows from (6.6). If there
is a completion at timet, thent ≥ x > wk, so by (6.6) we haveNINT (J ′, t) ≤ wk + 1

2
(wk−1 +

wk−2) − t ≤ 1
2
(wk−1 + wk−2) ≤ 1

2
(W − wk) ≤ NINT (J ′, s) + 1

2
(W − wk).

Now, if OPT runsJ beforeARRIVEinstead ofJ ′, we haveKt(J) = Ks(J) instead of (6.9).
However, (6.10) and (6.11) still hold. Therefore, it is sufficient to analyze the case whereOPT

runsJ beforeARRIVE(i.e. at time 0), and ensure that the invariant is maintained. Then, we can
switchJ andJ ′, and transfer an additional3

2
W worth of credit (that we have by (6.9), but did

not use) fromJ to J ′. We will not make this explicit anymore in the rest of the paper but simply
make Event assumption 3.

98 Chapter 6. Minimizing the total completion time online on a single machine, using restarts

Lemma 6.10 The condition (6.2) can be maintained throughout the execution ofσ.

Proof. Using Lemma 6.6 we can calculate valid initial valuessOPT
t (J) for any arriving job

J . The only modification we will make in later events, is that for any J(I)-large jobJ ′ that
OPT completes afterARRIVE(I), we increasesOPT

t (J ′) by Wk(I). (Here we will use Event
assumption 3.) Since the setARRIVE(I) was not taken into consideration whensOPT

t (J ′) was
originally determined, the resulting bound is still valid,so (6.2) holds. �

Lemma 6.11 The large jobs that bothOPT andRSPTcomplete after ARRIVE besidesJ satisfy
(6.8).

Proof. Consider such a jobJ i. It receives extra credit of1
2
W by Rules C1 and C2, since both

s(J i) andsOPT(J i) increase byW . It possibly loses some credit if there was an interruption.
However, Table 6.1 combined with (6.5) ensures that any job that does not have enough credit
to pay for the interruption ofJ gets the remainder fromJ1.

Note thatNCOM(J i, t) ≤ NCOM(J i, s) for all s ≥ t. Moreover, exactly as above (after
Event assumption 3), we haveNINT (J i, t) ≤ NINT (J i, s) + 1

2
W . Thus the extra credit of1

2
W

thatJ i receives ensures that it satisfies (6.8). �

By the results in this section, in the remainder of the paper it is sufficient to check (or ensure)
thatJ , the jobs inARRIVE, and any other jobs thatOPT has completed butRSPThas not satisfy
(6.8). Moreover, by Event assumption 3 the optimal scheduleis defined by nothing but the
numberof large jobs that it runs beforeARRIVE(and the size of those jobs, if there is more than
1).

6.5 Interruptions

Consider an interruption at timer1 of a jobJ that started at times. The interrupt-delay associated
with this interruption isr1−s for all jobs that were already inQ at times. The small job-delay of
this event of the jobs thatOPT completes beforeARRIVE, andRSPTdoes not, isW =

∑k
i=1 wi.

The last event before this one was the start ofJ , at times. No jobs were completed since
then byRSPT. We divide the interruptions into three types, based on the number of large jobs
OPT runs beforeARRIVE.

Large jobs beforeARRIVEby OPT 0 1 2
Lemma 6.12 6.13 6.14

We need to distinguish between the casesf = 1 andf > 1. First supposef = 1, i. e. OPT

runs the jobs fromARRIVEin the same order asRSPT. The credit reassignments in this case
take place in four steps.

1. On arrival ofJ1, the jobsJ, J2, . . . , Jk are shifted. However, for the moment we keep the
order of those jobs the same (as in the situation whereJ1 does not arrive). We reassign
credit fromJ1 to J so that its credit remains constant. (Some jobs can have negative credit
in this step.)

2. We reorder the jobs so that the order is nowJ1, . . . , Jk, J . However, the credits of the jobs
stay “in the same place”, so that e. g.J2 now has the credit thatJ had in Step 1.

6.5 Interruptions 99

3. We calculate the extra credit that this reordering generates. If a completion is nowδ time
earlier, there isδ more credit available by Rule 1.

4. We reassign credits to make sure all waiting jobs satisfy (6.8). (This step is not always
required.)

A graphical representation of the first three steps of this procedure can be seen in Figure 6.2.

J2

J2

J2

J3

J3

J3

J2

J2

J2

restart

Step 1

J1

Step 2

J

J

1

1

r1

} Step 3

before

t J

x−w

J

2

3x−w

Figure 6.2: Credit transfers

In casef > 1, we proceed similarly. However, in the first step we considerdifferent orders
for the jobs (which will be described at the time), instead ofthe order described above. We then
put the jobs in the order they will be executed byRSPT in Step 2 and continue as above.

Lemma 6.12 If RSPT interrupts a jobJ at timer1, andOPT runs no large jobs before ARRIVE,
ands ≥ x/2, and STATIC holds, and the invariant held at times, then it holds at timer1.

Proof. Case 1. f = 1. Only in this very first case will we not use the procedure outlined
above, and instead calculate the credits for the proper order directly. We begin by showing that
J1 still satisfies (6.8) after giving credit toJ andJ-large jobs as described in Table 6.1. We have
initially K(J1) = 1

2
(r1 + w1). Also,NINT (J1, r1) = 0 andNCOM(J1, r1) ≤ 1

2
w1 by definition.

We need to check every column in Table 6.1.
Supposes < r1 ≤ x. Sinces ≥ x/2, we haver1 ≤ 2

3
(s+x) ≤ 2s. Then1

2
(r1 +w1)− (r1 −

s) = 1
2
w1 + s − 1

2
r1 ≥ 1

2
w1.

Supposes ≤ x < r1. Sincer1+w1 ≤ 2
3
(s+x), then using Table 1, we have thatJ1 is left with

credit of 1
2
(r1+w1)−(2r1+w1−s−x) = s+x− 3

2
r1− 1

2
w1 ≥ s+x− 3

2
(2

3
(s+x)−w1)− 1

2
w1 = w1.

Supposex < s < r1 ≤ 3
2
x. J1 is left with 1

2
(r1+w1)−2(r1−s)−w1 = 2s− 3

2
r1− 1

2
w1 ≥ w1,

sincer1 + w1 ≤ 4
3
s.

Supposex < s ≤ 3
2
x < r1. We take2(r1 − s) + w1 + 2(r1 − 3

2
x) out of J1. J1 still has

1
2
(r1 + w1)− 4r1 + 2s + 3x−w1 ≥ −7

2
· 2

3
(s + x) + 3w1 + 2s + 3x = −1

3
s + 2

3
x + 3w1 > 3w1

of credit.
Suppose3

2
x < s. We take4(r1−s)+w1 out ofJ1, leaving it with1

2
(r1+w1)−4r1+4s−w1 ≥

4s − 7
3
(s + x) + 3w1 = 5

3
s − 7

3
x + 3w1 > 3w1.

100 Chapter 6. Minimizing the total completion time online on a single machine, using restarts

1 2 3 4 final

J1
1
2
w1 + 3

2
D2 J1 0 −3

2
D2

1
2
w1

Jf
3
2
rf + 1

2
wf − r1 J2 0 3

2
D2

1
2
wf

i = 2, . . . , f − 1 :

Ji
1
2
(rf + wf + Wi) − D1 Ji+1 wf − wi 0

rf +3wf+Wi−1−wi

2
− D1

i = f + 1, . . . , k :
Ji

1
2
(rf + Wi) − D1 Ji 0 0 1

2
(rf + Wi) − D1

J NCOM(J, s) + 1
2
W J 0 0 NCOM(J, r1) + NINT (J, r1)

Table 6.3: Credits in Lemma 6.12

In all cases,K(J1) satisfies (6.8). For2 ≤ i ≤ k, we haveK(Ji) = 1
2
(r1+Wi) so that we are

done by Lemma 6.7, Case 1. ForJ , we have thatsOPT(J) increases by1
2
W (see proof of Lemma

6.10). Note that1
2
W ≥ wk + 1

2
wk−1 + 1

2
wk−3 − r1 ≥ NINT (J, r1), sincer1 > s ≥ x/2 > wk/2.

We also haveNCOM(J, r1) ≤ NCOM(J, s), soJ still satisfies (6.8).

Case 2. f > 1. We defineD1 = r1 − rf > 0 (if r1 = rf , then by Lemma 6.6OPT runs the jobs
in order of increasing size after timer1 and hencef = 1) andD2 = (rf + wf) − (r1 + w1) > 0
(if D2 = 0, eitherJf would have already caused a restart before timer1, or J1 would not have
caused a restart).

As in Case 1, we begin by checking the credit ofJ1. In this case, initially,K(J1) = 3
2
(rf +

wf) + 1
2
w1 − r1 sincesOPT(J1) = rf + wf ands(J1) = r1. We take an extraw1 out of K(J1)

for J2.
Supposer1 ≤ x. Then3

2
(rf + wf)− 1

2
w1 − 2r1 + s = 3

2
D2 + w1 − 1

2
r1 + s > w1. We have

usedr1 ≤ 2
3
(s + x) < 2s which holds sinces ≥ 2

3
x.

Supposes ≤ x < r1. In this case we take2r1 + 2w1 − s − x of credit out ofJ1. Since
r1 + w1 ≤ 2

3
(s + x), we have thatJ1 is left with credit of 3

2
(rf + wf − w1) − 3r1 + s + x =

3
2
D2 − 3

2
r1 + s + x ≥ 3

2
D2 + 3

2
w1.

Supposex < s < r1 ≤ 3
2
x. We take2(r1 − s) + 2w1 of credit out ofJ1. Sincer1 + w1 ≤ 4

3
s

in this case, againJ1 is left with at least3
2
w1 + 3

2
D2.

Supposex < s ≤ 3
2
x < r1. We take2(r1 − s) + 2w1 + 2(r1 − 3

2
x) out of J1. J1 still has

3
2
(rf +wf −w1)−5r1 +2s+3x ≥ 3x+2s− 7

2
r1 + 3

2
D2 ≥ x− 1

2
r1 + 3

2
D2 +3w1 ≥ 31

2
w1 + 3

2
D2

of credit, using3(r1 + w1) ≤ 2(s + x).
Suppose3

2
x < s. We take4(r1−s)+2w1 out ofJ1, leaving it with 3

2
(rf +wf −w1)−5r1 +

4s ≥ 4s− 31
2
r1 + 3

2
D2 ≥ 4s− 7

2
(2

3
(s+x)−w1)+ 3

2
D2 ≥ 5

3
s− 7

3
x+ 3

2
D2 + 7

2
w1 > 7

2
w1 + 3

2
D2

since5
3
s ≥ 5

2
x > 7

3
x.

In all cases, (6.8) holds forJ1. For the other jobs, we use Table 6.3. In this table, the column
marked 1 contains the credits of the jobs assuming the orderJ1, Jf , J2, . . . , Jf−1, Jf+1, . . . , Jk,
J , and afterJ1 has given away credit toJ-large jobs as described in Table 1. Column 2 shows
the new order of the jobs. The credits stay in the same place, hence e. g.J2 now has a credit
of 3

2
rf + 1

2
wf − r1. Column 3 shows how much credit is gained by the reordering ofthe jobs.

6.5 Interruptions 101

Column 4 shows credit transfers; in this case,3
2
D2 is transferred fromJ1 to J2. The last column

contains the final credit of each job. The numbers above the columns refer to the steps in the
procedure described at the start of this section.

We now show that the credit in the last column is sufficient so that all jobs satisfy (6.8).
We begin with jobJ2. We havew1 = (r1 + w1)− r1 ≤ 2

3
(s + x) − s = 2

3
x− 1

3
s ≤ x/2 and

r1 > x/2, soJ1 cannot start before timew1. HenceNINT (J2, r1) = 0. Also NCOM(J2, r1) ≤
1
2
(w2 − w1). As in Case 1, we use thatsOPT(J) has increased by1

2
W . There are two cases.

Supposer1 ≥ wk. ThenNINT (J, r1) ≤ 1
2
(wk−1 + wk−3). ThereforeJ can give1

2
wk ≥ 1

2
wf

of credit toJ2, and still satisfy (6.8). Furthermore,3
2
rf + 1

2
wf − r1 ≥ 0 sincer1 ≤ 2s ≤ 2rf , so

we are done.
Supposer1 < wk < x. If f = k, thenr1 < wf and3

2
rf−r1+

3
2
D2 ≥ 3rf+ 3

2
wf− 5

2
r1− 3

2
w1 ≥

0 sincer1 + w1 < max(2rf , rf + wf). If f < k, thenJk gives 1
2
rf to Jf , and2rf − r1 > 0.

Below we will see thatJk can spare this credit.
For jobsJ3, . . . , Jf , we distinguish between two cases. Ifr1 ≥ wi−1, we useD1 = wf−w1−

D2 < wf and are done by Lemma 6.7, Case 2. Ifr1 < wi−1, then we usewf − D1 = w1 + D2.
We need to checkrf +wf+Wi−1−wi

2
+w1+D2 ≥ 1

2
(wi−wi−1)+ 1

2
Wi−2 +(wi−1−r1) = 1

2
Wi−r1.

This is equivalent to3
2
(rf + wf) ≥ wi, which holds.

For jobsJf+1, . . . , Jk, we have the same two cases. Ifr1 ≥ wi−1, thenK(Ji) ≥ 1
2
(rf +

Wi) − D1 ≥ 1
2
(wi − wi−1 + Wi−2) (usingD1 < wf), And if r1 < wi−1, then 1

2
Wi − D1 ≥

1
2
(wi − wi−1 + Wi−2) + (wi−1 − r1). We use from Lemma 6.7 either Case 2 or Case 3. �

Lemma 6.13 If RSPT interrupts a jobJ at timer1, andOPT runs one large job before ARRIVE,
and STATIC holds, and the invariant held at times, then it holds at timer1.

Proof. We distinguish between three cases depending ons andf . We ignore thatOPT has to
run the jobs inBEFORE s(J) too at some point; this can only decrease the optimal cost on the
other jobs.

Case 1. s ≤ x/2. We haver1 + w1 ≤ 2
3
(s + x) ≤ x, so f = 1 by Lemma 6.6. Also

bs(J) ≤ s < x.
We havesOPT(J1) ≥ x andD(J1) ≤ r1 − x, soK(J1) ≥ 3

2
x + 1

2
w1 − r1. On arrival ofJ1,

job J is in Step 1 shifted byRSPTby r1 + w1 − s time. We taker1 + 2w1 − s of credit out ofJ1

for J , so thatJ1 is left with 3
2
x + 1

2
w1 − 2(r1 + w1) + s ≥ 1

2
w1 + 1

6
x− 1

3
s ≥ 1

2
w1, soJ1 satisfies

(6.8).
For the other jobs, we refer to Table 6.4. For the Step 1-column, we use (6.3).J1 satisfies

(6.8) by Lemma 6.7, Case 1;J2 as well, sinceNCOM(J2, r1) ≤ NCOM(J, s) using thatx > w2

andbs(J) ≤ br1
(J2); the other jobs too by Lemma 6.7, Case 3.

Case 2. s > x/2 and f = 1. Sincef = 1, we have in Step 1 of our calculations that
D(Ji) ≤ min(x, r1) for 2 ≤ i ≤ k: after timer1 + w1, RSPT first runsJ (of sizex) whereas
OPT runsJ2, . . . , Jk immediately afterJ andJ1, at mostmin(x, r1) time earlier. We also have
w1 ≤ 2

3
(s + x) − r1 ≤ 2

3
x − 1

3
s ≤ 1

2
x < s, soNINT (J2, r1) = 0.

102 Chapter 6. Minimizing the total completion time online on a single machine, using restarts

1 2 3 final
J1

1
2
w1 J1 0 1

2
w1

J NCOM(J, s) + w1 J2 0 NCOM(J, s) + w1

J2
1
2
(x + W2) − r1 J3 x − w2

1
2
(x + W1 − w2) + (x − r1)

...
...

Jk
1
2
(x + Wk) − r1 J x − wk

1
2
(x + Wk−1 − wk) + (x − r1)

Table 6.4: Credits in Lemma 6.13, Case 1 (s ≤ x/2)

1 2 3 final
J1

1
2
w1 J1 0 1

2
w1

J NCOM(J, s) J2 0 NCOM(J, s)
J2

1
2
(x + W2) − x J3 x − w2

1
2
(x + W1 − w2)

...
...

Jk
1
2
(x + Wk) − x J x − wk

1
2
(x + Wk−1 − wk)

Table 6.5: Credits in Lemma 6.13, Case 2 (s > x/2 andf = 1), r1 > x

If r1 ≤ x, we are done exactly as in Case 1. Otherwise, we can checkK(J1) as in Lemma
6.12, Case 1. For the other jobs, we refer to Table 6.5. Sincer1 > x > wi for 1 ≤ i ≤ k, it
follows immediately from Lemma 6.7, Case 2, that all jobs satisfy (6.8).

Case 3. s > x/2 andf > 1. Write r̃ = max(x, rf). Supposer1 ≤ x. Then at timẽr ≥ r1,
OPT will run the remaining jobs in order of increasing size by Lemma 6.6. But thenf = 1, a
contradiction. Thereforer1 > x andD(J1) ≤ r1 − (r̃ + wf) < 0 using Property R3.

Claim: At most two jobs inARRIVEare interruptible.
Proof: Suppose there are three. Then by Property R5 the first (smallest) has size at least

p = (r1 +w1)/2 > x/2, the second one has size at leastp′ = (r1 +w1 + p)/2 > 3
4
x, so the third

one has size at least(r1 + w1 + p + p′)/2 > x,a contradiction to Global assumption 2. �

Claim: If some jobJi is interruptible, then 1) eitherJi−1 or Ji+1 or no job inARRIVE\{Ji}
is interruptible, 2)NINT (Ji, r1) = 0 and 3)NCOM(Ji, r1) ≤ 1

2
(wi − Wi−1).

Proof: 1) As the first claim. 2) We havewi−1 − si−1 < 0 for i = 1, . . . , k. JobsJi−2 and
earlier are not interruptible. 3) We haveWi−1 < wi−1, since all jobs inARRIVEstart after time
r1 > x > w1 andJi is interruptible. �

Claim: If Ji is not interruptible, andJi−2 is, thenNINT (Ji, r1) = max(3
2
wi−2 − si−2, 0) and

NCOM(J, r1) = 0.
Proof: We havewi−2 + wi−1 > x > wi, r1 > x > w1 andJi−4 is not interruptible. �

SincesOPT(J1) ≥ r̃ + wf , we haveK(J1) ≥ 3
2
(r̃ + wf) + 1

2
w1 − r1. DefineD2 = (r̃ +

wf) − (r1 + w1) > 0, andD1 = r1 − r̃ > 0. We will make much use of the following property:

wf − D2 = (r1 + w1) − r̃ ≤ 2

3
(s + x) − r̃ ≤ 2

3
x − 1

3
r̃ ≤ 1

3
x ≤ 1

3
r̃. (6.12)

6.5 Interruptions 103

J1 J Jf

1 3
2
w1 + 3

2
D2 NCOM(J, s)

r̃+wf

2
− D1 − x − w1

2a J1 J J2

3a 0 0 0
2b J1 J2 J3

3b 0 0 x − w2

4 −1
2
D2 0 1

2
D2

final 3
2
w1 + D2 NCOM(J, s) 1

2
(w3 − w2)

Ji (2 ≤ i ≤ f − 1) Ji(f + 1 ≤ i ≤ k − 1) Jk

1 r̃+wf+Wi

2
− D1 − x r̃+Wi

2
− D1 − x 1

2
(r̃ + Wk) − D1 − x

2a Ji+1 Ji Jk

3a wf − wi 0 0
2b Ji+2 Ji+1 J
3b x − wi+1 x − wi x − wk

4 0 0 0

final r̃+wf+Wi−3−wi−2

2
− D1

r̃+Wi−3−wi

2
+ D2 + w1

r̃+Wk−2−wk

2
+ D2 + w1

Table 6.6: Credit transfers in Lemma 6.13, Case 3

This property impliesD1 = wf − w1 − D2 ≤ wf − D2 ≤ 1
3
x andD1 ≤ wf .

We consider the various possibilities fors andr1 and take credit out ofJ1 as described in
Table 6.1. The calculations are identical to the ones in Lemma 6.12, Case 2, except thatrf

is replaced bỹr andD2 is defined as above. It follows thatJ1 ends up with credit of at least
3
2
(D2 + w1) and satisfies (6.8).

Credit transfers Sincer1 > x, we can again use Case 2 of Lemma 6.7 to check if jobs satisfy
(6.8). We transfer credits as in Table 6.6. We now have columns for jobs in stead of rows as
before, due to space constraints. Note that in this case, there are two reorderings of the jobs (a
and b). Also, there is an additional row 4, indicating credittransfers between jobs. Note that the
entries in this row add up to 0. The entries in the last row willbe explained below.

J1 is not interruptible becausew1 ≤ 2
3
(s + x) − s = 2

3
x − 1

3
s < 1

2
x < 1

2
r1. Moreover,r1 >

x > w2, soNINT (J2, r1) = NINT (J3, r1) = 0. ForJ2, we haveNCOM(J, s) = 1
2
(x − bs(J)),

x > w2 andbs(J) ≤ br1
(J2). ThereforeJ2 satisfies (6.8).

ForJ3, we haveK(J3) = 1
2
(r̃ + wf)−D1 − x−w1 + x−w2 + 1

2
D2 = 1

2
(r̃ + wf) + 3

2
D2 −

w2 −wf ≥ 1
2
(r̃−2w2 −wf)+ 3

2
D2 = 1

2
(w3 −w2)+ 1

2
(r̃−w2 −w3 −wf +3D2) ≥ 1

2
(w3 −w2)

using (6.12).
For i = 4, . . . , f we find

K(Ji) =
1

2
(r̃ + wf + Wi−2) − D1 − x + x − wi−1 + wf − wi−2

≥ 1

2
(r̃ + wf + Wi−3 − wi−2) − D1 (6.13)

104 Chapter 6. Minimizing the total completion time online on a single machine, using restarts

=
1

2
(r̃ + Wi−3 − wf − wi−2) + D2 + w1 (6.14)

=
(wi + Wi−3 − wi−2) + (r̃ − wf − wi + 2D2)

2
≥ wi + Wi−3 − wi−1

2
.

If Ji is interruptible,Ji−2 and earlier jobs are not and we are done. SupposeJi is not interruptible
andsi−2 < 3

2
wi−2. (If si−2 ≥ 3

2
wi−2, we are done.) Then we use thatsi−2 > r1 and we have

from (6.13)

K(Ji) + si−2 >
1

2
(r̃ + wf + Wi−3 − wi−2) + r̃ ≥ 1

2
(r̃ − wi−2 + Wi−3) +

3

2
wi−2.

For Jf+1, the calculations are similar, but from (6.14) we now deriveK(Jf+1) ≥ 1
2
Wf−1 +

1
2
(wf+1 − Wf) andK(Ji) ≥ 1

2
Wf−1 (using (6.12)). Thus there is sufficient completion-credit,

and the casesf−1 < 3
2
wf−1 is handled as above.

For i = f + 2, . . . , k we haveK(Ji) ≥ 1
2
(r̃ + Wi−1)−D1 − x + x−wi−1 ≥ 1

2
(r̃ + Wi−2 −

wi−1) − D1. There are five cases.
1) If wi−2 ≥ 3

2
si−2, thenJi−2 is interruptible and by the third claim above it is sufficient

to showK(Ji) ≥ 3
2
wi−2 − si−2. Since we haveK(Ji) + r1 ≥ 1

2
(r̃ + Wi−2 − wi−1) + r̃ ≥

1
2
(r̃ + Wi−3 − wi−1) + 3

2
wi−2, this impliesK(Ji) ≥ 3

2
wi−2 − r1 ≥ 3

2
wi−2 − si−2.

2) Otherwise,NINT (Ji, r1) ≤ 2wi−4 − r1. In fact, if r1 < 2wi−4 then K(Ji) + r1 ≥
1
2
(r̃ + Wi−2 − wi−1) + r̃ ≥ 1

2
Wi−2 + r̃ ≥ 3

2
wi−4 + r̃ > 2wi−4, which is sufficient since

NCOM(Ji, r1) = 0.
In the remaining cases,NINT (Ji, r1) = 0 andNCOM(Ji, r1) ≤ 1

2
(wi − Wi−1).

3) If i ≥ f + 3, then1
2
Wi−2 − D1 ≥ 1

2
wi−3 + 1

2
wi−2 − D1 ≥ wf − D1 = w1 + D2 ≥ 0, so

K(Ji) ≥ 1
2
(r̃ − wi−1) and we are done.

We are left withJf+2. We haveK(Jf+2) ≥ 1
2
(r̃ + Wf−1 − wf − wf+1) + D2 + w1. Clearly

K(Jf+2) ≥ 1
2
(wf+2 − Wf+1), so it is sufficient to showK(Jf+2) ≥ 0.

4) If wf ≥ 2
3
x, thenD2 ≥ 1

3
r̃ and thusK(Jf+2) ≥ 1

2
(wf+2 + Wf−1 −wf+1) + 1

2
(r̃ − (wf −

D2)) − 1
2
(wf+2 − D2) ≥ 1

2
(wi + Wi−3 − wi−1).

5) If wf < 2
3
x, then alsow2 < 2

3
x. For this particular case only, we consider whenOPT runs

the jobs inBEFORE s(J). If any job inBEFORE s(J) is completed afterJf , then by Lemma
6.9 there is extra credit available of3

2
wf . We give this toJf+2 which then has credit of at least

1
2
(wi + Wi−3 − wi−1) + 1

2
(r̃ − wi) ≥ 1

2
(wi + Wi−3 − wi−1).

If all jobs in BEFORE s(J) are completed beforeJf , then the credit ofJf is 3
2
bs(J) larger

than previously calculated. We give this toJ2. ThenK(J2) ≥ 1
2
x. However,w2 < 2

3
x, so we

take1
6
x out of the credit ofJ2 again and give it toJf+2. ThenK(Jf+2) ≥ 1

2
(r̃+Wf−1−wf+1)+

1
6
x + 1

2
wf − D1 ≥ 1

2
(r̃ + Wf−1 − wf+1) sinceD1 ≤ 1

3
x andD1 ≤ wf .

ForJ , we calculate as forJf+1 in casek = f and as forJf+2 and higher in casek > f + 1.
(The calculations forJf+1, . . . , Jk hold for any job size at mostx, so they also hold when applied
to J .) �

Lemma 6.14 If RSPT interrupts a jobJ at timer1, andOPT runs at least two large jobs before
ARRIVE, and STATIC holds, and the invariant held at times, then it holds at timer1.

6.5 Interruptions 105

Proof. SinceRSPTonly interruptsJ before time2x, we havef = 1: OPT starts to run the jobs in
ARRIVEafter RSPTdoes, and will use the optimal order for them by Lemma 6.6. That Lemma
also implies thatOPT runs not more than two large jobs beforeARRIVE. If s ≤ x/2, we have
ri ≤ x for all jobsJi ∈ ARRIVE. Then, again by Lemma 6.6, we may assumeOPT runs only
one large job beforeARRIVE: a contradiction. Hencex/2 < s < 2x andr1 > x.

Supposeℓs(J) < x. In this case, we ignore thatOPT has to run the job of this size too at
some time. This can only helpOPT.

Credit of J1 and large jobs We defineD1 = −D(J1) = x + x2 − r1 ≥ 4
3
x − 2

3
s + w1. We

haveK(J1) = 3
2
(x +x2) + 1

2
w1 − r1. We consider the various possibilities fors andr1 and take

credit out ofJ1 as described in Table 6.1, and an extraw1 for the small-job delay ofJ2. By these
reassignments, and becauseJ andJ2 satisfied (6.8), we have in Step 1 thatK(J) ≥ 1

2
(x−bs(J))

andK(J2) ≥ 1
2
(x2 − x) − Wk + w1.

Supposes ≤ x. Thenr1 ≤ 2
3
(s + x) ≤ 4

3
x. We take2(r1 + w1)− s−x of credit out ofJ1 to

give toJ andJ2, and we let it keep1
2
w1 for itself. We denote the remainder, which will be given

to J2, byK1. We haver1 ≤ 2
3
(x+s)−w1, so in this caseK1 = 3

2
(x+x2)−3r1−2w1 +s+x ≥

1
2
x + 3

2
x2 − s + w1 ≥ x2 + w1.

Now supposex < s < r1 ≤ 3
2
x. In this case we need2(r1 + w1) − 2s for J andJ2. Hence

K1 = 3
2
(x + x2) − 3r1 − 2w1 + 2s ≥ 3

2
(x + x2) − 2x + w1 ≥ x2 + w1.

Thirdly, supposex < s ≤ 3
2
x < r1. Now the required credit is in total2(r1 − s + w1) +

2(r1 − 3
2
x). HenceK1 ≥ 3

2
(x + x2) − 4

3
s − 1

3
x + 3w1 ≥ 2

3
x + 3w1.

Finally, if 3
2
x < s < r1 the jobs require4(r1 − s) + w1, and againK1 ≥ 2

3
x + 3w1.

Credit transfers We transfer credits as in Table 6.7.
For2 ≤ i ≤ k, we haveD(Ji) ≤ (r1 + x + Wi−1) − (x + x2 + Wi−1) = r1 − x2 in Step 1.

Using (6.3) we haveK(Ji) ≥ 1
2
(x + x2 + Wi) − (r1 − x2) ≥ 1

2
Wi + D1 for 2 ≤ i ≤ k.

J1 is not interruptible by Property R5 sincer1 ≥ max(x, s) andr1 + w1 ≤ 2
3
(s + x) ≤

4
3
max(s, x), henceNINT (Ji, r1) = 0 for 1 ≤ i ≤ 3. Furthermore,D1 = x + x2 − r1 is an upper

bound for the total amount of future interrupt-delays caused by interruptions of jobs beforeJ2

that have arrived so far.
Supposek ≤ 2. In this case we do not use the table. Ifk = 1, we are done immediately. If

k = 2, thenNINT (J, r1) = 0 andK(J) = 1
2
W2 + D1 + x − w2 = 1

2
(x − w2 + w1) + 1

2
x + D1.

ThusJ can give1
2
x + D1 to J2, andJ1 can give an additionalK1 ≥ 1

2
x to J2. ThenJ2 receives

in total x + D1 ≥ w2 + D1, and it receivedw1 already fromJ1 at the start. ThusJ2 satisfies
(6.8). For jobJ2, we haveK(J2) = NCOM(J, s) = 1

2
(x − bs(J)), x ≥ w2 andbr1

(J2) ≥ bs(J),
soK(J2) ≥ NCOM(J2, r1).

Supposek ≥ 3. In this case we use Table 6.7.J3 can giveD1 away becauseNINT (J3, r1) =
0. We distinguish between two cases:r1 ≤ 3

2
x andr1 > 3

2
x.

Case 1. r1 ≤ 3
2
x: The jobsJ4, . . . , Jk, J, J2 have sufficient interrupt-credit because they have

D1. Sincex > wi for i = 4, . . . , k, these jobs also have sufficient completion-credit.J2 satisfies
(6.8) as above. Hence we only need to show that the total transferred credit in Column 4 is at

106 Chapter 6. Minimizing the total completion time online on a single machine, using restarts

1 2 3 4 final

J1
1
2
w1 + K1 J1 0 −K1

1
2
w1

J NCOM(J, s) J2 0 0 NCOM(J, s)
J2

1
2
W2 + D1 J3 x − w2 −x+w1

2
− D1

1
2
(x − w2)

i = 3, . . . , k − 1 :

Ji
1
2
Wi + D1 Ji+1 x − wi −1

2
(x + wi−1)

x+Wi−2−wi

2
+ D1

Jk
1
2
Wk + D1 J x − wk −1

2
(x + wk−1)

x+Wk−2−wk

2
+ D1

J2 NCOM(J2, s) − Wk + w1 J2 0 +Wk + D1 NCOM(J2, s) + D1

Table 6.7: Credit transfers in Lemma 6.14 (r1 ≤ 3
2
x, k ≥ 3)

most 0, i. e. all the credit given toJ2 is actually available. To see this, note that1
2
(x + wi−1) ≥

wi−1 for 2 ≤ i ≤ k. Furthermore, ifr1 ≤ 3
2
x (shown in the table), we haveK1 ≥ x2 ≥ wk. The

additionalD1 from J3 completes the credit given toJ2.

Case 2. r1 > 3
2
x: Denote the jobs thatRSPTstarts to run at timer1 alternatively byJ ′

1, . . . , J
′
k′,

then by (6.5) we haveNINT (J ′
i , r1) ≤ 1

2
w′

i−4. We takeD1 from J3 as before and alsoD1 from
the very next jobJ ′

4 (J ′
4 ∈ {J4, J}). We can do that becauseNINT (J ′

4, r1) = 0. This makes in
total again at leastWk + D1 to give toJ2, since in this caseK1 + D1 ≥ x2 ≥ wk. Giving it to
J2 again ensures thatJ2 satisfies (6.8).

Now supposeℓs(J) ≥ x. In this caseOPT runs only one more large job thanRSPT before
ARRIVE. Hence in this case,J2 does not have small-job delay and we are done after Step 3 in
the table: all jobs already satisfy (6.8). �

6.6 Job completions

We divide the job completions into cases based on how many large jobsOPT runs before
ARRIVE. The case where no jobs arrived at all whileRSPTwas runningJ is treated separately
in Lemma 6.15. An overview can be found in the following table.

Large jobs beforeARRIVEby OPT 0 1 2 More than 2
Lemma 6.16 6.17 6.18 6.19, 6.22

Remember that to calculate the initial credit of jobs, we will use Event assumption 2. Since
all jobs in ARRIVEare smaller thanx, and complete afterJ , we haveNCOM(Ji, t) = 0 for
J1, . . . , Jk. We use again Event assumption 3.

Lemma 6.15 If RSPTcompletes a jobJ and no jobs arrived while it was runningJ , and STATIC
holds, and the invariant held at times, then it holds at timet.

Proof. RSPT now starts the run the smallest available job at the time thatwas calculated in the
analysis of the most recent event. Hence, for the remaining jobs the situation (and the credit)

6.6 Job completions 107

does not change. The completed job has nonnegative credit. �

Lemma 6.16 If RSPTcompletes a jobJ without interruptions andOPT does not run any large
jobs before ARRIVE, and STATIC holds, and the invariant heldat times, then it holds at timet.

Proof. We use similar tables as in Section 6.5, starting with a job order for which it is easy to
calculate the credits and then reordering the jobs. Here we ignore thatRSPTstarts to run the jobs
already at times and not only at timerf . This gives us a lower bound for the amount of credit
that is actually available.

Applying Lemma 6.9 repeatedly, we have that there is3
2
W of credit available. We give this

to J . We consider first the credit of the jobs ifRSPT would run the jobs in the same order as
OPT, and starting at timerf . ThenJ startsW time later than calculated at the previous event,
and thus only has1

2
W left of the 3

2
W that it just received. In Step 1, we have thatRSPT starts

each job at the same time asOPT starts it. See Table 6.8. We use (6.3).

1 2 3 final
Jf

1
2
(rf + wf) J −(x − wf) 0

Ji (i = 1, . . . , f − 1) 1
2
(rf + wf + Wi) Ji −(x − wf)

1
2
Wi

Ji (i = f + 1, . . . , k) 1
2
(rf + Wi) Ji−1 −(x − wi)

1
2
(Wi − wf)

J NCOM(J, s) + 1
2
W Jk 0 NCOM(J, s) + 1

2
W

Table 6.8: Credits in Lemma 6.16

We use in this table that1
2
(rf + wf) − (x − wf) = 3

2
wf − x + 1

2
rf ≥ s − rf ≥ 0, which

holds since3
2
wf ≥ s + x − 3

2
rf . ForJf , . . . , Jk−1 we also use thatx − wi ≤ x − wf . Note that

Wi − wf ≥ Wi−1 for i > f . Hence all the jobs in Table 6.8 satisfy (6.8) by Lemma 6.7, Case 1.
Note that this proof also holds forf = 1. �

Lemma 6.17 If RSPT completesJ without interruptions andOPT runs one large job before
ARRIVE, and STATIC holds, and the invariant held at times, then it holds at timet.

Proof. If s ≤ x/2, the jobs inARRIVEstart within a factor of3
2

of their optimal starting time
(and run in the best possible order), so that the credit ofJi is at least1

2

∑i
j=1 wi by (6.3): all jobs

in ARRIVEsatisfy (6.8) by Lemma 6.7. The same thing holds ifs ≥ 2x.
Supposex/2 < s < 2x. This impliesNINT (Ji, t) ≤ 2wi−4 − t ≤ 1

2
wi−4 for 4 ≤ i ≤ k and

NINT (Ji, t) = 0 for 1 ≤ i ≤ 3. Recall thatNCOM(Ji, t) = 0 for all Ji ∈ ARRIVE.
Suppose1 ≤ f < k. We definevf = sOPT(J1) − 2

3
(s + x) > 0 ands̃ = max(s, x + bs(J)).

Suppose first thatOPT runs the jobs inBEFORE s(J) beforeARRIVE, thensOPT(J1) ≥ s̃+wf .
We have

K(Jf) ≥
1

2
(s̃ + wf) − (s + x − s̃) =

3

2
s̃ +

1

2
wf − (s + x) =

3

2
vf − wf .

If s ≤ x+ bs(J), thenwf −vf ≤ 2
3
(s+x)− s̃ ≤ 2

3
(x+ bs(J)+x)− (x+ bs(J) = 1

3
(x− bs(J)).

If s ≥ x+ bs(J), thenwf −vf ≤ 2
3
x− 1

3
s ≤ 1

3
(x− bs(J)) as well. Using this bound, we transfer

108 Chapter 6. Minimizing the total completion time online on a single machine, using restarts

credits as in Table 6.9. It can be seen that the entries in Column 4 add up to at most 0, and that
all jobs satisfy (6.8).

1 2 3 4 final

J 1
2
(x − bs(J)) J 0 −1

2
(x − bs(J)) 0

Jf
3
2
vf − wf J1 0 1

3
(x − bs(J)) 1

2
vf

J1
3
2
vf − wf + 1

2
w1 J2 wf − w1

1
2
w1

3
2
vf

i = 2, . . . , f :
Ji

3
2
vf − wf + 1

2
Wi Ji+1 wf − wi

1
2
(wi − wi−1)

3
2
vf + 1

2
Wi−2

Jf+1
3
2
vf − wf +

Wf+1−wf

2
Jf+1 0 x−bs(J)

6
− 1

2
wf−1 vf + 1

2
Wf−2

i = f + 2, . . . , k :

Ji
3
2
vf − wf +

Wi−wf

2
Ji 0 0 3

2
vf + 1

2
Wi−3

Table 6.9: Credit transfers in Lemma 6.17(1 ≤ f < k)

If f = k, then we cannot take1
2
wf−1 of credit out ofJf+1 because there is no such job.

However, we can now givex−bs(J)
6

from J to Jf instead of toJf+1, andx−bs(J)
6

≥ 1
2
(wf − vf) ≥

1
2
(wf−1 − vf).

Finally, consider the case whereOPT does not run all jobs inBEFORE s(J) before all the
jobs in ARRIVE. Then OPT runs one job inBEFORE s(J) in particular after jobJf , which
implies that there is an additional3

2
wf of credit available by Lemma 6.9. We can givewf to J1

and 1
2
wf to Jf+1 (instead of giving those jobs credit fromJ). For the other jobs, we can still

transfer credits as in Table 6.9. Iff = k, we give3
2
wf = 3

2
wk to J1. �

Corollary 6.3 If RSPT completesJ without interruptions andOPT runs one large job before
ARRIVE, and STATIC holds, the jobs in ARRIVE need to receive at most an additional3

2
(wf −

vf) ≤ 1
2
(x− bs(J)) of credit in total in order to satisfy (6.8), wherevf = sOPT(J1)− 2

3
(s + x).

Lemma 6.18 If RSPT completesJ without interruptions andOPT runs two large jobs before
ARRIVE, and STATIC holds, and the invariant held at times, then it holds at timet.

Proof. If ℓs(J) ≥ x, there is nothing to prove since the same number of jobs is delayed byRSPT

and byOPT, andRSPT starts the jobs inARRIVEat most a factor of3/2 after OPT starts them
sinces ≥ x. Hence, the jobs inARRIVEsatisfy (6.8) and the remaining large jobs gain credit
by Rule C2 and still satisfy (6.8). (We can assumeOPT runs the same two large jobs before
ARRIVEasRSPT, similarly to Event assumption 3.)

Supposeℓs(J) < x. Denote the largest of the two jobs thatOPT completes beforeARRIVE
by J2. We distinguish between the casess ≤ x2 ands > x2.

Case 1. s ≤ x2. ThenK(Ji) ≥ 1
2
(x+x2+Wi). Note thatNCOM(Ji, t) = 0, andNINT (Ji, t) ≤

1
2
Wi−2. We let each jobJi keep1

2
Wi−1 and give1

2
(x + x2 + wi) > 3

2
wi to J2. This is sufficient

to both pay for the small job-delay ofJ2, which isW , and to add1
2
W for KINT (J2), which

ensuresK(J2) ≥ NCOM(J2, t) + NINT (J2, t).

6.6 Job completions 109

Case 2. s > x2. Then the jobs inARRIVEare not interruptible, henceNINT (Ji, t) = 0 and
NCOM(Ji, t) = 0 for all jobs Ji ∈ ARRIVE. Therefore,NINT (J2, t) = 0. Consider the set
BEFORE s(J) of jobs thatRSPTalready completed, and supposeOPT completes all these jobs
beforeJk.

Then we haveK(Ji) ≥ 3
2
(max(s, x + x2)) + 1

2
Wi − (s + x) ≥ 1

2
Wi for i = 1, . . . , k − 1

andK(Jk) ≥ 3
2
(max(s, x + x2) + bs(J)) + 1

2
Wk − (s + x) ≥ 3

2
bs(J) + 1

2
Wk. All the credit of

these jobs can go toJ2. The sum is at least3
2
bs(J) + Wk−1 + 1

2
wk. Furthermore,J2 receives

1
2
(x − bs(J)) from J , and it loses at mostWk because it is delayed byRSPT. Hence in totalJ2

does not lose credit and still satisfies (6.8).
Finally, suppose there is a job inBEFORE s(J) thatOPT does not complete before the final

job Jk in ARRIVE. By Lemma 6.9 there is3
2
wk of credit available that we can give toJ2, in

addition to theWk−1 + 1
2
wk that it gets from the jobs inARRIVE. This is sufficient forJ2 to

satisfy (6.8) again. �

6.6.1 OPT runs at least three jobs beforeARRIVE

Defineδ(t) as the number of jobsOPT has completed minus the number of jobsRSPThas com-
pleted at timet. Property R4 implies that ifRSPT is running a job of sizex at timet < 2x, then
δ(t) ≤ 1. In other words,δ(t) ≥ 2 ⇒ t ≥ 2x. Thus as long asδ(t) ≥ 2, no jobs are ever
interrupted byRSPTby Property R5.

Lemma 6.19 If δ(s) ≤ 1, and a jobJ is completed byRSPT, and STATIC holds, and the
invariant held at times, then it holds at timet.

Proof. Because of Lemma 6.15, 6.16, 6.17 and 6.18 we only need to consider the case where
OPT runsa ≥ 3 large jobs beforeARRIVE. Sinceδ(s) ≤ 1, after times OPT still startsa−2 ≥ 1
J-large job before it runs the jobs inARRIVE. Therefore,RSPTcompletes the jobs inARRIVE
no later thanOPT does. Moreover,a = 3 since the jobs inARRIVEarrive beforeOPT completes
the thirdJ-large job. We haveK(Ji) ≥ 1

2
(3x + Wi) ≥ 2wi. We givewi to any jobs thatRSPT

completes afterARRIVEandOPT beforeARRIVE, since the jobs inARRIVEare not interruptible
and do not need any credit themselves: we haves > x, elsea ≤ 2. There are at most two such
jobs, and their credit decreased byW because of the jobs inARRIVE, using Rule C1. Therefore
they get all the lost credit back from the jobs inARRIVE, and again satisfy (6.8). �

Supposeδ(s) ≥ 2. It can only happen during the final run of a job thatδ(s) increases from
at most 1 to above 1, because we can apply Property R4 whenevera job is interrupted. For any
maximal interval[a, b) in whichδ(s) ≥ 2 and whereRSPTcompletes a job at timea, denote the
job that it completes at timea by J(a).

Lemma 6.20 SupposeOPT starts its nextJ(a)-large job after timea at times2. Then there is a
timet ∈ (a, s2 + w(J(a))] such thatδ(t) ≤ 1.

Proof. At time a, RSPTstarts to run theJ(a)-small jobs that arrived while it was runningJ(a).
Supposeδ(t) ≥ 2 in the entire interval(a, s2 + w(J(a))], thenRSPTdoes not interrupt any job
in this interval. Then in this interval, it certainly completes at least as many jobs asOPT starts

110 Chapter 6. Minimizing the total completion time online on a single machine, using restarts

and completes in the interval(a − w(J(a)), s2] (it is possible thatOPT decides not to run some
small jobs that have arrived yet, but then it can only complete less jobs in(a−w(J(a)), s2] than
RSPTdoes in(a, s2 + w(J(a))]). Thusδ(s2 + w(J(a))) ≤ δ(a) ≤ 1. �

Lemma 6.21 Supposeδ(s) ≥ 2 for a job J . Then 1)J(a) is J-large; 2) s ≥ 3x; 3) at times
the total size of the smallestδ(s) − 1 jobs inRSPT’s queue is at mostmin(w(J(a)), a/3).

Proof. 1) At timea−w(J(a)), OPT has completed at most one job thatRSPThas not completed,
and such a job can only beJ(a)-large. At timea, RSPTcompletes aJ(a)-large job, namelyJ(a)
itself. OPT completes at most oneJ(a)-large job in the interval(a − w(J(a)), a]. Thus at time
a, OPT has (still) completed at most oneJ(a)-large job more thanRSPT.

By Lemma 6.20,OPT does not complete any otherJ(a)-large job within the current interval
whereδ(t) ≥ 2. On the other hand, at times RSPT has completed allJ-small jobs that have
arrived, soOPT must have completed at least twoJ-large jobs thatRSPT has not completed.
ThenJ must beJ(a)-small. �

2) At time s, RSPThas completed allJ-small jobs that have arrived. Also it has completed
J(a). There are two cases. IfOPT completesJ(a) before times, and at least two otherJ-large
jobs, thens ≥ w(J(a)) + 2x ≥ 3x. If OPT does not completeJ(a) before times, there must
be at least three otherJ-large jobs thatOPT has completed at times sinceδ(s) ≥ 2, and thus
s ≥ 3x. �

3) We begin by showing this holds at timea. At that time, we have thatδ(a) − 1 jobs that
OPT has completed andRSPThas not, were started and completed byOPT in (a − w(J(a)), a].
Thus their total size is at mostw(J(a)). Then the total size of theδ(a)− 1 smallestsuch jobs is
certainly at mostw(J(a)).

If a ≥ 3w(J(a)), the other bound also follows immediately. Otherwise, ifOPT completes
two J(a)-large jobs before timea, we usea−2w(J(a)) ≤ a/3. Finally, if it completes only one,
then the firstJ(a)-small job thatOPT completes in(a−w(J(a)), a] must complete after time2

3
a,

since it does not cause an interruption. Thus theδ(a)− 1 smallest jobs can start and complete in
an interval of sizea/3. (Note that ifOPT completes aJ(a)-large job in(a − w(J(a)), a] in this
case, thenδ(a − w(J(a))) ≤ 0.)

Now we show that it holds later, by induction. Consider a times for which (still) δ(s) ≥ 2.
Denote the number of jobs thatRSPTandOPT complete in(a, s] by c1 andc2, respectively. From
thesec2 jobs and the lastδ(a) − 1 jobs thatOPT starts and completes in(a − w(J(a)), a], there
are then exactlyδ(a) − 1 + c2 − c1 = δ(s) − 1 jobs thatRSPTmust still run. The total size of
thec1 jobs thatRSPTcompletes in(a, s] is exactlys − a, so the total size of theseδ(s) − 1 jobs
is again bounded bymin(w(J(a)), a/3). Then this certainly holds for the smallestδ(s)− 1 jobs
thatRSPTmust still complete. �

Lemma 6.22 If δ(s) ≥ 2, and a jobJ is completed, and STATIC holds, and the invariant held
at times, then it holds at timet.

Proof. Sinceδ(s) ≥ 2 ⇒ s ≥ 3x by part 2 of Lemma 6.21, the jobs inARRIVE(I) require 0
credit because they cannot be interrupted and a larger job completes before them. By part 3 of
Lemma 6.21, theδ(s) − 1 smallest waiting jobs also require just 0 credit for the samereason
(usings ≥ a).

6.7 Interruptions,s < x/2 111

We first consider an alternative schedule, whereRSPT runs the jobs inARRIVE(I) not just
afterJ , but after theδ(s) − 1 ≥ 1 smallest waiting jobs inRSPT’s queue. (Ifδ(s) = 2, this is
onlyJ .) The jobs inARRIVE(I) then cause only small-job delay for at most one jobJ ′, and they
are executed within1

3
s of their optimal starting time. Therefore each such jobJi has credit of at

least1
2
(s + Wi) − s

3
≥ 1

2
Wi + 1

6
s ≥ 1

2
Wi + 1

2
x(I) ≥ wi, which it can give toJ ′ to make up for

its small-job delay. By finally putting the jobs in the correct order (but keeping the credits in the
same locations as usual), the total amount of credit does notdecrease. This proves the lemma.
�

Lemma 6.23 If RSPT completes a jobJ , and STATIC holds, and the invariant held at times,
then it holds at timet.

Proof. This follows from Lemmas 6.15, 6.16, 6.17, 6.18, 6.19 and 6.22. �

6.7 Interruptions, s < x/2

In Section 6.5, it was shown for several situations that the invariant keeps holding if an inter-
ruption occurs. There is only one case left of the situation whereOPT does not complete any
large jobs beforeARRIVE, and this is the complement of Lemma 6.12:s < x/2. See for some
examples sequences 2) and 3) in Lemma 6.1.

We will use the following Lemma. We donot use Global assumption 2 at times or r1.

Lemma 6.24 For any input sequenceσ, where some run-intervalI = (s(J), r1] ends with an
interruption, and wheres(J) ≤ 1

2
w(J), and whereOPT does not run anyJ-large job before

ARRIVE(I), it is possible to modify the release times of some jobs so that σ can be divided into
two sequencesσ1, σ2 so that the schedule ofRSPT for σ1 is unchanged and the schedule forσ2

is unchanged starting from times(J); no job in σ2 arrives before times(J); J ∈ σ2 arrives at
times(J); all other J-large jobs arrive at timer1 or later; andOPT(σ1) + OPT(σ2) ≤ OPT(σ).

Proof. We divideσ into two parts: we letσ1 contain the jobs fromσ thatRSPTcompletes before
times(J), andσ′

2 all the other jobs.
All jobs in σ1 are finished byRSPT before times(J) ≤ 1

2
w(J). The jobs inσ′

2 either have
size at leastw(J) or arrive after times(J) by definition ofRSPT. Therefore, when processingσ,
the total completion time ofRSPTof the jobs inσ1 is the same as it would have been if the jobs
in σ′

2 all arrived after times(J): any job inσ′
2 that is running before times(J), is interrupted

immediately whenever a job inσ1 arrives, since such a job fromσ′
2 has size at leastw(J).

Moreover,OPTdoes not start anyJ-large job inσ′
2 before timer1, sinceOPT runsARRIVE(I)

before anyJ-large job andOPT does not complete any job inARRIVE(I) before timer1 by
Property R3. Therefore, the optimal total completion time of the jobs inσ′

2 is unaffected if we
constructσ2 by changing the release time ofJ to s(J) and the release time of all otherJ-large
jobs inσ′

2 that arrive before timer1, tor1. Clearly, this cannot affect the optimal total completion
time of the jobs inσ1. (Note that it is possible thatOPT still runs some jobs inσ1 after times.)

ThusRSPT(σ1) + RSPT(σ2) = RSPT(σ), OPT(σ1) is the cost ofσ1 in σ, OPT(σ2) is at most
the cost ofσ′

2 in σ and we are done. �

112 Chapter 6. Minimizing the total completion time online on a single machine, using restarts

Thus if there is an interruption at timer1, ands ≤ 1
2
x, we can consider all the jobs completed

earlier as a separate job sequence and make the following assumption:

Global assumption 3 The interrupted job was the first job in the input sequence.

Consider such an interruption and make assumption 3. Iff = 1, we can in fact assumeall
jobs inσ arrive at timer1, since bothOPT andRSPT start and complete all jobs inσ after time
r1. Then we are in the case wherer1 is the end of an interval in whichRSPT was idle, and we
apply Lemma 6.2.

In the remainder of this section, we only need to consider thecasef > 1. The important
thing about Global assumption 3 is that it implies that the first event of this sequence occurred
at times, and the job that started then still has all of its original credit. This is much more credit
than could be deduced from the invariant.

Lemma 6.25 If RSPT interrupts a jobJ at timer1, andOPT runs no large jobs before ARRIVE,
andx/3 ≤ s < x/2, andf > 1, and STATIC holds, then the invariant holds at timer1.

Proof. We use Global assumption 3 and consider the credits of the jobs, assumingJ arrived at
times. Again we can assume allJ-large jobs besidesJ arrived at timer1 (thus not using Global
assumption 2 in this case). DefineD1 = r1−rf > 0 andD2 = (rf +wf)− (r1 +w1), as before.
See Table 6.10.

1 2 3 4 final

Jf
rf+wf

2
− D1 J1 0

wf−rf−w1

2
1
2
w1 + D2

J1
rf +wf+w1

2
− D1 J2 wf − w1

w1+2rf−wf

2
3
2
rf + w1 + D2

i = 2, . . . , f − 1 :

Ji
rf+wf +Wi

2
− D1 Ji+1 wf − wi 0

rf +wf+Wi−1−wi

2
+ D2 + w1

i = f + 1, . . . , k :

Ji
rf +Wi

2
− D1 Ji 0 0

rf +Wi

2
− D1

J
rf +Wk+x

2
− D1 J 0 −1

2
rf

Wk+x
2

− D1

Table 6.10: Credit transfers in Lemma 6.25

J1 satisfies (6.8) by Lemma 6.7, Case 1. ForJ2, note that3
2
rf ≥ 3

2
s ≥ 1

2
x ≥ 1

2
w2, and use the

same lemma. Fori = 3, . . . , f , we usewf ≥ wi, D2+w1 = (rf +wf)−r1 ≥ wf−r1 ≥ wi−1−r1

andD2 + w1 ≥ 0. This shows these jobs satisfy (6.8) by Lemma 6.7, Cases 2 and3. For
i = f + 1, . . . , k we useK(Ji) ≥ 1

2
Wi − D1 = 1

2
(wi − wi−1 + Wi−2) + (wi−1 − D1) and note

thatwi−1 − D1 ≥ wi−1 − r1 andwi−1 − D1 = wi−1 + D2 − wf + w1 ≥ D2 + w1 ≥ 0, and we
use the same Lemma. We can reason analogously forJ (implying that we can indeed take1

2
rf

out of the credit ofJ) and forJ-large jobs. �

Note that the proof of Lemma 6.25 works as long asrf ≥ x/3. From now on, we assume
rf < x/3. For this case, we use the same credit transfers as describedin Table 6.10. However,
in this case, this may not be enough for jobJ2 to satisfy (6.8). We make one additional transfer
apart from the ones mentioned in Table 6.10: we giveD2 from J1 to J2. By Definition 6.6, we
haveD2 = τf − τ1 whereτf > 0 andτ1 ≤ 0. See Figure 6.3.

6.7 Interruptions,s < x/2 113

w2 w1

w1

OPT

RSPT

x

x

restartof job of size x

t

r f

D D21

Figure 6.3: An example of a late interruption

Lemma 6.26 Consider the jobs involved in a slow interruption as above. If J2 does not satisfy
(6.8), then

1. s(J1) ≥ w1

2. wf > 1
2
x

3. r1 + w1 > 1
2
x

4. f ∈ {k − 1, k}

Proof. After the above transfers, we haveK(J2) = 3
2
rf + w1 + 2D2.

1. Supposer1 < w1. Thenw1 +D2 = w1 +rf +wf −r1−w1 ≥ wf −r1 ≥ 1
2
(w1 +w2)−r1,

andw1 + D2 ≥ 0, soJ2 satisfies (6.8).
2. Supposewf ≤ 1

2
x. Then alsow2 ≤ 1

2
x. Moreover, sincerf +wf > 2

3
(s+x) ≥ 2

3
x we have

rf > 1
6
x. If J2 does not satisfy (6.8), then (using item 1)3

2
rf + w1 + 2D2 ≤ 1

2
(w2 − w1)

and thus3
2
w1 + 2D2 < x

4
− x

4
= 0, a contradiction.

3. Supposer1 +w1 ≤ 1
2
x. We haveD2 ≥ rf +w2 − (r1 +w1) ≥ rf +w2 − 1

2
x. If w2 ≥ 2

3
x,

then2D2 ≥ 2w2 −x ≥ 1
2
w2. If w2 < 2

3
x, thenD2 ≥ rf +wf − 1

2
x ≥ 1

6
x and2D2 ≥ 1

2
w2.

In both cases, we find thatJ2 satisfies (6.8).
4. If f = k − 2 or f ≤ k − 4, we can take1

2
wf out of the credit ofJ and still satisfy (6.8). If

f = k − 3, we can take1
2
wf+1 out ofK(J). �

J2 may not have enough credit to pay for its completion (it does not need to pay for interrup-
tions ofJ1, or of smaller jobs that arrive beforeJ2 starts). The credit to pay for the completion
of J2 will have to come from another job. We will show that we can usesome of the credit ofJ
to pay for this. To begin with, we transfer2D2 of credit fromJ2 to J . Then, we divide the credit
of J as follows. First supposef = k.

KCOM(J) =
x − wf + 4D2

2
≥ x + rf − (r1 + w1) + 3D2

2
≥ 1

6
(x + rf) +

3

2
D2;(6.15)

KINT (J) =
1

2
Wf−1 + wf − D1 ≥

1

2
Wf−1 + (wf − r1). (6.16)

114 Chapter 6. Minimizing the total completion time online on a single machine, using restarts

If f = k − 1, note thatJk cannot start before timex > wk sincer1 + w1 + wf > x
2

+ x
2

= x by
Lemma 6.26. HenceNINT (J, r1) ≤ 1

2
Wk−2 + 3

2
wf − r1. We have

KCOM(J) =
1

2
(x − wk) + 2D2

KINT (J) =
1

2
Wk−1 + (wk − D1) ≥

1

2
Wk−2 + (

3

2
wk − D1)

soJ can certainly give1
2
(wk − wf) to its own completion-credit, so that we again have (6.15).

We now consider the events after timer1, using the analysis from the previous sections.
Note that in those analyses, in some cases a jobJ ′ transfers its completion-creditNCOM(J ′, s)
to another job: this happens ifJ ′ is interrupted. However, the target job can only be a smaller
job thanJ ′. We need to keep track of the job that does not have enough completion-credit. This
job will be calledred and be denoted byJR. JobJ above, that was slowly interrupted, will be
calledgreenand be denoted byJG. It satisfies (6.15) at timer1.

Lemma 6.27 Suppose there exists a red jobJR and a green jobJG. Until JR completes, all
jobs besidesJR andJG satisfy (6.8), and (6.2) holds. Moreover, there will appearno further red
jobs untilJR completes.JG is the job that was slowly interrupted at timer1, and satisfies (6.15).
KINT (JG) ≥ NINT (JG, t) holds for all timest where an event occurs, up to and including the
completion ofJR.

Proof. We consider the events in the sequence from the first event after timer1 until the last
event beforeJR completes, and use induction. At timer1 (the base case), all the statements of
the lemma hold.

SinceOPT startsJf before timer1, it completesJf before any job that arrives later. Since
wR ≤ wf by induction, we are always in the case whereOPT completes at least oneJ(I)-large
job beforeARRIVE(I). This implies in particular that as long asJR is not completed, there can
occur no further slow interruptions whereOPT does not run any large jobs beforeARRIVE, so
no further red jobs can appear.

Consider a later event. If it is an interruption (either ofJR, or of smaller jobs), consider the
credit of the jobs inQ. As can be seen from the credit reassignments in lemmas 6.13 and 6.14, if
JR is interrupted, it is possible that another job in stead ofJR becomes red as a result. However,
this can only be a job smaller thanJR. Furthermore, jobJG keeps satisfying (6.15) throughout
such interruptions, since ofJR-large jobs only the amount of interrupt-credit can be affected.
Also, the credit ofJG is not transferred to another job, so it is the same job that remains green.
If there is an interruption of a job smaller thanJR, thenJR remains red for the same reason. In
both cases, all other jobs satisfy (6.8) by the analyses in those lemmas, including the job that
wasJR if another job is red now.

Now consider a completion of a jobJ ′ beforeJR completes. ThenJ ′ and any smaller jobs
that arrived whileJ ′ was running are all small relative toJR andJG. In Lemma 6.17,JR and
JG are then among the large jobs whose credit increases by1

2
W (I ′), and remain red and green

respectively. Their completion credit is unaffected. In Lemma 6.18 and Lemma 6.19, the same
holds. In Lemma 6.22, the credit ofJR can be moved to another job (that thus becomes red), but
then that is again a smaller job. �

6.7 Interruptions,s < x/2 115

At some point, the red jobJR will complete. By (6.7), as long as we maintainKCOM(J) ≥
1
2
(x − bs(J)), we can take credit out ofJ to pay for the completion ofJR.

Lemma 6.28 Suppose there is a red job. When it completes, credits can be transferred so that
all jobs satisfy (6.8).

Proof. Denote the set of jobs that arrive duringJR’s final execution byARRIVE′, and their total
size byW ′. Note thatOPT completesJf ≥ JR beforeARRIVE′. There are thus three cases.

Case 1. OPT completes exactly oneJR-large job beforeARRIVE′ (i.e. jobJf).
By Corollary 6.3, the jobs inARRIVE′ need at most3

2
(w′

f ′ − v′
f ′) ≤ 1

2
wR ≤ 1

2
wf of credit to

satisfy (6.8). We have that the credit ofJ increases by1
2
W ′.

Claim: K(J) ≥ 1
6
(x + rf) + 3

2
D2 + NINT (J, t′) + 1

2
W ′.

Proof: At the previous event,J satisfied (6.15) andKINT (J) ≥ NINT (J, t). If JR started
after timewR, none of the jobs inARRIVE′ are interruptible and the claim follows. Otherwise,
note thatJ had enough credit to pay for interruptions ofJR until timewR, because it was green.
(By Table 6.1, any job following a jobJ∗ that is interrupted after it started before timew(J∗),
needs to pay for this itself until timew(J∗).) This credit can now instead be used for any
interruptions of jobs inARRIVE′ until time2wR. �

Thus1
2
W ′ can go to the jobs inARRIVE′ that need it. Moreover, sincew′

f ′−v′
f ′ ≤ 1

3
wf ≤ 1

3
x

using Corollary 6.3, we can also take1
2
(w′

f ′ − v′
f ′) ≤ 1

6
x out of the credit ofJ and still have

KCOM(J) ≥ NCOM(J, t), because we take at most half the size of a job that completes before
J out ofJ ’s credit, andJ actually has at least this amount of credit by (6.15).

If f ′ < k′, we have1
2
W ′ ≥ w′

f ′ and hence3
2
(w′

f ′ − v′
f ′) ≤ 1

2
W ′ + 1

2
(w′

f ′ − v′
f ′), which is the

amount we could take fromJ .
If f ′ = k′ > 1, we have1

2
W ′ ≥ 1

2
(w′

f ′ + w′
f ′−1). We can give1

2
w′

f ′−1 to J ′
f ′ and 1

2
w′

f ′ to J ′
1.

Also, we give1
2
(w′

f ′ − v′
f ′) ≤ 1

2
w′

f ′ from J to J ′
1. It can be seen from the proof of Lemma 6.17

that this is sufficient.
If f ′ = k′ = 1, then1

2
W ′ = 1

2
w′

1. Giving this and an additional1
2
(w′

1 − v′
1) ≤ min(1

6
x, 1

2
w′

1)
from J to J ′

1 is sufficient as in the proof of Lemma 6.17.

Case 2. OPT completes twoJR-large jobs beforeARRIVE′.
If OPT runs two large jobs other thanJ beforeARRIVE′, we again have that the credit ofJ

increases by1
2
W ′ and we can reason as above.

SupposeOPT completesJ andJR beforeARRIVE′. Following the proof of Lemma 6.18, we
are done immediately ifs ≤ x, so supposes > x. This implies the jobs inARRIVE′ are not
interruptible, soNINT (J, t) ≤ NINT (J, s). ThenK(J ′

i) = 3
2
(wR + x) + 1

2
W ′

i − (s + wR) =
1
2
(W ′

i + wR) + 3
2
x − s. This implies that as long ass ≤ 3

2
x, we can give1

2
(w′

i + wf) ≥ w′
i to J

from each jobJ ′
i, which is sufficient:J receives in total at leastW ′, which it lost becausest(J)

increased.
Otherwise, note that we only need to find an extra1

2
w′

k′ of credit to give toJ , sinceJ gets at
leastWk′−1 + 1

2
w′

k′ from the jobs inARRIVE′.

116 Chapter 6. Minimizing the total completion time online on a single machine, using restarts

SupposewR ≤ 2
3
x. If s ≤ x + wR thenK(J ′

k′) ≥ 1
2
(wR + x) + 1

2
W ′ − wR ≥ 1

2
(x −

wR) + 1
2
w′

k′ ≥ 1
6
x + 1

2
w′

k′ ≥ 3
4
w′

k′, and if s > x + wR thenK(J ′
k′) ≥ 1

2
s + 1

2
W ′ − wR ≥

1
2
(x − wR) + 1

2
w′

k′ ≥ 3
4
w′

k′. We can take the last1
4
w′

k′ < 1
4
wR ≤ 1

6
x out of the credit ofJ , and

then all the small job-delay is paid for;J still satisfiesKCOM(J) ≥ NCOM(J, t).
Finally, if wR = 2

3
x + a for somea > 0, thenD2 = (rf + wf) − (r1 + w1) ≥ s + 2

3
x +

a − 2
3
(s + x) ≥ a and we can take1

4
w′

k′ + 3
4
D2 out ofKCOM(J) itself, since we then still have

KCOM(J) ≥ 1
2
(x − wf) + 2D2 − 1

4
wf − 3

4
D2 ≥ 1

2
(x − 3

2
(wf − D2)) + 1

2
D2 ≥ 0. Here we use

wf − D2 = r1 + w1 − rf ≤ 2

3
(s + x) − rf ≤ 2

3
x.

Since we take only less than half of the size of a job that completes beforeJ out of the credit
of J , we also still haveKCOM(J) ≥ NCOM(J, s) as before. To complete the missing credit, we
can take3

4
(w′

k′ − a) out ofK(J ′
k′); the calculations are similar to above.

Case 3. OPT completes three or moreJR-large jobs beforeARRIVE′. Note from the proofs of
Lemmas 6.19 and 6.22 that in this case, no completion credit fromJR is required to pay for any
small job-delay. Hence we are done immediately. �

Chapter 7

Online scheduling of splittable tasks

In this paper, we consider the problem of distributing taskson parallel machines, where tasks
can be split into a limited amount of parts. A possible application of the splittable tasks problem
exists in peer-to-peer networks [70]. In such networks large files are typically split and the
parts are downloaded simultaneously from different locations, which improves the quality of
service (QoS). More generally, computer systems often distribute computation between several
processors. This allows the distributed system to speed up the execution of tasks. Naively it
should seem that the fastest way to run a process would be to let all processors participate in
the execution of a single process. However in practice this is impossible. Set-up costs and
communication delays limit the amount of parallelism possible. Moreover, some processes may
have limited parallelism by nature. In many cases, the best that can be done is that a process
may be decomposed into a limited number of pieces each of which must be run independently
on a single machine.

The definition of the model is as follows. In the sequel, we call the tasks “jobs” as is done
in the standard terminology. We consider online schedulingof splittable jobs onm parallel
machines. A sequence of jobs is to be scheduled on a set of machines. Unlike the basic model
which assumes that each job can be executed on one machine (chosen by the algorithm), for
splittable jobs, the required processing timepj of a job j may be split in an arbitrary way into
(at most) a given number of partsℓ. Those parts become independent and may run in parallel
(i.e. simultaneously) or at different times on different processors. After a decision (on the way a
job is split) has been made, the scheduler is confronted by the basic scheduling problem, where
each piece of job is to be assigned non-preemptively to one machine. In the on-line version, jobs
are presented to the algorithm in a list, this means that eachjob must be assigned before the next
job is revealed. Only after the process of job splitting and assignment is completed, the next job
is presented to the algorithm. The goal is to minimize the makespan which is the last completion
time of any part of job.

We consider two machine models. The first one is the well knownmodel of identical ma-
chines, where all machines have the same speed (w.l.o.g. speed 1). The second case relates to
systems where several processors are faster (by some multiplicative factor) than the others. In
this case lets be the speed of the fast processors. The other processors have speed 1. This also
contains the model where one processor is fast and all othersare identical [124, 81, 37, 122]. We

117

118 Chapter 7. Online scheduling of splittable tasks

call the machines of speeds fast, and all other machines areregular machines. The number of
fast machines is denoted byf whereas the number of regular machines ism−f . The processing
time of jobj on a machine of speeds is pj/s. Each machine can process only one job (or part of
job) at a time, and therefore the completion time of the machine is the total processing time of all
jobs assigned to it (normalized by the speed), which is also called theloadof the machine. In the
context of downloading files in a peer-to-peer network, the speeds correspond to the bandwidths
for the different connections.
Our results: We first analyze a simple greedy-type algorithm that splits jobs into at mostℓ
parts, while assigning them in a way that the resulting makespan is as small as possible. We
improve on this algorithm by introducing a type of algorithmthat always maintains a subset of
k < ℓ machines with maximal load (while maintaining a given competitive ratio), and show that
it is optimal as long asℓ is sufficiently large in relation tom + f . The casef = m− 1 is treated
separately. For smallerℓ, we give an algorithm for identical machines that uniformlyimproves
upon our greedy algorithm. Finally, we consider the specialcase of four identical machines and
ℓ = 2, which is the smallest case for which we did not find an optimalsolution. The algorithms
assume that it is always possible to compute the value ofOPT for a subsequence of jobs which
already arrived. In section 7.2 we explain how to compute this value.

7.1 A greedy algorithm

In this section, we analyze a simple greedy-type algorithm that works as follows. Recall that
we consider the case where there is a group off machines of speeds ≥ 1, and the remaining
m − f machines have speed 1. For each arriving job, the algorithm finds the way to schedule
it on at mostℓ machines, in a way that the resulting makespan is as small as possible. This is
done by assigning the job to a subset of least loaded fast machines and a subset of least loaded
regular machines. To implement this algorithm, we need to consider the combination of the least
loadeda regular machines with the least loadedb fast machines, for all feasible cases:a+b ≤ ℓ,
0 ≤ a ≤ min{ℓ, m − f} and0 ≤ b ≤ min{ℓ, f}. There are onlyO(ℓ2) such combinations. If
the job is split into less thanℓ parts, it means that the makespan did not change. Note that for
ℓ = s = 1, this algorithm reduces to the standard greedy algorithm for load balancing.

Consider an arbitrary subsetS of ℓ machines, and denote the number of fast machines in this
subset byg. Consider the time where the maximum load is achieved first. This happened after
assigning a job onexactly ℓ machines. Denote the total processing time scheduled on thei-th
machine in subsetS by W S

i (i = 1, . . . , ℓ). Let x be the job that achieves the maximum load
(and by a slight abuse of notation, also its processing time is denoted byx). Let W =

∑m
i=1 Wi,

i.e. the total processing time of all jobs right before the assignment ofx. Let GREEDY denote
the makespan of the greedy algorithm. By our assignment, we have for any subsetS

GREEDY ≤ W S
1 + . . . + W S

ℓ + x

sg + ℓ − g
⇒ (sg + ℓ − g)GREEDY ≤ W S

1 + . . . + W S
ℓ + x.

There are
(

m
ℓ

)

such subsets, and each machine occurs in
(

m−1
ℓ−1

)

of them. Summing the above
inequality over all

(

m
ℓ

)

subsets, we have that each time a fast machine occurs, it contributess to

7.2 Computing the optimal makespan 119

the left hand side; a regular machine contributes 1. Thus

GREEDY ·
(

s

(

m − 1

ℓ − 1

)

f +

(

m − 1

ℓ − 1

)

(m − f)

)

≤
(

m − 1

ℓ − 1

)

(W1 + . . .Wm) +

(

m

ℓ

)

x

or

(sf + m − f)GREEDY ≤ W + xm/ℓ.

Furthermore, we haveOPT ≥ W+x
sf+m−f

. If f ≥ ℓ we also haveOPT ≥ x
sℓ

, otherwiseOPT ≥
x

sf+ℓ−f
. Thus iff ≥ ℓ

GREEDY ≤ W + xm
ℓ

sf + m − f
≤ OPT+

sℓ · OPT(m
ℓ
− 1)

sf + m − f
≤
(

1 +
m − ℓ

sf + m − f
· s
)

OPT.

and otherwise

GREEDY ≤ OPT +
(sf + ℓ − f)OPT(m

ℓ
− 1)

sf + m − f
=

(

1 +
sf + ℓ − f

sf + m − f

(m

ℓ
− 1
)

)

OPT.

These ratios are decreasing inℓ and are 1 forℓ = m. For f = 0 (or equivalentlys = 1) the
second ratio applies, which then becomes2 − ℓ/m. For largerf satisfyingf < ℓ, the ratio is
lower.

7.2 Computing the optimal makespan

In the remainder of this paper, we assume that the value ofOPT is known to the on-line algorithm.
There are several options to achieve this knowledge. The algorithm of [112] can solve an offline
problem exactly using time which is polynomial seeing the number of machines as constant.
The drawback is that their algorithm must be exercised afterevery arrival of a job to find out the
new value ofOPT. Another and better option is simply to use the two followinglower bounds
on OPT: the sum of processing times of all jobs divided by the sum of speeds, and the size of
the largest job divided by the sum of speeds of theℓ fastest machines. We already used these
bounds in Section 7.1.

All the proofs of upper bounds use only these bounds onOPT, and therefore the knowledge
of the actual values ofOPT is not required. Naturally, those bounds are not always tight as the
offline problem is NP-complete already for identical machines and any constantℓ [144]. Note
that in almost all cases in this paper where we get tight bounds on the competitive ratio, the
value of OPT is actually given by the maximum of the two bounds onOPT. This is always
true for ℓ ≥ (m + 1)/2. In these cases an optimal offline schedule (not only its cost) can be
computed by the following algorithm. This algorithm works for the general case of uniformly
related machines (where each machinei has some speedsi). It is based on the sliding window
algorithm from [144].

120 Chapter 7. Online scheduling of splittable tasks

7.2.1 Offline algorithm for ℓ ≥ (m + 1)/2

Calculate the maximum of the two lower bounds forOPT. We say that a jobfits on a subset of
machines if it can be placed there without any machine exceeding a load ofOPT (normalized by
the speed). Sort the machines by nondecreasing speeds. Consider the largest jobJ . Clearly it
fits on theℓ fastest machines. We consider two cases.

1. There is an indexi such thatJ fits on machinesi, . . . , i + ℓ− 1, where all these machines
except possibly the last are used completely. AssignJ to those machines. We are left with
m − ℓ empty machines and possibly a part of machinei + ℓ − 1. We havem− ℓ + 1 ≤ ℓ
since our assumption is thatℓ ≥ (m + 1)/2. Therefore the number of machines that we
can use for the remaining jobs is at mostℓ. Hence the remaining jobs can be split perfectly
among these machines. Since the other machines are filled completely, they must all fit.

2. There is no such indexi. In this case,J fits on machines1, . . . , ℓ− 1 or on less machines.
Note that these are the slowest machines. Therefore, the remaining jobs can be placed one
by one on the machines, such that each machine has a load ofOPT (except perhaps the last
one). If the first part of a job is on machinei, its last part is placed on machine with index
at mosti + ℓ− 1. Otherwise, this job does not fit on machinesi + 1, . . . , i + ℓ− 1, which
means it is larger thanJ , a contradiction. Hence all jobs can be assigned usingℓ parts or
less. Since each machine has a load ofOPT apart from maybe the last machine used, all
jobs fit.

These two cases show that the maximum of the two lower bounds for OPT indeed gives the true
value ofOPT in caseℓ ≥ (m + 1)/2.

7.3 Algorithm H IGH (k,R)

An important algorithm that we work with is the following, called HIGH(k, R). It maintains the
invariant that there are at leastk regular machines with load exactlyR times the optimal load,
whereR is the competitive ratio that we want to prove. The idea behind this algorithm is that it
tries to ’fill’ the regular machines, and to preserve thef fast machines for a large job that may
arrive. We will use this algorithm several times in this paper, with various values ofR andk.
In all cases, we will show that a new job is never too small or too large for the invariant to be
maintained.

We will use this algorithm in the context of identical machines and in the case where there
are several fast machines of speeds. Recall that the identical machines case is a special case
of the second case (withs = 1). We immediately present the more general algorithm. This
algorithm also uses the sliding window technique from [144].

On arrival of a jobJ of sizex, HIGH(k,R) assigns the job to at mostℓ machines such that
the invariant is kept. We denote the optimal makespan beforethe arrival ofJ by OPT1, and after
the arrival ofJ by OPT2. We would like to sort the machines by the capacity of jobs they can
accommodate. For a machinei, let Li be its load ands′ be its speed (s′ = 1 or s′ = s). Let bi

be thegapon machinei, which is the maximum load that can be placed on the machine inthis

7.3 AlgorithmHIGH(k,R) 121

step. That is,bi = s′(R · OPT2 − Li) for i = 1, . . . , m. We first sort only the regular machines
in non-increasing order by their gaps. Clearly, the machines which had loadROPT1 have the
smallest gap. We getb1 ≥ . . . ≥ bm−f andbm−f−k+1 = . . . = bm−f = ROPT2 −ROPT1.

Let Si = bi+. . .+bi+k−1 for 1 ≤ i ≤ m−f−k+1 . This is the sum of the gaps onk consec-
utive regular machines. The algorithm can work only under the condition thatSm−f−k+1 ≤ x:
if x is smaller, then after assigningx there are less thank machines with loadROPT2. This
condition will always hold for the choices ofR andk that we analyze later. We distinguish
between two cases.

1. S1 ≥ x. We can find a valuei such thatSi ≥ x andSi+1 ≤ x. If Si = x, we can clearly
assignJ such that there arek regular machines with loadROPT2.
SupposeSi > x. Then i ≤ m − f − k sinceSm−f−k+1 ≤ x. We use the machines
i, . . . , i+k. This is a set ofk+1 machines. We addbj to machinej for j = i+1, . . . , i+k
and put the nonzero remainder on machinei. The remainder fits there since the job can fit
on machinesi, . . . , i+ k− 1 even without machinei+ k. Clearly we get at leastk regular
machines with loadROPT2. The assignment is feasible sinceℓ ≥ k + 1.

2. S1 < x. Here we introduce another condition which is the following. Consider thek
regular machines with the largest gaps, and among the machines that are not thek regular
machines with smallest gap, choose another set ofℓ − k machines with largest gaps. The
condition for the algorithm to succeed is that the sum of these ℓ gaps is at least the size
x. The assignment ofx first fills the gaps on thek least loaded regular machines, and the
non-zero remainder is spread between theℓ − k machines with largest gaps.

We use this algorithm several times in this paper. Each time,to show that it maintains some
competitive ratioR, we will show the following two properties.

(P1) A new job is never too large to be placed as described. That is, if we place it on the
ℓ machines,k of which are the regular machines with largest gaps, and the other ℓ − k
are the machines with the largest gaps among the others (excluding the regular machines
that have maximum load before), then afterwards the load on these machines is at most
ROPT2.

(P2) A new job is never too small for the invariant to be maintained. I.e. if we assign the job on
thek machines that had loadROPT1, then it fits exactly in the gaps, or there is a remainder.
This will show that in all cases we can make at leastk machines have loadROPT2.

Note that for each arriving job, the new value ofOPT can be computed in timeO(1), and the
worst step in algorithm HIGH(k,R) with regard to the time complexity is maintaining the sorted
order of the regular machines, which can be done efficiently.

7.3.1 Many splits

We consider the caseℓ ≥ (m + f)/2 (sincek ≤ ℓ − 1, if f = 0 we needℓ ≥ (m + 1)/2). Note
that this leaves open the case off = m − 1. This case will be considered separately in the next
subsection.

122 Chapter 7. Online scheduling of splittable tasks

We need some definitions in order to state the next Lemma. Letℓ′ be the sum of speeds of
theℓ fastest machines and letm′ be the sum of all speeds. Clearlyℓ ≥ f and soℓ′ = sf + ℓ− f
andm′ = sf + m − f . Let c = ℓ′/m′ and

R1(c) =
1

c2 − c + 1
.

Note thatR1(c) = R1(1 − c). Finally, let c1 be the real solution toc3 − c2 + 2c − 1 = 0
(c1 ≈ 0.56984).

Lemma 7.1 For c ≥ c1, algorithmHIGH(m− ℓ, R1(c)) maintains a competitive ratio ofR1(c).

Proof Let k = m− ℓ ≤ ℓ− 1. We first show that the new job is never too large to be placed as
described (P1). If it is put on theℓ machines which are all machines that did not have maximum
load before the arrival ofJ , then the otherk = m − ℓ regular machines have loadR1(c)OPT1

because of the invariant (they were the machines with highest load). Thus we need to show that
ℓ′R1(c)OPT2 + kR1(c)OPT1 ≥ W +x whereW is the total load of all the jobs beforeJ arrived.

We haveOPT1 ≥ W/m′, OPT2 ≥ (W + x)/m′ andOPT2 ≥ x/ℓ′. Therefore

OPT2 ≥ α
W + x

m′
+ (1 − α)

x

ℓ′
for any0 ≤ α ≤ 1 (7.1)

Takingα = ℓ′/m′, we getkOPT1 + ℓ′OPT2 ≥ kW/m′ + ℓ′α(W + x)/m′ + ℓ′(1 − α)x/ℓ′ =
(W + x)(αℓ′/m′ + 1 − α) = (W + x)(1 − ℓ′/m′ + ℓ′2/m′2) = W+x

R1(c)
, as needed.

Second, we show thatJ is always large enough such that we can again makek regular
machines have loadR1(c)OPT2 (P2). That is,x ≥ kR1(c)(OPT2 − OPT1). There are three
possibilities forOPT2: it is eitherx/ℓ′, (W + x)/m′ or y/ℓ′, wherey is the processing time of
some old job.

If OPT2 = y/ℓ′ we are done, since thenOPT1 = y/ℓ′ as well. Otherwise, we use thatOPT1 ≥
W/m′. ThusOPT2 − OPT1 ≤ max(x/ℓ′, x/m′) = x/ℓ′. We need to show thatkR1(c)x/ℓ′ ≤ x
or kR1(c) ≤ ℓ′. This holds ifc3 − c2 + 2c − 1 ≥ 0, which holds forc ≥ c1. This completes the
proof of the upper bound of HIGH(m − ℓ,R1(c)). �

Lemma 7.2 No algorithm for the scheduling ofℓ-splittable jobs on a system off fast machines
of speeds andm − f regular machines has a better competitive ratio thanR1(c).

Proof The valuesm′ andℓ′ are defined as above. Thusm′ = sf + m − f . Furthermore,ℓ′ is
the sum of speeds of theℓ fastest machines, soℓ′ = sf + ℓ − f if ℓ ≥ f , ℓ′ = sℓ otherwise. The
lower bound consists of very small jobs of total sizem′ = sf + m − f , followed by a single
job of sizeW − m′, whereW will be determined later. The optimal offline makespan afterthe
small jobs isOPT1 = 1, and after the large job it isOPT2 = W/m′.

Consider an online algorithmA. After the small jobs have arrived, the algorithm “knows” it
has to keep room for another single job. Therefore it can loadthem− ℓ machines it is not going
to use for that job with the maximum loadROPT1 (if it puts more on some machine, the final
job does not arrive). There are many cases according to how many fast machines it loads. Letk1

7.3 AlgorithmHIGH(k,R) 123

be the number of fully loaded regular machines andk2 = m− ℓ− k1 the number of fully loaded
fast machines.

If A maintains a competitive ratio ofR, we must have

W ≤ ROPT1(k1 + sk2) + ROPT2((m − f − k1) + s(f − k2)). (7.2)

This implies

R ≥ W

m − ℓ − k2 + sk2 + OPT2(k2 + ℓ − f + sf − sk2)
. (7.3)

We can see that this number is minimized by minimizingk2, since the coefficient ofk2 in the
denominator is(OPT2 − 1)(1− s) < 0. Therefore the lower bound is obtained by takingk2 = 0
if ℓ ≥ f , andk2 = f − ℓ otherwise. We chooseW such thatW − m′ = m′ℓ′/(m′ − ℓ′). We
rewrite (7.2) to getW ≤ (m′−ℓ′)ROPT1+ℓ′ROPT2. Then sinceOPT1 = 1 and since fromW =

(m′)2/(m′ − ℓ′) follows OPT2 = m′/(m′ − ℓ′), we getR ≥ (m′)2

(m′−ℓ′)2+m′ℓ′
= (m′)2

(m′)2−m′ℓ′+(ℓ′)2
=

R1(c). �

These two lemmas imply the following theorem.

Theorem 7.1 For ℓ′/m′ ≥ c1 and ℓ ≥ m
2

+ 1
2
max(f, 1) (i.e. f 6= m − 1), the algorithm

HIGH(m − ℓ,R1(ℓ
′/m′)) is well-defined and optimal.

7.3.2 The case off = m − 1 fast machines

For completeness, in this section we consider the casef = m − 1. We give tight bounds for
many cases, including the case ofm − 1 parts, i.e. each job may run on all machines but one.
Clearly we already solved the casesf = 0, . . . , m − 2 andf = m (this is the same case as
f = 0) for large enoughℓ. The solution of the casef = m − 1 is very different from the other
cases. First the algorithm is not the same for all values ofs. For smalls, for the first time we use
an invariant on the fast machines. For larges, for the first time we do not use all the machines.
Again we usem′ as the sum of all speeds, i.e.m′ = (m−1)s+1, andℓ′ as the sum of speeds of
theℓ fastest machines, i.e.ℓ′ = sℓ. We introduce a new notationk′ which is the sum of speeds
of the machines that are kept at maximum load. This value is determined by the algorithm.

For larges, we use an algorithm which never uses the regular machine. For the case
ℓ = m − 1 it is a simple greedy algorithm that splits each job in a way that it keeps the load
balanced on all fast machines. This gives the algorithm the ratio 1 + 1

s(m−1)
(easily proved

by area considerations). Forℓ < m − 1 the algorithm ignores the regular machine, and uses
HIGH(m − 1 − ℓ,R21) onm − 1 fast machines only, whereR21 is defined as a function ofm′

andℓ′ (which are functions ofm, ℓ ands):

R21 =
(m′)2

(m′)2 − (m′ − ℓ′)(ℓ′ + 1)
=

(m′)2

(m′)2 − m′ − k′ℓ′
.

We havek′ = sk = s(m− ℓ − 1). The algorithm keepsk = m − ℓ − 1 fast machines with load
R21OPT. Sincek must be smaller thanℓ, we requireℓ ≥ m/2.

124 Chapter 7. Online scheduling of splittable tasks

On arrival of a job, letOPT1 andOPT2 be the optimal offline makespan before and after the
arrival of the new job, respectively. The algorithm is the same as before but the properties are
slightly different. We need to show that the following two properties hold:

(P1) x ≥ k′R(OPT2 − OPT1).

(P2) The gaps on theℓ least loaded fast machines can containx.

The second property can be reformulated as

ℓ′ROPT2 + k′ROPT1 ≥ W + x

whereW is the total processing time of jobs which arrived before thejob of processing time
x. This follows from ℓ + k = m − 1. Regarding (P1), similarly to before, we can bound
the difference of the optimal offline costs byOPT2 − OPT1 ≤ x/ℓ′. This gives the condition
R21 ≤ ℓ′/k′.

To show (P2) we again use the boundsOPT1 ≥ W
m′

and (7.1). We need to show

k′W

m′
+ ℓ′

(

α
W + x

m′
+ (1 − α)

x

ℓ′

)

≥ W + x

R .

Taking1 − α = k′

m′
, we get that this condition is satisfied forR = R21.

For smalls, we use a variation on previous algorithms. The algorithm keepsk = m − ℓ fast
machines with loadROPT, where

R22 =
m′2

m′2 − (m′ + s − 1 − ℓ′)ℓ′
=

(m′)2

(m′)2 − k′ℓ′
. (7.4)

The value we use fork′ is k′ = s(m − l). The algorithm is defined as HIGH(m − ℓ,R22),
except that the roles of the fast machines and the regular machine have been reversed. In other
words, we use the gaps onfastmachines to fit the job, and if it needs more room we use at most
m − k − 1 fast machines and the regular machine as well.

On arrival of a job, letOPT1 andOPT2 be the optimal offline makespan before and after the
arrival of the new job, respectively. We again need the following two properties to hold:

(P1) x ≥ k′R(OPT2 − OPT1).

(P2) The gaps on them − k other machines (that do not maintain the invariant) can containx.

(m′ − k′)ROPT2 + k′ROPT1 ≥ W + x.

(P1) again translates intoR22 ≤ ℓ′/k′. To show (P2) we again use the boundsOPT1 ≥ W
m′

and
(7.1). We need to show

k′W

m′
+ (m′ − k′)

(

α
W + x

m′
+ (1 − α)

x

ℓ′

)

≥ W + x

R .

Taking1 − α = k′ℓ′

m′(m′−k′)
, we get that this condition is satisfied forR = R22.

We now give a lower bound that proves that these bounds are tight. The lower bound is
actually more general, and holds for all values ofℓ ands.

7.3 AlgorithmHIGH(k,R) 125

Lemma 7.3 For f = m−1, any online algorithm has competitive ratio at leastmin(R21,R22).

Proof We define a sequence of jobs with the following processing times: P1 = 1, Pj =
ℓ′

m′−ℓ′

∑j−1
i=1 Pi. Let OPTj be the optimal offline cost on the subsequence of the firstj jobs. Then

we see that forj ≥ 3 we have

OPTj =
1

m′ − ℓ′

j−1
∑

i=1

Pi =
Pj

ℓ′
and Pj =

m′

m′ − ℓ′
Pj−1.

Consider the behavior of the on-line algorithm starting from thethird job .
If the algorithm never splits a job using the regular machine, we need to consider two cases.

If ℓ = m − 1, the competitive ratio tends to the ratio1 + 1
s(m−1)

of the greedy algorithm that
does not use the regular machine. The second caseℓ ≤ m − 2 is slightly more difficult. Only
the first two jobs might be scheduled on the regular machine. Consider jobPj. If A maintains a
competitive ratio ofR until this point, then on each of the fast machines that it does not use for
job j it has placed a load of at mostsROPTj−1, and we find

∑j
i=3 Pi − (m − ℓ − 1)sROPTj−1

ℓ′
≤ ROPTj

which implies thatR(ℓ′OPTj + s(m− ℓ− 1)OPTj−1) + P1 + P2 ≥
∑j

i=1 Pi. We use
∑j

i=1 Pi =

Pj +
∑j−1

i=1 Pi = Pj(1 + m′−ℓ′

ℓ′
) = m′

ℓ′
Pj to rewrite this condition in terms ofPj , and divide by

Pj. For large enoughj we can neglectP1 andP2 and find

R
(

1 +
s(m − ℓ − 1)(m′ − ℓ′)

m′ℓ′

)

≥ m′

ℓ′
.

This givesR ≥ R21.
Otherwise (some job uses the regular machine), letj be the index of the first job for which a

part is assigned to the regular machine. IfA maintains a competitive ratio ofR until this point,
then on the machines that it does not use for jobj (which are all fast) it has placed at most
sROPTj−1, and we find

∑j
i=1 Pi − s(m − ℓ)ROPTj−1

s(ℓ − 1) + 1
≤ ROPTj

which implies thatR(OPTj(s(ℓ−1)+1)+s(m−ℓ)OPTj−1) ≥
∑j

i=1 Pi. We use
∑j

i=1 Pi = m′

ℓ′
Pj

to rewrite this condition in terms ofPj , and divide byPj to find

R
(

sℓ − s + 1

ℓ′
+

s(m − ℓ)(m′ − ℓ′)

ℓ′m′

)

≥ m′

ℓ′

which leads toR ≥ R22. �

We summarize our results in the following Theorem.
Let s1 = (m − 1 +

√
m2 − 2m + 1 + 4ℓ)/(2ℓ).

126 Chapter 7. Online scheduling of splittable tasks

Theorem 7.2 For the case ofm−1 fast machines of speeds. If s ≥ s1, and (m/2 ≤ ℓ ≤ m−2
andR21 ≤ ℓ′/(m′ − ℓ′ − 1)) or ℓ = m − 1, then the optimal competitive ratio of any online
algorithm isR21. If s ≤ s1, ℓ > m/2 and R22 ≤ ℓ′/(m′ − ℓ′ + s − 1), then the optimal
competitive ratio of any online algorithm isR22.

Corollary 7.1 For f = ℓ = m − 1, the optimal competitive ratio ismin(R21, R22).

Proof For smalls, if ℓ = m − 1 then the value ofR21 is defined properly to be1 + 1
s(m−1)

,
attained by the greedy algorithm that only uses fast machines. This ratio is thus tight.

For larges, if ℓ = m − 1 then the first property to be checked leads to the condition
sR(OPT2 − OPT1) ≤ x. Similarly to before, we can bound the difference of the optimal of-
fline costs byOPT2 −OPT1 ≤ x/(sm− s). Using (7.4), this leads to the conditions2(m−1)2 ≤
(m−2)(sm−s+1)2. This is true sinces(m−1) < sm−s+1 andm ≥ 3. Thus the condition
on the ratio in Theorem 7.2 is satisfied as well as the condition onℓ. �

7.3.3 Few splits on identical machines

Following Theorem 7.1, we now consider the casec < c1 ≈ 0.56984. Let

R3(c) =
1

2

(

c2 − c + 2 − (c − 1)
√

c2 + 4
)

.

We examine algorithm HIGH(ℓ/R3(c),R3(c)), i.e.k = ℓ/R3(c), and verify that it maintains a
competitive ratio ofR3(c). Condition (P2) is immediately satisfied, since the only relevant case
is OPT2 − OPT1 ≤ x/ℓ, which leads to the constraintkR3(c) ≤ ℓ as in the previous subsection.
Moreover, we have thatk + ℓ ≤ m for all c ≤ c1, sincec/R3(c) + c ≤ 1 for c < c1.

Suppose a new job is placed on theℓ machines with lowest load. By the invariant and since
k + ℓ ≤ m, there arek machines with loadR3(c)OPT1. Denote the total load on the remaining
machines (not thek old machines or theℓ machines that were just used) byV . Then

V ≥ (W − kR3(c)OPT1) ·
m − k − ℓ

m − k

since these machines were not the least loaded machines before the new job arrived.
Thus we need to check that

kR3(c) · OPT1 + ℓR3(c) · OPT2 + V ≥ W + x

or

kR3(c) · OPT1 ·
ℓ

m − k
+ ℓR3(c) · OPT2 ≥ W · ℓ

m − k
+ x.

As before, we use thatOPT1 ≥ W/m andOPT2 ≥ αW+x
m

+ (1 − α)x
ℓ

for any0 ≤ α ≤ 1. We
takeα = m−k

2m−k−ℓ
≤ m−k

m
∈ [0, 1].

We find

kℓOPT1

m − k
+ ℓOPT2 ≥

(

kℓ

m − k
+ ℓα

)

W

m
+
(

ℓ · α

m
+ 1 − α

)

x ≥
Wℓ

m−k
+ x

R3(c)
,

sinceR3(c) satisfiesR3(c) = 2m−k−cm
m−kc

(usingk = ℓ/R3(c) = cm/R3(c)).

7.4 A special case: four machines, two parts 127

Theorem 7.3 For ℓ/m < c1, the algorithmHIGH(ℓ/R3(c),R3(c)) maintains a competitive
ratio ofR3(c), wherec = ℓ/m.

We now show a lower bound for this case. This lower bound uses atechnique originally
introduced by Sgall [142, 143].

Theorem 7.4 For m divisible byℓ, the competitive ratio of any randomized (or deterministic)
algorithm is at least 1

1−(1− ℓ
m)

m/ℓ . This gives a general lower bound ofR4(c) =
(

1 −
(

c−1
c

)c)−1

for c = ℓ/m.

Proof Fix a sequence of random bits to be used by the algorithm. Start with (m − ℓ)/ℓ jobs of
sizeℓ. Then defineµ = m/(m − ℓ) and give jobsJi of sizeℓµi−1 for i = 1, . . . , m/ℓ.

Sinceµ− 1 = ℓ/(m− ℓ), we have
∑m/ℓ

i=1 ℓµi−1 = ℓµm/ℓ−1
µ−1

= (m− ℓ)(µm/ℓ − 1). Therefore

the total size of all the jobs isW = m − ℓ + (m − ℓ)(µm/ℓ − 1) = (m − ℓ)µm/ℓ = mµm/ℓ−1.
After job Ji has arrived we haveOPTi = µi−1. So

∑m/ℓ
i=1 OPTi = (µm/ℓ − 1)/(µ − 1).

For 1 ≤ i ≤ m, let Li be the load of machinei at the end of the sequence after sorting the
machines by non-increasing load. Removing anyi − 1 jobs still leaves a machine with load of
at leastLℓi+1. ThereforeA(Jm) = L1, A(Jm−1) ≥ Lℓ+1 and in generalA(Ji) ≥ Lℓ(m−i)+1 ≥
1
ℓ

∑ℓ
j=1 Lℓ(m−i)+j , so

∑A(Ji) ≥ W/ℓ.
It follows that

R ≥ W/ℓ
∑m/ℓ

i=1 OPTi

≥ mµm/ℓ−1(µ − 1)/ℓ

µm/ℓ − 1
=

µm/ℓ

µm/ℓ − 1

=
1

1 −
(

m
m−ℓ

)−m/ℓ
=

1

1 −
(

1 − ℓ
m

)m/ℓ
.

The value of the lower bound tends toe/(e − 1) for m/ℓ → ∞, for instance whenℓ is
constant andm grows without bound. Form = cℓ we find a lower bound of

R4(c) =

(

1 −
(

c − 1

c

)c)−1

,

independent ofm. �

We give an overview of the various upper and lower bounds in Figure 1.

7.4 A special case: four machines, two parts

Already for this sub-problem it is nontrivial to give an optimal algorithm. Surprisingly, in this
case the lower bound from Theorem 7.4 is not tight. This hintsthat for the cases where we do not
give matching upper bounds, it is likely that the lower bounds are simply not the best possible.

For the case of three parts the previous section gives an algorithm of competitive ratio
16/13 ≈ 1.23. For two parts, we use the algorithm HIGH(1, 10/7) which maintains the invariant
that at least one machine has load exactly10

7
OPT. Note that our greedy algorithm maintains only

a competitive ratio of1 + ℓ
m

(m
ℓ
− 1) = 3/2.

128 Chapter 7. Online scheduling of splittable tasks

0.2 0.4 0.6 0.8 1

1.2

1.4

1.6

1.8

2

Figure 7.1: Upper and lower bounds for identical machines. The horizontal axis isℓ/m, the
vertical axis is the competitive ratio. The top line is the greedy algorithm, the middle line is our
best upper bound and the lower line is our best lower bound. For c ≤ 1/2, this lower bound also
holds for randomized algorithms.

Theorem 7.5 For four machines and 2-splittable jobs, the algorithmHIGH(1, 10/7) maintains
a competitive ratio of10/7 ≈ 1.428.

Proof The proof proceeds similarly to before.
First, we show that a new job,J , is not too large (P1). Suppose it is placed on the two

lowest machines. Then the other machines have the loads10
7

OPT1 (because of the invariant) and
β ≥ (W − 10

7
OPT1)/3 (because it was the second highest machine beforeJ arrived). The total

load on all the machines must be bounded by10
7

OPT1+
20
7

OPT2+β ≥ 10
7
(2

3
OPT1+2OPT2)+W/3.

Recall thatOPT1 ≥ W/4 andOPT1 ≥ max((W + x)/4, x/2); then, using (7.1), we have

OPT1

3
+ OPT2 ≥

W

12
+

αW

4
+

αx

4
+ (1 − α)

x

2
=

7

60
(2W + 3x)

by takingα = 3/5. Therefore10
7

OPT1 + 20
7

OPT2 + β ≥ W + x, as needed.
Second, we show that a new job is always large enough so that the new maximum load is

10/7 times the optimal load (P2). We haveOPT2 − OPT1 ≤ x/2, and10
7

x
2
≤ x. �

Lemma 7.4 Any on-line algorithm for minimizing the makespan of 2-splittable jobs on four
parallel machines has a competitive ratio of at leastR4 = (47 −

√
129)/26 ≈ 1.37085.

Proof SupposeA maintains a competitive ratio ofR. Two jobs of size 2 arrive.OPT = 1
(already after the first job). We number the machines from 1 to4, and denote the loads of the
machines byM1 ≥ M2 ≥ M3 ≥ M4. If A puts the first two jobs on two or fewer machines, we
are done immediately. This leaves us with two cases. We useA to also denote the makespan of
A.

7.4 A special case: four machines, two parts 129

Case 1.A puts the first two jobs on 3 machines. ThenM4 = 0, M1 ≤ R4, M3 ≥ 4 − 2R4,
M2 + M3 ≥ 4 −R4 and thereforeM2 ≥ (4 −R4)/2 = 2 −R4/2.

A job x of size 2 arrives. IfA puts no part ofx on machine 4, we are done sinceM3 +1 ≥
5 − 2R4 > 3R4/2 (we haveOPT = 3/2).

SoA must put a part ofx on machine 4. Finally, a job of size 6 will arrive. The best thing
A can do is to put it on the two machines with lowest load (afterx has been assigned).
Which machines are these?

Case Lowest load is on and is at least
1a 2 and 3, 1 and 3 or 1 and 24 −R4

1b 2 and 4 8 − 4R4

1c 3 and 4 8 − 4R4

This covers the cases, since if part ofx is put on 4, either machine 2 or machine 3 receives
nothing and remains lower than machine 1. We now prove the entries in the last column.

(1a) Suppose machines 2 and 3 are the lowest. Already before assigningx we hadM2 +
M3 ≥ 4 −R4. Now suppose machines 1 and 3 are the lowest. ClearlyM1 + M3 ≥
M2 + M3 ≥ 4 − R4. Finally, if machines 1 and 2 are the lowest thenM1 + M2 ≥
M3 + M2 ≥ 4 −R4.

(1b) It must be thatx goes to machines 3 and 4.A should put as little as possible on 4
in order to minimize the load on the two lowest machines afterthis (2 and 4).A can
put at most3R4/2 − (4 − 2R4) = 7R4/2 − 4 on machine 3 and thus puts at least
2 − (7R4/2 − 4) = 6 − 7R4/2 on machine 4. After this, the load of the two lowest
machines (2 and 4) is at least2 −R4/2 + 6 − 7R4/2 = 8 − 4R4.

(1c) AgainA should put as little as possible on 4 in order to minimize the load on the two
lowest machines after this (3 and 4). It can put at most3R4/2−(2−R4/2) = 2R4−2
on machine 1 or 2 and must therefore put at least2−(2R4−2) = 4−2R4 on machine
4. After this, the load of the two lowest machines (3 and 4) is at least8 − 4R4.

This concludes the discussion of the subcases. We find that after assigningx, the load on
the two lowest machines is at leastmin(4 − R4, 8 − 4R4) = 8 − 4R4 sinceR4 > 4/3.
Finally the job of size 6 arrives, nowOPT = 3 andA ≥ (8 − 4R4 + 6)/2 > 3R4.

Case 2.A puts the first two jobs on 4 machines, each machine has one partof one job. Then
M2 + M3 = M1 + M4 = 2 and

M1 ≤ R4.

It is possible that a job of size 4 arrives. ThenOPT = 2 andA must be able to place it
such thatA ≤ 2R4. Therefore we must have(M3 + M4 + 4)/2 ≤ 2R4 or

M3 + M4 ≤ 4(R4 − 1).

130 Chapter 7. Online scheduling of splittable tasks

Together these equations give

M1 + M2 ≥ 8 − 4R4, M2 ≥ 8 − 5R4 and M4 = 2 − M1 ≥ 2 −R4.

Thus, if these inequalities do not hold after the first two jobs arrive, a job of size 4 arrives
and we are done. Otherwise, we let a job of sizex (x ≤ 1) arrive wherex will be
determined later. ThenOPT = 1 + x/4. After this a final job of sizey = x + 4 will arrive.
We have a similar division into cases as in Case 1.

Case Lowest load is on and is at least
2a 2 and 3, 1 and 3 or 1 and 22
2b (1 or 2) and 4 10 − 6R4

2c 3 and 4 10 − 6R4

(2a) We haveM2 + M3 = 2, the rest is as in Case 1a.

(2b) We haveM2 + M4 ≥ 10 − 6R4, so alsoM1 + M4 ≥ 10 − 6R4.

(2c) We are left with the case where machines 3 and 4 are the lowest. We will choose
x so large that it cannot be assigned to machines 1 and 2 only:M1 + M2 + x >
2R4(1 + x/4), in other wordsx > (12R4 − 16)/(2 −R4).

Thus some part ofx is assigned to machine 3 or 4.A will use machines 3 and 4 for
the last job, so it is best to put as much ofx as possible on 1 or 2. WLOG this part is
put on machine 2 sinceM2 ≤ M1. Denote the part ofx that is assigned to machinei
by xi. We havex2 ≤ (1 + x/4)R4 − M2 and

M3+x3 = 2−M2+x−x2 ≥ 2−M2+x(1−R4/4)−R4+M2 = 2−R4+x(1−R4/4).

ThereforeM3 + M4 + x3 ≥ 4 − 2R4 + x(1 −R4/4).

We takex such that10 − 6R4 = 4 − 2R4 + x(1 − R4/4), in other wordsx =
(24 − 16R4)/(4 − R4) = (16

√
129 − 128)/(

√
129 + 57) ≈ 0.7859. Note that

x > (12R4 − 16)/(2 −R4), as needed.

This concludes the discussion of the subcases. We find that the load of the two lowest
machines is at least10 − 6R4 after assigning jobx, independently ofA’s decision. (Note
10 − 6R4 < 2 for R4 > 4/3.)

After the last job arrives,OPT = y/2. The best thing thatA can do is to puty on the two
machines with lowest load. Its final load is thus at least(10−6R4+y)/2. The competitive
ratio is(10 − 6R4 + 4 + x)/(4 + x) = R4.

�

7.5 Conclusion 131

7.5 Conclusion

This chapter considered the classical load balancing modelin the context of parallelizable tasks.
We designed and analyzed several algorithms, and showed tight bounds for many cases. As for
open problems, there is a large amount of work done on variousmultiple machines scheduling
and load balancing problems. Many of those on-line (and offline) problems are of interest to be
studied for scenarios where parallelization is allowed.

For the special case of four machines and two parts, which is the smallest case for which
we do not have a tight solution, we show a lower bound of 1.37085 and an upper bound of
10/7 ≈ 1.428. This is a better lower bound than Lemma 7.2, hinting that in areas where our
bounds are not tight, the lower bound can be improved.

132 Chapter 7. Online scheduling of splittable tasks

Chapter 8

Speed scaling of tasks with precedence
constraints

8.1 Motivation

Power is now widely recognized as a first-class design constraint for modern computing de-
vices. This is particularly critical for mobile devices, such as laptops, that rely on batteries
for energy. While the power consumption of devices has been growing exponentially, battery
capacities have been growing at a (modest) linear rate. One common technique for managing
power is speed/voltage/power scaling. For example, current microprocessors from AMD, Intel
and Transmeta allow the speed of the microprocessor to be setdynamically. The motivation for
speed scaling as an energy saving technique is that, as the speed to power functionP (s) in all
devices is strictly convex, less aggregate energy is used ifa task is run at a slower speed. The
application of speed scaling requires a policy/algorithm to determine the speed of the processor
at each point in time. The processor speed should be adjustedso that the energy/power used is
in some sense justifiable by the improvement in performance attained by running at this speed.

In this paper, we consider the problem of speed scaling to conserve energy in a multipro-
cessor setting where there are precedence constraints between tasks, and where the perfor-
mance measure is the makespan, the time when the last task finishes. We will denote this
problem bySm | prec, energy | Cmax. Without speed scaling, this problem is denoted by
Pm | prec | Cmax in the standard three field scheduling notation [85]. Herem is the num-
ber of processors. This is a classic scheduling problem considered by Graham in his seminal
paper [83] where he showed that list scheduling produces a(2 − 1

m
)-approximate solution. In

our speed scaling version, we make a standard assumption that there is a continuous function
P (s), such that if a processor is run at speeds, then its power, the amount of energy consumed
per unit time, isP (s) = sα, for someα > 1. For example, the well known cube-root rule
for CMOS-based devices states that the speeds is roughly proportional to the cube-root of the
powerP , or equivalently,P (s) = s3 (the power is proportional to the speed cubed) [132, 24].
Our second objective is to minimize the total energy consumed. Energy is power integrated over
time. Thus we consider a bicriteria problem, in that we want to optimize both makespan and
total energy consumption. Bicriteria problems can be formalized in multiple ways depending on

133

134 Chapter 8. Speed scaling of tasks with precedence constraints

how one values one objective in relationship to the other. Wesay that a scheduleS is ab-energy
c-approximate if the makespan forS is at mostcM and the energy used is at mostbE where
M is the makespan of an optimal schedule which usesE units of energy. The most obvious
approach is to bound one of the objective functions and optimize the other. In our setting, where
the energy of the battery may reasonably be assumed to be fixedand known, it seems perhaps
most natural to bound the energy used, and to optimize makespan.

Power management for tasks with precedence constraints hasreceived some attention in
computer systems literature, see for example [86, 125, 163,127] and the references therein.
These papers describe experimental results for various heuristics.

In the last few years, interest in power management has seeped over from the computer
systems communities to the algorithmic community. For a survey of recent literature in the
algorithmic community related to power management, see [93].

8.2 Summary of results

For simplicity, we state our results when we have a single objective of minimizing makespan,
subject to a fixed energy constraint, although our results are a bit more general.

We begin by noting that several special cases ofSm | prec, energy | Cmax are relatively
easy. If there is only one processor (S1 | prec, energy | Cmax), then it is clear from the
convexity ofP (s) that the optimal speed scaling policy is to run the processorat a constant
speed; if there were times where the speeds were different, then by averaging the speeds one
would not disturb the makespan, but the energy would be reduced. If there are no precedence
constraints (Sm | energy | Cmax), then the problem reduces to finding a partition of the jobs
that minimizes theℓα norm of the load. A PTAS for this problem is known [6]. One can also
get anO(1)-approximate constant-speed schedule using Graham’s listscheduling algorithm. So
for these problems, speed scaling doesn’t buy you more than an O(1) factor in terms of energy
savings. Note that theO(1) notation mentioned above means that the multiplicative factor is a
constant that is independent of the input parameters even when they are taken into consideration.

We now turn toSm | prec, energy | Cmax. We start by showing that there are instances
where every schedule, in which all machines have the same fixed speed, has a makespan that
is a factor ofω(1) more than the optimal makespan. The intuition is that if there are several
jobs, on different processors, that are waiting for a particular job j, thenj should be run with
higher speed than if it were the case that no jobs were waitingon j. In contrast, we show
that what should remain constant is the aggregate powers of the processors. That is, we show
that in any locally optimal schedule, the sum of the powers atwhich the machines run is con-
stant over time. If the cube-root rule holds (power equals speed cubed), this means the sum of
cubes of the machines speeds should be constant over time. Wecall schedules with this prop-
erty constant power schedules. We then show how to reduce our energy minimization problem
to the problem of scheduling on machines of different speeds(without energy considerations).
In the three field scheduling notation, this problem is denoted byQ | prec | Cmax. Using
the O(log m)-approximate algorithms from [34, 39], we can then obtain aO(log2 m)-energy
O(log m)-approximate algorithm for makespan for our problem. We then show a trade-off be-

8.3 Formal problem description 135

tween energy and makespan for our problem. That is, anO(b)-energyO(c)-approximate sched-
ule for makespan can be converted intoO(c · b1/α)-approximate schedule. Thus we can then get
anO(log1+2/α m)-approximate algorithm for makespan.

We believe that the most interesting insight from these investigations is the observation that
one can restrict one’s attention to constant power schedules. This fact will also hold for several
related problems.

8.2.1 Related results

We will be brief here, and refer the reader to the recent survey [93] for more details. Theoretical
investigations of speed scaling algorithms were initiatedby Yao, Demers, and Shankar [160].
They considered the problem of minimizing energy usage wheneach task has to be finished
on one machine by a predetermined deadline. Most of the results in the literature to date fo-
cus on deadline feasibility as the measure for the quality ofthe schedule. Yao, Demers, and
Shankar [160] give an optimal offline greedy algorithm. The running time of this algorithm can
be improved if the jobs form a tree structure [121]. Bansal, Kimbrel, and Pruhs [14] and Bansal
and Pruhs [16] extend the results in [160] on online algorithms and introduce the problem of
speed scaling to manage temperature. For jobs with a fixed priority, Yun and Kim [161] show
that it is NP-hard to compute a minimum energy schedule. In this model, priorities of jobs are
given as part of the input, and an available job with the highest priority should be run at any
time. They also give an FPTAS for the problem. Kwon and Kim [113] give a polynomial-time
algorithm for the case of a processor with discrete speeds. Chen, Kuo and Lu [36] give a PTAS
for some special cases of this problem. Pruhs, Uthaisombut,and Woeginger [137] give some
results on the flow time objective function.

8.3 Formal problem description

The setting for our problems consists ofm variable-speed machines. If a machine is run at speed
s, its power isP (s) = sα, α > 1. The energy used by each machine is power integrated over
time.

An instance consists ofn jobs and an energy boundE. All jobs arrive at time 0. Each jobi
has an associated work (or size)wi. If this job is run consistently at speeds, it finishes inwi/s
units of time. There are precedence constraints among the jobs. If i ≺ j, then jobj cannot start
before jobi completes.

Each job must be run non-preemptively on some machine. The machines can change speed
continuously over time. Although it is easy to see by the convexity of P (s) that it is best to run
each job at a constant speed.

A schedulespecifies, for each time and each machine, which job to run andat what speed.
A schedule isfeasible at energy levelE if it completes all jobs and the total amount of energy
used is at mostE. SupposeS is a schedule for an input instanceI. We define a number of
concepts which depend onS. The completion time of jobi is denotedCS

i . The makespan ofS,
denotedCS

max, is the maximum completion time of any job. A schedule isoptimal for energy

136 Chapter 8. Speed scaling of tasks with precedence constraints

levelE if it has the smallest makespan among all feasible schedulesat energy levelE. The goal
of the problem is to find an optimal schedule for energy levelE. We denote the problem as
Sm | prec, energy | Cmax.

We usesS
i to denote the speed of jobi. The execution time ofi is denoted byxS

i . Note
thatxS

i = wi/s
S
i . The power of jobi is denoted bypS

i . Note thatpS
i = (sS

i)α. We useES
i to

denote the energy used by jobi. Note thatES
i = pS

i xS
i . The total energy used in scheduleS is

denotedES. Note thatES =
∑n

i=1 ES
i . We drop the superscriptS if the schedule is clear from

the context.

8.4 No precedence constraints

As a warm-up, we consider the scheduling of tasks without precedence constraints. In this case
we know that each machine will run at a fixed speed, since otherwise the energy use could be
decreased without affecting the makespan by averaging the speed.

We may assume that there are at least as many jobs as there are machines. (Ifm > n, we
simply ignore the lastm−n machines.) We then know that each machine will finish at the same
time, since otherwise some energy from a machine which finishes early could be transferred to
machines which finish late, decreasing the makespan. Furthermore there will be no gaps in the
schedule.

For any schedule, denote the makespan byM , and denote the load on machinej, which is
the sum of the work of the jobs on machinej, by Lj. Since each machine runs at a fixed speed,
in this section we denote bysj the speed ofmachinej, by pj its power, and byEj its energy
used. By our observations so far we havesj = Lj/M .

The energy used by machinej is

Ej = pjM = sα
j M =

Lα
j

Mα−1
.

We can sum this over all the machines and rewrite it as

Mα−1 =
1

E

∑

j

Lα
j . (8.1)

It turns out that minimizing the makespan is equivalent to minimizing theℓα norm of the loads.
For this we can use the PTAS for identical machines given in [6]. Denote the optimal loads by
OPT1, . . . , OPTm. Similarly to (8.1), we have

OPTα−1 =
1

E

∑

j

OPTα
j , (8.2)

whereOPT is the optimal makespan. For anyε > 0, we can find loadsL1, . . . , Lm in polynomial
time such that

∑

j Lα
j ≤ (1 + ε)

∑

j OPTα
j . For the corresponding makespanM it now follows

from (8.1) and (8.2) that

Mα−1 =
1

E

∑

j

Lα
j ≤ (1 + ε) · 1

E

∑

j

OPTα
j = (1 + ε)OPTα−1

8.5 Main results 137

or

M ≤ (1 + ε)1/(α−1)OPT.

Thus this gives us a PTAS for the problemSm | energy | Cmax.

8.5 Main results

8.5.1 One speed for all machines

In the remainder of the paper, we only consider the case with precedence constraints. Suppose
all machines run at a fixed speeds. We show that under this constraint, it is not possible to geta
good approximation of the optimal makespan. For simplicity, we only consider the special case
α = 3.

Consider the following input: one job of sizem1/3 andm jobs of size 1, which can only start
after the first job has finished. Suppose the total energy available isE = 2m. It is possible to
run the large job at a speed ofs1 = m1/3 and all others at a speed of 1. The makespan of this
schedule is 2, and the total amount of energy required iss3

1 + m = 2m.
Now consider an approximation algorithm with a fixed speeds. The total time for which

this speed is required is the total size of all the jobs divided bys. Thuss must satisfys3(m1/3 +
m)/s ≤ E = 2m, or s2 ≤ 2m/(m1/3 + m). This clearly impliess ≤ 2, but then the makespan
is at leastm1/3/2. Thus the approximation ratio isΩ(m1/3) = ω(1).

8.5.2 The power equality

To discuss the relationship among the powers of jobs in an optimal schedule, we need the fol-
lowing definitions. Given a scheduleS of an input instanceI, we define theschedule-based
constraint≺S among jobs inI as follows. For any jobsi andj, i ≺S j if and only if i ≺ j in I,
or i runs beforej on the same machine inS. SupposeS is a schedule where each job is run at a
constant speed. Thepower relation graphof a scheduleS of an instanceI is a vertex-weighted
directed graphG = (V, E) created as follows:

• For each jobi, create verticesui andvi, each with weightpi wherepi is the power at
which jobi is run. Vertexui corresponds to thestartof job i. Vertexvi corresponds to the
completionof job i.

• In S, if i ≺S j and jobj starts as soon as jobi finishes (maybe on different machines),
then create a directed edge(vi, uj).

• Two dummy verticesv0 andun+1 are added. InS, if job i starts at time 0, then create
a directed edge(v0, ui). In S, if job i completes at timeCS

max, then create a directed
edge(vi, un+1). Let p0 =

∑

i:(v0,ui)∈E pi, and let the weight ofv0 be p0. Let pn+1 =
∑

i:(vi,un+1)∈E pi, and let the weight ofun+1 bepn+1.

138 Chapter 8. Speed scaling of tasks with precedence constraints

1 2 3

8

7

4

6
5

3

4

7

8

1 2

5 6

Figure 8.1: An example of a schedule and the corresponding power relation graph. In the sched-
ule on the left, the arrows denote precedence constraints between jobs. Note that the precedence
constraint between jobs 1 and 6 is not represented in the power relation graph. However, in the
power relation graph there is an edge between jobs 2 and 5 since they run back to back on the
same machine. In this example, the graph has six connected components.

Basically, the power relation graphG tells us which pairs of jobs on the same machine run back
to back, and which pairs of jobs with precedence constraint≺ between them run back to back.
For an example, see Figure 8.1.

In this paper, we define a connected component of a directed graphG to be a subgraph ofG
that corresponds to a connected component of the underlyingundirectedgraph ofG. Note that an
isolated vertex will form a connected component by itself. SupposeC is a connected component
of a power relation graphG. DefineH(C) = {u | (v, u) ∈ C} andT (C) = {v | (v, u) ∈ C}.
Note thatH(C) andT (C) is the set of vertices at the heads and tails, respectively, of directed
edges inC. If C contains only one vertex, thenH(C) = T (C) = ∅. The completion of jobs in
T (C) and the start of jobs inH(C) all occur at the same time. This holds simply because for
each edge(vi, uj) in C, the completion time of jobi is the starting time of jobj by definition of
an edge. Travelling through all the edges of a component shows that all completions and starts
occur at a common time. If timet is when this occurs, we say thatC occurs at timet. We say
that a connected componentC satisfies thepower equalityif

∑

i:ui∈H(C)

pi =
∑

i:vi∈T (C)

pi

Note thatpi is the power at which jobi is run, and is also the weight of verticesui andvi. We
say that a power relation graphG satisfies thepower equalityif each connected component ofG
has at least one edge, and each connected component ofG satisfies the power equality. We now
need to establish some properties of optimal schedules. Thefollowing observation is an obvious
consequence of the convexity of the speed to power function.

8.5 Main results 139

Observation 8.1 If S is an optimal schedule for some energy levelE, then each job is run at a
constant speed. This also implies that each job is run at a constant power.

Lemma 8.1 If S is an optimal schedule for some energy levelE, then in the power relation
graphG of S, each component contains at least one edge.

Proof Let C be any connected component of the power relation graphG of an optimal schedule
S. Assume to reach a contradiction thatC contains no edges, that is,C contains only one vertex
x. Let t be the time inS corresponding to the occurrence ofC. Vertexx either corresponds to
the start of some jobi (x = ui), or the completion of some jobi (x = vi).

If x = ui for some jobi, thenx corresponds to the start of some jobi. Since there is no
edge incident toui, then no jobs complete at timet. Thus, the machine that jobi runs on is idle
right before timet. We can modify the scheduleS by starting jobi earlier and running jobi at
a slower speed without violating the precedence constraints. Slowing down the job reduces the
energy used. The energy saved could be reinvested elsewhereto get a better makespan. This
contradicts the fact thatS is optimal.

If x = vi for some jobi, thenx corresponds to the completion of jobi. Since there is no
edge incident fromvi, then no jobs start at timet. Thus, the machine that jobi runs on is idle
right after timet. We can modify the scheduleS by running jobi at a slower speed so that
it completes later without violating the precedence constraints. Also this does not increase the
makespan because jobi could not be the last job to finish from the construction ofG. Slowing
down the job reduces the energy used. The energy saved could be reinvested elsewhere to get a
better makespan. This contradicts the fact thatS is optimal. �

Lemma 8.2 If S is an optimal schedule for some energy levelE, then the power relation graph
G of S satisfies the power equality.

Proof Let G be the power relation graph of an optimal scheduleS. From Lemma 8.1, every
component ofG contains at least one edge. Thus, it only remains to show thateach component
of G satisfies the power equality. The idea of the proof is to consider an arbitrary component
C of G. Then create a new scheduleS ′ from S by slightly stretching and compressing jobs in
C. SinceS is optimal,S ′ cannot use a smaller amount of energy. By creating an equality to
represent this relationship and solving it, we have thatC must satisfy the power equality.

Now we give the details.C contains at least two vertices by Lemma 8.1. Letε 6= 0 be a
small number such thatxi + ε > 0 for any jobi in T (C), andxi − ε > 0 for any jobi in H(C).
Note that we allowε to be either positive or negative.

We create a new scheduleS ′ by modifying scheduleS in the following manner. Increase the
execution time of every job inT (C) by ε, and decrease the execution time of every job inH(C)
by ε. All other jobs are unchanged. Note the following:
(1) The execution time of jobi in T (C) in S ′ is positive becausexi + ε > 0.
(2) The execution time of jobi in H(C) in S ′ is positive becausexi − ε > 0.
(3) For|ε| small enough,S ′ has the same power relation graph asS.
In particular, we chooseε such that|ε| is less than the smallest difference between two succes-
sive times at which connected components occur (i.e., at which the set of jobs being executed

140 Chapter 8. Speed scaling of tasks with precedence constraints

changes). Therefore,S ′ is a feasible schedule having the same power relation graph as S. Ob-
serve that the makespan ofS ′ remains the same as that ofS. All that has changed is the timing
of some inner changeover point.

As an example, in Figure 8.1 we might take the connected component consisting ofv1, v2, u4,
u5. Changing the execution times in this component as described above means that the horizontal
line between jobs 1 and 2 and jobs 4 and 5 gets moved slightly upor down, without affecting the
rest of the schedule. Our restriction (3) onε means that this line is not for instance moved above
the starting point of job 6, which would violate a precedenceconstraint and give an infeasible
schedule.

The change in the energy used,∆E(ε), is

∆E(ε) = ES′ − ES

=
∑

i:vi∈T (C)

(

ES′

i − ES
i

)

+
∑

i:ui∈H(C)

(

ES′

i − ES
i

)

=
∑

i:vi∈T (C)

(

wα
i

(xi + ε)α−1
− wα

i

xα−1
i

)

+
∑

i:ui∈H(C)

(

wα
i

(xi − ε)α−1
− wα

i

xα−1
i

)

SinceS is optimal,∆E(ε) must be non-negative. Otherwise, we could reinvest the energy
saved by this change to obtain a schedule with a better makespan. Since the derivative∆E ′(ε)
is continuous for|ε| small enough, we must have∆E ′(0) = 0. We have

∆E ′(ε) =
∑

i:vi∈T (C)

(1 − α)wα
i

(xi + ε)α
+

∑

i:ui∈H(C)

(α − 1)wα
i

(xi − ε)α

Substituteε = 0 and solve for∆E ′(0) = 0.

∆E ′(0) = 0
∑

i:vi∈T (C)

(1 − α)wα
i

xα
i

−
∑

i:ui∈H(C)

(1 − α)wα
i

xα
i

= 0

∑

i:vi∈T (C)

(1 − α)wα
i

xα
i

=
∑

i:ui∈H(C)

(1 − α)wα
i

xα
i

∑

i:vi∈T (C)

sα
i =

∑

i:ui∈H(C)

sα
i

∑

i:vi∈T (C)

pi =
∑

i:ui∈H(C)

pi

Thus, this connected componentC satisfies the power equality. SinceC is an arbitrarily
chosen connected component inG, thenG satisfies the power equality, and the result follows.
�

Note that the above proof also establishes that the power equality must also hold for any
schedule that locally optimal schedule with respect to the change considered in the proof.

8.5 Main results 141

Let pi(t) be the power at which jobj runs at timet. Let p(k, t) be the power at which
machinek runs at timet. By convention if jobi starts at timet1 and completes at timet2, we say
that it runs in the close-open interval[t1, t2). If a job has just finished at timet and another has
just start at timet on machinek, thenp(k, t) is equal to the power of thestarting job. We will
usep(k, t−) to denote the power of thecompletingjob. Also by convention, if no job is running
at timet on machinek, thenp(k, t) = 0.

Lemma 8.3 If S is an optimal schedule for some energy levelE, there exists a constantp such
that at any timet,

∑m
k=1 p(k, t) = p, i.e. the sum of the powers of all machines at timet is p.

Proof SupposeS is an optimal schedule. Lett0 = 0. For i ≥ 1, let ti be the earliest time, if
it exists, strictly afterti−1 at which some job completes or starts. Supposetl is the completion
time of the last job. Fori = 0, ..., l− 1 and for any timet′ such thatti < t′ < ti+1, we will show
that

m
∑

k=1

p(k, ti) =

m
∑

k=1

p(k, t′) and (8.3)

m
∑

k=1

p(k, ti) =

m
∑

k=1

p(k, ti+1) (8.4)

If this is the case, then the result follows.
Let i be an index such that0 ≤ i ≤ l − 1. Let t′ be any time such thatti < t′ < ti+1. We

now prove (8.3). Since no jobs start or complete in the interval (ti, t′], then the same set of jobs
are running at timet andt′. By Observation 8.1, each job runs at a constant speed at all time.
This also means that each job runs at a constant power at all time. Thus, (8.3) follows.

We now prove (8.4). LetA be the set of jobs that are running (or have just started) at time
ti. LetB be the set of jobs that are running (or have just started) at timeti+1. Since no jobs start
or finish during(ti, ti+1), thenA − B is the set of jobs that completes at timeti+1, B − A is the
set of jobs that starts at timeti+1, andA ∩ B is the set of jobs that has been running since time
ti (or earlier) and until afterti+1. If X is a set of jobs, then letM(X) be the set of machines on
which jobs inX run.

m
∑

k=1

p(k, ti) =
∑

j∈A

pj(ti)

=
∑

j∈A−B

pj(ti) +
∑

j∈A∩B

pj(ti)

=
∑

j∈A−B

pj(t
−
i+1) +

∑

j∈A∩B

pj(ti+1) by the same argument as (8.3)

=
∑

k∈M(A−B)

p(k, t−i+1) +
∑

j∈A∩B

pj(ti+1)

=
∑

k∈M(B−A)

p(k, ti+1) +
∑

j∈A∩B

pj(ti+1) from Lemma 8.2

142 Chapter 8. Speed scaling of tasks with precedence constraints

=
∑

j∈B−A

pj(ti+1) +
∑

j∈A∩B

pj(ti+1)

=
∑

j∈B

pj(ti+1) =
m
∑

k=1

p(k, ti+1)

�

8.5.3 Algorithm

Lemma 8.3 implies that the total power at which all the machines run is constant over time (only
the distribution of the power over the machines may vary). Wewill describe a scheme to use this
lemma to relateSm | prec, energy | Cmax to the problemQ | prec | Cmax. Then, we can use an
approximation algorithm for the latter problem given in [34] to obtain an approximate schedule.
The schedule is then scaled so that the total amount of energyused is within the energy bound
E.

Let p̄ be the sum of powers at which the machines run in the optimal scheduleOPT(I, E).
Since energy is power times makespan, we havep̄ = E/OPT(I, E). However, an approximation
algorithm does not know the value ofOPT(I, E), so it cannot immediately computēp. Never-
theless, we will assume that we know the value ofp̄. The value of̄p can be approximated using
binary search, and this will be discussed later. Givenp̄, define the setM(p̄) to consist of the fol-
lowing fixed speedmachines: 1 machine running at powerp̄, 2 machines running at powerp̄/2,
and in general2i machines running at power̄p/2i for i = 0, 1, ..., ⌊log(m + 1)⌋ − 1. Denoting
the total number of machines so far bym′, there are an additionalm − m′ machines running
at powerp̄/2⌊log(m+1)⌋. Thus there arem machines in the setM(p̄), but the total power is at
most(log m + 1)p̄. We show in the following lemma that if the optimal algorithmis given the
choice betweenm variable speed machines with total energyE and the setM(p̄) of machines
just described, where it is allowed to use preemptions, it will always take the latter, since the
makespan will be smaller.

Lemma 8.4 We have
PRMOPTM(p̄)(I) ≤ OPT(I, E),

wherePRMOPTM(p̄)(I) is the makespan of the optimal preemptive schedule using fixed speed
machines in the setM(p̄), and OPT(I, E) is the makespan of the optimal schedule usingm
variable-speed machines with energy boundE.

Proof In an abuse of notation, we letPRMOPTM(p̄)(I) andOPT(I, E) refer to the makespans of
the two optimal schedules as well as those respective schedules themselves.

We will create a preemptive scheduleS using fixed speed machines in the setM(p̄). We
will consider each timet and assign jobs inOPT(I, E) to machines inS. We will show that the
assignment can be feasibly done. We abuse the notation by usingS to refer to the makespan of
schedule S. Thus,

PRMOPTM(p̄)(I) ≤ S ≤ OPT(I, E).

8.5 Main results 143

FindSchedule(I, p)

1. Find a schedule for instanceI and machines in the setM(p) using the algorithm from
Chekuri and Bender [34].

2. Reduce the speed of all machines by a factor oflog2/α m

3. Return the resulting schedule.

ALG(I, E)

1. Setp∗ =
(

E
W

)
α

α−1 whereW is the total work of all jobs.

2. Using binary search on[0, p∗] with p as the search variable, find the largest value for
p such that this 2-step process returns true. Binary search terminates when the binary
search interval is shorter than 1.

(a) CallFindSchedule(I, p).

(b) If for the schedule obtained we have
∑n

i=1 sα−1
i wi ≤ E, return true

Figure 8.2: Our speed scaling algorithm. The input consistsa set of jobsI and an energy bound
E.

Consider any timet in OPT(I, E). Denote the power of machinek of OPT(I, E) at this time
by Pk. Suppose the machines are labeled so thatP1 ≥ P2 ≥ ... ≥ Pm. Now we simply assign
the job on machine 1 to the machine of powerp̄ in S. And for i ≥ 1 we assign the jobs on
machines2i, . . . , 2i+1 − 1 to the machines of power̄p/2i in S.

Clearly,P1 ≤ p̄, since no machine can use more thanp̄ power at any time. In general, we
have that

Pj ≤ p̄/j for j = 1, . . . , m.

If we can show that the first machine in any power group has at least as much power as the
corresponding machine ofOPT(I, E), this holds for all the machines. But since machine2i in S
has power exactlȳp/2i, this follows immediately.

It follows thatS allocates each individual job at least as much power asOPT(I, E) at timet.
We can apply this transformation for any timet, where we only need to take into account thatS
might finish some jobs earlier thanOPT(I, E). So the schedule forS might contain unnecessary
gaps, but it is a valid schedule, at least when we allow preemptions. This proves the lemma.�

To construct an approximate schedule, we assume the value ofp̄ is known, and the set of
fixed speed machines inM(p̄) will be used. The schedule is created using the algorithm given
in [34]. The schedule created may use too much energy. To fix this, the speeds of all jobs are
decreased so that the total energy used is withinE at the expense of having a longer makespan.
The steps are given in subroutineFindSchedule in Figure 8.2.

144 Chapter 8. Speed scaling of tasks with precedence constraints

8.5.4 Analysis

Lemma 8.5 Supposep = E/OPT (I, E). SubroutineFindSchedule(I, p) creates a schedule
which has makespanO(log1+2/α m)OPT(I, E) and uses energyO(E).

Proof Let S1 andS2 denote the schedules obtained in steps 1 and 2 ofFindSchedule(I, p),
respectively. ScheduleS2 is the one returned byFindSchedule. First we analyze the makespan.

From the results in [34],

CS1

max = O(logm)PRMOPTM(p)(I).

This holds because although their algorithm does not use preemptions, it has this approximation
ratio even when compared against an optimal preemptive algorithm. In step 2, the speed of every
job decreases by a factor oflog2/α m. Thus, the makespan increases by a factor oflog2/α m.
From Lemma 8.4,PRMOPTM(p)(I) ≤ OPT(I, E). Therefore, taken together, we have

CS2

max = (log2/α m)CS1

max

= (log2/α m)O(log m)PRMOPTM(p)(I)

= O(log1+2/α m)OPT(I, E).

Next we analyze the energy. The machines in the scheduleOPT(I, E) run for OPT(I, E) time
units at the total power ofp = E/OPT(I, E) consuming a total energy ofE. Recall that if all
machines inM(p) are busy, the total power is at mostp(1 + log m).

ScheduleS1 runs the machines forO(log m)PRMOPTM(p)(I) time units at the total power at
mostp(1 + log m). Thus, it uses energy at most

p(1 + log m) O(log m)PRMOPTM(p)(I)

≤ O(log2 m) p OPT(I, E) = O(log2 m) E (8.5)

where the inequality follows from Lemma 8.4. The speeds at which the machines inS2 run are
log2/α m slower than those inM(p), whichS1 uses. Thus, the total power at which the machines
in S2 run islog2 m times smaller than that ofS1. By (8.5), this isO(E). �

Note that when we decrease the speed inS2 by some constant factor, the makespan increases
by that factor and the energy decreases by a larger constant factor. To find the value of̄p, we use
binary search in the interval[0, p∗] wherep∗ is an initial upper bound to be computed shortly.
We continue until the length of the interval is at most 1. We then use the left endpoint of this
interval as our power. Now we compute the initial upper boundp∗. For a given schedule, the
total energy used is

n
∑

i=1

pixi =
n
∑

i=1

sα
i wi/si

=

n
∑

i=1

sα−1
i wi.

8.5 Main results 145

The best scenario that could happen for the optimal algorithm is when the work is evenly
distributed on all the machines and all the machines run at the same speed at all time. LetW
be the total work of all the jobs. Completingx units of work at a speed ofs requiressα−1x
units of energy. If each of them machines processesW/m units of work, then it takes a total
Wsα−1 units of energy. This must be less thanE. For the speed we findsα−1 ≤ E/W and thus
p

α−1

α ≤ E/W . This gives us an initial upper bound forp for the binary search:

p ≤ p∗ =

(

E

W

)
α

α−1

.

OPT does not use a higher power than this, because then it would run out of energy before all
jobs complete.

From Lemma 8.5 and our analysis above, the following theoremholds.

Theorem 8.1 ALG is an O(log1+2/α m)-approximation algorithm for the problemSm | prec
energy | Cmax where the power is equal to the speed raised to the power ofα andα > 1.

146 Chapter 8. Speed scaling of tasks with precedence constraints

Chapter 9

Real-time integrated prefetching and
caching

In this chapter, we present a new theoretical model for real-time prefetching and caching. In-
terestingly, there is very little theoretical work on the real-time setting of this problem. We are
only aware of [65] which covers parallel disk prefetching ina read-once setting without caching.
This is astonishing, since real-time properties are essential for more and more important applica-
tions such as games, virtual reality, graphics animations,or multimedia. Memory hierarchies get
more and more important for these applications since largerand larger data set are considered
and since mobile devices have only very limited fast memory.

In Section 9.1, we propose to model real time aspects by associating a time windows with
each request during which it needs to be in cache. As before wedo prefetching and caching,
and as soon as a fetch for a page starts, this page occupies oneslot in the cache. We believe that
our model may be a more accurate representation of the situation in practice. In particular, time
windows rather than just deadlines allow us to efficiently model the amount of time a data block
is needed for processing and we can also require several blocks to be available concurrently. The
only simpler model we could think of would use unit time windows. But then we would need
many repeated requests to model longer time windows. This would lead to exponentially longer
problem descriptions in the worst case.

We fist prove some generally useful properties of the problemin Section 9.2. In Section 9.3
we present our algorithm REALM ISER which uses a “semi”-greedy approach (REALM ISER).
REALM ISER uses the frequently used basic trick to build the schedule backward in time [108,
91]. Apart from this it is a new algorithm however. Its main invariant is that it uses as little space
as possible at all times and in order to achieve that it has to move previously scheduled requests.
The algorithm therefore has quadratic worst case performance. Moreover it is I/O-optimal, i.e.,
it does not perform more fetches than necessary.

We additionally consider an online version of our problem inSection 9.4. In our online
model, algorithms have a certain amount of lookahead, inputarrives incrementally, and a partial
solution needs to be determined without knowledge of the remaining input. We say that an
algorithm has alookaheadof ℓ if at time t, it can see all requests for pages that are required
no later than at timet + ℓ. In theresource augmentationmodel, the online algorithm has more

147

148 Chapter 9. Real-time integrated prefetching and caching

resources than the offline algorithm that it is compared to. There are several ways to give an
online algorithm more resources in the current problem: it can receive a larger cache, a faster
disk (so that fetches are performed faster) or a combinationof these.

We show that competitive algorithms are possible using resource augmentation on the speed
and lookahead, and we provide a tight relationship between the amount of resource augmenta-
tion on the speed and the amount of lookahead required.

Section 9.5 concludes with a short summary and some possiblefuture questions.

More Related Work In the model introduced by Cao et al. [27] and further studiedby Kimbrel
and Karlin [108] and Albers et al. [4], the requests are givenas a simple sequence without an
explicit notion of time. It is assumed that serving a requestto a page residing in cache takes one
time unit, and fetching a page from disk takesF time units. When a fetch starts and the cache
is full, a page must be evicted. If a page is not in cache when itis required, the processor must
wait (stall) until the page has been completely fetched. Thegoal is to minimize the processor
stall time.

Thus in this model, pages have implicit deadlines in the sense that each page should be in
cache exactly one time unit after the previous request. However, when the processor incurs stall
time, these implicit deadlines are shifted by the amount of stall time incurred. Additionally,
this model does not cover the cases where many pages are required in a small time interval and
conversely, where more time may elapse between two successive requests. Nor is it possible to
model the case where a page is required over a certain time interval.

Albers [2] considers the impact of lookahead in the classical non-real-time situation. She
shows that in order to be useful in a worst case sense, lookahead has to be measured in terms of
the number of distinct pages referred to in the lookahead. This can be a problem in practice since
very long lookahead sequences might be required if some blocks are accessed again and again.
In our real-time setting the situation is different and verynatural — we can measure lookahead
in terms of time.

9.1 Problem definition

We consider the problem of prefetching pages into a cache of fixed sizek. The request sequence
σ serves as input and consists of pairsσi := (pi, [di, ei)) denoting a page and the interval in
which it must reside in the cache. Thedi are also denoteddeadlines, the ei are theends of
intervals. Without loss of generality we may assume the input is sortedsuch thatd1 ≤ . . . ≤ dn

for n = |σ|. Transferring a page to the cache takes time1. The earliest possible fetch time is
t = 0.

The output is given by a sequencef1, . . . fn of fetch times for the corresponding requests.
One cache slot is occupied bypi in the time interval[fi, ei), and possibly longer. Multiple
requests of the same page can be served by the same fetch, the page must then reside in the
cache until the last of these requests is served. A feasible schedule must satisfy∀i ∈ {1, . . . , n} :
fi +1 ≤ di to match the real-time requirements. In addition to this, the cache must be sufficient,

9.2 Problem properties 149

i. e. ∀t : |{fi : fi ≤ t < ei}| ≤ k, and the disk must not be overcommitted —∀t : |{pi : t ∈
[fi, fi + 1)}| ≤ 1.

9.2 Problem properties

Definition 9.1 (FIFO property) A schedule satisfies theFIFO Propertyif, when it has a fetch at
timef for a page that is next required at timed, there is no later fetch which loads a page that
is required before timed. More formally, this is the case if and only if∀i, j ∈ {1, . . . , n} : (fi ≤
fj) ⇒ (∃i′ : i′ ≤ j ∧ fi′ = fi).

If algorithm ALG constructs a schedule that fulfills the FIFO property, we writeFIFO(ALG).

Definition 9.2 (BUSY property) A schedule satisfies theBUSY Propertyif, when it has a fetch
at time f for a page that is next required at timed, it defines fetches at all timesf + i for
i = 1, 2, . . . , ⌈d − f⌉ − 1.

Lemma 9.1 There exists an I/O-optimal schedule with both the FIFO property and the BUSY
property.

Proof Consider an arbitrary I/O-optimal schedule. We can make twolocal improvements:

1. If pagep is fetched before pageq, but after the fetch forp the first deadline forq occurs
before the first deadline top, we can switch these two fetches without violating any dead-
lines or the cache capacity (the amount of slots occupied byp andq remains the same, we
only load a different page first).

2. If a fetch for pagep ends at timet1, but pagep is first requested at timet2 > t1, and
moreover no new fetch starts until timet3 > t1, we can move this fetch forp forward until
it ends at timemin(t2, t3).

Since these improvements do not increase the number of fetches but only move them, the sched-
ule always remains I/O-optimal. It is now easy to show using backward induction that if we can
not make any local improvement to an optimal schedule, it satisfies the FIFO property and the
BUSY property. �

9.3 Algorithm R EAL M ISER

In this section we present the algoritm REALM ISER for the real-time integrated prefetching and
caching problem. This algorithm works by working backwardsfrom the last deadline. For each
new request, it modifies the existing schedule to maintain I/O-optimality. While the schedule
is being constructed, our algorithm keeps track of a valueNOW which is the time at which
the earliest fetch of the current schedule starts. REALM ISER uses a predicate which is called
INFEASIBLE and is defined as follows.

150 Chapter 9. Real-time integrated prefetching and caching

I NFEASIBLE = (NOW < 0 or there exists a time at which there are at leastk + 1 pages in
cache).

The algorithm itself is defined in Figure 9.1. It uses the following definition. We also define
a concept calledslackwhich will be important later.

Definition 9.3 A tight fetch is a fetch which starts one time unit before the page is requested,
i. e., at the latest possible time.

Definition 9.4 Theslackof a fetch is the amount of time between the end of the fetch andthe
corresponding deadline.

SetNOW := dn − 1. For i = n, . . . , 1, do the following.

1. Define a fetch for theith request, say pagepi with deadlinedi, at timeNOW. Let NEXT

be the next time that the pagepi is fetched at or after timeNOW. If there is no such
time, then if INFEASIBLE, output FAIL, else, setNOW := NOW −1, evict pagepi at time
ei and stop (i. e. stop processing requesti).

2. If NEXT ≤ di − 1, remove the fetch that was just defined at timeNOW and stop.

3. If NEXT > ei, consider the interval[ei, NEXT]. Let FULL be the first time the cache is
full in this interval. If this does not happen, setFULL = ∞. If there is a tight fetch
which finishes in the interval [FULL ,NEXT], then

(a) evictpi at timeei

(b) if I NFEASIBLE, output FAIL, else, setNOW := NOW −1 and stop.

4. We are in the caseNEXT ∈ (di − 1, ei], or NEXT > ei but the condition in the previous
step does not hold. Remove the fetch at timeNEXT. For each fetch before timeNEXT in
order of decreasing starting time, move the fetch forward asmuch as possible without
violating its deadline or overlapping with the next fetch after it. SetNOW equal to the
earliest fetch time in the resulting schedule and subtract 1.

Figure 9.1: Algorithm REALM ISER

In Step 2, we do not need to check feasibility because we do notchange the schedule. We
will prove in the following that we also do not need to check itin Step 4. Note that the condition
in Step 2 can easily be satisfied even though deadlines are sorted: if a fetch for a pagepi is
defined a long time beforedi, pi might be requested again between this fetch and timedi. We
give an example of the execution of REALM ISER for k = 2 in Figure 9.2.

9.3 AlgorithmREALM ISER 151

a
b

c
d

2 543

After the optimization

1

a
b

c
d
a

1 2 3 50 4

An infeasible schedule

Figure 9.2: Supposek = 2. REALM ISER treats the requests in order of nondecreasing deadline.
Horizontal lines represent a cache location which is occupied by the page at the end of this line
(which is where this page is needed). When REALM ISER gets to the request for pagea at time
3, it initially creates the infeasible schedule on the left:there are three pages in cache in the
interval [2, 3]. However, REALM ISER then removes the fetch for pagea at time 4. The other
fetches move forward by 1 time unit, and the resulting schedule is feasible.

9.3.1 Analysis of REAL M ISER

We say that a cache isfull if there are no empty slots in the cache (recall that a page occupies
a slot as soon as it starts being fetched) and moreover all pages in the cache are still needed
at some point in the future. Pages that are evicted at timet are not taken into consideration to
determine whether the cache is full or not at timet. For convenience, we consider fetches to be
half-open intervals of the form(f, f + 1].

Lemma 9.2 The schedule ofREALM ISER has the FIFO property and the BUSY property at all
times during the execution ofREALM ISER. Specifically, for any fetch, this holds both before
and after the optimization that RealMiser performs on this fetch.

Proof By backwards induction, starting with the last request. Forthe last request, there is
nothing to prove (if its deadline is at timed, its fetch is scheduled at timed−1, at least initially).

Consider an earlier requesti, for pagep needed at timed. The first time that RealMiser
schedules a fetch forp, it only considers the current schedule, based on requestsi + 1, . . . , n,
which have the same or later deadlines. The initial definition of the new fetch is one time unit
before the earliest current fetch. Say the earliest currentfetch starts at timef + 1. This is
for requesti + 1, which is needed at timed′ ≥ d because this is how the input is ordered by
RealMiser. By induction, fetches start at all timesf +1+ j for j = 1, 2, . . . , ⌈d′− (f +1)⌉− 1.
We havef + 1 + ⌈d′ − (f + 1)⌉ − 1 = f + ⌈d′ − f⌉ − 1 ≥ f + ⌈d − f⌉ − 1. Thus the FIFO
property and the BUSY property hold before the optimizationfor requesti.

If the fetch is immediately removed again in Step 2, we are done by induction. This is also
true if REALM ISER does not change the schedule (does not execute Step 4). In Step 4, the
next fetch top is removed and all or some earlier fetches are moved forward as far as possible,
including the earliest one forp. Thus the BUSY property holds again. Moreover, RealMiser will
never reorder existing fetches. Thus the FIFO property still holds as well. �

Lemma 9.3 All fetches that RealMiser defines occur at times of the formdn − j, wherej is an
integer, unless there exists a time interval after the earliest fetch and beforedn where no page is

152 Chapter 9. Real-time integrated prefetching and caching

being fetched.

Proof This follows immediately from the BUSY property. If pages are being fetched at all
times during the execution, RealMiser schedules these at timesdn − j, since it schedules each
fetch as late as possible. If this is not the case, there is clearly some interval where no pages are
being fetched. �

Theorem 9.1 If there exists a feasible schedule, RealMiser computes an I/O-optimal one.

Proof Let ALG(i) be the number of fetches that algorithmALG defines to serve the sequence
consisting only of the requestsi, . . . , n. Denote an optimal algorithm byOPT, and without loss
of generality assume it satisfied the FIFO and BUSY properties. We use a proof by induction.

Hypothesis:The schedule of RealMiser is I/O-optimal for any input consisting of at most
i requests that allows a feasible schedule, and there is no feasible schedule that fetches its first
page later.

Base case:Consider an input consisting of a single request. RealMiserdefines a single fetch
for it, at the last possible time. Thus, RealMiser is I/O-optimal, and no schedule can start its first
fetch later than RealMiser.

Induction step:Consider the requestsi, . . . , n. By the induction hypothesis, RealMiser is
optimal for an input that contains only the requestsi + 1, . . . , n. (We assume that a feasible
schedule for the input exists, so it certainly exists for anysubset of the input). Consider request
i, for pagepi. We abbreviatepi by p in this proof. We need to check the following properties:

T1. RealMiser does not define more than the optimal number of fetches

T2. The first fetch cannot start later in any schedule

T3. The schedule created by RealMiser is feasible.

Property T2 follows immediately, because in all cases RealMiser either puts the first fetch
immediately before the next fetch (so we can use induction, since the optimal schedule also sat-
isfies the FIFO property), or one time unit before its deadline (so it clearly cannot be postponed).
This also means that if RealMiser defines a fetch before time 0, there does not exist a feasible
schedule.

RealMiser starts by defining a fetch forp at timeNOW, whereNOW +1 is the earliest current
fetch time. It then checks whether any optimization is possible. We now consider the execution
of RealMiser step by step.

Step 1 If REALM ISER stops in Step 1, thenp is not requested again later. This implies im-
mediately that T1 holds, because REALM ISER defines one extra fetch and this is the best you
can do. Also the new schedule is feasible if the old one was (using induction and T2) and the
instance allows a feasible schedule. This proves T3.

9.3 AlgorithmREALM ISER 153

Step 2 If NEXT > di−1, the fetch is immediately removed again and we are done by induction:
we have the previous schedule again, for which the desired properties hold.

Suppose pagep is again fetched later. After timeNOW, say that this happens for the first
time at timeNEXT (in the current schedule). Thusp is required at timeNEXT +1 or later. The
question is whether we can afford to keepp in the cache in the interval [NOW,NEXT].

Step 4, case 1 If NEXT ≤ ei, we have no choice: we simply must keepp in cache until the
end of the interval that we fetch it for. So in this case the fetch at timeNEXT can certainly be
removed. RealMiser executes step 4 in this case. It removes the fetch at timeNEXT, so T1
holds by induction. The new schedule also satisfies the FIFO and BUSY property. Thus if it is
infeasible, no feasible schedule exists by induction.

Now assume thatNEXT > ei, so again Step 4 is executed. Removing the access top at time
NEXT means that all fetches in the interval [NOW +1, NEXT] can be postponed by one time unit,
unless one of those fetches had slack less than 1.

Step 4, case 2 If all fetches in [NOW +1, NEXT] haveslack at least 1, there can be no interval
in [NOW +1, NEXT] in which no fetch takes place (then the fetch immediately before that interval
could be postponed, and RealMiser would have done this). Thus at all times, some page is being
fetched. In this case all fetches can be postponed by 1 (afterremoving the access at timeNEXT)
without violating any deadlines, meaning that we can save one cache slot in every time step,
and we can save one access by keepingp in cache. An example of this situation can be seen in
Figure 9.2. It is clear that the resulting schedule is I/O-optimal (T1) and feasible (T3).

Step 4, case 3 If the cache is nowhere fullduring [NOW +1, NEXT], we can keepp in cache
and save an access. The schedule for the other pages may remain the same, or some fetches may
now occur later. Similar, if the cache is only fullafter the last fetch with slack less than 1, all the
fetches after that one can be tightened as above after removing the access at timeNEXT. Clearly,
the new schedule does not violate cache capacity constraints or deadlines. IfNOW < 0, then no
feasible schedule exists.

In all these cases, we find

REALM ISER(i) = REALM ISER(i + 1) = OPT(i + 1) = OPT(i)

(the last equality follows sinceOPT(i + 1) ≤ OPT(i) ≤ REALM ISER(i)). So T1 holds if
RealMiser executes step 4.

Step 3 We also have the following lemma which shows that in the remaining cases, RealMiser
can simply evict pagep after the end of its inverval and still be optimal. So T1 also holds if it
stops in Step 3.

Lemma 9.4 Let a fetch of pagep (requesti) start at timeNOW. Suppose thatp is again fetched
later, and that this happens for the first time at timeNEXT. Suppose there is at least one tight

154 Chapter 9. Real-time integrated prefetching and caching

fetch in the interval [NOW +1, NEXT], and denote the last time at which a tight fetch finishes by
TIGHT. If the cache is full at some point no later thanTIGHT, thenOPT(i) = OPT(i + 1) + 1.

Proof If the cache is full at timeFULL ∈ [NOW+1,TIGHT], there are two simple cases. The
third, more difficult case follows below. We call the fetch which is running at timeFULL the
current fetch.

1. k different pages are requested within an interval of length strictly less than 1 starting
at timeFULL. By assumption, all these pages are different fromp. This means that no
algorithm can keepp in cache until its next fetch, so the request sequence that includesp
forces an extra fetch, andOPT(i) = OPT(i + 1) + 1.

2. All pages in the cache are either required during the current fetch, or before (these pages
were kept in cache to save a fetch on them). Suppose RealMiserhask′ pages loaded at
time FULL that are needed only after the current fetch (i. e.k−k′ pages are needed during
the current fetch). This means that RealMiser has savedk′ accesses to those pages.

SupposeOPT(i) keepsp in its cache throughout the interval [NOW+1,NEXT]. Then one
of thesek′ pages must be evicted by it, and later loaded again. However,RealMiser has
the optimal number of fetches for the sequencei + 1, . . . , n. We have thatOPT(i) has one
fetch more than RealMiser for the requestsi+1, . . . , n. ThusOPT(i) = REALM ISER(i+
1) + 1 = OPT(i + 1) + 1.

The only tricky case is where the cache is full at timeFULL ∈ [NOW+1,TIGHT], but some
pages are already loaded to satisfy future requests (and notbecause they were requested before).
This means that there are three sets of pages at timeFULL:

1. k1 pages required during the current fetch

2. k2 pages already requested before, still needed after the current fetch

3. k3 pages that are needed only after timeFULL.

Of course,k1 + k2 + k3 = k, above we treated the casek3 = 0. Let FULL now be thelast time
the cache is full in (NOW+1,NEXT]. If k3 > 0, some pages are loaded that are needed only later.

Suppose that in the optimal schedule,p is in the cache throughout [NOW+1,NEXT], so def-
initely at time FULL. Then at least one of the pages that RealMiser has in the cacheat time
FULL, sayq, must be missing in the optimal cache, since the cache of RealMiser is full. Pageq
is not requested during the current fetch, but there is a later need for it. If RealMiser is saving
an access on pageq since it was requested before timeFULL, we are done: the optimal schedule
still needs to loadq, and without the request forp there exists a schedule with one less fetch for
q (namely, the one of RealMiser), soOPT(i) = OPT(i + 1) + 1. Otherwise,q is loaded only to
satisfy a future request. In this case, consider the time starting from FULL.

Consider the pages that are loaded purely to satisfy requests after the current fetch. Say that
the last time such a page is first needed (afterFULL) is time t1, and denote that page byp1.
(Possiblyp1 = q.) At time t1, we can make a similar division into sets as above. If any pages are
in cache at timet1, but the interval for which they were loaded has already expired, we can find

9.3 AlgorithmREALM ISER 155

a timet2 > t1 where the last such page (sayp2) is first needed. We can continue this process
until some timetℓ =: t∗, which is defined as the earliest possible time such that all pages in
cache were fetched to satisfy a request at or before timet∗. (Some of these pages might have
been kept in cache to also satisfy later requests.)

We claim that RealMiser fetches pages continuously in the interval [FULL, t∗]. This follows
simply by applying the BUSY property (Lemma 9.2) at timeFULL, t1, t2, . . . successively until
time t∗ is reached. Consider the last fetch that starts before timet∗. By definition of t∗, this
fetch cannot be for a page that is requested only aftert∗. Thus this fetch must in fact be tight (no
slack). Therefore

t∗ ≤ TIGHT ≤ NEXT.

Since the cache is not full in the interval [FULL, t∗], RealMiser never fetches the same page
twice during [FULL, t∗]. All of these pages are needed in [FULL, t∗], includingq. Denote the set
of fetched pages in [FULL, t∗] by S.

The optimal schedule must loadq at some point. So it must load at least one pagep(1) that
RealMiser loads in the interval [FULL, t∗] already before this interval, since there is no time to
fetch |S| + 1 pages. This impliesp(1) is not required during the fetch which runs at timeFULL,
and RealMiser does not have eitherp or p(1) in its cache at timeFULL. Therefore RealMiser has
yet another pageq(1) in cache that the optimal schedule does not have, since its cache is full.

We can now repeat this reasoning: if RealMiser saves a request on q(1) since it was already
requested before, we immediately haveOPT(i) = OPT(i + 1) + 1 (the optimal schedule must
still pay for q(1)). Otherwise, we again find that the optimal schedule must load q(1) in the
interval [FULL, t∗], leading to yet another pagep(2) that it must load before the interval due to
time constraints.

Each such pagep(i) implies an additional distinct pageq(i) that RealMiser has in its cache
at timeFULL which the optimal schedule does not have, because the pagesp, p(1), . . . , p(i) are
all in the cache of the optimal schedule at timeFULL and the cache of RealMiser is full. (Each
time we find that RealMiser does not havep(i) in its cache, because this page is requested in the
interval [FULL, t∗] and we know that RealMiser loads it after timeFULL: if p(i) were already in
the cache at timeFULL, RealMiser would never drop it since the cache is not full afterwards.)

Finally, after at mostk steps we either run out of pages and find a contradiction, or wefind
a page that RealMiser saves a request on and that the optimal schedule must pay for, implying
that

OPT(i) = REALM ISER(i + 1) + 1 = OPT(i + 1) + 1.

�

This Lemma immediately implies that T1 holds if RealMiser stops in Step 3 for this request.
It is moreover clear that the new schedule does not violate deadlines. Thus if the new schedule
is infeasible, no feasible schedule can exist by induction:either the cache capacity constraint
is violated in all possible schedules, but then the instancedoes not admit a feasible schedule
because the schedule starting from the next request was I/O-optimal and busy, orNOW < 0, but
the next fetch already started as late as possible by induction. �

156 Chapter 9. Real-time integrated prefetching and caching

9.4 Online algorithms

In the pure online model, it is impossible for an online algorithm to handle the hard deadlines
properly. In fact, we have the following lemma which shows that even lookahead does not help
much.

Lemma 9.5 Any finite amount of lookahead is insufficient by itself to provide feasible schedules.

Proof Let the lookahead ben − 1 time units. Consider the following request sequence.

Page a b x1 x2 ... xn a (or b)
Deadline 1 2 3 4 ... n + 2 n + 2

At time 2 the online algorithm needs to decide whether it removes pagea or pageb from its
cache to fetchx1. However, with a lookahead ofn − 1, it is impossible to know which page to
evict. �

The explanation is that an online algorithm cannot handle more than 1 pages being requested
per time unit on average, because it will need to decide whichpages to evict and will inevitably
make the wrong decisions. We therefore consider the resource augmentation model.

An option is to give the online algorithm a larger cache than the offline algorithm it is com-
pared to. However, the above example also shows that a largercache does not really help: at
some point a page must be evicted, and this will be the page on which the algorithm fails later.

We can also allow the online algorithm to fetch pages faster than the offline algorithm. We
show in the following that this does allow for a competitive algorithm.

In particular, we show that using a very simple algorithm, wecan handle any sequence of
requests which allows a feasible schedule as long as we have alookahead ofk and can fetch
pages with twice the speed of the offline algorithm. Equivalently, we can also give the online
algorithm the power to fetch two pages at the same time, by assuming that it has two parallel
disks that both store all the data that is required.

The next assumptions on how the optimal offline algorithm behaves simplify the analysis.

Global assumption 4 No pages are evicted during a fetch.

It can be seen that evicting pages during fetches, instead ofwaiting until the end of the current
fetch and then evicting them, cannot help an algorithm with respect to deadlines of later requests.

Global assumption 5 At most one page is evicted at the start of a fetch.

Since at most one page can be loaded during a single fetch, it does not help to evict more than
one page at the start of a fetch, since you can only fill one slotwith this fetch anyway. On the
other hand, it also does not harm to keep as many pages as possible in the cache, since you do
not need more than one free slot for a fetch.

Global assumption 6 Pages are evicted only at the start of fetches.

Since at the beginning the cache is empty, and each fetch loads only one page, there is no need
to evict pages at any other time.

9.4 Online algorithms 157

Lemma 9.6 The contents of the cache of the optimal offline algorithm change for at most one
slot in any (half-open) interval of length 1.

Proof This follows immediately from the above assumptions. �

Lemma 9.7 In an instance that allows a feasible solution, in an interval I of length strictly
smaller thani ∈ N, there cannot be more thank + i − 1 requests for distinct pages.

Proof At the deadlined of the last request inI, before any page is evicted, by the above
assumptionsk of the requested pages inI are in the offline cache. During any fetch, the configu-
ration of the offline cache does not change. By Lemma 9.6 and Assumption 3, the configuration
only changes at the end of fetches, and only by one page. Thus in I, the configuration can only
change at mosti − 1 times before the final fetch. This means that in total, at mostk + i − 1
distinct pages are present in the cache at some point duringI. This is then an upper bound for
the number of pages that can be requested in a feasible problem instance. �

Remark 9.1 It is also clear that in any interval(0, t], at most⌊t⌋ distinct pages can be requested
in a feasible instance.

Consider the greedy algorithm for generalk. This algorithm simply loads pages in the order
in which they are requested, as early as possible, and evictspages that it does not see in its
lookahead.

Lemma 9.8 Greedy with a speed ofs and a lookahead ofk/(s− 1) creates a feasible schedule
for each input for which a feasible schedule exists.

Proof We prove by induction that the greedy algorithm provides a feasible schedule, if one
exists. Suppose the algorithm sees its first request at timet. Then this request has deadlinet+k.
If the algorithm fails at this point, there are at leastk + 1 pages requested at timet + k, which
means there is no feasible schedule.

Consider a fetch (of pagep) that finishes at timet and suppose the algorithm did not fail yet.
Greedy plans to fetch the first requested page with deadlinet or greater that is not in its cache.
The only case in which this fails is if there exists a pageq with deadline smaller thant+ 1

s
which

is not in the cache of Greedy. This page was already visible attimet+ 1
s
− k

s−1
. Greedy must have

been loading pages throughout the interval[t + 1
s
− k

s−1
, t], loadings(k

s−1
− 1

s
) = sk

s−1
− 1 pages

in this time. It was also loading a page immediately before time t + 1
s
− k

s−1
, since otherwise

it would have started to loadq sooner. But this means that in the interval[t + 1
s
− k

s−1
, t + 1

s
)

there are sk
s−1

distinct pages requested (Greedy would not evictq at timet + 1
s
− k

s−1
anymore).

However, by Lemma 9.7, there can be at mostk + k
s−1

− 1 = sk−s+1
s−1

pages requested in an
interval of length less thank

s−1
, a contradiction. �

We next show a matching lower bound, showing a tight relationship between the amount of
lookahead and the amount of resource augmentation on the speed that is required for an online
algorithm to provide feasible schedules for feasible inputs.

158 Chapter 9. Real-time integrated prefetching and caching

Theorem 9.2 An online algorithm with a disk of speeds, or s parallel disks of speed 1, needs
at least a lookahead ofk/(s− 1) in order to be able to create feasible schedules for all feasible
inputs.

Proof Assume that the amount of lookahead isℓ < k/(s − 1) and consider the following in-
stance. It consists ofk pages requested at timek, followed by new distinct pages with deadlines
at each timek + i for i = 1, . . . , 2k. At time 3k − ℓ, Greedy has at mostk of the at least2k
pages with deadline no later than3k− ℓ in cache. We now add a request fork pages that Greedy
does not have in its cache, but that were already requested, at time3k + 1.

The optimal offline solution is the following: first load thek pages requested at timek in
the interval[0, k]. In each successive interval of length 1 until time3k, load one page and evict
one page that will not be requested again. It can only happen once that there is no such page
in cache, namely if allk pages in cache are requested at time3k + 1 (which is the only time at
which requests are repeated). In that case, evict an arbitrary page, and reload it in the interval
[3k, 3k + 1]. In all cases, this produces a feasible solution.

In this instance, in the interval(3k − ℓ, 3k + 1], there are deadlines fork + ℓ distinct pages.
Loading all these pages takes at least(k + ℓ)/s time for Greedy. Thus we find as condition for
ℓ such that Greedy might create a feasible schedule thatℓ ≥ (k + ℓ)/s, or ℓ ≥ k/(s − 1). �

If we give the online algorithm parallel disks instead of a faster disk, we get slightly different
results because now loadingk + ℓ distinct pages takes at least⌈(k + ℓ)/s⌉ time, so the required
lookahead may be slightly larger depending onk, s andℓ.

9.5 Conclusions

We have introduced a model for real-time prefetching and caching that is simple, seems to
model practically relevant issues, and allows fast and simple algorithm with useful performance
guarantees in offline and online settings. Although previous work from non-real-time models
provides useful ideas for algorithms, the situation in the real-time setting is often different (e.g.,
wrt to I/O optimality of LFD or how to measure lookahead). Hence, given the importance of
real-time applications, we expect that more work will be done on this subject in the future.

One interesting open question is the case of parallel disks.Although thehard real-time
case we currently consider is very important since hard real-time constraints are present in many
safety critical systems (e.g. avionics), we could also lookatsoft real-timewhere the applications
remains viable when some requests are missed but we want to minimize the number of missed
requests (or the sum of importance weights given for the missed requests).

Bibliography

[1] Marjan van den Akker, Han Hoogeveen, and Nodari Vakhania. Restarts can help in the
on-line minimization of the maximum delivery time on a single machine. Journal of
Scheduling, 3:333–341, 2000.

[2] S. Albers. On the influence of lookahead in competitive paging algorithms.Algorithmica,
18:283–305, 1997.

[3] Susanne Albers. Better bounds for online scheduling.SIAM J. Comput., 29:459–473,
1999.

[4] Susanne Albers, Naveen Garg, and Stefano Leonardi. Minimizing stall time in single and
parallel disk systems.J. ACM, 47(6):969–986, 2000.

[5] Noga Alon, Yossi Azar, János Csirik, Leah Epstein, Sergey V. Sevastianov, Arjen Vest-
jens, and Gerhard J. Woeginger. On-line and off-line approximation algorithms for vector
covering problems.Algorithmica, 21:104–118, 1998.

[6] Noga Alon, Yossi Azar, Gerhard Woeginger, and Tal Yadid.Approximation schemes for
scheduling. InACM-SIAM Symposium on Discrete Algorithms, pages 493–500, 1997.

[7] Baruch Awerbuch, Yossi Azar, Amos Fiat, Stefano Leonardi, and Adi Rosen. On-line
competitive algorithms for call admission in optical networks. Algorithmica, 31(1):29–
43, 2001. Also in J. Diaz, M. Serna, editors,Algorithms - ESA ’96, Proceedings Fourth
Annual European Symposium, volume 1136 of Lecture Notes in Computer Science, pages
431–444. Springer, 1996.

[8] Yossi Azar. On-line load balancing. In A. Fiat and Gerhard J. Woeginger, editors,Online
Algorithms - The State of the Art, chapter 8, pages 178–195. Springer, 1998.

[9] Yossi Azar and Leah Epstein. On two dimensional packing.Journal of Algorithms,
25(2):290–310, 1997. Also in Proc. SWAT’96 pp. 321-332.

[10] Brenda S. Baker, Donna J. Brown, and Howard P. Katseff. A5/4 algorithm for two-
dimensional packing.J. Algorithms, 2:348–368, 1981.

[11] Brenda S. Baker, A. Robert Calderbank, Edward G. Coffman Jr., and Jeffrey C. Lagarias.
Approximation algorithms for maximizing the number of squares packed into a rectangle.
SIAM Journal on Algebraic and Discrete Methods, 4(3), 1983.

159

160 Bibliography

[12] Brenda S. Baker, Edward G. Coffman, and Ronald L. Rivest. Orthogonal packings in two
dimensions.SIAM J. Comput., 9:846–855, 1980.

[13] Brenda S. Baker and J. S. Schwartz. Shelf algorithms fortwo-dimensional packing prob-
lems.SIAM J. Comput., 12:508–525, 1983.

[14] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Dynamic speed scaling to manage energy
and temperature. InIEEE Syposium on Foundations of Computer Science, pages 520 –
529, 2004.

[15] Nikhil Bansal, Andrea Lodi, and Maxim Sviridenko. A tale of two dimensional bin
packing. InProc. 46th IEEE Symp. on Found. of Comp. Science, 2005. To appear.

[16] Nikhil Bansal and Kirk Pruhs. Speed scaling to manage temperature. InSymposium on
Theoretical Aspects of Computer Science, pages 460–471, 2005.

[17] Nikhil Bansal and Maxim Sviridenko. New approximability and inapproximability results
for 2-dimensional packing. InProceedings of the 15th Annual Symposium on Discrete
Algorithms, pages 189–196. ACM/SIAM, 2004.

[18] Nikhil Bansal and Maxim Sviridenko. Two-dimensional bin packing with one dimen-
sional resource augmentation. Manuscript, 2005.

[19] Yair Bartal, Amos Fiat, Howard Karloff, and Rakesh Vohra. New algorithms for an
ancient scheduling problem.J. Comput. Systems Sci., 51:359–366, 1995.

[20] Laszlo A. Belady. A study of replacement algorithms forvirtual storage computers.IBM
Syst. J., 5:78–101, 1966.

[21] David Blitz, Andre van Vliet, and Gerhard J. Woeginger.Lower bounds on the asymptotic
worst-case ratio of online bin packing algorithms. Unpublished manuscript, 1996.

[22] Allan Borodin and Ran El-Yaniv.Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

[23] Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch Schieber. Competitive
paging with locality of reference.J. Comput. Systems Sci., 50:244–258, 1995.

[24] David M. Brooks, Pradip Bose, Stanley E. Schuster, HansJacobson, Prabhakar N. Kudva,
Alper Buyuktosunoglu, John-David Wellman, Victor Zyuban,Manish Gupta, and Pe-
ter W. Cook. Power-aware microarchitecture: Design and modeling challenges for next-
generation microprocessors.IEEE Micro, 20(6):26–44, 2000.

[25] Donna J. Brown. A lower bound for on-line one-dimensional bin packing algorithms.
Technical Report R-864, Coordinated Sci. Lab., Urbana, Illinois, 1979.

[26] Donna J. Brown, Brenda. S. Baker, and Howard. P. Katseff. Lower bounds for on-line
two-dimensional packing algorithms.Acta Informatica, 18:207225, 1982.

Bibliography 161

[27] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. A study of integrated prefetching
and caching strategies. InSIGMETRICS, pages 188–197, 1995.

[28] Alberto Caprara. Packing 2-dimensional bins in harmony. In Proc. 43th IEEE Symp. on
Found. of Comp. Science, pages 490–499, 2002.

[29] Alberto Caprara, Hans Kellerer, and Ulrich Pferschy. Approximation schemes for ordered
vector packing problems.Naval Research Logistics, 92:58–69, 2003.

[30] Alberto Caprara, Andrea Lodi, and Michele Monaci. Fastapproximation schemes for the
two-stage, two-dimensional bin packing problem.Mathematics of Operations Research,
30:150–172, 2005.

[31] Alberto Caprara and Michele Monaci. On the 2-dimensional knapsack problem.Opera-
tions Research Letters, 32:5–14, 2004.

[32] Soumen Chakrabarti, Cynthia A. Phillips, A. S. Schulz,David B. Shmoys, C. Stein, and
Joel Wein. Improved scheduling algorithms for minsum criteria. In Proc. 23rd Interna-
tional Colloquium on Automata, Languages, and Programming(ICALP), volume 1099
of Lecture Notes in Comput. Sci., pages 646–657. Springer, 1996.

[33] C. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Approximation techniques for av-
erage completion time scheduling. InProceedings of the 8th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 609–618, New York / Philadelphia, 1997. ACM /
SIAM.

[34] Chandra Chekuri and Michael A. Bender. An efficient approximation algorithm for min-
imizing makespan on uniformly related machines.Journal of Algorithms, 41:212–224,
2001.

[35] Chandra Chekuri and Sanjeev Khanna. On multidimensional packing problems.SIAM
Journal on Computing, 33(4):837–851, 2004.

[36] Jian-Jia Chen, Tei-Wei Kuo, and Hsueh-I Lu. Power-saving scheduling for weakly dy-
namic voltage scaling devices. InWorkshop on Algorithms and Data Structures, 2005.
To appear.

[37] Y. Cho and S. Sahni. Bounds for list schedules on uniformprocessors.SIAM Journal on
Computing, 9:91–103, 1988.

[38] Marek Chrobak and John Noga. LRU is better than FIFO.Algorithmica, 23:180–185,
1999.

[39] Fabián A. Chudak and David B. Shmoys. Approximation algorithms for precedence-
constrained scheduling problems on parallel machines thatrun at different speeds. In
ACM-SIAM Symposium on Discrete Algorithms, pages 581–590, 1997.

162 Bibliography

[40] Fan R. K. Chung, Michael R. Garey, and David S. Johnson. On packing two-dimensional
bins. SIAM J. on Algebraic and Discrete Methods, 3:66–76, 1982.

[41] Edward G. Coffman, Michael R. Garey, and David S. Johnson. Dynamic bin packing.
SIAM J. Comput., 12:227–258, 1983.

[42] Edward G. Coffman, Michael R. Garey, and David S. Johnson. Approximation algorithms
for bin packing: A survey. In D. Hochbaum, editor,Approximation algorithms. PWS
Publishing Company, 1997.

[43] Edward G. Coffman, Michael R. Garey, David S. Johnson, and Robert E. Tarjan. Perfor-
mance bounds for level oriented two-dimensional packing algorithms.SIAM J. Comput.,
9:808–826, 1980.

[44] Edward G. Coffman Jr., Peter J. Downey, and Peter M. Winkler. Packing rectangles in a
strip. Acta Inf., 38(10):673–693, 2002.

[45] Edward G. Coffman Jr. and Edgar N. Gilbert. Dynamic, first-fit packings in two or more
dimensions.Information and Control, 61(1):1–14, 1984.

[46] Don Coppersmith and Prabhakar Raghavan. Multidimensional online bin packing: Algo-
rithms and worst case analysis.Oper. Res. Lett., 8:17–20, 1989.

[47] Jose Correa and Claire Kenyon. Approximation schemes for multidimensional packing.
In Proceedings of the 15th ACM/SIAM Symposium on Discrete Algorithms, pages 179–
188. ACM/SIAM, 2004.

[48] Jose R. Correa. Resource augmentation in two-dimensional packing with orthogonal
rotations.Operations Research Letters. To appear.

[49] Janos Csirik. An online algorithm for variable-sized bin packing.Acta Inform., 26:697–
709, 1989.

[50] János Csirik, J. B. G. Frenk, and M. Labbe. Two dimensional rectangle packing: On line
methods and results.Discrete Appl. Math., 45:197–204, 1993.

[51] János Csirik and André van Vliet. An on-line algorithm for multidimensional bin packing.
Operations Research Letters, 13(3):149–158, Apr 1993.

[52] Janos Csirik and Gerhard J. Woeginger. Shelf algorithms for on-line strip packing.Inform.
Process. Lett., 63:171–175, 1997.

[53] János Csirik and Gerhard J. Woeginger. On-line packing and covering problems. In
A. Fiat and G. J. Woeginger, editors,Online Algorithms: The State of the Art, volume
1442 ofLecture Notes in Computer Science, pages 147–177. Springer-Verlag, 1998.

Bibliography 163

[54] János Csirik and Gerhard J. Woeginger. Resource augmentation for online bounded space
bin packing. InProceedings of the 27th International Colloquium on Automata, Lan-
guages and Programming, pages 296–304, Jul 2000.

[55] Mauro Dell’Amico, Silvano Martello, and Daniele Vigo.A lower bound for the non-
oriented two-dimensional bin packing problem.Discrete Applied Mathematics, 118:13–
24, 2002.

[56] Leah Epstein. On-line variable sized covering.Information and Computation, 171(2):
294–305, 2001.

[57] Leah Epstein. On variable sized vector packing.Acta Cybernetica, 16:47–56, 2003.

[58] Leah Epstein. Two dimensional packing: the power of rotation. InProc. of the 28th Inter-
national Symposium on Mathematical Foundations of Computer Science (MFCS’2003),
pages 398–407, 2003.

[59] Leah Epstein and Meital Levy. Dynamic multi-dimensional bin packing. Manuscript,
2006.

[60] Leah Epstein and Rob van Stee. Lower bounds for on-line single-machine scheduling.
In Proc. 26th Symp. on Mathematical Foundations of Computer Science (MFCS), volume
2136 ofLecture Notes in Comput. Sci., pages 338–350. Springer, 2001.

[61] Leah Epstein and Rob van Stee. Optimal online bounded space multidimensional pack-
ing. In Proc. of 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’04),
pages 207–216. ACM/SIAM, 2004.

[62] Leah Epstein and Rob van Stee. Online square and cube packing. Acta Informatica,
41(9):595–606, 2005.

[63] Leah Epstein and Rob van Stee. Bounds for online boundedspace hypercube packing.
Discrete optimization, 2007. To appear.

[64] Thomas Erlebach. Private communication, 2005.

[65] Ö. Ertug, M. Kallahalla, and P. J. Varman. Real time paralleldisk scheduling for vbr video
servers. InProc. of Fifth Intl. Conf. On Computer Science and Informatics (CSI’00),
Chennai, India, 2000.

[66] Anja Feldmann, Jiřı́ Sgall, and Shang-Hua Teng. Dynamic scheduling on parallel ma-
chines.Theoret. Comput. Sci., 130:49–72, 1994.

[67] Wenceslas Fernandez de la Vega and George S. Lueker. Binpacking can be solved within
1 + ε in linear time.Combinatorica, 1:349–355, 1981.

[68] Carlos E. Ferreira, Flavio K. Miyazawa, and Yoshiko Wakabayashi. Packing squares into
squares.Pesquisa Operacional, 19(2):223–237, 1999.

164 Bibliography

[69] Amos Fiat and M. Mendel. Truly online paging with locality of reference. InProc. 38th
Symp. Foundations of Computer Science (FOCS), pages 326–335. IEEE, 1997.

[70] Amos Fiat and Jared Saia. Censorship resistant Peer-to-Peer content addressable net-
works. In Proceedings of the 13th Annual ACM-SIAM Symposium On Discrete Algo-
rithms (SODA-02), pages 94–103, 2002.

[71] Rudolph Fleischer and Michaela Wahl. On-line scheduling revisited.J. Sched., 3:343–
353, 2000.

[72] Erich Friedman. Packing unit squares in squares: a survey and new results.Electronic J.
Comb., 7, 2000.

[73] D. K. Friesen and M. A. Langston. Variable sized bin packing. SIAM J. Comput., 15:222–
230, 1986.

[74] Satoshi Fujita and Takeshi Hada. Two-dimensional on-line bin packing problem with
rotatable items.Theoretical Computer Science, 289(2):939–952, 2002.

[75] Gabor Galambos. A 1.6 lower bound for the two-dimensional online rectangle bin pack-
ing. Acta Cybernet., 10:21–24, 1991.

[76] Gabor Galambos, H. Kellerer, and Gerhard J. Woeginger.A lower bound for online vector
packing algorithms.Acta Cybernet., 10:23–34, 1994.

[77] Gabor Galambos and Andre van Vliet. Lower bounds for 1-,2-, and 3-dimensional online
bin packing algorithms.Computing, 52:281–297, 1994.

[78] Michael R. Garey, Ronald L. Graham, David S. Johnson, and A. C. C. Yao. Resource
constrained scheduling as generalized bin packing.J. Combin. Theory Ser. A, 21:257–
298, 1976.

[79] Michael R. Garey, Ronald L. Graham, and Jeffrey D. Ullman. Worst-case analysis of
memory allocation algorithms. InProceedings of the Fourth Annual ACM Symposium on
Theory of Computing, pages 143–150. ACM, 1972.

[80] Michael R. Garey and David S. Johnson.Computers and Intractability: A Guide to the
theory of of NP-Completeness. Freeman and Company, San Francisco, 1979.

[81] T. Gonzalez, O. H. Ibarra, and S. Sahni. Bounds for LPT Schedules on Uniform Proces-
sors.SIAM Journal on Computing, 6(1):155–166, 1977.

[82] Todd Gormley, Nick Reingold, Eric Torng, and Jeffery Westbrook. Generating adver-
saries for request-answer games. InProceedings of the Eleventh Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 564–565. ACM-SIAM, 2000.

[83] Ronald L. Graham. Bounds for certain multiprocessor anomalies. Bell System Techical
Journal, 45:1563–1581, 1966.

Bibliography 165

[84] Ronald L. Graham. Bounds on multiprocessing timing anomalies.SIAM J. Appl. Math.,
17:263–269, 1969.

[85] Ronald L. Graham, Eugene Lawler, Jan Karel Lenstra, andAlexander H. G. Rinnooy
Kan. Optimization and approximation in deterministic scheduling: A survey.Annals of
Discrete Mathematics, 5:287–326, 1979.

[86] Flavius Gruian and Krzysztof Kuchcinski. Lenes: Task-scheduling for low-energy sys-
tems using variable voltage processors. InAsia South Pacific - Design Automation Con-
ference, pages 449–455, 2001.

[87] Xin Han, Kazuo Iwama, and Guochuan Zhang. Online removable square packing. InPro-
ceedings of the 3rd Workshop on Approximation and Online Algorithms (WAOA 2005),
Lecture Notes in Computer Science, pages 216–229. Springer, 2006.

[88] Xin Han, Deshi Ye, and Yong Zhou. Improved online hypercube packing. InProceedings
of the 4th Workshop on Approximation and Online Algorithms (WAOA 2006). To appear.

[89] Han Hoogeveen, Chris N. Potts, and Gerhard J. Woeginger. On-line scheduling on a
single machine: Maximizing the number of early jobs.Oper. Res. Lett., 27:193–196,
2000.

[90] J. A. Hoogeveen and Arjen P. A. Vestjens. Optimal on-line algorithms for single-machine
scheduling. InProc. 5th Conf. Integer Programming and Combinatorial Optimization
(IPCO), volume 1084 ofLecture Notes in Comput. Sci., pages 404–414. Springer, 1996.

[91] David A. Hutchinson, Peter Sanders, and Jeffrey Scott Vitter. Duality between prefetching
and queued writing with parallel disks. InAlgorithms - ESA 2001, 9th Annual European
Symposium, pages 62–73, 2001.

[92] Csanád Imreh. Online strip packing with modifiable boxes.Operation Research Letters,
66:79–86, 2001.

[93] Sandy Irani and Kirk Pruhs. Algorithmic problems in power management.SIGACT News,
2005.

[94] Klaus Jansen and Rob van Stee. On strip packing with rotations. InProceedings of the
37th ACM Symposium on Theory of Computing (STOC 2005), pages 755–761. ACM,
2005.

[95] Klaus Jansen and Guochuan Zhang. Maximizing the numberof packed rectangles. In
Proc. of the 9th Scandinavian Workshop on Algorithm Theory (SWAT’04), pages 362–
371, 2004.

[96] Klaus Jansen and Guochuan Zhang. On rectangle packing:maximizing benefits. In
Proceedings of the 15th Annual Symposium on Discrete Algorithms (SODA’04), pages
204–213, 2004.

166 Bibliography

[97] Janusz Januszewski and Marek Lassak. Online packing sequences of cubes in the unit
cube.Geometriae Dedicata, 67:285–293, 1997.

[98] David S. Johnson.Near-optimal bin packing algorithms. PhD thesis, MIT, Cambridge,
MA, 1973.

[99] David S. Johnson. Fast algorithms for bin packing.J. Comput. Systems Sci., 8:272–314,
1974.

[100] M. Kallahalla and P. J. Varman. Optimal read-once parallel disk scheduling. In6th
Workshop on Input/Output in Parallel and Distributed Systems, pages 68–77, 1999.

[101] M. Kallahalla and P. J. Varman. Optimal prefetching and caching for parallel I/O systems.
In 13th Symposium on Parallel Algorithms and Architectures, pages 219–228, 2001.

[102] D. R. Karger, Steven J. Phillips, and E. Torng. A betteralgorithm for an ancient schedul-
ing problem.J. Algorithms, 20:400–430, 1996.

[103] Anna Karlin, Mark Manasse, Larry Rudolph, and Daniel Sleator. Competitive snoopy
caching.Algorithmica, 3:79–119, 1988.

[104] Narendra Karmarkar and Richard M. Karp. An efficient approximation scheme for the
one-dimensional bin-packing problem. InProceedings of the 23rd Annual Symposium on
Foundations of Computer Science, pages 312–320, 1982.

[105] Hans Kellerer and Vladimir Kotov. An approximation algorithm with absolute worst-case
performance ratio 2 for two-dimensional vector packing.Oper. Res. Lett., 31(1):35–41,
2003.

[106] Claire Kenyon. Personal communication.

[107] Claire Kenyon and Eric Rémila. A near optimal solution to a two-dimensional cutting
stock problem.Mathematics of Operations Research, 25(4):645–656, 2000.

[108] Tracy Kimbrel and Anna R. Karlin. Near-optimal parallel prefetching and caching.SIAM
J. Comput., 29(4):1051–1082, 2000.

[109] Yoshiharu Kohayakawa, Flavio K. Miyazawa, PrabhakarRaghavan, and Yoshiko Wak-
abayashi. Multidimensional cube packing.Algorithmica, 40(3):173–187, 2004.

[110] L. T. Kou and G. Markowsky. Multidimensional bin packing algorithms. IBM J. Res.
Dev., 21:443–448, 1977.

[111] P. Krishnan and Jeffrey Scott Vitter. Optimal prediction for prefetching in the worst case.
SIAM J. Comput., 27(6):1617–1636, 1998.

[112] Piotr Krysta, Peter Sanders, and Berthold Vöcking. Scheduling and traffic allocation
for tasks with bounded splittability. InProc. of the 28th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2003), pages 500–510, 2003.

Bibliography 167

[113] Woo-Cheol Kwon and Taewhan Kim. Optimal voltage allocation techniques for dynam-
ically variable voltage processors.ACM Transactions on Embedded Computing Systems
(TECS), 4(1):211–230, 2005.

[114] C. C. Lee and D. T. Lee. A simple online bin packing algorithm. J. ACM, 32:562–572,
1985.

[115] Joseph Y.-T. Leung, Tommy W. Tam, C. S. Wong, Gilbert H.Young, and Francis Y. L.
Chin. Packing squares into a square.Journal on Parallel and Distributed Computing,
10:271–275, 1990.

[116] K. Li and K. H. Cheng. Generalized First-Fit algorithms in two and three dimensions.
Int. J. on Found. Comput. Sci., 2:131–150, 1990.

[117] K. Li and K. H. Cheng. Heuristic algorithms for online packing in three dimensions.J.
Algorithms, 13:589–605, 1992.

[118] Keqin Li and Kam-Hoi Cheng. A generalized harmonic algorithm for on-line multi-
dimensional bin packing. Technical Report UH-CS-90-2, University of Houston, January
1990.

[119] Keqin Li and Kam-Hoi Cheng. On three-dimensional packing. SIAM Journal on Com-
puting, 19(5):847–867, 1990.

[120] Keqin Li and Kam-Hoi Cheng. Static job scheduling in partitionable mesh connected
systems.Journal on Parallel and Distributed Computing, 10:152–159, 1990.

[121] Minming Li, Becky Jie Liu, and Frances F. Yao. Min-energy voltage allocation for tree-
structured tasks. In11th International Computing and Combinatorics Conference (CO-
COON 2005), 2005. To appear.

[122] R. Li and L. Shi. An on-line algorithm for some uniform processor scheduling.SIAM
Journal on Computing, 27(2):414–422, 1998.

[123] F. M. Liang. A lower bound for online bin packing.Inform. Process. Lett., 10:76–79,
1980.

[124] Jane W. S. Liu and C. L. Liu. Bounds on scheduling algorithms for heterogeneous com-
puting systems. In Jack L. Rosenfeld, editor,Proceedings of IFIP Congress 74, volume 74
of Information Processing, pages 349–353, 1974.

[125] Jiong Luo and Niraj K. Jha. Power-conscious joint scheduling of periodic task graphs
and aperiodic task graphs in distributed real-time embedded systems. InInternational
Conference on Computer Aided Design, pages 357–364, 2000.

[126] A. Meir and L. Moser. On packing of squares and cubes.J. Combin. Theory, 5:126–134,
1968.

168 Bibliography

[127] Ramesh Mishra, Namrata Rastogi, Dakai Zhu, Daniel Moss, and Rami G. Melhem. En-
ergy aware scheduling for distributed real-time systems. In International Parallel and
Distributed Processing Symposium, page 21, 2003.

[128] Flavio Keidi Miyazawa and Yoshiko Wakabayashi. An algorithm for the three-
dimensional packing problem with asymptotic performance analysis. Algorithmica,
18(1):122–144, 1997.

[129] Flavio Keidi Miyazawa and Yoshiko Wakabayashi. Approximation algorithms for the
orthogonalz-oriented 3-d packing problem.SIAM Journal on Computing, 29(3):1008–
1029, 1999.

[130] Flavio Keidi Miyazawa and Yoshiko Wakabayashi. Cube packing.Theoretical Computer
Science, 297(1-3):355–366, 2003.

[131] Flavio Keidi Miyazawa and Yoshiko Wakabayashi. Packing problems with orthogonal
rotations. In M. Farach-Colton, editor,Theoretical Informatics, 6th Latin American Sym-
posium, number 2976 in Lecture Notes in Computer Science, pages 359–368, 2004.

[132] Trevor Mudge. Power: A first-class architectural design constraint.Computer, 34(4):52–
58, 2001.

[133] E. Naroska and U. Schwiegelshohn. On an on-line scheduling problem for parallel jobs.
Information Processing Letters, 81(6):297–304, 2002.

[134] Pavel Novotný. On packing of squares into a rectangle. Archivum Mathematicum, 32:75–
83, 1996.

[135] Konstantinos Panagiotou and Alexander Souza. On adequate performance measures for
paging. InSTOC ’06: Proceedings of the thirty-eighth annual ACM symposium on Theory
of computing, pages 487–496, New York, NY, USA, 2006. ACM Press.

[136] C.A. Phillips, C. Stein, and J. Wein. Scheduling jobs that arrive over time. InProceed-
ings of the 4th Workshop on Algorithms and Data Structures (WADS’95), volume 955 of
Lecture Notes in Computer Science, pages 86–97. Springer, 1995.

[137] Kirk Pruhs, Patchrawat Uthaisombut, and Gerhard Woeginger. Getting the best response
for your erg. InScandanavian Workshop on Algorithms and Theory, pages 14–25, 2004.

[138] Ingo Schiermeyer. Reverse-fit: a 2-optimal algorithmfor packing rectangles. InAlgo-
rithms - ESA ’94, Proceedings Second Annual European Symposium, pages 290–299,
1994.

[139] Steve S. Seiden. An optimal online algorithm for bounded space variable-sized bin pack-
ing. SIAM Journal on Discrete Mathematics, 14(4):458–470, 2001.

[140] Steve S. Seiden. On the online bin packing problem.Journal of the ACM, 49(5):640–671,
2002.

Bibliography 169

[141] Steve S. Seiden and Rob van Stee. New bounds for multi-dimensional packing.Algorith-
mica, 36(3):261–293, 2003.

[142] Jiřı́ Sgall.On-line scheduling on parallel machines. PhD thesis, Technical Report CMU-
CS-94-144, Carnegie-Mellon University, Pittsburgh, PA, U.S.A., 1994.

[143] Jiřı́ Sgall. A lower bound for randomized on-line multiprocessor scheduling.Information
Processing Letters, 63:51–55, 1997.

[144] Hadas Shachnai and Tami Tamir. Multiprocessor scheduling with machine allotment and
parallelism constraints.Algorithmica, 32(4):651–678, 2002.

[145] David B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines on line.
SIAM J. on Computing, 24:1313–1331, 1995.

[146] Daniel Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules.
Commun. ACM, 28:202–208, 1985.

[147] Daniel D. K. D. B. Sleator. A 2.5 times optimal algorithm for packing in two dimensions.
Inform. Process. Lett., 10:37–40, 1980.

[148] W.E. Smith. Various optimizers for single-stage production. Naval Research Logistics
Quarterly, 3:59–66, 1956.

[149] Rob van Stee and Johannes A. La Poutré. Running a job ona collection of dynamic
machines, with on-line restarts.Acta Informatica, 37(10):727–742, 2001.

[150] A. Steinberg. A strip-packing algorithm with absolute performance bound 2.SIAM Jour-
nal on Computing, 26(2):401–409, April 1997.

[151] Leen Stougie. Unpublished manuscript, 1995.

[152] Leen Stougie and Arjen P.A. Vestjens. Randomized on-line scheduling: How low can’t
you go? Unpublished manuscript.

[153] Jeffrey D. Ullman. The performance of a memory allocation algorithm. Technical Report
100, Princeton University, Princeton, NJ, 1971.

[154] Arjen P. A. Vestjens.On-line Machine Scheduling. PhD thesis, Eindhoven University of
Technology, The Netherlands, 1997.

[155] Jeffrey Scott Vitter and P. Krishnan. Optimal prefetching via data compression.J. ACM,
43(5):771–793, 1996.

[156] André van Vliet. An improved lower bound for online bin packing algorithms.Inform.
Process. Lett., 43:277–284, 1992.

[157] André van Vliet.Lower and upper bounds for online bin packing and schedulingheuris-
tics. PhD thesis, Erasmus University, Rotterdam, The Netherlands, 1995.

170 Bibliography

[158] Gerhard J. Woeginger. There is no asymptotic PTAS for two-dimensional vector packing.
Inf. Process. Lett., 64(6):293–297, 1997.

[159] A. C. C. Yao. New algorithms for bin packing.J. ACM, 27:207–227, 1980.

[160] F. Frances Yao, Alan J. Demers, and Scott Shenker. A scheduling model for reduced cpu
energy. InIEEE Syposium on Foundations of Computer Science (FOCS 1995), pages
374–382, 1995.

[161] Han-Saem Yun and Jihong Kim. On energy-optimal voltage scheduling for fixed priority
hard real-time systems.ACM Transactions on Embedded Computing Systems, 2(3):393–
430, 2003.

[162] Guochuan Zhang. A 3-approximation algorithm for two-dimensional bin packing.Oper-
ations Research Letters, 33(2):121–126, 2005.

[163] Yumin Zhang, Xiaobo Hu, and Danny Z. Chen. Task scheduling and voltage selection for
energy minimization. InDesign Automation Conference, pages 183–188, 2002.

