Combinatorial algorithms for
packing and scheduling problems

Habilitationsschrift Universét Karlsruhe 2006

Rob van Stee

Contents

1 Introduction 1
1.1 Approximation algorithms 2
1.2 On-linealgorithms 2
1.3 Multidimensional packing 4
1.4 Scheduling e 6
1.5 Outlineofthethesis. 8
1.6 CreditS. e 9

| Multidimensional packing 13

2 Multidimensional packing problems: a survey 15
2.1 NextFitDecreasingHeight 16
2.2 Strippacking 81

221 Onlineresults 18
222 Offlineresults. 18
223 Rotations 20
2.3 Two-dimensional binpacking. 20
231 Onlineresults 20
23.2 Offlineresults. 22
2.3.3 Resource augmentation. 23
234 Rotations 23
2.4 Column (three-dimensional strip) packing 23
241 Onlineandofflineresults 23
242 Rotations e 24
2.5 Three- and more-dimensional binpacking 24
2.6 Vectorpacking 52
2.7 Variations e 72
2.7.1 Rectanglestretching 27
2.7.2 ltemsappearfromthetop 7 2
2.7.3 Dynamicbinpacking 28

2.7.4 Packingrectanglesinasinglerectangle 28

Contents
An approximation algorithm for square packing 31
3.1 Subroutines forthe algorithm 31
3.2 Algorithm o 33
3.3 Approximationratio. e 34
Optimal online algorithms for multidimensional packing 37
4.1 Packing hypercubes 38
4.2 Packinghyperboxes 44
4.3 \Variable-sizedpacking e 49
4.4 Resourceaugmentedpacking 00 . 53
4.4.1 The asymptotic performanceratio 53
45 Conclusions e 55
Packing with rotations 57
5.1 Strippacking 85
5.1.1 A3/2-approximation algorithm 59
5.1.2 Anasymptotic polynomial-time approximation scheme. 61
5.2 Two-dimensional binpacking., 67
53 Thissideup 74
5.4 Furtherapplications e 77
5.4.1 Three-dimensional strippacking 77
5.4.2 Three-dimensional binpacking. 79
55 Conclusion 80
Scheduling 81
Minimizing the total completion time online on a single madine, using restarts 83
6.1 Algorithm RSPT e 84
6.2 Global assumptions and eventassumptions. 86
6.3 Definitionsandnotation. L o 88
6.4 Amortizedanalysis 90
6.4.1 Creditrequirements. 92
6.4.2 Theinvariant 93
6.4.3 Analysisofanevent 96
6.5 Interruptions. 98
6.6 Jobcompletions 106
6.6.1 OPT runs at least three jobs befdRRIVE. 109
6.7 Interruptionss < x/2 111
Online scheduling of splittable tasks 117
7.1 Agreedyalgorithm 118
7.2 Computing the optimal makespan 119

7.2.1 Offline algorithmfol > (m+1)/2 120

Contents iii

7.3 Algorithm HGH(k,R) o o o 120
7.3.1 Manysplits 121
7.3.2 Thecaseof =m — 1fastmachines 123

7.3.3 Few splits on identicalmachines 126
7.4 A special case: four machines, twoparts 127

7.5 Conclusion L e 113
8 Speed scaling of tasks with precedence constraints 133
8.1 Motivation. e 33
8.2 Summaryofresults 134
8.2.1 Relatedresults 513
8.3 Formal problemdescription. e 135
8.4 Noprecedenceconstraints uan 136
8.5 Mainresults 371
8.5.1 Onespeedforallmachines. 137
8.5.2 Thepowerequality, 713
8.5.3 Algorithm 142
8.5.4 Analysis 144
9 Real-time integrated prefetching and caching 147
9.1 Problemdefinition 148
9.2 Problemproperties 149
9.3 Algorithm REALMISER e e 149
9.3.1 Analysisof RALMISER o v v i it et 151
9.4 Onlinealgorithms 156

9.5 Conclusions e 581

Chapter 1

Introduction

This thesis is concerned with various optimization proldenthe field of packing and schedul-
ing. We will develop algorithms for these problems that anargnteed to give solutions that
are not too far away from the optimal solution. There are tve@mapproaches developing such
algorithms. The first id. P-basedalgorithms, where the problem is first modeled as a linear
program (LP) by relaxing some of the constraints. The sofutf this linear program is then
rounded to find a feasible solution to the original problend e compare this solution to the
optimal solution to get a performance guarantee for theralgo.

The second approachésmbinatorialalgorithms. This is the approach that we will focus on
in this thesis. Here, we analyze the combinatorial strgotdila problem in order to find general
rules that can be proven to give good results for all problestainces.

In this thesis we will consider both approximation alganith (Section 1.1), that are given
a complete problem instance but need to generate a solutipnlynomial time, and online
algorithms (Section 1.2). Online algorithms receive tigdut incrementally and need to make
decisions without knowing the rest of the input. Such aliponis are required in situations where
solutions need to be generated over time and the input isaamhpletely known at the end of
processing.

The first part of our thesis is concerned with multidimenaldyn packing. Bin packing is
one of the oldest and most well-studied problems in compaaience [42, 53]. The study of this
problem dates back to the early 1970’s, when computer seias still in its formative phase—
ideas which originated in the study of the bin packing probleave helped shape computer
science as we know it today. The influence and importance®ptioblem are witnessed by the
fact that it has spawned off whole areas of research, inatyidie fields of online algorithms and
approximation algorithms. We introduce this part in Secttic3.

The second part of our thesis deals with another classiealiarcomputer science: schedul-
ing. This area has been studied intensively since the 1988]jsand many different problem
settings have been studied, for instance machines witardiit speeds (related machines) or
with availability constraints [149], jobs that have preeede constraints, jobs that need to be
executed in parallel, jobs that cannot be executed in ghratibs with different stages and
many, many other settings. We introduce this problem ar&eation 1.4.

An outline of the results described in this thesis can beddarsection 1.5.

2 Chapter 1. Introduction

1.1 Approximation algorithms

It can be shown for many important problems that determi@ngoptimal solution may be
extremely time-consuming due to their computational caxipy. The class of NP-complete
problems represents a large collection of such problemshadre all related in the sense that
a polynomial-time solution of one of them implies the polymal-time solvability of the whole
class. Up to now, no polynomial-time algorithm for an NP-qbete problem is known. For
more background about the complexity classes P and NP, seastance Garey and John-
son [80].

Example Given an input of: jobs of different sizes, assign themstomachines such that the
maximum load is minimized, where the load of a machine is tha size of the jobs assigned
to it. This problem is strongly NP-hard.

For such problems, we can try to find relatively simple alonis that are guaranteed to find
“nearly” optimal solutions. Arapproximation algorithnshould have a polynomial running time
and produce a feasible solution with cost at most some fastay from the optimal cost. This
factor is calledapproximation ratio We have the following definitions. We denote the cost of
an algorithmaLG on an input/ by ALG (7). The optimal cost of this input is denoted b®T(/).

Definition 1.1 An algorithm.4 for a minimization problenil has an approximation ratio qf
A(I) < poPT(1)
for any problem instanceé of II.

The definition for maximization problems is analogous, @td¢hat we now requir®pPT(/) <
pA(I) for any input/. Thus the approximation ratio is always a number which isigmethan
1. After all, an approximation ratio of 1 is not possible foPMomplete problems, unless P
= NP. We call an algorithm that runs in polynomial time and hpgraximation ratiop a p-
approximation algorithm.

Some problems have the property that for every 0, it is possible to find a solution which
has cost within a factor df + ¢ of the optimal cost.

Definition 1.2 A family of algorithms which takes as input a problem inseahand a desired
accuracye > 0, runs in time which is polynomial in the size of the input faya > 0 and
gives as output a solution which has cost at mast- ¢)opPT(/) is called apolynomial-time
approximation schem@TAS).

A fully polynomial-time approximation scheme is a PTAS which haming time polyno-
mial in both the size of the inputand in1/¢.

1.2 On-line algorithms

In many situations, decisions need to be made without fulMkadge of the problem at hand.
This holds in particular, when the result of a decision dejgen future events. We can model

1.2 On-line algorithms 3

such situations by online problems. An online problem israb@rized by an incrementally
appearing input, where the input needs to be processed andkein which it becomes available
and without knowledge of the rest of the input. An online aion is simply a list of rules for
processing such an input.

There are two ways in which an input can appear incrementdfly input can be given as a
list, where the remainder of the list (including its lenghhidden from the online algorithm, or
events can occur over time. We will encounter both of thegegyf inputs in this thesis.

Example A natural and important example of a problem with incomplietermation ispag-
ing, the problem of maintaining a small cache of fast memory imm@puter system. In this
problem, a controller has to decide which page to eject froendache when a program re-
guests a page that is not currently in the cache. If futureests are known, this is solved
optimally by ejecting the page which will be requested thst Emong all pages in the cache.
However, in real-life applications the sequence of futwguests will not be known, and the
decision has to be made in some other way. This problem haseelka lot of attention over the
years [3, 20, 23, 38, 103, 146].

There are many ways of measuring the performance of onlgaighms. In this thesis, we
will focus on the worst-case behaviour of algorithms. Sitiee cost for a particular instance
may be arbitrarily high, the behaviour of an algorithm sldco¢ compared to other algorithms
to get meaningful results. In particular, it is importankimow how much worse an algorithm
performs relative to anptimalalgorithm, in other words, how much worse it is than the optim
solution for any given problem instance. This kind of anelys known agompetitive analysjs
which was introduced by Sleator and Tarjan [146]. It invele®mparing the performance of
an on-line algorithm to the performance of an off-line alggon that knows the entire problem
instance in advance. We do not impose limits on the comuntakicomplexity of either the off-
line or the on-line algorithm. Therefore the off-line algbm can always generate an optimal
solution.

This type of analysis can be viewed as a game between tworplage on-line algorithm
and amadversarythat both generates the problem instance and serves it dslarealgorithm.
The adversary tries to maximize its performance relativ@éoon-line algorithm.

Many problems have been studied using competitive analbpgiart from the paging prob-
lem, these include a variety of scheduling problems, birkipag routing and admission control
on a network [8, 22, 83, 3, 71, 7].

The competitive ratio We consider both algorithms that seek to minimize a cost #at a
rithms that seek to maximize a benefit. We denote the costrmfib@f an algorithmA4 on an
input sequence by A(c). (The input sequence can appear over time or sequentidilye
optimal off-line cost for an input sequeneds denoted byoprPT(o).

We compare the ouptut of an on-line algorithinto oPT(o) using thecompetitive ra-
tio [146], which for algorithms that try to minimize a certainst@s defined as follows:

4 Chapter 1. Introduction

where the supremum is taken over all possible inputs. Faridiigns that try to maximize a
certain benefit, we define the competitive ratio as

R(A) = sup OZZ(S).

In both cases, the best on-line algorithm for a problem isoiine that has the lowest possible
competitive ratio, and this ratio is at least 1 for any pratle

The competitive ratio of a problem is definediat, R(.A). The goal is to find an algorithm
with competitive ratio close tmf 4 R(A).

The competitive ratio is clearly a worst-case measure, gndeermining the competitive
ratio of a certain problem, one can determine the benefit ofvikmg the entire problem instance
in advance. An advantage of such a comparison is that if ongeave that an algorithm has
a competitive ratio ofR, then any other algorithm can do at most a factoRobetter on any
input.

The asymptotic performance ratio In bin packing problems, we are usually interested in the
performance of algorithms on “typical” instances, for whtbe optimal cost increases with the
size of the inpuk:. To this end, we now define tlesymptotic performance rati@pproximation
ratio). For a given input sequeneelet costy (o) be the number of bins used by algorith4ron

o. Let costo) be the minimum possible number of bins used to pack items rheasymptotic
performance ratidor an algorithmA is defined to be

o 1. costy (o)
R = hin_)s;ip sgp {W

costo) = n}

Note that this ratio can be calculated both for online andftime problems. It is also known
as theasymptotic worst-case ratio

1.3 Multidimensional packing

In the simplest (one-dimensional) version of this probler,receive a sequeneeof pieces
1, P2, - - -, Pn. Each piece has a fixed size(io, 1]. We have an infinite number of bins each
with capacity 1. Each piece must be assigned to a bin. Futtleesum of the sizes of the pieces
assigned to any bin may not exceed its capacity. The goalnsirtomize the number of bins
used.

The study of multidimensional packing problems gained ameasing interest in the last
few years [17, 28, 47]. A main trend was the study of offline antine packing algorithms for
oriented items which are rectangles or boxes. Given a largplg of bins which are squares,
or cubes, or a strip of infinite height, the goal is to pack gesfficiently, without rotation, such
that the sides of all items are aligned with the sides of thp et the bins.

There are thus two main versionsdtlimensional packing problems:

1.3 Multidimensional packing 5

e Strip packing (d = 2 or d = 3). Here the items need to be packed into a strip of
unbounded height (the base is a unit interval or a unit squdieus each item must be
assigned a position such that the item is entirely contaméun the strip and does not
overlap with any other item. The goal is to minimize tiheximum height usefbr any
item. The strip packing problem has many applications,fsetance cutting objects out of
a strip of material in such a way that the amount of materiateis minimized.

e Box packing. We have an infinite number diins each of which is @-dimensional unit
hyper-cube. Each item = (s1(p),. .., sq¢(p)) must be assigned to a bin and a position
(x1(p), - .-, zq(p)), where0 < z;(p) andz;(p) + s;(p) < 1for1 < i < d. Further, the
positions must be assigned in such a way that no two itemseirsdime bin overlap. A
bin is empty if no item is assigned to it, otherwise it is us€de goal is to minimize the
number of bins used

We also consider the version whexationsare allowed. Although the possibility of al-
lowing rotations was already mentioned by [43], there hanhelatively little research into
this subject from a worst-case perspective until receilyhe above-mentioned application of
strip packing, allowing rotations corresponds to assuntiag the material used for cutting is
featureless (i.e., the orientation of the items on the slogs not matter). In practice, it is often
important that cutting takes place along horizontal origattines. We therefore focus on the
case where onlg0° rotations are allowed.

In the bounded spaceariant of the box packing problem, an algorithm has only @stant
number of bins available to accept items at any point durireggssing. The bounded space
assumption is a quite natural one, especially so in onlinegaaking. Essentially the bounded
space restriction guarantees that output of packed birteasly and that the packer does not
accumulate an enormous backlog of bins which are only ouwtipilte end of processing.

Known results Offline bin packing has received a great deal of attentiara &urvey see [42].
The most prominent results are as follows: Johnson [98] iaiist to study the approximation
ratios of both online and offline algorithms. Fernandez dedga and Lueker [67] presented
the first approximation scheme for bin packing. Karmarkat Earp [104] gave an algorithm
which uses at most cdst) + log?(cos{)) bins.

The classic (one-dimensional) online bin packing probleas irst investigated by Ull-
man [153]. He showed that thedST FIT algorithm has performance rat%@. This result was
then published in [79]. Johnson [99] showed that thexN FIT algorithm has performance
ratio 2. Yao showed that®/I1SED FIRST FIT has performance ratig), and further showed that
no online algorithm has performance ratio less t%e[ﬁ59]. Brown and Liang independently
improved this lower bound to 1.53635 [25, 123]. The lowertmbaurrently stands dt54014,
due to van Vliet [156]. Define

T+l = ﬂ-i(ﬂ-i - 1) + 17 ™ = 27

and

I, = Z L 169103,

m— 1
i=1 "

6 Chapter 1. Introduction

Lee and Lee presented an algorithm callegrRioNIC, which usesn > 1 classes and uses
bounded space. The fundamental idea efRMONIC is to first classify items by size, and
then pack an item according to its class (as opposed toddtiim exact size influence packing
decisions).

For the classification of items, we need to partition therirak(0, 1] into subintervals. The
standard ARMONIC algorithm uses\/ — 1 subintervals of the fornil/(i + 1),1/4] for i =
1,...,M — 1 and one final subintervaD, 1/M]. Each bin will contain only items from one
subinterval (type). Items in subinteniedre packed per bin fori = 1,..., M — 1 and the items
in interval M are packed in bins usingeXT FIT(i.e. a greedy algorithm that opens a new active
bin whenever an item does not fit into the current active bid, @ever uses the previous bins).

For any= > 0, there is a numbel/ such that the HRMONIC algorithm that used/ classes
has a performance ratio of at mddt+ ¢)II,, [114]. Lee and Lee also showed there is no
bounded space algorithm with a performance ratio bédlgw

In Chapter 2, we present a survey on multidimensional packin

1.4 Scheduling

In the standard scheduling problem,jobs with different processing requirements are to be
scheduled on one machine or onparallel identical machines. Jobs arrive over time and each
job has to be assigned to one of the machines and run therawonsly until it is completed.
Each machine can only run one job at a time. In the online prabthe online algorithm only
becomes aware of a job when it arrives. We also consider seewhere the jobs arrive one by
one (in a list) and each job arrives only after the previous luas been assigned.

The input is a job sequenee= { ./, ..., J,}. Each jobJ; arrives at itgelease time-; and
needs to be run fap, time on one of the machinesg(is thesizeor weightof .J;). J; is completed
after it has been running far; time, and the time at which this happens isatsnpletion time
¢;. The output of an algorithm is a schedul¢hat for each job determines when and on which
machine it is run.

Problem variations We can allow an algorithm tpreempta job, halting its execution and
continuing it later, possibly on a different machine. Welwiko considerelated machines,
where each machine has a speed which determines how lorigedt ta complete a job: on a
machine with speed, a job of sizew completes inw/s time. Furthermore, we will consider
variable-speednachines, where the speed of a machine can be changed atramybtit the
required power grows with some power of the speed. The egbattanship between power and
speed depends on the device at hand, but for most devicesfithe forms* for some value
a > 1. We will assume that there is a predetermined amount of éstefgy available, and it
needs to be allocated to machines and jobs to optimize thedlatdr Our results hold for any
value ofa > 1.

In some applications, jobs are not independent of eachdibeinstead some jobs may only
start after certain other jobs have run. We model thipi®cedence constraintyhese can be

1.4 Scheduling 7

represented by a graph, where there is a directed edge metweenodes if the job associated
with the second node may only start after the job associaitrtine first node has finished.

Optimality criteria We will discuss several criteria by which machine schedpéilgorithms
can be measured. This is first of all the maximum completimeinax ¢;, the time at which
the last job completes. This is also known as tekespan In the case that jobs arrive in a
list in stead of over time, the problem of minimizing the nraxim makespan is equivalent to
minimizing the maximum load over all the machinésad balancing Here a job size does not
represent the time that the job is running, but rather thewsrtinat this job adds to the load
of a machine when it is assigned to it. We consider the sdnatihere jobs can be split into a
limited amount of parts, and give online algorithms for nmaek of two speeds that are in some
cases optimal.

For problems where jobs arrive over time, we also considetdtal completion timé_ ¢;.
In particular, we consider the question of how to usstartseffectively to minimized_ ¢; in an
online environment on a single machine. A restart is wedkam &« preemption in that the work
done on a job is lost in case of a restart, and the job has torbagain from scratch. Prior to
our work, nothing positive was known about this.

Prefetching and caching We also consider a related problem which is called prefatchnd
caching. This is a classical technique for dealing with menieerarchies. Prefetching hides
access latencies by loading pages into the cache beforateéectually required [65, 100, 111,
155]. Caching avoids I/Os by holding pages that are needaia &ger [20, 23, 69, 135]. Since
both techniques compete for the same memory resourceskéssanse to look at the integrated
problem [4, 27, 101, 91, 108].

As a concrete (simplified) example consider a flight simulatexternally stored objects
could be topograhical data, textures, etc. At any partictilae, a certain set of objects is
required in order to play out the right screen content anchdauthout delays. A demo run
could be preplanned resulting in an offline version of thebfam. User interactions will result
in an online problem where we have a certain lookahead becamsaction of the user will
predetermine the screen content for some small amount ef tim

Known results Minimizing the makesparior the case that the jobs arrive one by one (load
balancing) was considered in a series of papers [83, 84,028,3]. Graham [83] introduced
the algorithm GREEDY. This algorithm schedules each arriving job on the leastddanachine.
The load of a machine is the sum of the loads of the jobs thassigned to it. Graham showed
that GREEDY has a competitive ratio af — 1/m, which is optimal form = 2 andm = 3.
Currently, the best upper bound for generals 1 + /(1 4+ In2)/2 ~ 1.920 due to Fleischer
and Wahl [71] and the best lower bound!i853 [82] based on Albers [3].

Chakrabarti, Phillips, Schulz, Shmoys, Stein and Wein [g2]e a 4-competitive algorithm
for minimizing thetotal completion tim@n parallel machines when jobs arrive over time, while
Vestjens [154] showed a lower bound of 1.309. For a singlehina¢ Hoogeveen and Vest-

8 Chapter 1. Introduction

jens [90] gave a 2-competitive on-line algorithm and shoted it is optimal. Two other opti-
mal algorithms were given by Phillips, Stein and Wein [1364 &tougie [151].

Using randomization, it is possible to give an algorithm ofmpetitive ratioe/(e — 1) =
1.582 [33] which is optimal [152]. Vestjens showed a lower boundLdf12 for deterministic
algorithms that can restart jobs [154]. This was improved.2108 by Epstein and van Stee
[60].

The offlinesplittable jobsproblem was studied by [144]. They showed that the problem is
NP-hard (already for identical machines) and gave a PTA8ridormly related machines. The
problem was also studied by [112] who gave an exact algontiich has polynomial running
time for any constant number of uniformly related machimedifferent model that is related to
our model is scheduling of parallel jobs. In this case, a jab $everal identical parts that must
run simultaneously on a given number of processors [66,.133]

We discuss previous work on prefetching and caching probier€hapter 9.

1.5 Outline of the thesis

Having discussed the topics of this thesis, we now give ahneubf the thesis and its main
results.

Part I: Multidimensional packing

e Survey (Chapter 2). In this chapter, we give a survey of tkalte that have appeared for
the several versions of multidimensional bin packing.

e Square packing (Chapter 3). In this problem, all input itemessquares, which need to be
packed into bins (unit squares) using only orthogonal pagki We present an algorithm
for square packing with an absolute worst-case ratio of 2¢chwvis optimal provided B
NP.

e Bounded space multidimensional bin packing (Chapter éistare now hyperboxes and
need to be packed into multidimensional bins. We presentiaded space algorithm and
show that this algorithm is also optimal, with an asymptpticformance ratio ofIl.).
This solves the problem of how to pack hyperboxes using oolynded space, which had
been open since 1993. Additionally, we present optimaheriiounded space algorithms
for several variations of this problem.

e Strip and bin packing with rotations (Chapter 5). Here, ialiswed torotate the items
to be packed by0°. We give results for six different packing problems withatidns:
two-dimensional strip and bin packing, three-dimensi@tap and bin packing, and the
so-called "This side up” problem in a three-dimensionajpsand in three-dimensional
bins.

1.6 Credits 9

Part Il: Scheduling

e Minimizing the total completion time (Chapter 6). We showho use restarts on a single
online machine to get an algorithm with competitive ratj@. Without restarts, a ratio
better than 2 is not possible, and there are algorithms that & ratio of 2 [90, 136, 151].
Ours is the first algorithm to break the barrier of 2 and thesfitst algorithm that uses
restarts efficiently for this goal function.

e Splittable tasks (Chapter 7). We consider jobs that nee@ t&cheduled om machines
and that can be split into at masparts. On identical machines, we show how to improve
on a simple greedy-type algorithm. For the case where a sabde machines has speed
s > 1, we give an algorithm which is optimal for sufficiently large

e Speed scaling (Chapter 8). We give@flog m)-approximation algorithm for minimizing
the makespan for job with precedence constraints:qarallel variable-speed machines,
where there is a global bound on the amount of energy availabl

e Prefetching and caching (Chapter 9). We present a new thiegdneodel for this problem.
For this model, we present an I/0-optimal algorithm whicesua “semi”-greedy approach
and runs in quadratic time. Additionally we consider theirmmlproblem. We show that
competitive algorithms are possible using resource autatien on the speeandlooka-
head, and we provide a tight relationship between the amafur@source augmentation
on the speed and the amount of lookahead required.

An overview of the most important notations is given in Tablg.

1.6 Credits

In this section we list the papers on which the chapters aseda

Chapter 2 is based on Leah Epstein and Rob van Stee, Multigiomeal packing problems,
to appear in Teofilo Gonzalez (EditoApproximation Algorithms and Metaheuristics

Chapter 3 is based on Rob van Stee, An approximation algofithsquare packingQper-
ations Research Letter82(6):535-539, 2004.

Chapter 4 is based on Leah Epstein and Rob van Stee, Optitred algorithms for multi-
dimensional packing problemSJAM Journal on Computing85(2):431-448, 2005.

Chapter 5 is based on Klaus Jansen and Rob van Stee, On sikipgavith rotations, in
Proc. of 37th ACM Symposium on Theory of Computing (STOC)2005755-761, ACM,
2005, and on Leah Epstein and Rob van Stee, This sideA@W Transactions on Algorithms
2(2):228-243, 2006.

Chapter 6 is based on Rob van Stee and Johannes A. La Poutrigixihg the total com-
pletion time on a single on-line machine, using restadtsjrnal of Algorithms57(2):95-129,
2005.

Chapter 7 is based on Leah Epstein and Rob van Stee, Onliedidoiy of splittable tasks,
ACM Transactions on Algorithm&(1):79-94, 2006.

10

SIS

Alo)
OPT

Chapter 1. Introduction

an (approximation or online) algorithm

input sequence for the algorithm, e. g. a job sequence
cost or benefit of algorithml on inputo

optimal (off-line) algorithm

competitive ratio of4

number of items in the input

the:th item to be packed (square, box, hyperbox)

size of itemp in the jth dimension

volume (or area) of iterp

position of itemp in the jth dimension (in a certain packing)
weight of itemp

weight of itemp in the jth dimension (where applicable)
type of itemp

type of itemp in the jth dimension

number of machines (or number of off-line machines)
thesth job

its release time

its size or weight

its completion time

the speed at which it runs (in Chapter 8)

the power at which it runs (in Chapter 8)

Table 1.1: An overview of the notation. The top section definetation for the entire thesis,
the middle section is for Part | (multidimensional packiagd the third section is for part Il

(scheduling).

1.6 Credits 11

Chapter 8 is based on Kirk Pruhs, Rob van Stee and Patchraiaisombut, Speed scaling
of tasks with precedence constraints,Hroc. 3rd Workshop on Approximation and Online
Algorithms (WAOA 2005)p. 307-319, volume 3879 dfecture Notes in Computer Science
Springer, 2006. To appear Ttheory of Computing Systems

Chapter 9 is based on Peter Sanders, Johannse Singler, andiiRtee, Real-time prefetch-
ing and caching, manuscript.

12

Chapter 1. Introduction

Part |

Multidimensional packing

13

Chapter 2

Multidimensional packing problems: a
survey

As stated in the Introduction, there are several ways torgéime the bin packing problem to
more dimensions. In this chapter, we consider two- and tdneensional strip packing, and
bin packing in dimensions two and higher. Finally we considggtor packing and several other
variations.

In the most common two-dimensional version, the items attangles or squares, and the
bins are unit squares. In the strip packing probem, instéduins, we are given a strip of
width 1 and unbounded height. In higher dimensions, thearggtes are replaced by boxes
(or hyperboxes), the squares by cubes (or hypercubes) hanghit square by a unit cube (or
hypercube of the relevant dimension). Strip packing besooodumn packing.

A striking difference between one-dimensional bin packang its multidimensional gener-
alizations is that while for one-dimensional bin packinfflime algorithms clearly outperform
online algorithms, this is not always the case in more dinugrss There are several cases where
an online algorithm was at one point the best known appratkémaalgorithm, or remains the
best known approximation until today. Most likely, this gilyreflects the fact that we do not
understand the multidimensional case as well as the onerdiilonal case. One the other hand,
some results simply cannot be generalized. For instancepweknow that there cannot be an
APTAS for two-dimensional bin packing [17], or for two-dim&onal vector packing [158].

An important special case in multidimensional bin and sigpking is the case where (hyper-
)cubes need to be packed. For this case, better results annkhan for the general case. In
particular, the offline version of this problem admits an AST[17, 47].

As is the case for one-dimensional bin packing, most atiartias gone to the asymptotic
worst-case ratio, but in the course of this chapter we witloemter some results on the absolute
ratio as well.

Rotations When packing of rectangle or boxes is considered, thereeaeya ways to define

the problem. In the oriented problem, items have a fixed tateam, and cannot be rotated. In
the rotatable (or non oriented) version, an item can beeadtahd placed in any position such
that its sides are parallel to the sides of the bin. Finalréhare mixed versions where items

15

16 Chapter 2. Multidimensional packing problems: a survey

can be rotated in certain directions, but not all directio@®e such three-dimensional model
where items can be rotated to the left or to the right but tpeatad bottom must remain such is
the “z-oriented” packing [129, 131] studied by Miyazawa aNakabayashi, also known as the
“This Side Up” problem.

An illustration of the difference between the two problemgiven in Figure 2.1. In this
figure we see packings of rectangles of sidlend2. If the rectangles are oriented so that their
height is% and cannot be rotated, we can pack at most two such items ibionélowever, if
rotation is allowed, we can pack as much as four such reaarigether in one bin.

DALY,

==

DALY,

Figure 2.1: A comparison between the oriented and the td&ataodels

This chapter is organized as follows. We begin by presenitieaglgorithm Next Fit Decreas-
ing Height (NFDH), which is a fundamental algorithm for twlonensional packing problems, in
Section 2.1. We then discuss results on multidimensioreipg problems, in order of increas-
ing dimension. That is, we start with strip packing in Sect®2 and move to two-dimensional
bin packing in Section 2.3. We then discuss column packin§eation 2.4 and three- and
more-dimensional bin packing in Section 2.5. Finally, wentian results on vector packing in
Section 2.6 and discuss several variations on multidino@a$packing in Section 2.7.

2.1 Next Fit Decreasing Height

In 1968, Meir and Moser [126] introduced an algorithm for kiag d-dimensional cubes into

a d-dimensional hyperbox, which they called Next Fit DecreggINFD). This algorithm sorts
the cubes by decreasing volume and packs them into layeesadihors show that if the sides

of the cubes are denoted by, z-, . . ., and they are packed into a hyperbox of sides . . , a4
wherez; < a; fori =1,...,d, then the cubes can be packed into the hyperbox as long as thei
total volume is at most

Ford = 2 (packing squares into a rectangle), the algorithm workobews. The largest
square is put in the bottom left corner of the rectangle. Tdiglit of the first layer is equal to
the side of this square. The next squares are put in this, lag&t to each other and touching
each other and the bottom of the layer, until one does not fitthis point we define a new
layer above the first layer, with height equal to the side effitst square packed into it. This

2.1 Next Fit Decreasing Height 17

N

Figure 2.2: An illustration of a packing of NFDH (left) and @Shelf packing algorithm (right).

continues until all squares are packed, or there is not dnocamm to pack some item (it does
not fit into the current layer, and the last layer that is legither empty or not high enough).

This algorithm (for two dimensions) was extended to an aligor for packing rectangles
into a rectangle (or a strip) by Coffman, Garey, Johnson amghii [43], which was called Next
Fit Decreasing Height (NFDH). It sorts the rectangles byrélasing height and then packs them
as above.

They showed that if this algorithm is applied to pack rectasgnto a strip (of unbounded
height), then the height used to pack the rectangles is at twaze the optimal height, plus
an additive constant which is equal to the height of the haghectangle. (Thus its absolute
worst-case ratio is 3.)

The proof is quite straightforward. In each level, there rhaywasted space to the right of
the rightmost item, and above all items except the first. Tdght of a level is the height of the
first item in it. This item did not fit on the previous level. Bimplies that the total area of the
items in leveli plus the first item in level+ 1 is at least the height of levék- 1 (since the width
of the strip is 1). (If we move all items in levélp to level: + 1, and shift the first item in level
7 + 1 to the right, then level + 1 is entirely covered by items.)

Adding up the heights of all levels, this is upper boundedvieige the area of the packed
items plus the height of the first level. This explains thégenance bound including the addi-
tive constant, since the total area is an obvious lower béomthe optimal height.

This fundamental algorithm was used in many later paperssapwutine. It works espe-
cially well when all rectangles are guaranteed to have alsmdth (relative to the width of the
strip), and this property was for instance used by KenyonRémila [107] in their approxima-
tion scheme for strip packing.

Meir and Moser also showed the following important resuthia same paper [126].

Theorem 2.1 Any set of rectangles with sides at mosind total areaA can be packed into any
rectangle of size x bif a > z andab > 2A + a?/8. This result is best possible.

18 Chapter 2. Multidimensional packing problems: a survey

For packing rectangles into a unit square, this result sthi any set of rectangles of total
area at mosi/16 (and sides not larger than 1) can be packed into a unit square.

2.2 Strip packing

2.2.1 Online results

Baker and Schwarz [13] were the first to study two-dimendionéne strip packing. They in-
troduced a class of algorithms callglelf algorithmsA shelf algorithm uses a one-dimensional
bin packing algorithmd and a parameter € (0, 1). Iltems are classified by height: an itemis in
classs if its height is in the intervala®~!, o°]. Each class is packed in separatelveswhere
we useA to fill a shelf and open a new shelf when necessary. Note teadltiorithmA is not
necessarily on-line. See Figure 2.2 for an illustration shelf algorithm.

Baker and Schwarz showed that the algorithm FIRST FIT SHElfch uses FIRST FIT
as a subroutine, has an asymptotic performance ratioanbjtclose to 1.7. Csirik and Woegin-
ger [52] showed that by using HARMONIC as a subroutine, itasgible to achieve an asymp-
totic performance ratio arbitrarily close ta, ~ 1.69103. Moreover, they show that any shelf
algorithm, online or offline, has a performance ratio of asl&,. The idea of the lower bound
is that items are given that could be combined nicely nextattheother, but which end up
in different height classes and are therefore packed inragpahelves. So basically, the best
thing one can do is to use a bounded space algorithm (whicla lsagstant number of simul-
taneously active bins) like HARMONIC as the subroutine.alinthey mention that from the
one-dimensional lower bound of van Vliet [156] togetheritie insights of Baker, Brown and
Katseff [10] implies a general lower bound for online algioms of 1.5401. It remains an open
problem how to improve the upper bound of Csirik and Woegindtedoes not seem easy to
find a good on-line algorithm that does not use shelves. Athlmabsolute performance ratio,
Brown, Baker and Katseff [26] showed a lower bounddbr any algorithm. They also show
some lower bounds for algorithms that may sort they items.

2.2.2 Offline results

The strip packing problem was introduced in 1980 by Bakeffr@an and Rivest [12]. They
developed the first offline approximation algorithms foisthroblem, and give an upper bound
of 3 on the absolute performance ratio. This bound was latpraved to2 independently by
Schiermeyer [138] and by Steinberg [150], using differgopraaches. In the same issue of
SIAM Journal on Computing, Coffman, Garey, Johnson andaig# 3] showed that NFDH has
an asymptotic performance ratio of 2, FFDH achieves a value7 and an algorithm called
Split-Fit has3/2. Also in 1980, Sleator [147] gave an algorithm with asymigtperformance
ratio 2.5, but absolute performance ratio of 2, which isdyethhan that of Split-Fit, which has
3. In 1981, Baker, Brown and Katseff [10] gave an offline aidywn with asymptotic worst
case rati®o /4. Finally, Kenyon and Rémila [107] designed an asymptatily fpolynomial time
approximation scheme.

This scheme uses some nice ideas, which we describe below.

2.2 Strip packing 19

Fractional strip packing A fractional strip packing of_ is a packing of any lisL’ obtained
from L by subdividing some of its rectangles by horizontal cutschegectangle(w;, h;) is
replaced by a sequence of rectandles h!), (w;, h2), ..., (w;, h¥) such thatzg‘f”i:1 h! = h,.

In the case that contains only items of distinct widths in(¢’, 1], wheres” > 0 is some
constant, it is possible to find a fractional strip packinglofvhich is within 1 of the optimal
fractional strip packingspP(L) in polynomial time. Moreover, it is possible to turn this g
into a regular strip packing at the loss of only an additivestant2m. Denote the height of the

optimal strip packing fo. by opT(L). We conclude that we find a packing with height at most

FSP(L) + 1+ 2m < OPT(L) +2m + 1 (2.2)

Modified NFDH (Next Fit Decreasing Height) This is a method for adding narrow items
(items of width at most’) to a packing of wide items such as described above. Suchkingac
leaves empty rectangles at the right hand side of the stgeh Bf these rectangles is packed
with narrow items using NFDH (starting with the highest oarritem in the first rectangle).
When all rectangles have been used, the remaining itemsy(jfaae packed above the packing
using NFDH on the entire width of the strip.

First Fit Decreasing Height (FFDH) FFDH is a natural variation on NFDH, which each time
uses First Fit to find a level for the current item to be packéue following theorem was proved
by Coffman et al. [43].

Theorem 2.2 Let L be any list of rectangles ordered by non-increasing heigithsthat no
rectangle inL has width exceeding/m for somem > 2. Then

FFDH(L) < (1+1/m)A(L) + 1,

whereA(L) is the total area of the items ih.

Grouping and rounding This method is a variation on the linear rounding defined by &e-
dez de la Vega and Lueker [67]. It works as follows.

We stack up the rectangles 6fby order of non-increasing widths to obtain a left-justified
stack of total height(L). We definen — 1 threshold rectangles, where a rectangle is a threshold
rectangle if its interior or lower boundary intersects sdine y = ih(L)/m for somei €
{1,...,m—1}. We cut these threshold rectangles along the linesii(L)/m. This createsn
groups of items that have height exadtiyr.) /m.

First, the widths of the rectangles in the first group are daghup to 1, and the widths of
the rectangles in each subsequent group are rounded upwoedést width in that group. This
definesL, .

Second, the widths of the rectangles in each group are rawhalen to the widest width of
the next group (down to O for the last group). This defihes

It is easy to find a strip packing fdr_ using a reduction to fractional strip packing. More-
over, it can be seen that the stack associated Wwiths exactly the union of a bottom part of

20 Chapter 2. Multidimensional packing problems: a survey

width 1 and height.(L)/m and the stack associated with.. Thus
FSP(L) < FSP(Ly) = FSP(L_) + h(L)/m. (2.2)

Partial ordering We say thaf, < L' if the stack associated fo(used for the grouping above),
viewed as a region of the plane, is contained in the stackcaged tol’. Note thatl < L'
implies thatFrsA(L) < FSP(L'). As an example, in the grouping above we have< L < L, .

2.2.3 Rotations

The upper bound of 2 of NFDH and Bottom Leftmost DecreasindtiMiBLDW) remain valid if
orthogonal rotations are allowed, since the proofs use am@g arguments. Miyazawa and Wak-
abayashi [131] presented an algorithm with asymptotic@agpration ratio of 1.613. In Chapter
5, Section 5.1.1, we present a simpler algorithm which aglsie@n asymptotic approximation
ratio of 3/2. This algorithm packs items that are wider and higher th@optimally, and packs
remaining items first next to this packing (where possibie) tinally on top of this packing. In
this way, the resulting packing is either optimal, or almadkheights a width o®/3 is occupied
by items. Finally, approximation schemes were given by damasid van Stee [94]. We present
the combinatorial polynomial-time approximation schemoa this paper in Chapter 5, Section
5.1.2.

2.3 Two-dimensional bin packing

We saw in section 2.2.1 that we can use a one-dimensionakdoking algorithm as a subrou-
tine for a strip packing algorithm, basically without a losgasymptotic) performance ratio.
Similarly, a two-dimensional bin packing algorithm can b®ed as a subroutine to create a
three-dimensional strip packing algorithm, and this alsla$ for higher dimensions.

On the other hand, @&dimensional strip packing algorithm can also be used taterad-
dimensional bin packing algorithm at a cost of a factor of iwthe performance ratio. The idea
IS to cut the packing generated by the strip packing algaritito pieces of unit height. For each
piece we do the following. Items that are completely corgdim the piece are put together in
one bin. Items that are partially in the next piece are puettogy in a second bin. See Figure
2.3.

Say we have a guarantee fif on the asymptotic performance ratio of the strip packing
algorithm. Then this method gives 2& - OPT(L) + C bins for an input., whereoPT(L) is the
height of the optimal strip packing. On the other hand, tlearenot be &in packing into less
thanopPT(L) bins, because this packing could be trivially turned intdrgp acking of height
less tharopPT(L). This explains the factor of two loss.

2.3.1 Online results

Coppersmith and Raghavan were the first to study the onlirgoreof this problem. They
gave an online algorithm with asymptotic performance rafi®.25 ford = 2 (and 6.25 for

2.3 Two-dimensional bin packing 21

——
— b bl - - - - =z R
7 E
e
-—- - - - - - - - - - - - - - - - ———— - —— e
==
=
I e e
=
e
\ L

Figure 2.3: Converting a packing in a strip into a packingiitsb

d = 3) [46]. This result was improved by Csirik et al., who presehan algorithm with perfor-
mance ratio 3.0625 [50]. In the same year, Csirik and vantgéhewed an online bin packing
algorithm for arbitrary dimensions, which achieves a penfance ratio o, whered is the
dimension [51]. Note that already fak = 2, this improves over the previous result, since
h% =~ 2.85958. (See also [118] forl = 2,3.) Finally, Seiden and van Stee [141] gave an
algorithm with ratio 2.66013 for two-dimensional bin paudyi

In Chapter 4, Section 4.2, we describe a new technique fddpgsmall multidimensional
items online, enabling us to achieve the asymptotic perdmee ratio ofh?. [51] using only
bounded space.

Galambos [75] was the first to give a lower bound for this peablwhich was higher than
the best known lower bound for one-dimensional bin packiHg bound was 1.6. This was
later successively improved to 1.808 by Galambos and vast #i7], 1.851 by van Vliet [157],
and finally to 1.907 by Blitz, van Vliet, Woeginger [21]. Thagbetween the upper and lower
bounds remains relatively large to this day, and it is urrcteawv to improve either of them
significantly.

An interesting special case is where all items are squaregp&smith and Raghavan [46]
showed that their algorithm has an asymptotic performaatie of 2.6875 for this case, and
gave a lower bound of/3. This lower bound actually holds for the more general pnwble
of packing hypercubes. Seiden and van Stee [141] showedhaigorithm HARMONICx
HARMONIC, which uses the HARMONIC algorithm to find slices ftems, and then uses the
HARMONIC algorithm again to find bins for slices, has an asyatip performance ratio of at
most 2.43828. They gave a lower bound of 1.62176 for any eralgorithm, and also showed
a lower bound of 2.28229 for bounded space algorithms ubiagame instances.

22 Chapter 2. Multidimensional packing problems: a survey

Epstein and van Stee [62] give an algorithm with asymptoédgymance ratio at most
2.24437, and improved the lower bound to 1.6406. The uppendaevas recently improved
to 2.1439 by Han, Ye and Zhou [88]. Here too, the gap between the lowetlzmupper bounds
remains disappointingly large. Finally, Epstein and va@eS63] give bounds for the perfor-
mance of the optimal bounded space algorithm from Chapt&edtion 4.1, showing that its
performance ratio lies between 2.3638 and 2.3692.

2.3.2 Offline results

As mentioned at the start of this chapter, Bansal and Svikderoved that the two-dimensional
bin packing problem is APX-hard [17]. Thus, there cannot b@symptotic polynomial time
approximation scheme for this problem.

Chung, Garey and Johnson [40] were the first to give an apmation algorithm for this
problem. It has an asymptotic approximation ratio of 2.125.mentioned above, the APTAS
for strip packing by Kenyon and Rémila implie$z+ «)-approximation for any > 0. In 2002,
Caprara [28] gave A,.-approximation.

Leung et al. [115] proved that the special case of packingglinto squares is still NP-hard
(for general two-dimensional bin packing, this follows imdmately from the one-dimensional
case). Ferreira, Miyazawa, and Wakabayashi [68] gave &4apBroximation for this problem,
which uses as a subroutine an optimal algorithm for packiems with sides larger thary 3.
They conjecture that packing items with sides larger thahis already NP-hard. Indepen-
dently of eachother, Kohayakawa et al. [109] and Seiden andBtee [141] gave @4/9 + ¢)-
approximation(1.5555 . .. +). However, the first result is more general in that it actugiixes
a(2—(2/3)?+ ¢)-approximation for packing-dimensional hypercubes. The idea of both these
algorithms is to find an optimal packing for large items (itewith sides larger than) and to
add the small items to this packing. Specifically, any bingh@aoptimal packing which contain
only a single item with sides larger thap2 are filled with small items using the algorithm Next
Fit Decreasing (NFD) from Meir and Moser (see Section 21lis $hown that all other bins are
already “reasonably full”, leading to the approximatioragantee.

In the same year, Caprara [28] gave an algorithm with permice ratio in the interval
(1.490, 1.507) provided a certain conjecture holds. Two years later, Epsted van Stee [61]
gave &(16/11 + ¢)-approximation1.4545 . . . +). Simultaneously and independently of each
other, Bansal and Sviridenko [17] and Correa and Kenyon 4&$ented an asymptotic poly-
nomial time approximation scheme for this problem, whicéoalorks for the more general
problem of packing hypercubes.

Recently, Bansal, Lodi and Sviridenko [15] showed anotpecil case of the two-dimen-
sional bin packing problem which admits an APTAS. This igaagle packing, where the pack-
ing of each bin must be possible to achieve using guillotirte only. That is a sequence of edge
to edge cuts, parallel to the edges of the bin. Even more apeases, where the number of
stages in the sequence of guillotine cuts is limited, weudistl by Caprara, Lodi and Monaci
[30]. They designed an APTAS for the two stage problem. Nbéeshelf packing described
above actually uses two stages of guillotine cuts. Keny@hRé&mila [107] point out that their
approximation scheme uses five stages of guillotine cuts.

2.4 Column (three-dimensional strip) packing 23

As regards the absolute performance ratio, Zhang [162] gavapproximation algorithm
with absolute worst-case ratio of 3 for two-dimensional patking. In Chapter 3, we present
an absolute 2-approximation for square packing, which & by the result of Leung et
al. [115].

2.3.3 Resource augmentation

Since there cannot be an approximation scheme for genevaditwensional bin packing, sev-
eral authors have looked at the possibility of resource aumgation, i.e., giving the approxima-
tion algorithm slightly larger bins than the offline algbm that it is compared to. Correa and
Kenyon [47] give a dual polynomial time approximation scleemhat is, they give a polynomial
time algorithm to pack rectangles into thebins of sizel + ¢, where these rectangles cannot
be packed in less thanbins of size 1. Bansal and Sviridenko [18] showed that it isgide to
achieve this even if the size of the bin is relaxed in one dsi@nonly.

2.3.4 Rotations

For the case where rotations are allowed, Epstein [58] st@meonline algorithm with asymp-
totic performance ratio of 2.45. The online problem was igtithefore by Fujita and Hada [74].
They presented two online algorithms and claimed asymppeiformance ratios of at most
2.6112 and 2.56411. Epstein [58] mentioned that the projg4honly shows that the first algo-
rithm has an asymptotic performance ratio of at most 2.628®Bthat the proof of the second
algorithm is incomplete.

Two years later, Miyazawa and Wakabayashi [131] gave amefélilgorithm with asymptotic
performance ratio 2.64. In Chapter 5 (Section 5.2), we prtess@ approximation algorithm with
asymptotic performance ratio 2.25. It divides the iteme iypes and combines them into bins
such that in almost all bins, an areadgb is occupied. Correa [48] adapted the dual polynomial
time approximation scheme from [47] to rotatable items.

2.4 Column (three-dimensional strip) packing

2.4.1 Online and offline results

Li and Cheng were the first to consider this problem. In thaipgr [119] from 1990, they
showed that three-dimensional versions of NFDH and FFDH hibounded worst-case ratio.
They gave several approximation algorithms, the best o€lwhas an asymptotic performance
ratio of 3.25. Their first algorithm sorts the items by heightl then divides them into groups
of area (in the first two dimensions) at m@st 6, so that they can be packed into a single layer
by Theorem 2.1. They improve on this by classifying itemdwgitmilar bottoms, and packing
similar items together into layers. Two items have similaitems if both their length and their
width fall into the same class when classified by the HARMOIdlgobrithm. For the case where
all items have square bottoms, the ratio improves to 2.6875.

24 Chapter 2. Multidimensional packing problems: a survey

Two years later, the same authors [117] presented an orlgoetam with asymptotic per-
formance ratio arbitrarily close t? =~ 2.89 for three-dimensional strip packing. At the time,
there was no bettasffline approximation known. This algorithm uses the HARMONIC algo
rithm as a subroutine in both horizontal dimensions (i.efirtd a strip for a two-dimensional
item, and a place inside a strip for a one-dimensional itemg, a geometric rounding for the
heights. The paper actually discusses several onlineitiiges for this problem and only men-
tions the use of HARMONIC in the summary section. The autimote that the improvement
in the asymptotic performance ratio compared to the appration algorithm from their earlier
paper [119] only comes at the cost of a high additive constant

In 1997, Miyazawa and Wakabayashi [128] improved the offlipper bound to 2.66994
(2.36 for items with square bottoms). This algorithm placelsmns of similar items next to
eachother in the strip, thus avoiding the layer structutb®previous algorithms. The algorithm
is quite involved and its description takes three pagess fidmains the best result to date.

2.4.2 Rotations

In the case where rotations are allowed, it becomes relevhat exactly the dimensions of
the strip are. In two-dimensional strip packing, this doesneally play a part, but in column
packing, the base of the column might not be a square.

However, if the base is not a square but may be an arbitratgnigle, then having the ability
to rotate items horizontally (leaving the top side unchagkes not help, as was shown by
Miyazawa and Wakabayashi [129]. The idea is that in this dasepossible to scale the input
so that the smallest width of an item is still larger than #rggth of the base of the strip, so that
no item can be rotated and still fit inside the strip. For tle@son, in this section we focus on
the case where the base of the strip is a square.

In Chapter 5 (Section 5.4.1), we give an approximation allgrwith asymptotic worst-case
ratio of9/4 = 2.25, improving on the upper bound of 2.76 by Miyazawa and Wakabla{131].
The special case where only rotations that leave the topo$idems at the top are allowed has
received more attention. It was introduced by Li and Ched§]as a model for a job scheduling
problem in partitionable mesh connected systems. Herejehélis given by a triplez;, y;, t;),
meaning that job needs a submesh of dimensians< y; or y; x x; for t; time units. They give
an algorithm for minimizing the makespan (i.e., the heidlhe packing) which has asymptotic
performance bound%. This was improved to 2.543 by Miyazawa and Wakabayashi][181
Chapter 5 (Section 5.3), we present a 2.25-approximation.

2.5 Three- and more-dimensional bin packing

At present, the online bounded space algorithm from Chaht8ection 4.2 is the best (online
or offline) algorithm for packing multidimensional itemganbins for any dimensioad > 3.
Clearly, this problem is APX-hard as well since it includés two-dimensional bin packing
problem as a special case [17].

Blitz, van Vliet, and Woeginger [21] gave a lower bound of 2LXor online algorithms for

2.6 Vector packing 25

d = 3. However, there is no good lower bound known for larger dish@ms: nothing above 3.
It appears likely that the asymptotic performance boundgfanline algorithm must grow with
the dimension.

For the special case of packing hypercubes online in diroessgi > 4, there is no bet-
ter lower bound than theé/3 given by Coppersmith and Raghavan [46] (which works in any
dimensiond > 2).

The bounded space algorithm from Chapter 4, Section 4. hi®ptoblem has a performance
ratio which is sublinear ia: it is O(d/ logd) andQ(log d).

Ford = 3 (online cube packing), Miyazawa and Wakabayashi [130] ®ubthat the algo-
rithm of Coppersmith and Raghavan [46] has an asymptotiopeance bound of 3.954. Ep-
stein and van Stee [62] give an algorithm with asymptotiégrerance ratio at most 2.9421, and
a lower bound of 1.6680. The upper bound was improveli@®52 by Han, Ye and Zhou [88].
Furthermore, Epstein and van Stee [63] give bounds for theqmmeance of the bounded space
algorithm from Chapter 4, Section 4.1, showing that its @enfance ratio lies between 2.95642
and 3.0672.

As was seen in section 2.3.2, we can do even better offline.orBéBansal and Sviri-
denko [17] and Correa and Kenyon [47] gave their asymptatignmmial time approximation
scheme for any dimensiah > 2, Miyazawa and Wakabayashi [130] gave two approximation
algorithms, of which the best had an asymptotic performaate of 2.6681. Soon afterwards,
Kohayakawa et al. [109] presented their paper which we dssadiin section 2.3.2 as well. For
d = 3, its asymptotic performance boundiis/27 + ¢ ~ 1.7037 ... + ¢.

2.6 Vector packing

In this section we discuss the non-geometric version of idiaiensional bin packing. Thé-
dimensional “vector packing”, or “vector bin packing” ptelm is defined as follows. The bins
are instances of the “all-1” vectdd, 1, ..., 1) of lengthd. Items ared-dimensional vectors,
whose components are all ji, 1]. A packing is valid if the vector sum of all items assigned
to one bin cannot exceed the capacity of the bin (i.e., 1) inGamponent. Since all bins are
identical, the goal is to minimize the number of bins used.

The problem can be seen as a scheduling problem with limésdurces. The machines
(with correspond to bins) have fixed capacities of sevelsdueces as memory, running time,
access to other computers etc. The items in this case ardljabseed to be run, each job
requires a certain amount of each resource. Another apiplicarises from viewing the problem
as a storage allocation problem. Each bin has several iggadi$ volume, weight etc. Each item
requires a certain amount of each quality. Both applicatiare relevant to both offline and
online environments.

For many years there were very few results on this problerthdirst paper which obtained
an APTAS for classical bin packing [67], Fernandez de la \@@gé Lueker implies &d + ¢)-
approximation for the vector packing problem. This impmbwery slightly on some online
results. These results were an upper bound-6f1 on the performance ratio of any algorithm
for which the output never has two bins that can be combineendy Kou and Markowsky

26 Chapter 2. Multidimensional packing problems: a survey

[110], and a tight bound on the performance of First Fit/of 1—70 given by Garey et al. [78].
Note that this is a generalization of the tight bounc%)for First Fit in one dimension.

Since these results were obtained, for a while there wasthapan APTAS would be found
for this problem. However, Woeginger proved in [158] thatess P = N P, there cannot be
such an APTAS, already for two-dimensional vectors. Clganbre restricted classes of vectors
may still admit an APTAS. One such type of input is one wheexdhs a total order on all
vectors. In [29], Caprara, Kellerer and Pferschy showetldhaPTAS for this problem indeed
exists.

The offline result for the general case was finally improvediwekuri and Khanna [35].
They designed an algorithm of asymptotic performahce ed + O(ln%). If dis seen as a
constant, the best ratio achieved in this wagisn d). They proved that for an arbitrary it is
APX-hard to approximate the problem within a factordof= for every fixed positivee. This
was shown using a reduction from graph coloring.

The online result was not improved since 1976. Lower boumdthe performance ratio of
online algorithms, that tend tbasd grows, were shown by Galambos, Kellerer and Woeginger
[76]. Improved lower bounds were given by Blitz, van VliehdaWoeginger [21], but this
construction also tends tasd grows.

As for the absolute approximation ratio, Kellerer and Kofb05] designed an algorithm
for two-dimensional vector packing with absolute approadion ratio of at mos®. Recently,
Erlebach [64] showed a non-constant lower bound for on tiselake performance ratio for this
problem. Interestingly, the method is similar to the onedusg Chekuri and Khanna to show
the hardness of approximation. The lower bound holds foayenptotic performance ratio if
d is not seen as a constant, i.e., for arbitréry

As for variable sized packing, the online problem was stuithg Epstein [57]. In this prob-
lem, the algorithm may use bins out of a given finite subsets $hbset contains the standard
“all-1” vector, and possibly other vectors. The cost of aisithe sum of its components. She
showed that there exists a finite set where an online algorgan achieve performance ratio
1+ ¢ (by defining the class of bins to be dense enough), whereasn@iher set (which contains
except for the “all-1” bin only bins that have relatively sineomponents), the ratio must be
linear. Clearly, no matter what the set is, there exists amlgorithm with linear performance
ratio.

Analogously to the bin covering problem, we can define théoremvering problem, where
the vector sum of all vectors assigned to one biatieastl in every component. This problem
was studied by Alon et al. [5]. In this paper it was shown tl&t performance ratio of any
online algorithm is at least+ % A linear upper bound dld is achieved by an algorithm which
partitions the input into classes. The same paper cont#finsearesults as well. An algorithm
of performance guarantég(log d) is presented as well as a simple and fast 2-approximation for
d=2.

In [56] some results on variable sized vector covering arergi These results focus on cases
where all bins are vectors of zeros and ones. The benefit ofexed bin is the sum of its non-
zero components. The considered cases for the bins set fokoas. A set which consists of
a single type of bin, a set of all unit vectors (all componemeszero except for one), unit prefix
vectors (some prefix of the vector consists of ones only) hadet of all zero-one vectors.

2.7 Variations 27

2.7 Variations

2.7.1 Rectangle stretching

Imreh [92] studied an oriented online strip packing problehere rectangles can be stretched
in a way that results in a larger height but the original afdate that allowing stretching that
increases the width makes the problem trivial as all itemsldvbe stretched to have the same
width as the bin. He showed that the offline problem is polymdignsolvable, and that if the
online problem is considered under the asymptotic perfagaaatio measure (and assuming an
upper bound of 1 on the original height of any rectangle), the performance ratio can be made
arbitrarily close to 1. Therefore, the main results are fier absolute performance ratio. There
are algorithms of performance rati6sand4, and a lower bound of.73 on the performance
ratio of any online algorithm.

2.7.2 Items appear from the top

A “Tetris like” online model was studied in a few papers. Thassimilar to strip packing,
however, in this model, a rectangle cannot be placed dyretits designated area, but it arrives
from the top as in the Tetris game, and should be moved canisiy around only in the free
space until it reaches its place, (see figure 2.4), and themotde moved again.

In [9], the model was introduced by Azar and Epstein. In thebgy, both the rotatable
and the oriented models were studied. For the rotatable inadeapproximation algorithm
was designed. The situation for the oriented problem is nddfigult, as no algorithm with
constant approximation ratio exists for unrestricted tspif the width of all items is bounded

below bye and/or bounded above ly— ¢, the authors showed a lower boundtf, /log %) on

the performance ratio of any online algorithm for any deiarstic or randomized algorithm.
Restricting the width, they designed @rlog %)-approximation algorithm.

Figure 2.4: The process of packing an item in the “Tetris’likedel

The oriented version of the problem was studied by Coffmamyiey and Winkler [44].
They assume a probabilistic model where item heights anthwidre drawn from a uniform
distribution on[0, 1]. They show that any online algorithm which packg#ems has an asymp-
totic expected height of at leaBt313827n and design an algorithm of asymptotic expected
height 0f0.369764n.

28 Chapter 2. Multidimensional packing problems: a survey

2.7.3 Dynamic bin packing

A multidimensional version of a dynamic bin packing modéhieth was introduced in [41] for
the one-dimensional case, was studied recently by EpsteirLavy [59]. This is an online
model where items do not only arrive but may also leave. Egehtas an arrival or a departure
of an item. Durations are not known in advance, i.e., an &lguoris notified about the time that
an items leaves only upon its departure. An algorithm magrrange the locations inside bins,
but the items may not migrate between bins. In [59], the samlelem was studied in multiple
dimensions.

In two dimensions, they designed a 4.25-approximationrélgo for dynamical packing
of squares, and provided a lower bound2dt307 on the performance ratio. For rectangles
the upper and lower bounds &8&754 and3.7 respectively. For three-dimensional cubes they
presented an algorithm which is5a37037-approximation, and a lower bound of 2.117. For
three-dimensional boxes, they supplietba346-approximation algorithm and a lower bound of
4.85383. For higher dimensions, they define and analyzddbathm NFDH for the offline box
packing problem. This algorithm was studied before foraegte packing (two-dimensional
only) [43], and for square and cube packing for any dimen$i@®6, 109], but not for box
packing. Ford-dimensional boxes they provided an upper bound o3.5¢ and a lower bound
of d + 1. Note that, as already mentioned in this survey, the bestd&aown for the regular
offline multi-dimensional box packing problem is exponahdis well. For-dimensional cubes
they provided an upper bound 6f(-%) and a lower bound df.

One older paper by Coffman and Gilbert [45] studies a relagrethlem. In this problem,
squares of a bounded size, which arrive and leave at vaiioes tmust be kept in a single bin.
The paper gives lower bounds on the size of such a bin, so hequaares can fit. It is not
allowed to re-arrange the locations in the bin.

2.7.4 Packing rectangles in a single rectangle

Another version is concerned with maximizing the numbegaaor weight of a subset of the
input rectangles, that can be packed into a larger rectdabigven height and width). The max-
imization problem with respect to the number of rectanglas studied already in 1983 by Baker
et al. [11]. They designed an asympto§kapproximation. This offline problem was recently
studied by Jansen and Zhang [96, 95]. The first paper corsidbe case of weighted rectan-
gles, and maximizing the total weight packed, whereas thergtone considered unweighted
rectangles, and maximizing the number of packed rectanglesproblem is considered without
rotation.

In [96], Jansen and Zhang proved that there exists an asyimp®TAS, and an absolute
PTAS, for packing squares into a rectangle. For rectangisgave an approximation algorithm
with asymptotic ratio of at most two, and a simple one with bsddute ratio o2 + <. In [95],
Jansen and Zhang gave a more complicated algorithm for tighteel case with an absolute
ratio of 2 + . This algorithm has higher running time than the one for tmeeighted problem.
A special case of weights is simply the area of rectangles.arba maximization problem was
studied by Caprara and Monaci [31]. They designed an alguntith (absolute) approximation

2.7 Variations 29

ratio3 + e.

An online version was studied by Han, lwama and Zhang [87ihigwversion, we are given a
unit square bin, rectangles arrive online, and the algariteeds to decide whether to accept an
arriving rectangle or not. The goal is again to maximize theked area. They showed that if the
algorithm is not allowed to remove rectangles acceptederptst, no algorithm with constant
approximation ratio exists. This holds already for squarkds easy to see that this holds
with the following example. Take a first square which is vemya#i, and another one which
fills the bin completely. An algorithm must accept the firstage and therefore cannot accept
the larger one. Next, they show that there is no algorithninw@nstant approximation ratio
exists for rectangles, even if the algorithm is allowed tmoge previously accepted rectangles.
Therefore, the paper studies removable square packingréeéscribing the results, we discuss
a related paper which was used in this paper.

Januszewski and Lassak [97] studied a similar problem fitoapbint of view of finding a
thresholdy < 1 such that a set of squares of total area of at masin be always packed online
in a bin, without re-arranging the contents of the bin. Thiegvged that% is a lower bound
on a. Moreover, the considered this problem for multidimenaiaubes, and showed a lower
bound ofzd—l_1 for d > 5. For the packing they used a nice tool which they called Isrick
brick is a rectangle, where the ratio of the maximum betwesgtt and width to the minimum
between the two remains the same after cutting the rectamgléwo identical parts. Clearly,
this can work if the ratio is/2.

Han, lwama and Zhang [87] adopted this method. They showadattly algorithm has
performance ratio of at leagt+ 1 ~ 2.618. They designed a matching algorithm for the case
where re-arranging is allowed, and a 3-approximation @lgorwithout re-arranging. A direct
consequence is that a lower boundofor two dimensions i%.

Finally, another related problem is packing squares oargges into a square or rectangle
of minimum size, where arbitrary rotations are allowed (st over90°). For example, five
unit squares can be packed inside a square with%id%ﬂ, by placing four squares in the
corners and one in the center at™ angle. For a survey on packing equal squares into a square,
see [72]. Novotny [134] showed that any set of squares withl tarea 1 can be packed in a
rectangle of area at most 1.53 (without rotations).

Chapter 2. Multidimensional packing problems: a survey

= ¢ __
_ y

—

Figure 2.5: The optimal packing for five unit squares

Chapter 3

An approximation algorithm for square
packing

Square packing is a special case of two-dimensional binipgakhere all the input items are
squares. These items need to be packed into bins which drequires using only orthogonal
packings. The items must be assigned positions in such ahaayno two items in the same bin
overlap. The goal is to minimize the number of bins used.

Most of the previous work on bin packing has focused orethyemptotic performance ratio
(approximation ratio), where the focus is on the long-teghdvior of algorithms. In contrast,
in the current chapter we consider thigsoluteapproximation ratio [138, 150].

Attaining an absolute approximation ratio &fis more difficult than attaining an asymptotic
approximation ratio ofR, because in the second case an algorithm is allowed to “ivaste
constant number of bins, which allows e.g. the classificatibitems followed by a packing
where each class is packed separately.

Leung et al. [115] showed that it is NP-hard to determine Wwaiebr not a given set of squares
can be packed in a single bin. This implies that there canea polynomial-time algorithm
with an absolute approximation ratio less than 2, unlessRP. Such an algorithm could be
used to determine (in polynomial time) whether a set of segfits into a single bin: for a given
set of items, if that algorithm packs them into two bins, tikeaynot be packed in a single bin
because the absolute approximation ratio is strictly leas 2.

We now present an algorithm for square packing with an abs@lpproximation ratio of 2,
which is optimal provided P4 NP.

3.1 Subroutines for the algorithm

We define thesizeof a squarey, denoted by (p), as the length of one of its edges. We classify
items according to their sizeHugeitems have size greater than3. Big items have size in
(1/2,2/3]. Medium-sizedtems have size ifi1/3, 1/2]. Finally, smallitems have size at most
1/3.

All the non-small items will be packed using the algorithmr&T FIT DECREASING SIZE

31

32 Chapter 3. An approximation algorithm for square packing

(FFDS). This algorithm works as follows. First, huge and ibégns are packed into bins: one
item per bin, in order of increasing size. Each item is plaoes corner of its bin. This gives a
list B of bins. Next, the medium-sized items are sorted in orderecfehsing size, giving a list
L.
The algorithm now does the following repeatedly. It checkether the first three items of
L' can be packed together with the first binfini.e. the one that contains the smallest big item.
If the three items fit there, they are placed there; otherthisdirst four items froni.” are put
in a new, empty bin. The packed items are then removed ftQrthe first bin is removed from
B if it was used to pack them, and the algorithm continues irstitae way. IfB = () at some
point, the remaining items ih’ are packed four to a bin in new bins, until all items are packed
Ferreira, Miyazawa, and Wakabayashi [68] define FFDS andkepiee following.

Lemma 3.1 (Ferreira, Miyazawa, Wakabayashi [68]) Let L be a list of squares that all have
size greater thari /3. Then the algorithm FFDS applied tb generates a packing where each
bin, except possibly one, contains

e One big or huge item and no medium-sized items, or
e One big item and three medium-sized items, or
e Four medium-sized items

The remaining bin, if there is one, contains at most threm#eincluding at most one big item.
The packing that FFDS generates is an optimal packing’for

To pack the small items, we will use the algorithneEXr FIT DECREASING (NFD) as a
subroutine. The version of the algorithm considered heckgaquares into a rectangle of size
a x b. The idea of this algorithm is very simple. First we sort tqeares into non-increasing
order. We pack items into slices. The width of a slicé.i$Ve use NexT FIT on the sorted list
of items, considering the slices as bins. When a new slickasaded, its height is set equal to
the height of the first item placed in it. Since the items arekpd in order of non-increasing
size, subsequent items fit in the slice. Slices are allodabedthe rectangle going from bottom
to top. The algorithm halts either when all items are packe#hen it is impossible to allocate
a slice. In the later case, some items remain unpacked.

Meir and Moser [126] introduce BT FIT DECREASING and prove the following Lemma:

Lemma 3.2 (Meir & Moser [126]) Let L be a list of squares with sidas > =, > ... ThenL
can be packed in a rectangle of height z; and widthb > z; usingNEXT FIT DECREASING
if one of the following conditions is satisfied:

e the total area of items i, is at mostz? + (a — x;)(b — x1).

e the total area of items ii is at mostub/2.

3.2 Algorithm 33

3.2 Algorithm

In this section, we give a detailed description of the akhpon. We start by applying the algo-
rithm FFDS from [68] to the items of size greater thgf8. After this, only the small items
remain to be packed. These items are packed in three stegtssdime point during these three
steps, all small items are already packed, the algorithis.hal

1. Bins containing only a big item and no medium-sized itenesfiled further with small
items.

2. Abin containing at most three medium-sized items, or atbrg and at most two medium-
sized items, is used if it exists. There can be at most onelsndhy Lemma 3.1.

3. Finally, if there are still small items left, they are padkinto bins by themselves.

The details of these three steps are described below.

Step 1 Bins with one big item, but no medium-sized itefibe big item is placed into the
lower left corner of the bin. Denote its size by The remaining area can be divided into two
rectangles, one of dimensioh$y 1 — x at the top of the bin and one of dimensidns x by «
next to the big item. Use Next Fit Decreasing to pack the festangle. Continue until an item
can no longer be placed, place that item in the second rdetaNgte that this is possible since
the big item has size at maat3 and small items have size at mags.

Step 2A A bin with only one medium-sized itefAack items as in Step 1, the medium-sized
item in the lower left corner.

Step 2B A bin with two items, at least one medium-siz@thce the largest item, of size, in
the lower left corner of the bin. Place the second largest itext to it, aligned with the bottom
of the bin and as far to the left as possible. There is an umpeduegion of dimensions 1 by
1 — x; at the top of the bin. Pack small items into this region usifdIN

Step 2C A bin with three items, at least two medium-sizethce the first two items as in Step
2B. Place the third item, of size;, on top of the first one, aligned with the left edge of the bin
and as far down as possible. This leaves an unoccupied re§aimensiond — z3 by 1 — z;

in the top right corner of the bin. Pack small items into tiegion using NFD.

Step 3 Bins with only small itemsPack items into new bins using NFD, opening a new bin
whenever items can no longer be placed in the current bin.

34 Chapter 3. An approximation algorithm for square packing

3.3 Approximation ratio

Lemma 3.3 If there are any unpacked small items left after Step 2, eachhat is packed so
far contains a total area of at leady/9.

Proof The lemma clearly holds for any bins with huge items.

Bins that are packed in Step 1 or 2 are packed exactly as inrtioé @f Lemma 4.3 in [141].
Step 1 and 2A correspond to Case 2 from that proof, Step 2B goonds to Case 4 and 2C
corresponds to Case 5.

It follows immediately from that proof that in all cases, teed area is at lea$t9. O

Lemma 3.4 Consider a bin that is packed in Step 3. If after packing this there are still
unpacked small items left, it contains a total area of at{€d$6.

Proof We distinguish between cases. Since all items have size sttinf®y at least nine items
can be packed together in the bin, and NFD allocates at leieest slices.

Case 1 The first slice contains at least four items.

Denote the size of the largest item bythe size of the largest item in the second slice by
and the size of the first item that can no longer be placed. byenote the total area of items
starting from the second slice fy By Lemma 3.2, we havé + 2% > y> 4+ (1 —y)(1 —z —).
Therefore in the entire bin we pack at least

x2+4y2+(1—y)(1—x—y)—222x2+3y2+(1—y)(1—x—y):g.

oz
g has a minimum o£9/48 > 9/16 for {(z,y) € R?|0 < z < 1/3,

attained forz = 1/3 andy = 5/24.

We have?? = 2z + y — 1, which is negative fo < z < 1/3 and0 < y < 1/3. We find that
0<y

Y
<y < 1/3}, which is

In the remaining cases, the four largest items do not fit reegath other in a bin.

Case 2 The first slice contains three items, but the second sliceagmat least four items.
Denote the sizes of the first items in the first three slices,hyandz, respectively. Denote
the sizes of the other items in the first slicedqy z,. Again using Lemma 3.2, we pack at least

i +as+ P +32+ (1—-2)(1—2—y—2).

We are interested in its minimum under the conditionsthat - <y < 2y < 2, < x < 1/3
andz + x1 + 25 +y > 1. By distinguishing between the cages< 2/9 andy > 2/9, we find
that this function has a minimum @f.3/1296 > 0.5733 > 9/16 which is attained for = 1/3,
T =129 =y =2/9andz = 13/72.

3.3 Approximation ratio 35

Case 3 The first two slices both contain three items.

Denote the size of the largest item bythe size of the largest item in the second slice by
y and the size of the second largest item in the second slice By Lemma 3.2, any set of
squares with total area at m@st— = — y) /2 can be packed by NFD starting from the third slice.
Thus NFD packs at leaét — = — y)/2 — 2% in that region, and in total at least

P43+ (-2 —y)/2

We haver > 1/4,y > 1/4, andz > (1 — y)/3 since there are only three items in the first two
slices. The expression is monotonically increasing,im andz on this domain, and we find that
itis at least9/16 (attained forr = y = z = 1/4). O

Theorem 3.1 The algorithm has an absolute approximation ratio of 2.

Proof Denote the number of bins with a huge item/yhe number of bins that have a big item
(but no medium-sized items) by the number of bins with medium-sized items (and possibly a
big item) bym and the number of bins with (only) small items of total areéeast9/16 by s.

Our algorithm may generate one bin (the last one) that hassmnall items but with total area
less thard/16. Thus the number of bins produced by the algorithm is at most

h+b+m+s+1.

Since FFDS is an optimal algorithm, for the optimal soluttmT we findoPT > h+ b+ m.
Thus aslongas+ 1 < h+ b+ m, our algorithm uses at most twice as many bins as an optimal
solution.

Supposes > h + b+ m. Firstof all, if h + b +m = 0, then by Lemma 3.4 we have
OPT > l%s. If s = 0, thenoPT = 1 (assuming nonzero input) and the algorithm is optimal.
OtherwiseOPT > s/2, and therefor@pPT > (s + 1)/2.

Supposes > h + b+ m > 1. This implies that there are bins packed with only small
items. In other words, we do not run out of items while paclksngall items in Steps 1 or 2.
Lemma 3.3 guarantees that in this case, all bins packed sotfigain a total area of at leasto9.
Furthermore, all bins with only small items, except possthk last one, have total area at least
9/16 by Lemma 3.4.

Thus in the case that > h + b + m, each bin except possibly the last one is on average
strictly more than half full, sincé/9 + 9/16 > 1 ands > 1. (Note that if the last bin with only
small items does not contain at least an are@/ab, it is not counted irs.) This implies that
any packing of this input requires strictly more th@n+ b + m + s)/2 bins, and therefore at
least(h + b+ m + s + 1) /2 bins. This concludes the proof. O

36

Chapter 3. An approximation algorithm for square packing

Chapter 4

Optimal online algorithms for
multidimensional packing

This chapter is concerned with online multidimensionakpag problems. Apart from the stan-
dardd-dimensional packign problem which was defined in the Inicdidn, we also consider
the following variants:

¢ In the hypercube packingroblem we have the restriction that all items are hypersube
I.e. an item has the same size in every dimension.

¢ In variable-sizedbin packing, bins of various sizes are available to be useg@doking
and the goal is to minimize the total size of all the bins used.

¢ In resource-augmentelin packing, the online algorithm has larger bins at its désp
than the offline algorithm, and the goal is to minimize the benof bins used.

The offline versions of these problems are NP-hard, while euth unlimited computational
ability itis impossible in general to produce the best passsolution online. We consider online
approximation algorithms.

The on-line one-dimensional variable-sized bin packingbfem was first investigated by
Friesen and Langston [73]. Csirik [49] proposed theRVABLE HARMONIC algorithm and
showed that it has performance ratio at mdst. Seiden [139] showed that this algorithm is
optimal among bounded space algorithms.

The on-line one-dimensional resource augmented bin pggkoblem was studied by Csirik
and Woeginger [54]. They showed that the optimal boundedespasymptotic performance ratio
is a functionp(b) of the sizeb of the bins of the online algorithm.

Our Results:

e We begin by presenting a bounded space algorithm for theipgck hypercubes. An
interesting feature of the analysis is that although we sti@nalgorithm is optimal, we
do not know the exact asymptotic performance ratio. The asytic performance ratio is
Q(logd) andO(d/ logd).

37

38 Chapter 4. Optimal online algorithms for multidimensiopatking

¢ We then extend this algorithm to a bounded space algorithigeioeral hyperbox packing
and show that this algorithm is also optimal, with an asyriptperformance ratio of
(Il,)?. This solves the problem of how to pack hyperboxes using bolynded space,
which had been open since 1993.

e We present a bounded space algorithm for the variable-smétidimensional bin pack-
ing problem. As for the first algorithm above, we do not know #xact asymptotic
performance ratio.

e We then give an analogous algorithm for the problem of resmaugmented online bin
packing. This algorithm is also optimal, and it has an aswtipiperformance ratio of
Hle p(b;) whereb; x --- x b, is the size of the bins that the online algorithm uses.

We will use the well-known technique of weighting functiofisis technique was originally
introduced for one-dimensional bin packing algorithms31%3]. In [141], it was demonstrated
how to use the analysis for one-dimensional algorithms toegilts for higher dimensions. In
contrast, in the current chapter we will define weightingctions directly for multidimensional
algorithms, without using one-dimensional algorithmsasrsutines.

New Technique: To construct the bounded space algorithm we adapt some af¢he used in
previous work. Specifically, the algorithm of [51] also r@gd a scheme of partitioning bins
into sub-bins, and of sub-bins into smaller and smallerlsins: However, in order to keep a
constant number of bins active, we had to introduce a newadeshclassifying items. Our key
improvement is that there is not one single class of “sm#dihis like all the standard algorithms
have, but instead we partition the items into an infinite neands classes that are grouped into a
finite number of groups. The hypercube packing algorithns aseeasier scheme for the same
purpose. This is a more direct extension of the method usgtbin

4.1 Packing hypercubes

In this section we define the algorithm for hypercubes, dahbyALG.. In the next section we
extend it to deal with hyperboxes. Let thizeof hypercube, s(p) be the length of each side of
the hypercube.

The algorithm has a parameter- 0. Let M > 10 be an integer parameter such that

M>1/(1—(1—g)hy —1,

We distinguish between “small” hypercubes (of size smaltezqual tol /M) and “big” hyper-
cubes (of size larger thary M). The packing algorithm will treat them in different ways.

All large hypercubes are packed using a multidimensional versiormeMONIC [114]. The
hypercubes are assigned a type according to their size:: typms have a size in the interval
(1/(i +1),1/i)for: = 1,..., M — 1. The bins that are used to pack items of these types all
contain items of only one type. We use the following algantto pack them. A bin is called
activeif it can still receive items, otherwise it idosed

4.1 Packing hypercubes 39

Algorithm A SSIGNLARGE(i) Atall times, there is at most one active bin for each type hEac
bin is partitioned inta hypercubes (sub-bins) of siz¢i each (the sub-bins create a gridiof
strips in each dimension). Each such sub-bin can contaictlgx@ne item of type. On arrival

of a typei item it is assigned to a free sub-bin (and placed anywherédrikis sub-bin). If all
sub-bins are taken, the previous active bin is closed, a ©évweain is opened and partitioned
into sub-bins.

Thesmallhypercubes are also assigned types depending on theibsiza,a different way.
Consider an itenp of sizes(p) < 1/M. Letk be the largest non-negative integer such that
2ks(p) < 1/M. Clearly2*s(p) > 1/(2M). Leti be the integer such thats(p) € (1/(i +
1),1/i],i € {M,...2M — 1}. The item is defined to be of type Each bin that is used to pack
small items contains only small items with a given typ#lote that items of very different sizes
may be packed together in one bin. We now describe the dhigotid pack a new small item
of typei fori = M,...,2M — 1. A sub-bin which received a hypercube is said taused A
sub-bin which is not used and not cut into smaller sub-birgliedempty

Algorithm A SSIGNSMALL (i) The algorithm maintains a single active bin. Each bin may
during its use be partitioned into sub-bins which are hyylees of different sizes of the form
1/(274). When an itenp of type: arrives we do the following. Let be the integer such that

2%s(p) € (1/(i + 1), 1/i].

1. If there is an empty sub-bin of siZ¢(2%i), then the item is simply assigned there and
placed anywhere within the sub-bin.

2. Else, if there is no empty sub-bin of any siz&274) for j < k inside the current bin, the
bin is closed and a new bin is opened and partitioned intobsud of sizel /i. Then the
procedure in step 3 is followed, or step 1 in case 0.

3. Take an empty sub-bin of siz¢(27i) for a maximum;j < k. Partition it into2¢ identical
sub-bins (by cutting into two identical pieces, in each disien). If the resulting sub-bins
are of size larger than/(2*i), takeoneof them and partition it in the same way. This is
done until sub-bins of siz&/(2%i) are reached. The new item is assigned into one such
sub-bin.

Finally, the main algorithm only determines the type of newatriving items and assigns
them to the appropriate algorithms. The total number of/adtins is at most M — 1. In order
to perform a competitive analysis, we prove the followingeis.

Claim 4.1 For a giveni > M, consider an active bin of type At all times, the number of
empty sub-bins in it of each size excepiis at mos? — 1.

Proof Note that the number of empty sub-bins of sizé decays from“ to zero during the
usage of such a bin. Consider a certain possiblersige sub-bin in it. When a sub-bin of some
sizer is created, it is due to partition of a larger sub-bin. Thisamethat there were no empty

40 Chapter 4. Optimal online algorithms for multidimensiopatking

sub-bins of size' before the partition. Afterwards, there are at mzsst- 1 of them for each
size that has been created during the partitioning (for inalgst size into which the sub-bin is
partitioned 2¢ sub-bins created, but one is immediately used). O

Claim 4.2 For a giveni > M, when a bin of typeé is about to be closed, the total volume of
empty sub-bins in the bin is at madsti?.

Note that the above claims bound the volume of sub-bins tigahat used at all. There is
some waste of volume also due to the fact that each item ddddints sub-bin totally. We
compute this waste later.

Proof Fori > M, when a bin of typé is to be closed, there are no empty sub-bins of jze
init. There are at most? — 1 empty sub-bins of each other size by Claim 4.1. This givesa to
unused volume of at mog2® — 1) >, . (2%i) =4 = 1/4. O

Claim 4.3 The occupied volume in each closed bin of type M is at leastl — ¢.

Proof A hypercube which was assigned into a sub-bin of $jZ&*i) always has size of at least
1/(2%(i + 1)). Therefore the ratio of occupied space and existing spaeadh used sub-bin is
at leasti?/(i + 1)¢. When a bin is closed, the total volume of used sub-bins ieagtl — 1/i¢
by Claim 4.2. Therefore the occupied volume in the bin is asté!/(i + 1)%(1 — 1/i%) =
(i —1)/(i +1)%. We usei > M andM? > M + 1 to get

(i = DG+ 1) = (M = 1)/(M + 1) > (——)™ > 1

M+1 .
O
Now we are ready to analyze the performance. We define a vieggfunction forALG..
Each itemp with type1 < i < M — 1 has weightw.(p) = 1/i¢. Each iteny’ of higher type has
weightw.(p') = (s(p))?/(1 —) which is the volume of the item divided ky — ¢). We begin
by showing that this weighting function is valid for our atgbhm.

Lemma 4.1 For all input sequences,

costic.(0) < Y w.(p) +2M — 1.

pEoc

Proof Each closed bin of type < i < M —1 containg items. All sub-bins are used when the
bin is closed, and thus it contains a total weight of 1. Eaoked bin of typeV/ <i < 2M — 1
has occupied volume of at least- ¢ by Claim 4.3, and therefore the weights of the items in
such a bin sum up to at least 1. At m@st/ — 1 bins are active. Thus the total number of bins
used byAaLG. for a given input sequence is upper bounded by the total weight of the items
plus2M — 1. O

By this Lemma, for any givea > 0, the asymptotic performance ratio of our algorithm can
be upper bounded by the maximum amount of weight that can tieedan a single bin: for
a given input sequence (with fixed weightw), the offline algorithm minimizes the number of
bins that it needs to pack all items énby packing as much weight as possible in each bin. If

4.1 Packing hypercubes 41

it needsk bins, the performance ratio on this inputigk, which is also the average weight per
offline bin.

Therefore we need to find the worst case offline bin, i.e. ameffiin which is packed with
a maximum amount of weight. However, for the case of cubespnig haveM + 1 different
types of items. All large items of typehave the same weight. All small items have the same
ratio of weight to volume. Therefore the exact contents ahabe not crucial. In order to define
a packed bin, we only need to know how many items there areabf gpe, and the volume of
the small items. To maximize the weight we can assume thatiye items are as small as
possible (without changing their type), and the rest of tinddfilled with small items.

Formally, we define patternas a tuple; = (¢, ...,qx—1), Where there exists a feasible
packing into a single bin containing items of typei for all 1 < ¢ < M — 1. This generalizes
the definition from [140]. The weight of a pattegns at most

M—-1 4 1 M—-1 4

i=1

Note that for any given pattern the amounts of items of types. ., 2M — 1 are unspecified.
However, as mentioned above, the weight of such items isyalteeir volume divided by — <.
Therefore (4.1) gives an upper bound for the total weight ¢ha be packed in a single bin for
a given pattery. Summarizing, we have the following Theorem.

Theorem 4.1 The asymptotic performance ratio 8LG. is upper bounded bynax, w.(q),
where the maximum is taken over all pattegrthat are valid foraALG..

In order to use the Theorem, we need the following geometianC We immediately
formulate it in a general way so that we can also apply it innéet section.

Claim 4.4 Given a packing of hyperboxes into bins, such that compgneih¢ach hyperbox is
bounded in an intervall/(k; + 1), 1/k;], wherek; > 1is aninteger forj = 1,. .., d, then each
bin has at mosf]?_, k; hyperboxes packed init.

Proof We prove the claim by induction on the dimension. Clearlydot 1 the claim holds.
To prove the claim forl > 1, the induction hypothesis means that a hyperplane of dilmens
d — 1 through the bin which is parallel to one of the sides (the sitiech is the projection of
the bin on the firstt — 1 dimensions) can meet at moﬁfj k; hyperboxes. Next, take the
projection of the hyperboxes and the bin on the last axis. ¥eshort intervals of length in
(1/(kq+1),1/k4) (projections of hypercubes) on an main interval of leng{the projection of
the bin). As mentioned above, each point of the main interaalhave the projection of at most
H;.l;i k; items. Consider the short intervals as an interval grapke.site of the largest clique is

at most]'[j.l;i k;. Therefore, as interval graphs are perfect, we can colastibé intervals using
H;.l;i k; colors. Note that the number of intervals of each indepensietis at most;,; (due to
length), and so the total number of intervals is at nﬁ%;l k;. O

42 Chapter 4. Optimal online algorithms for multidimensiopatking

Lemma 4.2 Let

a = lim inf max w.(q),
e—0 q

where the maximum is taken over all pattergnthat are valid foraALG.. Then the asymptotic
performance ratio of any bounded space algorithm is at least

Proof We show that there is no bounded space algorithm with an asyimperformance ratio
strictly belowa. For anys” > 0, there exists aa € (0,¢’) such thatR*(ALG,) < (1 + £')a.
Consider the pattern for which w.(q) is maximal. We writew.(q) = (1 + £”)a for some
e € [0,€].

Note that a pattern does not specify the precise sizes of g adtems in it. Based on,
we define a set of hypercubes that can be packed togetherngla bin. For each item of type
iin g, we take a hypercube of siz¢(i + 1) + § for some smalb > 0. Take

M—-1 1 d
Vs=1 ;%(i—l—lJﬂs))
We add a large amount of small hypercubes of total voliinenvhere the sizes of the small
hypercubes are chosen in such a way that they can all be pecieshgle bin together with the
large hypercubes prescribed pyBy the definition of a pattern, such a packing is feasibleyfor
sufficiently small.

Define the following input for a bounded space algorithm. Nebe a large constant. The
sequence containg phases. The last phase contains a volig of small hypercubes. Phase
i (1 <i < M — 1) containsNg; hypercubes of sizé/(i + 1) + §. After phasei, almost
all hypercubes of this phase must be packed into closed bxtwept a constant number of
active bins). Each such bin may contain upitdtems, which implies that in each phage
Ng;/i¢ — O(1) bins are closed. The last phase contributes at [éast O(1) extra bins. The
cost of the online algorithm is

M—-1
Ng;

> -+ Vs —O(M).

=1
But the optimal offline cost is simplyw. Takingd = 1/N and lettingN grow without bound,
N becomes much larger tha and the asymptotic performance ratio of any bounded space
on-line algorithm is lower bounded By ;" ¢,/i® + V;. Note that the weight of this set of
hypercubes according to our definition of weights tends to

b =)= (14 a

asd — 0. Therefore

—+V>0-e)1+Na>(1-¢)a.

4.1 Packing hypercubes 43

This Lemma implies that our algorithm is the best possiblenoled space algorithm. More
precisely, for every’ > 0, there exists am € (0,¢’) such thatR>(ALG.) < (1 + €')a,
and no bounded space algorithm has an asymptotic perfosmratio below(1 — £')a. This
also implies that our weighting function cannot be improeeal determines the asymptotic
performance ratio exactly. However, we have no general dtarfor this ratio. We do have the
following bounds.

Theorem 4.2 There exists a value dff such that the asymptotic performance ratiorafs. is
O(d/ logd). Any bounded space algorithm (in particularc.) has an asymptotic performance
ratio of 2(log d).

Proof We first show the upper bound. Také = 2d/ logd. The occupied area in bins of small
types is at least-2-)4*! by the proof of Claim 4.3. This is greater than

M+1
M —d —d —d
+1 (14 1 (14 log d |
M M 2d
which tends ta:~(ogd)/2 = (elogd)=1/2 — 1 /\/d for d — oc.

Suppose the input i8. Denote byl; the subsequence of items of typé& = 1,..., M),
where we consider all the small types as a single type. Themawe

ALG(I;) = oPT(l;) <opT(l)fori=1,...,M —1,
since if items of only one type arrive, our algorithm packsnthperfectly. Moreover,

ALG (1)) = O(Vd) - oPT(Iy;) = O(Vd) - oPT(I).

ALG(I) =Y ALG(I;) < (M —1)0PT(I) + O(Vd)oPT(I) = O(d/ log d)oPT(I).

We now prove the lower bound. Consider the following loweut construction. (This
lower bound can also be shown using the weighting functidve)use|log d] phases. In phase
i, N((20 — 1)% — (2" — 2)?) items of size2~*(1 + §) arrive, wherey < 2-M°edl < 1/d. OPT can
place all these items in just{ bins by using the following packing scheme. Each bin is pdcke
identically, so we just describe the packing of a single Gihe first item is placed in a corner
of the bin. We assign coordinates to the bin so that this casrt@e origin and all positive axes
are along edges of the bin. (The size of the bin in each diroansil.)

Consider any coordinate axis. We reserve the space bet@eer2!~")(1 +) and (1 —
279 (1 + ¢) for items of phase. Note that this is exactly the size of such an item. By doing
this along every axis, we can place @l — 1)¢ — (2¢ — 2)? items of phase. (There would be
room for (2¢ — 1)¢ items if we used all the space until — 27%)(1 + §) along each axis; we lose
(2! — 2)4 items because the space uitil- 2'~%)(1 + §) is occupied.)

44 Chapter 4. Optimal online algorithms for multidimensiopatking

The minimum number of bins that any bounded space onlingigigo needs to place the

items of phaseéis
i 1\d _ (9i _ o\d i d
N(2 1)4 (2" —2) Nl1- 2_ 2 .
(20 — 1) 20— 1

Note that the contribution of each phas® the total number of bins required to pack all items
is strictly decreasing in. Consider the contribution of the last phase, which is phHased].
Since[log d] <1+ logd, itis greater than

N (1 — (Z;Z%i)d> =N (1 — (1 — M%l)d> > N(1—e V%) > 039N

for all d > 2. Thus all[log d| terms all contribute at least39.N, and the total number of bins
required is at leadd.39N ([log d]). This implies a lower bound d®(log d) on the asymptotic
performance ratio of this problem. O

In [63], we give specific upper and lower bounds for dimension. ., 7.

4.2 Packing hyperboxes

Next we describe how to extend the algorithm for hypercubdsandle hyperboxes instead of
hypercubes. This algorithm also uses the parametdrhe value ofM as a function ok is
picked so that

M>1/(1—(1—g)F) —1,

Similarly to the previous algorithm, the hyperboxes arasifiged into types. An arriving hyper-
box p of dimensiongs; (p), s2(p), . . ., sqa(p)) is classified as one g2 M — 1)? types depending
on its components: a type of a hyperbox is the vector of thegyy its components.

There ar&M — 1 types of components. A component larger than/ has type if 1/(i +
1) < si(p) < 1/i, and is called large. A component smaller thigid/ has typei, where
M < i< 2M — 1, if there exists a non-negative integéisuch that

1
1+ 1

< 2fisz-(p) <

Such components are called small.

Each of the(2M — 1) types is packed separately and independently of the othestylhe
algorithm keeps one active bin for each tyjpe ..., t;). When such a bin is opened, it is split
into Hle t; identical sub-bins of dimensioni$/t,, ..., 1/t;). On arrival of a hyperbox, after
classification into a type, a sub-bin has to be found for ithdfre is no sub-bin in the current bin
that is larger thark in every dimension, we close the bin and open a new one. Oiterwe
take an empty sub-bin that has minimum volume among all snbthat can contain.

Now consider the components/obne by one. If thé-th component is large, the sub-bin has
the correct size in this dimension: its size j§; whereas the component is(ih/(¢t; + 1), 1/t].

4.2 Packing hyperboxes 45

If the i-th component is small, the size of the sub-bin in#tle dimension may be too large.
Suppose its size i8/(27't;) whereas the hyperbox has size(1/(2/(t; + 1),1/(27t;)] in this
dimension for som¢g > f’. In this case, we divide the sub-bin into two equal parts hiyiroy
halfway (across theé-th dimension). If the new sub-bins have the proper sizee tale of the
two smallest sub-bins that were created, and continue wéiméxt component. Otherwise, take
one of the new sub-bins and cut it in half again, repeating tive size of a created sub-bin is
1/(2't).

Thus we ensure that the sub-bin that we use to pack thefiteas the proper size in every
dimension. We then place this item anywhere inside the sub-b

We now generalize the proofs from the previous section figralgorithm.

Claim 4.5 Consider a typét, ..., t4), and its active bin. For every vectof, ..., f4) # 0 of
nonnegative integers such tht= 0 for each large componerif there is at most one empty
sub-bin of sizé1/(271t,),...,1/(2%,)).

Proof Note that the number of sub-bins of sige/t,, ..., 1/t,), is initialized to be]_[f:1 tiy
and decays until it reaches the value zero. The cutting peogdees not create more than a single
empty sub-bin of each size. This is true for all the sub-bnesited except for the smallest size
that is created in any given process. For that size we creatédentical sub-bins. However,
one of them is filled right away.

Furthermore, no sub-bins of existing sizes are createddiiretchoice of the initial sub-bin.
The initial sub-bin is chosen to be of minimum volume amoreydhes that can contain the item,
and hence all the created sub-bins (all of which can cont@itém) are of smaller volume than
any other existing sub-bin that can contain the item. O

Claim 4.6 The occupied volume in each closed bin of tyge. . ., ¢,;) is at least
(1= JJti/t: + 1),
i€l
wherelL is the set of large components in this type.

Proof To bound the occupied volume in closed bins, note that a sulbich was assigned
an item is full by a fraction of at least

d d—|L|
t; M 4
[I
ti+1 - \M+1 A+

1=1

Considering sub-bins that were empty when the bin was cldsgdlaim 4.5 there may
be one empty sub-bin of each sige/(2/1t,), ..., 1/(2/4,)), with the restrictions thaf; is a
nonnegative integer far= 1,...,d, f; = 0 for each large componentand there exists some
i€ {1,...,d} such thatf; # 0.

If there are no small components, there can be no empty sigblecause large components
never cause splits into sub-bins, so all sub-bins are usesh wie bin is closed. This gives a
bound of[],_, t;/(t; + 1).

46 Chapter 4. Optimal online algorithms for multidimensiopatking

If there is only one small component, the total volume of alp¢y sub-bins that can exist is

1 1 + 1 . - 1 - 1
t1...tg 2 4) Tttty T M
since one of the components is small (type is at I@asand all other components have type at
least 1. The occupied volume is at least

1 M ti M d+2 ti
=) g lli=== i
) we sy =) L

This holds for anyl > 2 andM > 2.
If there arer > 2 small components, the total volume of empty sub-bins is attmo

2r—1 2r—1 2"
< < .
tity...tqg — M" T Mr

(We get the factoR” — 1 by enumerating over all possible choices of the valfjgsWe get that
the fraction of each bin that is filled is at least

2" M\’ ti
1 —
(=) Gies) T
o MT—QTH ti
B (M +1)r 2 ti+1

<M+1) Etiﬂ

d+2 ,
> M H ti .
M +1 Z,eLti—i—l

The first inequality holds fod/™ — 2" > M"™2/(M + 1)?, which holds for anyr > 2 and
M > 4. Using

v

M a4
Gre7) 2t-e
we get the Claim. O
We now define a weighting function for our algorithm. The weigf a hyperbox with
componentshy, ..., hy) and type(ty, . . ., t,) is defined as

1 1
wa(p): 1_6HhiH;a

i¢lL icL "

wherel is the set of large components in this type.

Lemma 4.3 For all input sequences,

costyy(0) < > w.(h) + O(1).

4.2 Packing hyperboxes 47

Proof In order to prove the claim, it is sufficient to show that ealdsed bin contains items
of total weight of at least. Consider a bin filled with hyperboxes with typa, ..., t;). Itis
sufficient to consider the subsequencef the input that contains only items of this type, since
all types are packed independently. We build an inguitor which both the behavior of the
algorithm and the weights are the same asfand show the claim holds fof. Letd < 1/M3
be a very small constant.

For a hyperbox € o with component$h,, ..., hy) and type(ty, ..., tq), leth’ = (b}, ...,
) € o' be defined as follows. Far¢ L, h; = h;. Fori € L, h; =1/(t; +1)+6 < 1/t;. Ash
andh’ have the same type, they require a sub-bin of the same sidledim&nsions. Therefore
the algorithm packs’ in the same way as it packs Moreover, according to the definition of
weight abovel, andh’ have the same weight.

Let v(h) denote the volume of an itemn Forh € o, we compute the ratio of weight and
volume of the iten?y. We have

d
we(h') 1 T2 :
= h' — h'
v(h') 1—5_1;! thi E !
1 1

1 i +1
1—€i€Lti+M26.

As ¢ tends to zero, this bound approaches the inverse of the muimB#aim 4.6. This means
that the total weight of items in a closed bin is no smallentha U

Just like in Section 4.1, this Lemma implies that the asyitipfmerformance ratio is upper
bounded by the maximum amount of weight that can be packedimgée bin. We now prove a
technical lemma that implies that this weighting functisralso “optimal” in that it determines
the true asymptotic performance ratio of our algorithm.

Definition 4.1 Thepseudo-volumef a hyperbox: = (hy, ..., hy) is defined asﬂiﬂ h;, where
L is the set of large components/af

Suppose that for a given set of hyperboxéswe can partition the dimensions into two sets,
S and7’, such that for each dimensigrn S, we have that th¢-th components of all hyperboxes
in X are bounded in an interval /(k; + 1), 1/k;]. There are no restrictions on the dimensions
in 7. (Thus such a partition can always be found by taking (.)

For a hyperboy € X, define thegeneralized pseudo-voluréthe components ifd" by

5(p, T) = [[55(p),

JET

wheres;(p) is the jth component op. Define the total generalized pseudo-volume of all hyper-
boxesinaseX by o(X,T)=>_ . 0(p,T).

48 Chapter 4. Optimal online algorithms for multidimensiopatking

Claim 4.7 For a given setX of hyperboxes, for sufficiently larg€é, any packing ofX into bins

requires at least
i 1\ 7!
#(X,T) (1 - N) Q k;

bins, whereS and7" form a partitioning of the dimensions as described above.

Proof We prove the claim by induction on the number of dimensiong.irFor || = 0, we
find that the total generalized pseudo-volumeXois simply the number of hyperboxes i
(since the empty product is 1) and thus the claim is true uSiagn 4.4.

Assume the claim is true fdfl’| = 0,...,r — 1. SupposdS| = d — r < d. Take any
dimension € T'. We replace each hyperbpxwith component;(p) in dimension;, by | N?1; |
hyperboxes that hav)ég as theiri-th component, and are identicalan all other components.
Here N is taken sufficiently large, such th%t < h;. Clearly, the new inpuk” is no harder to
pack, as we split each item into parts whose sum is smallaradhaqual to the original items.
The total generalized pseudo-volume of the hypercubg§ is at most a factor of

1 1

>1— —

1 —
N2s;(p) N

smaller than that ok . So if we write7” = T'\{i}, we have
ST = s (1- 2
v(X, N = V(X N

By induction, it takes at least

(X' T <1 - %)M IT %

jeSuli}

bins to pack the modified input’. Using thatk; = N2, this is

9(X,T)- (1-%)71‘[@

jes

bins. O

Lettingy = 1—(1—), we get that the required number is at le&st, T') (1—7) / [[,es &5
bins, wherey — 0 asN — oco. In the remainder, we will také to be the dimensions where
the components of the hyperboxesXnare large, and’ the dimensions where they are small.
Note that this choice of satisfies the constraints ¢habove, and that this reduces the gener-
alized pseudo-volume to the (normal) pseudo-volume defieéare. We are ready to prove the
following Lemma.

Lemma 4.4 Lete > 0. Suppose the maximum amount of weight that can be packedrigla s
bin is a.. Then our algorithm has an asymptotic performance ratioegfand the asymptotic
performance ratio of any bounded space algorithm is at |éast).

4.3 Variable-sized packing 49

Proof The first statement follows from Lemma 4.3. We show a lowemlgbof value which
tends ton. on the asymptotic performance ratio of any bounded spaceitdm.

Consider a packed bin for which the sum of weighta.is Partition the hyperboxes of this
bin into M? types in the following way. Each component is either of a typél,..., M — 1}
or small (i.e. of atype, i < M). Let N’ be a large constant. The sequence consists of phases.
Each phase consists of one item from the packed bin, rep@dtéiches. The optimal offline
cost is thereforeV’. Using Claim 4.7 we see that the amount of bins needed to patlkase
which consists of an item repeatedV’ times is simply

N'we(p)(1 = ~)(1 —e).
Therefore the cost of an on-line algorithm is at least
N'ae(1-7)(1—¢) — 0(1),

which makes the asymptotic performance ratio arbitratidge to(1 — ¢)a.. U

Furthermore, we can determine the asymptotic performagioe of our algorithm for hy-
perbox packing. Comparing to the unbounded space algoiitt{Bi] we can see that all the
weights we defined are smaller than or equal to the weightsind&1]. So the asymptotic per-
formance ratio is not higher. However, it can also not be fodvee to the general lower bound
for bounded space algorithms. This means that both algosithave the same asymptotic per-
formance ratio, namelyil..)?, wherell,, ~ 1.691 is the asymptotic performance ratio of the
algorithm HARMONIC [114].

4.3 Variable-sized packing

In this section we consider the problem of multidimensiqredking where the bins used can
have different sizes. We assume that all bins are hyperculissidesy; < as < ... < a;, =

1. In fact our algorithm is more general and works for the cakere the bins are hyperboxes
with dimensionsy;; (i = 1,...,m, j = 1,...,d). We present the special case of bins that are
hypercubes in this thesis in order to avoid an overburden&ation and messy technical details.

The main structure of the algorithm is identical to the on8eation 4.2. The main problem
in adapting that algorithm to the current problem is setggrthe right bin size to pack the items
in. In the one-dimensional variable-sized bin packing peof) it is easy to see which bin will
accommodate any given item the best; here it is not so obViowsto select the right bin size,
since in one dimension a bin of a certain size might seem blesteas for other dimensions,
other bins seem more appropriate.

We begin by defining types for hyperboxes based on their coemts and the available bin
sizes. Once again we use a parametéihe value of\/ as a function ot is again picked so that
M >1/(1—(1—¢)"@+2)) —1. An arriving hyperbox of dimensiongs, (p), sa(p), . . ., sa(p))
is classified as one of at magm M /a; — 1) types depending on its components: a type of a
hyperbox is the vector of the types of its components. We defin

. Q; an "

50 Chapter 4. Optimal online algorithms for multidimensiopatking

Let the members df/ be

g aq
1:U1>U2>>uqlzﬂ>>uq:m
The intervall; is defined to béu;,,u;] for j =1,...,¢. Note that these intervals are disjoint

and that they covefo; /M, 1].

A component larger than; /M has type if s;(p) € I;, and is called large. A component
smaller thamy; /M has typei, whereq’ < i < ¢ — 1, if there exists a non-negative integgr
such that

w1 < 27isi(p) < .

Such components are called small. Thus in total thereyarel < 2mM/a; — 1 component
types.

Bin selection We now describe how to select a bin for a given type. Intuigivitbe size of this
bin is chosen in order to maximize the number of items packkdive to the area used. This is
done as follows.

For a given component type and bin sizex;, write F(t;, ;) = max{k | a;/k > w,}.
Thus for a large componenk;,(¢;, ;) is the number of times that a component of typ#ts in
an interval of lengthy;. This number is uniquely defined due to the definition of thenhars
u;. Basically, the general classification into types is too foreany particular bin size, and we
useF(t;, a;) to get a less refined classification which only considers thetpu, of the form
Oéj/]{?.

Denote byL the set of components in tyge, . . ., ¢,) that are large. If. = (), we use a bin
of size 1 for this type. Otherwise, we place this type in a iary sizea; which maximize$

I1 Fltsay) (4.2)
er Y
Thus we do not take small components into account in this déam Note that for a small
componentf'(t;, ;) is not necessarily the same as the number of times that suminponent
fits into any interval of lengtla;. However, it is at least/ for any small component.

When such a bin is opened, it is split inF{)jl:1 F(t;, o) identical sub-bins of dimensions
(o /F(th,), ...,a;/F(t4,). These bins are then further sub-divided into sub-binsdieor
to place hyperboxes in “well-fitting” sub-bins, in the manmdich is described in Section 4.2.

Similarly to in that section, the following claim can now deosvn.

Claim 4.8 The occupied volume in each closed bin of type(t;, . .., ty) is at least

ta
d i) J
Vig= (1 —e)a H F(t;, o))+ 1’

whereL is the set of large components in this type ands the bin size used to pack this type.

!For the case that the bins are hyperboxesinstead of hypesowi here get the formuld, ., (F (£, cvij) /vij),
and similar changes throughout the text.

4.3 Variable-sized packing 51

We now define a weighting function for our algorithm. The weigf a hyperboxp with
componentss; (p), ..., sq(p)) and type(ty, ..., ty) is defined as

1 Qi
we(h) = - (H Si(p>> (H F(ti,ozj)> ;

i¢L icL

whereL is the set of large components in this type ands the size of bins used to pack this
type.

In order to prove that this weighting function works (givesadid upper bound for the cost of
our algorithm), we will want to modify componentsto the smallest possible component such
that /'(¢;, «;) does not change. (Basically, a component will be rounded, toF'(¢;, ;) + 1)
plus a small constant.) However, with variable-sized bivtsen we modify components in this
way, the algorithm might decide to pack the new hyperboxedéifitly. (Remember that(¢;, o;)
is a “less refined” classification which does not take othardizes thany; into account.) To
circumvent this technical difficulty, we will show first thas long as the algorithm keeps using
the same bin size for a given item, the volume guaranteehstis.

For a given type = (ti,...,tq) and the corresponding sétand bin sizen;, define an
extended typ&xt(ty, ..., t;) as follows: an itenp is of extended type Ety, ..., ;) if each

A5 X5

large component; (p) € (77577 7, o y) @nd each small componentp) is of typet;.
1,5 1,89

Corollary 4.1 Suppose items of extended type(ty, ..., ¢;) are packed into bins of size;.
Then the occupied volume in each closed bin is at [&ast

Proof In the proof of Claim 4.8, we only use that each large compbrgp) is contained in

the interval(F(t-os')—i-l’ F(fja,)]. Thus the proof also works for extended types. O
1,7 1,7

Lemma 4.5 For all input sequences,

cost,(0) < > w.(h) + O(1).

Proof In order to prove the claim, itis sufficient to show that ealcised bin of sizey; contains
items of total weight of at Ieasi;l. Consider a bin of this size filled with hyperboxes of type
(t1,...,tq). Itis sufficient to consider the subsequemncef the input that contains only items
of this type, since all types are packed independently. Shissequence only uses bins of size
a; SO we may assume thao other sizes of bins are giveWe build an input’ for which both
the behavior of the algorithm and the weights are the sameras find show the claim holds
for o’. Let§ < 1/M? be a very small constant.

For a hyperboxy € o with componentss,(p),...,sq(p)) and typet = (t1,...,tq), let
p = (s1(p),...,s4(p)) € o' be defined as follows. Far¢ L, s.(p) = s;(p). Fori € L,

/ & Q
(p)=—L 4§ .
Sl(p) F(tl, Oéj) -+ 1 * = F(tl, Oéj)
Note thatp’ is of extended type Efty,...,t;). Since only one size of bin is given, the

algorithm packss’ in the same way as it packs Moreover, according to the definition of
weight abovep andp’ have the same weight.

52 Chapter 4. Optimal online algorithms for multidimensiopatking

Let v(p) denote the volume of an itepn Forp € o, we compute the ratio of weight and
volume of the itenp’. We have

w(h') . we(h) . 1 /
vW)‘v@)“l—eOI”m>OIquj> I“

i¢L ieL

1 Oéj
N 1—5HF(-
€L

ti, ;)s;(p)

V

1 H F(tl, Oéj) +1
1—etd Pt ap) + M5
el a1

Here we have used in the last step that a component with atigrgdits less thad/ times in
a (one-dimensional) bin of size, and therefore less tthfZ—i times in a bin of sizey; > «;.

As ¢ tends to zero, this bound approacb#;ﬂ/;,j. We find
V()

w.(p) 2 of 5-
7]

forallp € o.

Then Corollary 4.1 implies that the total weight of items iol@sed bin of sizey; is no smaller
thanoz;l, which is the cost of such a bin. O

Suppose the optimal solution for a given input sequencsesn; bins of sizea,;. Denote
theith bin of sizea; by B, ;. Then

Zh@, we(p) B Z;ﬂﬂ Z:Lil ZhEBi,j we(p) B Z;ﬂ 1 Zm ZheB we(p)
Z;n:l O‘?nj 27:1 O‘?"j Z] 1 >ty a

This implies that the asymptotic performance ratio is ugymemded by

max max Z wa(p)/a;l, 4.3)

J X
! peEX;

where the second maximum is taken over all s€jsthat can be packed in a bin of size.
Similarly to Section 4.2, it can now be shown that this weigdpfunction is also “optimal” in
that it determines the true asymptotic performance ratmuofalgorithm.

In particular, it can be shown that packing a set of hyperboxehat have the same type
vectors of large and small dimensions takes at least

SSIIE /It e

@
peX igL 7 i€L

bins of sizen;, wheres;(p) is theith component of hyperbox ¢; is the type of theth compo-
nent, and. is the set of large components (for all the hyperboxeX¥)nSince the cost of such a
bin isa, this means that the total cost to pagkcopies of some iterpis at leastV'w. (p)(1—¢)

4.4 Resource augmented packing 53

when bins of this size are used. However, it is clear thatgukins of another size,, does not
help: packingNV’ copies ofp into such bins would give a total cost of

N’ <H si(p)> (H 7}7(3“%)) .
i L ieL

Since o; was chosen to maximizg[._, (F'(t;, «;)/a;), this expression cannot be less than
N'w.(p)(1 —). More precisely, any bins that are not of sizecan be replaced by the ap-
propriate number of bins of size; without increasing the total cost by more than 1 (it can
increase by 1 due to rounding).

This implies that our algorithm is optimal among online bded space algorithms.

4.4 Resource augmented packing

The resource augmented problem is now relatively simpleotees In this case, the online
algorithm has bins at its disposal that are hypercubes oédsions); x b, x ... x b;. We can
use the algorithm from Section 4.2 with the following modition: the types for dimensigiare
not based on intervals of the forfh/(i+1), 1/4] but rather intervals of the fortid; /(i+1), b; /7).
Then, to pack items of typé&.,...,t;), a bin is split into]‘[f:1 t; identical sub-bins of
dimensiongb, /t1, ... ,bs/ts), and then subdivided further as necessary.
We now find that each closed bin of typg, . . ., ¢,) is full by at least

t;
(1—5)3Ht_+1,
ielL "

whereL is the set of large components in this type, dhd- szl b; is the volume of the bins
of the online algorithm.
We now define the weight of a hyperbgxwith componentgs;(p), ..., sq(p)) and type

(t1,...,tq) @S
1 h; 1
v (1) (1)

i¢L 1€l
wherelL is the set of large components in this type.
This can be shown to be valid similarly as before, and it can Ak shown that items can
not be packed better. However, in this case we are additjoalle to give explicit bounds for
the asymptotic performance ratio.

4.4.1 The asymptotic performance ratio

Csirik and Woeginger [54] showed the following for the oriménsional case.
For a given bin sizé, define an infinite sequendé&(b) = {uy, us, ...} of positive integers

as follows: . .
=|1+b and =—— —
u; = |1+ 0] 71 b u

54 Chapter 4. Optimal online algorithms for multidimensiopatking

andfori =1,2,...

1 1
Uit1 = |_1—|——J and Tiv1 =T — .
T Uj+1

Define

=3

i=1

Lemma 4.6 For every bin sizé > 1, there exist online bounded space bin packing algorithms
with worst case performance arbitrarily close). For every bin sizé > 1, the bound(b)
cannot be beaten by any online bounded space bin packingithgo

The following lemma was proved in Csirik and Van Vliet [51} fo specific weighting func-
tion which is independent of the dimension, and is similaatesult of Li and Cheng [116].
However, the proof holds for any positive one-dimensioneighiting functionw. We extend
it for the case where the weighting function depends on theedsion. For a one-dimensional
weighting functionw; and an input sequenee definew;(o) = _ ., w;(p). Furthermore de-
fine W; = sup, w;(o), where the supremum is taken over all sequences that carckecpiato
a one-dimensional bin.

Lemma 4.7 Let o be a list ofd-dimensional rectangles, and &t be a packing which packs
these rectangles into d-dimensional unit cube. Leb; (j = 1,...,d) be arbitrary one-
dimensional weighting functions. For eaphe o, we define a new hyperbgx as follows:
s;(p') = w;(s;(p)) for 1 < j < d. Denote the resulting list of hyperboxes &y Then there
exists a packing)’ which packss’ into a cube of siz¢lVy, ... Wy).

Proof We use a construction analogous to the one in [51]. We tramsfloe packing?) = Q°
of o into a packingl? of ¢’ in a cube of the desired dimensions. This is doné $teps, one for
each dimension. Denote the coordinates of ifeim packing@® by (% (p), ..., z%(p)), and its
dimensions bys: (p), ..., s4(p)).
In stepi, the coordinates as well as the sizes in dimenseme adjusted as follows. First we
adjust the sizes and s€tp) = w;(s;(p)) for every itemp, leaving other dimensions unchanged.
To adjust coordinates, for each itgmin packing@—! we find the “left-touching” items,
which is the set of itemg which overlap withp in d — 1 dimensions, and for which!™(g) +
s:1(g) = 2!"Y(p). We may assume that for each iteithere is either a left-touching item or

)

. (p) = 0.

Then, for each itenp that has no left-touching items, we sétp) = 0. For all other
itemsp, starting with the ones with smallestoordinate, we make thecoordinate equal to
max(z%(g) + si(g)), where the maximum is taken over the left-touching itemg of packing
Si~1. Note that we use the new coordinates and sizes of left-tngdtems in this construction,
and that this creates a packing without overlap.

If in any step: the items need more tha#i; room, this implies a chain of left-touching items
with total size less than 1 but total weight more tH&h From this we can find a set of one-
dimensional items that fit in a bin but have total weight mbwntV; (using weighting function
w;), which is a contradiction. O

4.5 Conclusions 55

As in [51], this implies immediately that the total weightathcan be packed into a unit-
sized bin is upper bounded lﬂf:l W;, which in the present caser:1 p(b;). Moreover, by
extending the lower bound from [54] tbdimensions exactly as in [51], it can be seen that the
asymptotic performance ratio of any online bounded spatg#cking algorithm can also not
be lower thar{ [, p(b;).

4.5 Conclusions

An open question left by this chapter is what the asymptaifqumance ratio of the bounded
space hypercube packing problem is. We can show thafitlig; d), and we conjecture that it
is O(log d). Giving a explicit expression for the competitive ratio eriable sized packing (as a
function of the bin sizes) would be harder. Already in [13%]ete an optimal one-dimensional
bounded space algorithm was given for the variable sizell@ng, its ratio is unknown. It is
interesting to find out whether in the multidimensional ctseworst case occurs when only
unit sized bins are available.

56

Chapter 4. Optimal online algorithms for multidimensiopatking

Chapter 5

Packing with rotations

In this chapter, we consider several two- and three-dino@@s$ipacking problems with rota-
tions. This is also known as “packing of non-oriented iteff]. Usually oriented items are
considered, but in many applications, there is no reasondiuae the option of changing the
orientation of items before assignment. Some applicatiag allow rotation only in certain
directions.

The two-dimensional bin packing problem with rotationsesided as follows. The bins are
unit squares and the items are rectangles that may be ratg98€l (so their sides are still aligned
with sides of the bin). In the strip packing version, thepstsi two-dimensional, with a base of
width one and infinite height. In the three-dimensional batlpng problem with rotations,
the bins are three-dimensional cubes, and the items arememted three-dimensional boxes,
rotatable byd0° in all possible directions. In the strip packing version veelpthese items into
a three-dimensional strip with a base which is a unit squaare,again, infinite height.

In three dimensions, we can also consider the case of iteahsrthly be rotated so that the
width and length are interchanged, however the height igl fiXée call this problem “This Side
up”, as it has applications in packing of fragile objectsenha certain face of the box must
be placed on top. This three-dimensional problem, as tlatalolie problems has two versions:
packing into a three-dimensional strip (also called “thariented 3-D packing problem” [129])
and packing into three-dimensional bins. We reserve thesngms Side Up for the strip packing
version. Miyazawa and Wakabayashi [131] consider seveadllems with rotatable items and
give an upper bound of 2.64 for the This Side Up problem, whiak also considered by Li and
Chen [120].

In all problems, the dimensions of the items to be packed lae¢ emost 1. Miyazawa and
Wakabayashi [129] demonstrate a reduction from the geleraé-dimensional strip packing
problem with rotations to the This Side Up problem in a sthipt this reduction does not hold
for the case considered in this paper, where the three-diioeal strip always has a square base
of side 1.

We improve upon the best known results for all the above probl

e A simple and fast algorithm of asymptotic performance rafi» = 1.5 for two-dimensio-
nal rotatable strip packing. This improves on the bourid3 from [131]. Additionally,
we give an asymptotic approximation scheme for this problem

57

58 Chapter 5. Packing with rotations

¢ An algorithm of asymptotic performance ratig4 = 2.25 for two-dimensional rotatable
packing into bins. This improves on the on-line algorithonfr[58] that has an asymptotic
performance ratio of slightly less tham5. Although this algorithm basically consists of
many (easy) cases, it has the advantage that it can easitjaipéea to the more complex
problems listed below. This is the main reason for includimg algorithm here; the result
itself can be improved as a consequence of our results fprEcking.

e An algorithm which combines methods of the two above alparg and has asymptotic
performance rati®/4 = 2.25 for the “This side up” problem in a strip. This improves the
bound of [131] which i2.64.

e An adaptation of the previous algorithm to packing of rdigatems in a three-dimensio-
nal strip, with the same asymptotic performance ratié = 2.25. This improves the
bound of [131] which i2.76.

e A simple adaptation of the two previous algorithms for the packing versions of these
problems, with asymptotic performance raij® = 4.5. This improves the bound of [131]
for three-dimensional bin packing of rotatable items, vahgc4.89.

5.1 Strip packing

We begin by giving a simple algorithm with an upper bound3g? in Section 5.1.1. This
improves on the bound.613 from [131]. Our main result is the following. We denote by
opPT(L) the height of the optimal strip packing aéfwhich is a list of rotatable items.

Theorem 5.1 There is an algorithnaLG which, given a list. of n rectangles with side lengths
at most 1 that can be rotatel)°, and a positive number < 1/2, produces a packing df in a
strip of width 1 and heightLG (L) such that

c2

ALG(L) < (1+4¢)oPT(L) + O (!) :

The time complexity ofLG is polynomial inn.

We use the algorithm from [107] as a subroutine. Basicallydwe preprocessing step to
obtain a modified list of items with only a constant number dfedent widths and heights.
Then the number of orientations for this modified set of itésn®olynomial inn. For any fixed
orientation, we can apply the algorithm from [107]. The ¢abpoint of the proof is to show that
we do not lose too much in the preprocessing step, and tlrerbive a good approximation.
The additive constant for this APTAS @(1/<?). It is possible to get an additive constant of
O(1/¢?) also in this case, but at the cost of a significantly more cempleprocessing step.
The rounding procedure as presented here is due to Clairgokigh06].

These results immediately imply an asymptdtict ¢)-approximation algorithm for two-
dimensional bin packing with rotations (that runs also ingipolynomial inl /¢).

5.1 Strip packing 59

We already described some of the methods used in [107] afadv4i8h are also important
in the current chapter in Chapter 2, Section 2.2.2. We thehdive a simple and fast/2-
approximation in Subsection 5.1.1. We describe and analyg&PTAS in Subsection 5.1.2

5.1.1 A3/2-approximation algorithm

In the next subsection, we will give an asymptotic approxiorescheme for this problem. How-
ever, we believe that the algorithm presented in the cusedtion is of independent interest;
ideas from it are also used in the algorithm for the “This sigéproblem.

Our algorithm places big items in reverse orientation ahdther items in standard orienta-
tion.

1. The big items are stacked at the bottom of the strip, inroode@ecreasing width and
aligned with the left side of the strip. Denote the heightdeskfor this packing by, .

2. Denote the height at which the first item of width at mist is packed byh; (0 < b} <
hy). If B} < hq, define a substrip of width /3 that starts at height}, at the right side
of the strip. Pack items that have widths(ih 1/6] inside this strip using FFDH, until
all these items are packed or until the next item to be pacladdibe placed (partially)
above heighty;.

3. If all items that have width i0, 1/6] have now been packed:

(a) Stack items of widths ifil /6, 1/2] at the right side of the strip, on top of the substrip
from step 2. Place these items in ordeiirafreasing width Each item is placed as
low as possible, at the extreme right of the strip, under tdmstraint that it does not
overlap with previously placed items. Do this until all sutdms are packed or the
next item to be packed would be placed (partially) aboveltidig.

(b) Place the unpacked items of width(ity 3, 1/2] in two stacks starting at height by
each time adding an item to the shortest stack. Pack the kegdems of width in
(1/6,1/3] using FFDH.

4. Else, place all remaining items above heightising the algorithm FFDH.
Theorem 5.2 For this algorithm, we havaLc, (L) < 20PT(L) + 3 for any input listL.
Proof We start with the simple inequality. We have
OPT(L) > hy (5.1)

because the packing in step 1 is optimal for the big itemso items are packed in step 3(b) or
4 (all items are already packed) then it follows that the atgm gives an optimal packing.

Denote the list of items packed in steppy L;, and the height of that packing bBy. By
Theorem 2.2, for Step 4 we hawug < gA(L4) -+ 1 and therefore

A(Ly) > S(hs = 1), (5.2)

60 Chapter 5. Packing with rotations

Denote the height of the substrip in step 2/y(the top of the substrip is at height or at
the top of the highest item placed inside it), and the listeris packed in it by.,. Note that all
items placed inside this substrip have width at most halfatitih of the substrip.

Suppose we multiply all the widths of items in the substrip3yyas well as the width of
the substrip itself. Denote the new area of the listby A’(L,). Then Theorem 2.2 implies
hy < 3A'(Ly) + 1. SinceA'(Ly) = 3A(L,), we can conclude

A(Lz) = =(hy — 1), (5.3)

NeX i W)

Case 1 No items are packed in Step 3.

The only interesting case is where some items are packe@p4StConsider Step 2. Below
the substrip, a width of at lea®t3 is covered everywhere by packed items. Next to the substrip,
a width of at least /2 is covered, and in the substrip, we have (5.3). On this pattestrip we
have therefore packed items of total area at least

1 2 2
—hy 4+ =(hy — 1) > =(hy — 1).
5 2+9(2)_3(2)

We can conclude that on the main strip, we have packed itetosadfarea at least(h, — 2)
below a height ofh,, sincehy > h; — b} — 1 in the present case. In summary, we have
that our algorithm packs items to a height/af + 4, and the area of these items is at least
2(hy — 2+ hy — 1) by (5.2). This implies that

OPT(L) >

[GCRIN)

(h1 4+ hy — 3)

and therefore 5
ALG(L) < 5OPT(L) + 3.

Case 2 Some items are packed in Step 3. Denote the height of thermmaokiStep 3(b) by
(i.e. the extra height that is packed abd@yg We haveaLG, (L) = hy + hs.

In Step 3(a), some item(s) may not always be placed directliop of the previous item.
This happens if they would overlap with an item from Step Ipf&ise each item placed in Step
3(a) is placed directly on top of the previous item in thapStehen a width ofl /2 +1/6 = 2/3
is everywhere covered by items abadveand belowr, — 1. Belowh/, a width of2/3 is covered
everywhere.

Above h;, a width of at leas®/3 is covered in the part of the strip that is used in Step 3(b),
apart from at most two parts of total height at most 2. We find

2
OPT(L) > g(hl —1+4+h3—2)

and therefore 5
ALG1(L) = hy + h3 < §OPT(L) + 3.

5.1 Strip packing 61

Now suppose there is an item placed in Step 3(a) that is noé@lan top of its predecessor,
or the first item in Step 3(b) would have been placed in StepiBits width had been smaller
(i.e. itis placed in 3(b) because of its width, not becausiésdieight). Denote the width of the
last such item byw, and the height at which this item is placed BBy € [h], h;]. Then up to
heightmin(h%, hy — 1), a width of at least — w is covered by items from Step 1.Af < h; —1,
then above heighit; and until height at leadt, — 1 there are everywhere items from Step 3 and
therefore a width of at leadt/2 + 1/6 = 2/3 is covered by items.

Supposev > 1/3. Then only items of width ifw, 1/2] C (1/3,1/2] remain to be packed
in Step 3(b). Ifh < hy — 1, we have

OPT(L) > (1—w)h}+ ;(hl —1— B+ 2w(hy — 1) (5.4)
> (1—w)(hy — 1) + 2w(hs — 1) (5.5)

If b} € (hy — 1, hy], then we have (5.5) immediately. By combining (5.5) withlj5it can be
seen that

3
ALG(L) = hy + hs < 5OPT(L) + 2.

Supposev < 1/3. Then a width of at least/3 is covered in the part of the strip that is used
in Step 3(b), apart from at most two parts of total height asth2o We find

OPT(L) > (hl — 1+ hs — 2)

Wl N

and therefore 5
ALG(L) = hy + hs < 5OPT(L) + 3.

O
It is straightforward to see that the complexity of our alfon is O(nlogn), wheren is
the number of items to be packed, since apart from sortingidyhvor height all the steps in
the algorithm take linear time. We conjecture that the caxip} of any algorithm with an
approximation ratio strictly below/2 is substantially higher thaf(n logn).

5.1.2 An asymptotic polynomial-time approximation scheme

Since the input rectangles may be rotated, we define arbytthat the width is theshorterside
of the rectangle. (It may be that the item is packed such beawvidth is the vertical size.) Thus
for each rectangld) < w; < h; < 1.

The algorithm in the previous section packs only items thatader thanl /2 optimally.

We define .
H, = Z h; .
=1

This is the height of a stack of the items inwhen all these items are placed withas their
vertical dimension, and is an upper bound for the height gfsiack of items in_.

62 Chapter 5. Packing with rotations

Let A(L) denote the total area of the items/in This is independent of rotations.

We need to pack the items i into a strip of width 1 and unbounded height. We will use
the following constants in our algorithnz’ which is the cutoff width for “small” rectangles,
andm = (1/&')® which is the number of groups used in the rounding describekle previous
section. The value’ will be determined by the desired approximation accuracy

Few and wide items

We are givem items withm, different heights aneh, different widths. All widths (and heights)
are at least’ and at most 1. There are at mastm, groups of items, where each group contains
identical items. Denote the number of items in grotyy n; (: = 1, ..., myms). Then for group
i, there are at most; + 1 possibilities with regard to the rotation. If the items imstlgroup are
squares, the orientation of the items does not matter (tkenely one orientation). Otherwise,
we can place; items such that the width is the vertical dimension and- %; items such that
the height is the vertical dimension, for edgh= 0,1, ..., n;.

In total, this implies we have

mima2
H (ni +1)
i=1
distinct possibilities for the orientations of the itemsdh such possibility is called an orienta-
tion of the input listZ. It can be represented by a vectowith m,m, coordinates.
After an orientation of the list has been fixed, we can find algegptimal solution for

packing these items using a reduction to fractional strigkjpey as in [107]. Sincé "™ n; =
n, the number of orientations is polynomial in the number eifris: it is at most

< n)mlmz
+1
myms

which is polynomial inn for given (fixed)m,; andms. Thus we can find the (nearly) best
possible packing for these items in polynomial time by sudvall the fractional strip packing
problems.

Equation (2.1) implies that for a given, fixed orientatioof the items, this gives us a packing
with height at most

FSA(L,V) +2m(v) + 1 < OPT(L, V) + 2m(Vv) + 1, (5.6)

whereFsP(L,v) andopPT(L, V) are the optimal fractional strip packing and the optimalpstr
packing for the input list. using orientatiorv, respectively, anah(v) < m;ms is the number
of distinct widths in orientation.

Rounding procedure

First, the input liStLge,,...; Will be partitioned into two sublistsL,,,, .., Will contain all items
with width at most=" and L will contain all other items. The items ih,,,,.., Will be ignored

5.1 Strip packing 63

for the time being. The dimensions of the itemdlimre going to be rounded up according to a
procedure which we will now describe.

We are going to start by applying a geometric rounding to Ihatights and widths. In this
way, we obtain an input instance with a limited number ofidigtheights and widths, of which
the total area is still close to the total area of the originplt instance.

However, this is by itself not enough to ensure that the smiubf the (fractional) strip
packing problem for this modified problem instance is clasthé real solution. Suppose we fix
an orientation and the problem instance contains many itéinsrizontal size just smaller than
1/2. If these widths get rounded up to a value which is just latgan1/2, it is clear that the
height of the optimal strip packing may change by an arhbiyrargh amount.

In the original paper [107], this problem was solved by tfarmming adjustments of the
widths (horizontal sizes) into @ertical adjustment of the problem instance, for which it was
trivial to calculate the effect on the height of the optimipspacking. To enable us to do this
in the current problem, we are going to do something similafact our rounding is going to
be a mixture of geometric rounding and the grouping and rmmgnchethod from [107]. We
formalize this idea below.

Let I be the setl U rotatg L). That is, for each rectanglev;, 2;) in L, I contains both
(wi, h2> and(hl, U)Z) Thus‘]| = Q‘L‘

From I we can obtain a modified ligt. such that/ < 7., as described in section 2.2.2. We
usem — 1 threshold rectangles at heights= ih(I)/mfori=1,...,m — 1.

Consider a rectangléw;, h;) in L. Suppose that i, the first corresponding rectangle
(wy, hi) has been rounded tav., h;) while the other rectangle);, w;), has been rounded to
(h%,w;). We then round the original rectandle;, ;) to

(min(w!, w;), min(h’, h;)),
wherez is the first power ofl /(1 + ¢’) greater than or equal ta

Property 5.1 The number of groups created in the rounding procedure istled by a constant.

Proof The rounding is only applied to items that have height andiwiarger thare’. Thus the
highest class that can contain itemsiswhich is the solution of1 4 &')~™ = <. We find

, —log &’ 1 1 m
m=———x
log(l+¢) ¢ ~¢ 50

for e’ < 1/12 (recall thatm = (1/¢’)3). The grouping and rounding allows at maestdditional
different widths and heights, since there are- 1 threshold rectangles.
This implies that the number of different widths, as welllas humber of different heights,

is bounded by
51

m+m < —m

50
fore’ < 1/12. O

64 Chapter 5. Packing with rotations

Parameter: ¢/, the threshold between narrow and wide. We ¢ise ¢ /5.
Input: a list L,.,.., Of rotatable rectangles. Each rectangle is denotedubyh,;) where
0<w; <h; <1.

1. Let L,ur0n b€ the set of items in Ly, fOr which w; < ¢/, and letL =
Lgeneral \Lnarrow .

2. For each item iri, round up the height and the width according to the roundioge
dure described in Section 5.1.2.

3. For every possible orientation of the rounded listdo the following:

(a) Find a nearly optimal packing fdr, using the fractional bin packing solution.
(b) Add narrow rectangles to layers using Modified NFDH.

4. Output the best packing found in Step 3.

Figure 5.1: The APTAS summarized

Algorithm

The algorithm is summarized in Figure 5.1.

Analysis of the APTAS

In this subsection, we will prove the following theorem.

Theorem 5.3 There is an algorithnaLG which, given a list. of n rectangles with side lengths
at most 1 that can be rotatei°, and a positive number < 1/2, produces a packing df in a
strip of width 1 and heightLG (L) such that

ALG(L) < (1 +£)oPT(L) + O <€_13) |

The time complexity ofLG is polynomial in n.

The remarks in Subsection 5.1.2 immediately imply that threnimg time of our algorithm
is polynomial inn for any fixede > 0. Itis left to show the upper bound on the asymptotic
performance ratio. We begin by proving two auxiliary lemmas

Lemma 5.1 Denote byM the set of rectangle& in optimal orientation, i.e. the orientation

which allows the shortest strip packing. The listobtained after the grouping in Step 2 of the
algorithm, considered in the same orientation/ds is such that

FSA(L') < (1 +e' + ﬁ) FSP(M)

5.1 Strip packing 65

and

A(L) < <1 e+ (g,fzm) A(M).

Proof From M we can obtain a modified list/, , as described in Subsection 2.2.2. This time
we defineme’/2 threshold rectangles intersecting the lines

2H)y . me
i 1=0,..., 5

Y=
g'm

We defineM, by increasing the width of each rectangle to the width of¢beondthreshold
rectangle below it. By (2.2), we have

4 H

FSPA(M,) < FSAM) + ol

(5.7)

However, we do not necessarily have tha M, because item sizes were rounded up in both
dimensions to gel’. To get a larger list, we multiply the vertical sizes of adlrits inAM . by

1 + €. This gives us a lisfi/, .. It is clear that an equal scaling of thertical size of all the
items implies that the optimal fractional strip packingwan is scaled up by the same amount,
i.e. byl + ¢’. We conclude

FSA(M,) = (14 &)FSA(M,). (5.8)

We claim that\,, > L.

Clearly, the stack foL’ is not higher than the stack far ., , , since both dimensions of items
in L’ were increased by at most a factor(of+ <'). To see that the stack is also nowhere wider
than the stack o/, ,, consider the width of an itemin L. This width is at most equal to,,
the width of a threshold rectangjein the stack for/ (and not forZ’). Note that itemg and}
are separated by a stack of height at m@stm in the /-stack.

The M-stack is a subset of the-stack, and in thel/-stack, itemi is separated from its
second-below threshold rectangle by a stack of height at lea

e'm

Finally, we have
Hy >e'Hp > €'Hy)2,

where the first inequality follows because all items havethviat least’, and the second in-
equality follows because in thie-stack, all items are placed with their height (largest disien)
vertically.

This implies thak H,,/(¢'m) > H;/m. Therefore the width of the second threshold rectan-
gle below itemi in the M/ -stack has width at least;, which shows that the iterin L’ does not
extend further to the left than it/. This proves

M., >1L. (5.9)

66 Chapter 5. Packing with rotations

We conclude that
FSHL) < FSP(M..) by (5.9
= (1+¢&)FsAM,) by (5.8
< (1+4¢) (FSP(M) + 455) by (5.7)

It can be seen that these statements are also valid if wecespda(-) by A(-) everywhere.
Since all rectangles have width at lea'stwe have=' H,, < A(M) < FSP(M). This implies the
statements of the lemma. O

The following lemma follows from Lemma 4 in [107].

Lemma 5.2 For a fixed orientation, lel.” = L' U L, If the heighth, at the end of Step
3(b) is larger than the height’ of the packing foi.’, then

"
Al + @mjt 1.

he <
F=9_"o" 95

Proof The proof in [107] shows that in this case, nearly all the anehe packing is covered
by items, apart from an additive constant which is deterohimethe number of different widths
in the input sequence.

We now find %m + 1 instead of the originalm + 1 because by Property 1, there are at
most%m different widths in any orientation. By the results in [10fFle number of layers in the
strip packing forL’ is bounded by twice the number of different widths, and ahdaterface
between layers, there is a height of at most 2 which is not bgédFDH. O

Lemma 5.1 implies that

4
A(L") < A(Lgenerar) (1 +¢e' + (5,)2m> .
Therefore ifhy > A/, we have

A(Lyeneral) 4 102

We are now ready to prove Theorem 5.3. Consider the orientafi the items inZ in the
optimal strip packing, i.e. the list/. At some point, our algorithm will try an orientation &f
which corresponds to this orientation. From here on, we oahsider the height of the packing
that our algorithm finds for this particular orientation.e@tly, the height that it outputs in Step
4 cannot be higher than this.

By (5.10), we have eithexLG (L) < i’ or

A<L eneral) 102
(5’)2m) oo Tyt

ALG(L) < (1 +e' +

5.2 Two-dimensional bin packing 67

wherel/’ is the height of the strip packing produced in Step 3(a) ofallgerithm. By (5.6) and
Lemma 5.1, using as in Lemma 5.2 that the number of differedths is at mos%m in any
orientation, we find

1
no< Fsp(L’)+2—5m+1

4 51
< <1+€'+W)FSP(M)+%m+1

51
< <1+5’+)OPT(M)JF%mH

(€")?m

51
< (1 +& +) OPT(Lgenerar) + =—=m + 1.

(€")?m 25
SinceA(Lgyenerat) < OPT(Lgenerar), this implies

4 OPT(Lyenerar) .~ 102
— 1.
(6’)2m) 11— "7

ALG(L) < (1 +e'+

Takingm = (1/¢")* ande’ = /(6 + ¢), this implies that

1121

3 +1

ALG (Lgeneral> < (1 + 5)OPT(Lgeneral) +

for e < 1/2. This proves Theorem 5.3. We note that it is even possibleseoafully polynomial
time approximation scheme using an LP-based approach [94].

5.2 Two-dimensional bin packing

To begin, consider again the approximation schemes fromrandous section. Také = /2.
Suppose our algorithm with as input parameteives a strip packing with a height &f for a
given set of items. Denote the height of the optistaip packing byH’. We have

H<(1+&H +0 (51_2) .

Given this strip packing, we can define cuts at all integegtmsi Then starting from the cut
at height 1, we can allocate the items to square bins as feilpwt all the items below this cut
into a separate bin (the upper edge of some of these items omagide with the cut), and put
all the items that intersect the cut into another bin. Cargiwith the next higher cut until all
items are packed into bins.

Using the above method, we put the items into at Aésbins. Additionally, there does not
exist a packing into bins which uses less thérbins, because such a packing could trivially be
turned into a strip packing that uses a height at nifist 1, which is a contradiction.

Thus the number of bins that we use to pack the items is at st = 2 + ¢ times the
optimal number of bins required for these items, plus antagditonstant.

68 Chapter 5. Packing with rotations

In the current section, we define an alternative approxwmnagilgorithm which is slightly
worse. However, it has the advantage that it can easily beted#o the more complex problems
listed below. Moreover, it is much faster.

Items that have width and height greater thaa are calledbig. The following definitions
will be used throughout this chapter and the next.

Definition 5.1 An item is instandard orientatioif its height is at least as large as its width,
otherwise it is inreverse orientatian

All items are placed in standard orientation. Since we aragyto use this algorithm as a
subroutine for three-dimensional problems, we denote iimemsions of the items by widths
andlengths(instead of heights) from now on to avoid confusion later. Mggin by partitioning
the items into types. We use the following intervals.

e (2/3,1] (type0)
1/2,2/3] (typel)
1/(i+1),1/i]fori=2,...,8 (typei)

(
(
(
e (0,1/9] (type9)

A two-dimensional item is of typé, j) if its width is of type: and its length is of typg. Clearly
i > j due to the orientation we defined. In some cases, we will useeadlassification for type
1. We let typela = (1/2,11/20], typelb = (11/20, 3/5] and typelc = (3/5,2/3].

Large types There are four types which we will cdlirge. We will begin by defining their
packing. Each such type is packed independently of the athes. We pack items of types
(1,1),(1,0) and(0,0) one per bin, always in the left bottom corner of the bin andtamdard
orientation. The items of typ&2, 1) are further classified according to their length (largest
dimension). Items of typ&, 1a) are packed two per bin, both in reverse orientation, towghin
the same edge of the bin and each other, with one of them irethkdttom corner of the bin.
The same holds for items of tyge, 16) and(2, 1¢) (but the items of these three subtypes are
not packed together in any bin).

Medium types There are also founediumtypes. Items of typé2, 2) are packed four per bin
(the bin is first partitioned into four identical sub-biniems of type(i, 0) are packed per bin
fori = 2,3, 4.

After the packing of the large and medium types is completedller items are added. They
are first added into bins which contain large items. If soram# remain unpacked after those
bins are considered, they are packed into empty bins.

Bins containing items of the typé€8, 0), (2, 2), (2,0), (3,0) and(4, 0) do not receive smaller
items. We note that all these bins are packed so that a fraofiat leasti/9 of their area is
occupied, except possibly the last bin for each of the lasttigpes. This follows from the types
and the amounts of items per bin.

5.2 Two-dimensional bin packing 69

Approximation ratio The performance bound 6f4 follows from one of the two following
reasons.

1. If no new bins are opened for smaller items, we use a weiglitinction for the analysis.
Those functions are usually useful in analyzing on-lineoethms. Here we use it to
analyze an offline algorithm.

2. If at least one bin was opened for smaller items, we useemlzsed analysis. We show
that all bins except a constant number have items of total@frat least! /9. Then we get
OPT > (4/9)(ALG5 — ¢) which implies the performance ratio.

Case 1 The weighting function is defined in the following way. Smi&dims get weight 0.

Type | (0,0) (1,0) (1,1) (2,1) (2,0) (2,2) (3,0) (4,0)
Weight| 1 1 1 /2 1/2 1/4 1/3 1/4

The following claim is immediate from the definitions, andpkins our choice of weighting
function.

Claim 5.1 All bins packed by our algorithm with large items, exceptgioly the last one for
each (sub)type, contain a weight of 1.

Claim 5.2 A bin can contain at most nine items of both width and lengthdiathan1 /4.

Proof See Chapter 4, Claim 4.4. O
It follows from the same result that a bin can contain at mestty-five items of both width
and length larger thah/6.

Claim 5.3 A bin can contain at most 9/4 of weight.

Proof Consider a bin with a certain amount of weight. We may assin@etis no item of type
(0,0) or (1,0), because the smaller typg, 1) also has weight 1, and also no item of ty2e0)
becaus€2, 1) gives the same weight.

We will use Claim 5.2 to determine the highest possible weiigla bin by expressing all
items as multiples of items of width and length just largearth/4 or 1/6. For instance, by
cutting a (1,1) item halfway both horizontally and vertlgait can be seen that other items of
‘worth’ at most 5 items of width and length just larger thigfd can be placed with it in one bin
(otherwise this cutting would create a packing with moret@auch items, contradicting Claim
5.2).

70 Chapter 5. Packing with rotations

An overview can be found in the following table. Here the hegditems > 1/4° means
‘number of items of length and width more tha/ that items of this type contain’, etc.

Type | items> 1/4 items> 1/6 weight weight per
item > 1/6

(1,1) 4 9 1 1/9

(2,1) 2 6 1/2 1/12

(2,2) 1 4 1/4 1/16

(3,0) 2 4 1/3 1/12

(4,0) 0 4 1/4 1/16

If there is no item of typé1, 1), then by the last column, the weight per ‘virtual’ item of wid
and length larger than/6 is at mostl /12 which gives total weight of at mog6/12 < 9/4.

Otherwise, by the second column and Claim 5.2, at most 2 itdrtype (2, 1) or (3,0) can
be in the bin together with the item of tyjpg, 1). To get maximum weight, we should maximize
the number of virtual items that have weighft 2 per item. We can have at most 12 such virtual
items because there can be at most 2 items that cover 6 of thieisileaves at most 4 virtual
items with weight per item /16, giving additional weight ol /4. The total weight therefore is
at most 1 (from the largest iter)1 (from the(2, 1) items)+1/4 = 9/4. O

Case 2 ltis left to show how small items are packed to keelg @fraction of each bin occupied
(except for a constant number of bins). Each bin will contems of a given small type or set
of types. For each type or set of types, we need to show howatepacked in the following

three cases.

A. A bin that already contains@d, 0) item, or two(2, 1) items.
B. A bin that already contains@, 1) item.
C. An empty bin.

Consider the area left for further packing in the three caSes Figure 5.2. For many small
types, summarized in Table 5.1, the packing of the smallstdaes not depend on the exact size
of the large items that they are packed with.

In type A bins, there is a strip of width/3 and length 1 that does not contain any items.
Such a bin already contains an area of at léa3t

In type B bins, the area outside of a square gf by 2/3 in the left bottom corner does not
contain any items. We patrtition this L-shaped area in twoaregles, one of dimensiorisand
1/3 and the other of dimensiorzy3 and1/3. The orientation is not important since rotations
are allowed. We pack some number of small items in the lagEtangle and some number in
the smaller rectangle; the numbers are written as a sum fitéhes’ column for type B. These
bins already contain an area of at least.

In type C bins, we use the so-called side-by-side packingtfback items. l.e., for type
(1, 7) items, we place; of these items in anby ; grid at the bottom of the bin, and then (when
possible) add some extra items in reverse orientation dbghef the bin.

5.2 Two-dimensional bin packing 71

A B C

Type items area= 1/3+ | items area=1/4+ | items area
(3,1) 1 1/8 1+1 1/4 4 1/2
(3,2) 2 1/6 2+1 1/4 6 1/2
(4,2) 2 2/15 2+1 1/5 8 8/15
(i,7) 3<j<i<4 3 3/25 3+2 1/5 ij 9/16
(5,7) j=3,4,5 5 5/36 5+3 2/9 57 5/8
(i,1) i=6,7,8 2 1/9 242 2/9 8 4/9
(4,2) i=6,7,8 4 4/27 442 2/9 12 12/27
(1,3) i=6,7,8 6 1/6 6+4 5/18 18 1/2
(i,5) i=6,7,8 8 4/27 8+4 2/9 24 4/9

j=4,5
(i,j) 6<j<i<8| 12 12/81 12+8 20/81 36 4/9

Type shelves area 1/3+ | shelves area 1/4+ | shelves area
9,1) i=2,...,8 i 2/3-2/9 | i+1 2/9 i 8/9-2/3

Table 5.1: All types that are combined on a single line of di#d are packed together, except
the typeq(i, j) for 3 < j <i < 5in empty bins (type C bins) and ttie, i) types.

For the(9, 1) types, shelves of lengttyi and width1/3 are created in type A and B bins. They
are all filled to a length ot /(: + 1) and a width 0f2/9. In bins of type B, one extra shelf is
created in the smaller part of the L-shape. In bins of typen€lves of width 1 are created; they
are filled to a width oR/9.

72 Chapter 5. Packing with rotations

Type Bins Condition items area
(4,1) A || subtype(4,1), 1 1/3+9/80
w > 11/20 1 11/30 +1/10
w < 11/20 2 1/3+2/10
B 1+1 1/4+1/5
C 5 1/2
(5,0) A 1 1/3+1/9
B w > 3/5 140 9/25+1/9
w < 3/5 2+0 1/4+2/9
C 5 5/9
(5,1) A w > 3/5 1 2/5+1/12
w<3/5 2 1/3+1/6
B w > 3/5 1+1 9/25+1/6
w<3/5 2+1 1/4+1/4
C 6 1/2
(5,2) A 2 1/3+1/9
B w > 3/5 241 9/25+3/18
w < 3/5 441 1/4+5/18
C 10 5/9
(1,0),i =6,7,8| A 2 1/3+4/(3i+3)
B || subtype(i,0), | 2+1 1/4+2/(i+1)
subtype(s,0), | 2+0 1/4+251-5
C i 2/3-i/(i+1)
Type Bins Condition | shelves area
(9,1),i =0, 1 A 1 1/3+2/9-1/2
(9,0) B || w>11/20 1 oo T 22
w < 11/20 1 1/4+ (55— 3)
(9,1) B 2 1/4+4/9-1/2
(9,4),i=0,1 C 1 1/2-8/9

Table 5.2: The variable in the Condition column refers to the width of the big itemi(sjhe
current bin of typed or B. Recall that the width is themallestsize of an item.

The type(4, 1), contains items of width in the intervéd /40, 1/4]. The type(i,0), (i = 6,7, 8)
contains items of width irf2/3, =1], the type(:,0), contains items of width if*=*,1]. The
types(:,0) (i = 4,...,8) are packed separately (in type B bins: both subtypes sebgrahe
types(9,0) and(9, 1) are packed together in type A and C bins. For{hd) items in type B
bins, we use two shelves of length 1 el@, both of width1/3. In both shelves, at least a width
of 2/9 and length ofl /2 will be occupied.

5.2 Two-dimensional bin packing 73

A B C

g
g
g
g
g
A .

Figure 5.2: Unused areas in bins of types A, B and C. Smallstara packed here

Table 5.2 contains the items that are slightly more compdit#o pack, at least in Type A
and Type B bins. Here it is usually important what the exacltlvof the large items is. This is
the reason that we classified type (2,1) items further: wencanbe assured that if one of them
has e.g. widthv < 3/5, the other one has this as well. (Note: to keep the analysisrom for
these items we let the width be thegestsize. The width of a pair can be taken arbitrarily as
either the width of the first or the second item, due to oursifeestion.)

We explain the column marked 'Condition’. The entries mdrlsaibtype’ are explained in
the caption. An entryv < x orw > x refers to the width of the large item(s) in this bin; in the
cases marked < x, we use vertical strips of width— x to pack small items, instead of width
1/3. The horizontal strips (in type B bins) always have witltB. For items of typ€6, 0), (7,0)
and(8, 0), the width of the vertical strip in type B bins depends on thétlwof thesmallitems
packed in there.

The area that is already in a type A or B bin is of course differewe put restrictions on
the width of the large items; it is given by the first term of gwem in the ‘area’ column. Finally,
there is one type that still remains to be packed. This t{{e),), is described below.

Type (9,9) We show how to pack these items into square sub-bins of witiHengthl /3 so
that inside each such sub-bin at le&4&d of its area is occupied. We begin by showing that this
is a dense enough packing in all three cases.

A. We can create three sub-bins. We get a total arda®f+ 12/81 = 13/27 > 4/9.

B. The item already packed in this bin has length and widtrangdr thar2 /3. Therefore we
can create five sub-bins. The total occupied area wouldbe5-4/81 = 161/324 > 4/9.

C. We create nine sub-bins and get a total are/0f

Next we explain the packing into sub-bins. We use Next FitrBasing Length (NFDL) to
pack items into these sub-bins. All items are put in standaehtation (length> width), and
then sorted by decreasing length. Then, the items are pactetbvels using Next Fit, where
the length of each level is the length of the first item placed.iWhen the next item does not
fit in the current level anymore, a new level is started, ifessary in a new sub-bin.

74 Chapter 5. Packing with rotations

Since all items have width at most9, we find that each level is filled to a width of at least
2/9. Denote the length of levelby H;. Let k be the number of levels in the current bin. The
first item that does not fit has length, ;. All items in leveli have length at least, , ;.

Then for each sub-bin except the last, the packed area iasit le

2
S(Hy o Hir) > 2/9(1/3 = Hy) > 4/8L.

This is a4/9 fraction of the area of the sub-bin whichlig9.

Theorem 5.4 For any input listL, we have
ALG2(L) <9/4-0PT(L) + 41.

Proof If no new bins are opened for small items, we have from Claiintbat there are at
most 7 bins with weight less than 1 (this cannot occur for thpe$(0,0), (1,0) and (1, 1)).
Combining this with Claim 5.3 gives

ALGo(L) <9/4-0OPT(L) + 7.

If there are new bins opened for small items, then almostia#l bontain an area of at least
4/9. By the above analysis, this holds in this case for all birg dontain small items, except
possibly the last such bin for each type that is packed stgarélote that it is also possible that
we run out of a certain small type while we are packing a biryp€&tA, in this case this bin is
not used further and has a bad area guarantee. Countingrtiteenof types packed separately,
there are 21 such types in Table 5.1 and 12 in Table 5.2. (Natette typd4, 1) can only cause
a single bin with a low area guarantee, because this canppeh&or subtypé4, 1), or for a
bin of type A withw > 11/20.) Finally there is the typ€9, 9).

Moreover, there can be at most 7 bins with large items thag hawsmall items and area less
than4/9: these are the bins that had weight less than 1 after padkégtge items. Since the
total area of the items is a lower bound on the optimal numbeimns required to pack them, we
find in this case

ALGy(L) <9/4-0PT(L) + 41.

5.3 This side up

We now show how to use the algorithm in the previous secti@et@9 /4-approximation algo-
rithm for the This Side Up problem. Naively, one might thihiat one could simply group items
of similar height and pack each group using the algorithrmftbe previous section (ignoring
the height of the items). However, the problem with this & tfome groups might contain only
large items and other groups only small items. In this cémegtoups with large items will have
poor volume guarantees, and we will not get a good approiomaatio.

We therefore have to be more careful. Our algorithm work#evs. All items are clas-
sified into types as in the previous section, where the haifjtite items is (for now) ignored.
We then begin by packing the large items. The0) items are stacked in some way, nothing is
placed next to this stack.

5.3 This side up 75

Subtypes For the(1,0), (1,1) and(2, 1) items, we classify them further along a dimension
that has type 1, using the types, 16 and1c that were defined at the start of section 5.2. Thus we
have in total nine subtypes (tlie, 1) items are only classified further along their width (smalles
size)). We sort the items by subtype, items of subtypd® af) are further sorted by decreasing
height.

For each subtype, the items are stacked in the strip so tleataner of each item is directly
above a designated corner of the base of the strip, and @mi§itge oriented in the same way.
Pairs of(2, 1) items are considered as a single0) item in this step, where the width is one
of the lengths (largest sizes) of the pair. Thus we have aiskstof items on top of each other:
three for thg(1, 1) items and one each for items of typgés, 0) and(2, 1x) for x = a, b, c. Here
we rotate theg2, 1) items such that their length is oriented along the width ef(th 0) items,
and a free strip is left next to these items along one sideeofrtain strip.

Packing small items If we view any one of these stacks from above, it leaves eiinek -
shaped area or one strip. We can now start using this extuemeofor the small items, using
the six stacks one by one. The small items are also packed/per Within each type, the
items are sorted in order of decreasing height. Then thesitme packed in layers, where each
layer is packed as in section 5.2 next to the current stacks i$mot directly possible for the
(9,9)-items, we discuss these separately below. The height ofea ia the height of the first
item packed in it.

Because this stack contains items of only one large subtypednsidering pairs of2, 1)
items as(1,0) items), and the layers contain items from one small type ptieking uses the
same unique method on all layers that are used for this syl tit is for this reason that we
can ignore the single large items in the stack and only caoeitaihe height of the stack. If
we did not use this distinction into subtypes for the largenis, we might need to change the
packing method many times, and we would leave much vertpades unused.

We continue creating layers until we run out of items for tisall type or the next small
item does not fit next to the current stack (its height wouldigéer than the height of the stack).
In this last case, the remaining items of this type are paokatito the next stack of large items.
l.e., the next layer for this type is not created immediasddgve the previous layer, but instead
at the height where the next stack starts. Also, the packiethod might be changed at this
point.

Finally, if all six stacks are used in this way, or the smadhits are all packed, we pack the
remaining medium and/or small items according to the metliodpacking items into empty
bins. That is, for each (medium or small) type, the items arged according to height and then
packed in order of decreasing height using the methods femtion 5.2, using as many layers
as necessatry.

The (9,9)-items These items are sorted by decreasing length in section & 2ol we need
to sort them by height. We therefore pack them as follows.sittan the sequence of unpacked
(9,9)-items, sorted by decreasing height. We assume the itemnsiarkered, 2, . .., ny. Using
binary search, we find the largestuch that the items, . . . , ¢ can be packed into a sub-bin. To
find a packing for a given set of items (i.e. a given valué) af a sub-bin, we use NFDL. In this

76 Chapter 5. Packing with rotations

way, each item packed in a given sub-bin is no lower than each in the next sub-bin with
(9,9)-items.

Moreover, since we use NFDL within a sub-bin, we still have éihea guarantee @f9. To
prove this, consider an indésuch that the items, . . . , i can be packed into a sub-bin, whereas
theitemsl, ..., 4,7 + 1 can not. Consider the packing which would be created by NFDthe
items1,...,i,7 + 1. Since these items do not actually fit into the sub-bin, tisé n@n-empty
shelf is overloaded, i.e., the total width of items in it isicity larger than 1. We show that
removing the item of index + 1 from the packing still leaves a packed area of at ldgst
Note that the packing of NFDL for these items may be diffeeard we are just proving the area
guarantee for the items that can clearly be packed using NFDL

We use the indices, 2, ..., s for the shelves, where the shelfs empty or of height zero.
Let j be the shelf on which the item of indéx- 1 is packed. If the removal of this item leaves
the shelf with total width of at leagt/3, we stop. Otherwise, assume first thiat s — 1. Take
the leftmost itemz from shelfj + 1, and move it to shelf. Note that this item fits into the
shelf since its height is at least the height of the moved iterMoreover, the total width of
the previous contents of shelf(before removing an item from there) together witis larger
than 1 (otherwise; would have been packed on shglf Therefore the total width without the
removed item is at leagt/3 (since the width of: is at mostl/3). The total width withz but
without the removed item is at moktsince the width after the removal is less ti2a8. We let
j = j + 1 (since now shelj + 1 is lacking one removed item) and repeat this until either the
process is stopped, gr= s — 1. Since shelfk — 1 is overloaded, a removal of one item does
not decrease its total width bela@y3 (note that it may be still overloaded after the removal).
We get that all shelves have a total width of at legst, and the contents of each shelk s
are at least of the height of shelf- 1 (since we only moved the highest rectangle of each shelf
one shelf down). Therefore, also a heighg$ is covered, which implies an occupied area of
at leastt /9.

Theorem 5.5 For any input listZ, we have
ALG3(L) <9/4-0PT(L) + 45.

Proof We begin by making a general remark. Whenever items are gacteelayers in order of
decreasing height, some height in each layer is lost be¢heasest item on the layer determines
the height of the layer, and the next items might have smiadlgght. However, if we denote the
heights of the layers b¥f,, . .., H,, we have that all items on layéhave height at leadt, , ;.
To see how much area is occupied, we can move all items fromlager: to layeri + 1. Then
layeri + 1 is completely covered by items for eagland only layer 1 is left empty. This implies
that when we consider the height of the entire packing fos¢hems, at most a height éf;
does not contain any items. We have two cases in our analysis.

Case 1 All the small items fit next to the six created stacks. In thdse; we can ignore the
small items in the analysis because they do not add to thiehight used. In this case, we can
use the weighting technique from section 5.2.

5.4 Further applications 77

The weight of an item is now defined as the vertical size dviojethe number of times that
the ’horizontal item’ fits in a square. To give a bound on th&grenance ratio, we introduce
a new concept which is theeight densityf an item. This is the weight of an iteper unit of
vertical dimensioni.e. it is the weight of the two-dimensional item that we géEen we ignore
the vertical dimension of an item. The weight density of driteary horizontal plane through a
packing of items is the sum of the weight densities of the s&hich intersect with this plane.
We will examine the weight densities at arbitrary horizéptanes through the packings of our
algorithm and of the optimal packing.

We find that for each large (sub)type, if it is packed in laymsveen heights; andh,, the
weight density is 1 at all heightse [k, hy] apart from a total height of at most 1. Ko, 0) and
the subtypes of1, 1) and(1,0), there is even a weight density of 1 at the entire height df the
stacks, because all these items are placed directly on teaabf other. In the optimal solution,
according to Claim 5.3, there can not be a weight density aertttan9/4 at any height. Since
we use seven types that do not have a weight of 1 everywharer(fedium types and the three
subtypes of2, 1)), we find that

ALG3(L) <9/4-0OPT(L) + 7.

Case 2 Some small items need to be packed above the large items.idéors®me large
(sub)type (one stack) and a single small typ8uppose all items from this type are placed next
to this large subtype, between heightsaandh;. Since the small items are sorted by decreasing
height, and the large items are all stacked on top of each,atleehave for each heiglit, <

h < hj an area guarantee 6f9 using the proof from section 5.2, apart from a total heigtatof
most 1.

A small type may also be split among two large stacks, or anoggstack and layers of
its own (not next to any stack). In this case, some heighteatdp of the first stack might not
contain small items. We can assign this additional heigd# to the large (sub)type of that stack.
We then find that for each large and small (sub)type, thereheght of at most 1 at which we
do not have an area guaranteel@. In total we have 10 large (sub)types in separate stacks and
21 + 13 + 1 = 35 small (sub)types and we find

ALG3(L) <9/4-OPT(L) + 45.

5.4 Further applications

5.4.1 Three-dimensional strip packing

To pack items in a three-dimensional strip, we place eacgélaitem such that its weight,
defined as in the previous section, is minimized. Note thatdbes not mean simply placing
it with its smallest dimension vertical, because the nundbeimes that the implied horizontal
item fits in a square might depend on the orientation.

78 Chapter 5. Packing with rotations

Extending the standard orientation from beforeulet, andh be the smallest, second small-
est and third smallest dimension of an item. We describedrehle below how the items which
we will call large are placed.

Type Condition| Vertical dimension Weight Type (2d)

(0,0,0),(1,0,0) w w (0,0)
(1,1,0)* w w (1,0)*
(1,1,1)* w w (1, 1)*
(2,0,0) ¢ < 2w 14 0/2 (2,0)
(> 2w w w (0,0)

(2,1,0) 14 (/2 (2,0)
(2,1,1)* 4 (/2 (2,1)*
(2,2,0) h < 2w h h/4 (2,2)
h > 2w w w/2 (2,0)

(2,2,1) h h/4 (2,2)
(2,2,2) w w/4 (2,2)
(3,0,0) ¢ < 3w 14 (/3 (3,0)
> 3w w w (0,0)

(4,0,0) ¢ < Aw 14 (/4 (4,0)
0> 4w w w (0,0)

Table 5.3: How to pack large items in a three-dimensional str

As an example, consider the items of tyj2e0, 0). For these items we have € (1/3,1/2]
and/ > 2/3. The most efficient packing for these items depends on tiefato. If this ratio is
at least 2, the items are relatively long and it is best togothem with their smallest dimension
(w) vertical. However, if the ratio is less than 2, we can plaee items side by side and need
only a height off to place two such items, whereas withas vertical dimension we would need
2w > ¢ since then we cannot place the items next to eachother. Thhs\wach type in the
table, all items are placed as efficiently as possible.

The last column contains the type of the item when the vérticaension is ignored. For
each line of the table, all items are stacked in layers inratidecreasing height. Naturally items
that map to the same two-dimensional type can be stacketh#rga a single stack (e.g. items
inlines 1, 5, 13 and 15). The height of a layer is the heighheffirst item placed in that layer.

All types not mentioned in this table are placed with tHargestdimension j, vertically,
leaving a small two-dimensional type. These items are @alheall Small items are combined
with some large items (the ones marked with * in the table)tyaas in the This Side Up
algorithm from the previous section. That is, for eacdindb such thata, b) is a small type, all
types of the formia, b, x) are combined into a single type. Items are sorted in ordeeofesing
height and packed into layers next to existing stacks, onased heights.

Theorem 5.6 For any input listL, we have

ALG3(L) <9/4-0PT(L) + 45.

5.4 Further applications 79

Proof As before, we have two cases. Suppose first that all smalkitean be placed next to
the large items. It can be seen that our algorithm has a wdigintity of 1 at all heights apart
from a total height of at most 7, as before. For the optimakpay; we use an unusual definition
of the weights and let the weight of any large item be the gaksgize of this itenas packed in
the optimal packingdivided by the number of times that the 'horizontal items fih a square.
Denote the sum of the weights of the large items in inputZligthen packed by algorithid as
W4(L). Since our algorithm places the large items such that theight is minimized, we have
for the total weights thaitV'a| g, (L) < WopT(L).

Moreover, it is still the case that the weight density at aoyizontal plane through the
optimal packing is at most/4, since this is still equal to the total weight of the corresgiog
two-dimensional items packed in the square at that heighitusTwe findopT(L) > 4/9 -
WopT(L).

We have

ALG4(L) < WaLg,(L)+7 < WopTt(L) +7<9/4-0PT(L) + 7.

Now suppose that some small items are placed above all lenges.i In this case, we find
as in the analysis of the This Side Up problem that at all Hsigpart from a total height of at
most 45, an area of at least9 is occupied by items. Since the optimal algorithm must paek t
entire volume, the performance ratio®f again follows:ALG4(L) < 9/4 - oPT(L) +45. O

5.4.2 Three-dimensional bin packing

Finally, we can turn the packing generatednG , into a packing for the fully rotatable three-
dimensional bin packing problem. This is done by makingzwnrtal cuts at all integer heights.
Then, for each cut starting from the bottom we do the follagyvin

¢ all items below this cut and above the next lower cut are phak® an empty bin
¢ all items that are intersected by this cut are packed intagstyebin

Finally, all items above the last cut are packed into an erbpty Since all items have height
at most 1, it is clear that this generates a valid packing. edeer, if we place the bins on top
of each other in a stack, it is clear that the height of the ésglbin is at most twice the height
achieved byLG, plus 1, and the number of bins required to packan not be smaller than the
optimal height to paclt. in a strip.

We conclude

ALG5(L) <9/2-0PT(L) + 91.

Although almost all our algorithms are basedrs ,, this is the only direct reduction where
no further modifications to the algorithm are required. Mimmnally, any algorithm for three-
dimensional strip packing with rotations that has perfarogaratioR can be turned into an
algorithm for three-dimensional bin packing with rotasahat has performance rati&.

The above algorithm and analysis can be also applied to this ‘Side up” problem in bins.

80 Chapter 5. Packing with rotations

5.5 Conclusion

In this paper we design offline algorithms for six packinglpeons. Most of these problems
were not studied in on-line environments, which can be @sing as well. It might be the
case that some of the bounds in this chapter can be improveecifi8ally we are interested
in improving the constant for packing in three-dimensidniak (both for rotatable items and
for the “This Side Up” problem). This can be done by desigrafgprithms for these problems
directly instead of adaptation of algorithms for other peohs.

Part Il

Scheduling

81

Chapter 6

Minimizing the total completion time
online on a single machine, using restarts

We examine the scheduling problem of minimizing the totathptetion time (the sum of com-
pletion times) online on a single machine, using restarshgob has a size which is the amount
of time it needs to be run in order to complete. Allowing restaneans that the processing of
a job may be interrupted, losing all the work done on it. Irstbése, the job must be started
again later (restarted), until it is completed without mitions. We study the online problem,
where algorithms must decide how to schedule the existibg yathout any knowledge about
the future arrivals of jobs.

We compare the performance of an online algoritdnto that of an optimal off-line algo-
rithm opPT that knows the entire job sequenean advance. The total completion time of an
input o given to an algorithmaLG is denoted byaLG (o). The competitive ratidR (.A) of an
online algorithmA is defined as

R(A) = sup oﬁi((jo)—) '

Known results For the case where all jobs are available at time 0, the stgtecessing time
algorithmspT1[148] has an optimal total completion time. This algorithung the jobs in order
of increasing size. Hoogeveen and Vestjens [90] showedftjodis arrive over time and restarts
are not allowed, the optimal competitive ratio is 2, and thaye an algorithnospT (‘delayed
sPT) which maintained that competitive ratio.

We are aware of three previous instances where restartspr@ren to help. First, in [145]
it was shown that restarts help to minimize the makespanni@emum completion time) of
jobs with unknown sizes om related machines. Here each machine has its own speed, which
does not depend on the job it is running. The algorithm in [IBifains a competitive ratio of
O(logm). Without restarts, the lower bound(iX/m).

Second, [1] shows that restarts help to minimize the maxindefivery time on a single
machine, obtaining an (optimal) competitive ratio3g® while without restarts(v/5 4 1) /2 is
the best possible. In this problem, each job needs to beedetivafter completing, which takes
a certain given extra time.

83

84 Chapter 6. Minimizing the total completion time online oniragge machine, using restarts

Third, in [89] it is shown that restarts help to minimize thenmber ofearly jobs (jobs that
complete on or before their due date) on a single machin@jroby an (optimal) competitive
ratio of 2 while without restarts, it is not possible to be gumtitive at all (not even with preemp-
tions).

Our results Until now, it was not known how to use restarts in a determimglgorithm for
minimizing the total completion time on a single machine & g competitive ratio below 2,
whereas a ratio of 2 can be achieved by an algorithm that dueestart. We give an algorithm
RSPT (‘restartingsPT) of competitive ratio 3/2. This ratio cannot be obtainedheut restarts,
even with the use of randomization.

Our algorithm is arguably the simplest possible algoritionthis problem that uses restarts:
it bases the decision about whether or not it will interruptianing job.J for an arriving job.J’
solely onJ and.J'. It ignores, for example, all other jobs that are waiting éorbn. We show
in section 6.1 that the analysis of our algorithm is tight #mat all “RspPT-like” algorithms have
a competitive ratio of at leasdt48. This suggests that a more complicated algorithm would be
required to get a substantially better competitive rafippssible.

6.1 Algorithm RSPT

We present our online algorithrRspTfor the problem of minimizing the total completion time
on a single machine, using restarts. See Figure 6.1. We dejoi®/ to berunning at timet if
it started at times < ¢, it did not complete before timeand no other job started to run s, ¢).

Figure 6.1: The algorithmspPT

RSPT maintains a queué of unfinished jobs. A job is put int¢) when it arrives. A job i$
removed from) when it is completed. For any timeRsPTdeals first with all arrivals of job
at timet before starting or interrupting any job.

At any timet where eitherRsPTcompletes a job, or one or more jobs arrive wiRkkrTis idle,
RSPT starts to run the smallest (remaining) job(n If Q = 0, RspTis idle (until the next joly
arrives).
Furthermore, if at time a job J is running that started (most recently) at time< » and has
sizex, and if at timer a new job.J’ arrives with sizev, thenrRsPTinterrupts/ and starts to rup
J'if and only if

n

r+w < g(sjtx). (6.1)

OtherwiseRsPTcontinues to run/ (and.JJ’ is put into).

RSPThas the following properties (whetg x, s, r andw are defined as in Figure 6.10PT
is any optimal off-line algorithm (there can be more than)one

R1 rspTonly interrupts a jobJ for jobs that are smaller and that can finish earlier thian
Proof. If there is an interruptiony < 2(s +) —r < 2z — 3s <z andr +w < s + .

6.1 Algorithm RSPT 85

R2

R3

If RspTdoes not interrupf for a job of sizew that arrives at time, thenr +w > %(s+x).
Furthermore, iRsPTis still runningJ at timer + w, it runs.J until completion.

Proof. The first claim holds by condition (6.1) in the algorithm. Teeshe other claim,
observe that any joli’ that arrives after time+w satisfies’'+w’ > 1’ > r+w > 2(s+x)
in this case, and does not cause an interruption. O

Suppose that < ¢ < %(s +), andrsPThas been running continuously from time
s until time t. Then at time, all jobs smaller thawy that are completed bgpPT are also
completed byrSPT.

Proof. The property holds fot = s by definition ofRSPT. Fort > s, a smaller job
thatopT completed andkspPTdid not, can thus only have arrived after timeBut then

it would have caused an interruption $fbefore timet, since it can be completed before
time 2(s +). O

R4 Suppose that < t < %(s + x), andrRSPT has been running continuously from time

s until time t. Then at timet, oPT has completed at most one job thegPT has not
completed.

Proof. By R3, the only jobs thabPT can have already completed at titn#hatRSPThas
not, have size at least However, we have < 2z, sincet > 2z = 2(s + z) > 2z =
s>2x = 3s> 2 =5 >2(s+x) =t > (s +), acontradiction. Before time
t < 2z, OPT can complete at most one job of size at leaanhd therefore at most one job

thatrRspPThas not yet completed. 0

R5 At any timet, RSPTonly interrupts jobs that it cannot finish before tir%lﬁe HenceRSPT

does not interrupt any job with a size of at most half its gigrtime.

Proof. If there is an interruption at timg then a job arrived at timefor whicht + w <
2(s—+x), hence without interruptions would have finished at time+z > 2(t+w) > 3t.
U

To explain some of the intuition behind the definitionrRsPT, we define a family of similar
algorithms and prove that none of them can do much betterrisam. We define a family of
algorithms,{RsPT(a)}, a € [0, 1] as follows:RSPT(«) behaves exactly likesPT, but (6.1) is
replaced by

r+w < als+z).

It is possible thaRsPT(«) outperformsrspPTfor some value ofv. However, we show that the
improvement could only be very small, if any. Therefore, ¢efx the analysis manageable, we
analyze onlyRSPT.

Lemma 6.1 Forall 0 < a < 1, R(RSPT(«x)) > 1.48.

Proof. We consider three job sequences. We use a small corstant

1) A job of size 1 arrives at time O, andl jobs of size O arrive at time + . RSPT will
run these jobs in order of arrival time and have a total cotipidime of N + 1. However, it is
possible to obtain a total completion time(@f + ¢)(N + 1) + 1 by running the jobs of size 0
first. By letting NV grow without bound, the competitive ratio tendsltay for ¢ — 0.

86 Chapter 6. Minimizing the total completion time online onirgge machine, using restarts

Sequence 1) shows th&(RsPT(«)) > 3/2 for o < 2/3. For the remainder of this proof,
assume that > 2/3.

2) A job J; of size 1 arrives at time 0, a jols, of size « at timee, a job J; of size O
at time « (causing an interruption iRSPT(«v)). Then, at timex + ¢ one final jobJ, of size
a(2a) — « arrives. For this sequence, the optimal cost tendgfo+ 2a + 1 (using the job
sequences, Js, Jy, J1) whereaRspT(«) completes the jobs in the ordéy, J», J4, J; and pays
4a® + 5a + 1.

3) As 2), but after jobJ,, at time2a? another johJ; of size 0 arrives, causingsPT a) to
interrupt job.J, which it is running at that time. Starting at tin?e?, RSPT(«) runs the jobs
Js, Js, Jo and J; in this order. The optimal order of the jobs.Js, Js3, J4, J5, Ji. In the limit,
RSPT(«) paysl4a? + 1 whereas the optimal costg® + 2a + 1.

This implies that

1 40®+5a+1 1402 + 1
R(RSP > — > 1.48008.
(-I(Oé))_max(a’4a2+2a+1’6a2+2a+1

From the first job sequence in the proof, we have the folloveioigllary.

Corollary 6.1 R(RSPT) > 3/2.

We will return to sequences similar to 2) and 3) in Section 6.7

To analyze the competitive ratio &fspT, we will use amortized analysis [22]. Each job
that arrives receives a certain amount of credit, basedsqestimated) completion time in the
optimal schedule and irRsPTs schedule. We will show that each time tiregPT starts a job,
we can distribute the credits of the jobs so that a certaiariamnt holds, using an induction. The
calculations of the credits at such a time, and in particafahe estimates of the completion
times in the two schedules, will be made under the assumiitaimo more jobs arrive later.

We first need to show that the invariant holds at the first tina¢rspPTstarts a job. Then, we
need to show that at each later job start, the invariant kieefoing when we take into account
the jobs that arrived in the meantime (updating calculatihere necessary!) and assume no
more jobs arrive. Finally, we need to show that if the invariaolds at the last time th&spPT
starts a job, thersPTmaintains a competitive ratio 6f/2.

There will be one special case where the invariant does ridtdgain immediately. In that
case, we will show the invariant is restored at some latee tiefore the completion ef. This
case will be analyzed in Section 6.7.

6.2 Global assumptions and event assumptions

Definition 6.1 Aneventis the start of a job brsPT.

Definition 6.2 An event has the property STATIC if no more jobs arrive afterévent.

6.2 Global assumptions and event assumptions 87

At the time of an eveniRsPTcompletes a job, interrupts a job, or is idle.

In our analysis, we will use ‘Global assumptions’ and ‘Evasgumptions’. We show that we
can restrict our analysis to certain types of input sequeaoel schedules and formulate these
restrictions as Global assumptions. Then, when analyzingvant (from the remaining set of
input sequences), we show in several cases that it is suffitdeconsider events with certain
properties, and make the corresponding Event assumpti@mbst important one was already
mentioned in Section 6.1:

Event assumption 1 The current event has the property STATIC.

There can be more than one optimal schedule for a given inp&br the analysis, we fix
some optimal schedule and denote the algorithm that makést¢hedule byPT. We use this
schedule in the analysis of every event. Herazet takes into account jobs that have not arrived
yet in making its schedule, batPT does not change its schedule between successive events: the
schedule is completely determined at timeo@T1 does not interrupt jobs, because it can simply
keep the machine idle instead of starting a certain job atedrinpting it later, without affecting
the total completion time. We can make the following assuomgiboutRspTandopPT, because
the cost ofoPTandrspPTfor a sequence is unaffected by changing the order of jobdsecfame
size in their schedules.

Global assumption 1 If two or more jobs i have the same sizespTandopPTcomplete them
in the same order.

Definition 6.3 An input sequence has propertySMALL if, wheneveRSPTis running a job of
some size from g, only jobs strictly smaller tham arrive.

Lemma 6.2 For every input sequence it is possible to modify the arrival times of some jobs
such that the resulting sequengehas the propertysMALL, the schedule atspTfor ¢’ is the
same as itis for, andopPT(¢’) < OPT(0).

Proof. At any timer that a job.J arrives that is at least as large as the job & Tis running
at that time, we modifyr as follows. If there has been an interval before time which RSPT
was idle, define; as the end of the last such interval beforetherwise set: = 0. Definer’ as
the last time in the intervdl:,) that a job larger thad was interrupted or completed. If there
is no such time, set = u. We change the release time.bfo r’.

WhenRsPTIs run on the resulting sequeneg it does not consider running during the
interval [/, r]: it is running smaller or equal-sized jobs in that entireeimgl. (For the equal-
sized jobs, see Global assumption 1.) Hence the schedalgraffor ¢’ is the same as it is for
o, andopPT(o’) < OPT(o) since the optimal cost can only decrease if the arrival tideesease
or remain the same. U

This Lemma implies that iRsSPTmaintains a competitive ratio of 3/2 on all the sequences
that have propert$$MALL it maintains that competitive ratio overall. Hencefortle make the
following assumption.

Global assumption 2 The input sequence has property SMALL.

88 Chapter 6. Minimizing the total completion time online onirggge machine, using restarts

By this assumption, iRSPTis running a job of size:, the first job of sizey > x can only
arrive oncerspTstarts a job of some size> y, or whenrRspTbecomes idle.

6.3 Definitions and notation

After these preliminaries, we are ready to state our maimitieins. A job .J arrives at its
release time-(.J) and has processing time denoted dy./). For a job.J;, we will usually
abbreviater(J;) asr; andw(J;) asw;, and use analogous notation for jolys J* etc. When
RSPTIs running a jobJ, it can have both/-large unfinished jobs, that are at least as large as
J, and J-small unfinished jobs, that are smaller, in its queue. To distisiglietween these
two sets of jobs, the unfinishettlarge jobs will be denoted by! = J, J2, J3, ... with sizes
1 =z = w(J),ry = w(J)y),r3 = w(J3),... while the J-small jobs will be denoted by
J1, Jo, ... with sizeswy, ws, . ..

We let@(t) denote the queu® of RsPTat timet.

Definition 6.4 A run-intervalis a half-open interval = (s(I),¢(1)], wherersSPT starts to run
a job (denoted by/ (1)) at times(/) and runs it continuously until exactly tinté/). At time
t(I), J(I) is either completed or interrupted. We denote the siz& 6f by (7).

The input sequence may contain jobs of size 0. Such jobs are completed instavtign
they start and do not have a run-interval associated wittmnthEhus we can divide the entire
execution ofRsPTIinto run-intervals, completions of 0-sized jobs, and ivd#s whererRspPTis
idle. The following lemma follows immediately from the defian of RSPT.

Lemma 6.3 All jobs in o arrive either in a run-interval or at the end of an interval which
RSPTis idle.

Definition 6.5 For any run-intervall/, we denote the set of jobs that arrive during this interval
by ARRIVE!) = {Ji(),..., Jun(I)}, We writer;(I) = r(J;(I)) andw;(I) = w(J;(I)) for

1 <i < k(I). The jobs are ordered such that (1) < wy(/) < ... < wyy(L). We denote the
total size of jobs in ARRIME) by W (1), and writeW;(I) = Z;‘:l w;(I) for1 <@ < k(I).

RsPTwill run the jobs inARRIVE) in the ordet/, (1), .. ., Ji) (1) (using Global assump-
tion 1 if necessary) and we hawe, (/) < z(/) using Global assumption 2. Of course it is
possible tha®RRIVE) = (. In that case/ ends with the completion of the jokspT was
running, and we have) = s(I) + z(I).

Lemma 6.4 If RsPTinterrupts job.J (1), thent(1) = ry(I).

Proof. We havet(I) € {ri(I),...,mx(I)}. Note thatt(/) < r,(I) is not possible, since
all jobs inARRIVEI) arrive on or before time(/). Supposé (/) = r;(I) > ry(I) for some
i > 1, thenr;(I) + w;(I) < 2(s(I) + z(I)). By the ordering of the jobs iIARRIVEI) we
havew;(I) > w (1) and thusr (1) 4+ wy (1) < ry(I) +w;(I) < 2(s(I) + =(I)). But thenrsPT
interrupts.J(1) no later than at time, (1), sot(/) < r,(I), a contradiction. O

6.3 Definitions and notation 89

Definition 6.6 For the jobs in ARRIVE), we writer; (1) = r;(1) + w;(I) — 2(s(I) + (1))
(i=1,... k(I)).

We haver;(/) > 0fori=2,...,k(I),andr (I) > 0if J(I) completes at tim&([), 7, (/) <0
if it is interrupted at time (/).

Definition 6.7 We definefopt(/) as the index of the job thatPT completes first among the
jobs from ARRIVE).

Definition 6.8 An interruption byrspPTat timet is slowif OPT starts to run a job which is in the
set ARRIVE!) strictly before time; in this case,fopt(/) > 1 and Jy, (/) did not cause
an interruption when it arrived. Otherwise the interruptics fast

We call such an interruption slow, because in this case iddoave been better for the total
completion time ofRspTif it had interrupted.J(/) for one of the earlier jobs iIARRIVE)
(i. e. faster); now, at time, RsSPT still has to run all the jobs iPARRIVEI), whereasopT
has already partially completeI}OPT(I)(I). Note that whether an interruption is slow or fast
depends entirely on whesPT runs the jobs ilrARRIVE). It has nothing to do witlRSPT.

We now define some variables that can change over time. Weeelll their values at time
t when we are analyzing an event at timd hey represent a snapshot of the current situation.

Definition 6.9 If job J has arrived but is not completed at times, (/) is the (next) time at
which RsPT will start ./, based on the jobs that have arrived until tineFor a job J that is
completed at timeg, s,(.J) is the last time at whicll was started (i.e. the time when it was started
and not interrupted anymore). For a jobthat has not arrived yet at timg s,(.J) is undefined.

Lemma 6.5 For every event and every jab, s;(.J) is at least as high as it was during the
previous event.

Proof. Consider an event at timeand a job.J. If J completes before or at timg thens;(.J)
is unchanged since the previous event. Any otherjai timet, for which s;(.JJ) was already
defined during the previous event, is larger than the jobSRRIVE) by definition ofRSPT
and by Global assumption 2. Thereforewill complete after the jobs IMRRIVE), i.e. no
earlier than previously calculated. O

By this Lemma, for a jol/ in Q(t), s.(.J) is the earliest possible time thRsPTwill start to
runJ.

Definition 6.10 A job J is interruptibleat timet, if s,(J) < 2w(J) andt < 2(s,(J) +w(J)).

l. e. ajobJ/ isinterruptible if it is still possible thakspTwill interrupt J after timet (cf. Property
R5).

Definition 6.11 BEFORE,(J) is the set of jobs thatspTcompletes before, (/) (based on the
jobs that have arrived at or before timig b;(.J) is the total size of jobs IBEFORE.(J). (:(J])
is the size of the largest job IBEFORE(J).

90 Chapter 6. Minimizing the total completion time online oniragde machine, using restarts

Clearly,b;(J) and/,(J) can only increase over time, aid./J) < b,(.J) for all timest and
jobs J.

During our analysis, we will maintain aestimateon the starting time of each jol in
the schedule obPT, denoted bysOPT(.7). We describe later how we make and update these
estimates. We will maintain the following inequality as tpaf our invariant, which will be
defined in section 6.4.2. Denote the actual optimal comgidtme of a jobJ by oPT(.J). Then
at the timet of an event,

Y oopt() = Y (sPPT() +w()) (6.2)

Jur(J)<t Jur(J)<t

This equation implies that at the end of the sequeneafo) > 3 (sOPT(J) + w(J)). We
will use the following lemma to calculate initial values PP 7(.7) for arriving jobs in such a
way that (6.2) holds.

Lemma 6.6 For a given timet, denote the most recent arrival time of a job < ¢. Denote
the job thatopTis running at timet’ by ®(¢'), and its remaining unprocessed jobsbyt’). The
total completion time obpPT of the jobs in¥ (¢') is at least the total completion time of these jobs
in the schedule where those jobs are run consecutively ierartlincreasing size afteb(t') is
completed.

Proof. The schedule described in the lemma is optimal in case no jobsearrive after time
(Event assumption 1). If other jobs do arrive after timi¢ is possible that another order for the
jobs inW(t') is better overall. However, since this order is suboptiroalif(¢'), we must have
that the total completion time of the jobsin(t’) is then not smaller. O

The fact that the optimal schedule is not known during thdyaisof an event is also the
reason that we check that (6.2) is satisfied instead of tigngaintainopT(.J) > sOPT(.J) +
w(J) for each jobJ separately.

Definition 6.12 D,(.J) = s,(J) — sOPT(.J) is thedelayof job .J at timet.

6.4 Amortized analysis

The credit of jobJ at timet is denoted by, (.J). A job will be assigned an initial credit at the
first event on or after its arrival. At the end of each run4ivéé/ = (s,], each jobJ;(I) in
ARRIVHE]T) receives an initial credit of
1
5 <sOPT(JZ-(I)) + wi(I)) D)) i=1,..., k(). (6.3)
If at time ¢ a (non-zero) interval ends in whickspTis idle, ort = 0, then supposé€)(t) =
{J1,...,Jr} wherew; < ... < wy. The initial credit of jobJ; in Q(t) is then

1 1¢ ,
§t+§;wuj) i=1,... k(). (6.4)

6.4 Amortized analysis 91

This is a special case of (6.3): by Lemma 6.6 and Event assomptopPT will run the jobs in
Q(t) in order of increasing size, heng®PT(.J;) > s,(J;) fori =1,..., k. ThereforeD(J;) <0
fori =1,..., k. Moreover, by definition oRspTwe haves;(J;) = t+Z§;11 w;fori =1,... k.

The idea is that the credit of a job indicates how much its etien can still be postponed
by RspTwithout violating the competitive ratio ¢f/2: if a job has credit, it can be postponed
by ¢ time.

For the competitive ratio, it does not matter how much credah individual job has, and we
will often transfer credits between jobs as an aid in theyaigl During the analysis of events
apart from transferring credits between jobs, we will alse the following rules.

Rule C1.If s,(J) increased by since the previous event, théf(./) decreases by.
Rule C2.If the estimates°PT(.J) increased by since the previous event, théfi(.J) in-
creases byd.

s;(J) cannot decrease by Lemma 6.5. We will only adjust (increaSE)(.J) in a few
special cases, where we can show that (6.2) still holds if veeebses°PT(.7). Both rules
follow directly from (6.3): it can be seen that §(J) or s°PT(.J) increases,/ should have

received a different amount of credit initially. (The amotirat./ can be postponed changes.)

Theorem 6.1 Suppose that aftersPT completes any input sequeneg the total amount of
credit in the jobs is nonnegative, and (6.2) holds. TRe®T maintains a competitive ratio of
3/2.

Proof. We can ignore credit transfers between jobs, since they taffext the total amount of
credit. Then each job has at the end credit of

1
K(J) = 5(8?PT(J) +w(J)) = (s:(.]) = 527 T(T)),
where we use the final (highest) valuesxﬂPT(J) for each job.J, and the actual starting time
s,(J) of each job inrRspPTs schedule. This follows from (6.3) and the rules for adjugiob
credits mentioned above. Thus if the total credit is nontiegave have

S = 2P < 5 3 (s2PT) + w()

=Yl < gzjjs?”uwézww

J

= RSPT(0) = 3 (5:(J) + w()) < SZ(SPPT(J) + () < gopT(a). 0
J J

Calculating the initial credit ~ The only unknowns in (6.3) ar®T(J;(1)) (i = 1,.. ., k(I)).

If there is an interruption at timg Lemma 6.6, together with the job thaPT is running at
time t, gives us a schedule faPT that we can use to calculate valid estimates (lower bounds)
sOPT(J,(I)) for all i. We also use the following Event assumption.

92 Chapter 6. Minimizing the total completion time online onirggde machine, using restarts

Event assumption 2 If the run-intervall ends in a completion, all jobs in ARRIVE arrive
no later than the time at whicbPT completes/; 1) (1).

We briefly explain this assumption. By definition, all jobsARRIVE I) arrive no later than
at timet(/). By the timeoPT completes/; (1) ({), RSPTWwill not interrupt.J(I) anymore by
Property R2. Whether other jobs ARRIVE) arrive at that time or at some later timet (/)
does not affecRsPTs decisions or its total completion time. Event assumpfoenables us
to apply Lemma 6.6 to calculate lower bounds for the comgfetimes ofoPT of the jobs in
ARRIVET). Some release times might actually be higher, but the optotel cost foro cannot
be lower in that case. Therefore (6.2) holds.

Note that if we were to modify the sequeneeby actually decreasing release times until
Event assumption 2 holds (similarly to in Lemma 6.2), tharopt schedule for the resulting
sequence might be quite different. In particuléspt(/) may change! This is the reason we use
this assumption only locally, to get some valid lower bouodshe optimal cost.

Note also that both after a completion and after an intelwapthe schedule abPT is not
completely known even with these assumptions, because wetdknow which joboPT was
running at timet. Therefore we still need to consider several off-line sciteslin the following
analysis.

6.4.1 Credit requirements

In this section, we describe three situations in which ¢nediequired, and try to clarify some
of the intuition behind the invariant defined in Section B.4.

Interruptions Suppose a joly of sizex is interrupted at time, because joby; arrives, after

starting at times. Thens < 2z. J; will give away credit to.J, J2, J? and.J* as described in
Table 6.1, and nothing to any other jobs. We briefly deschieartuition behind this. We have
the following properties.

INT1 The amount of lost processing time due to this inteliaupis »; — s. This is at most

2(s+x) — s = 2z — £, which is monotonically decreasing in

INT2 The size ofJ; isw;. Thisis at mos&(s + z) —r < 3(s+z) — s = 2z — £, which is
monotonically decreasing in

So, in Table 6.1,/; appears to give away more creditsifs larger, but a) it has more (this
follows from (6.3); b) it needs less (we will explain thisda); and c)-; — s is smaller.

From Table 6.1 we can also see how much credit is still misdtog instance it < = and
x < r1, thenJ? receivesr; — x from J;, but it lostr; — s because it now starts — s time
later. We will therefore require that in such a cagéhas at least — s of credit itself, so that
it still has nonnegative credit after this interruption.deneral, any job that does not get all of
its lost credit back according to the table above, must ha@edmaining credit itself. We will
formalize this definition in Section 6.4.2.

J1 will only give credit to jobs that actually exist (at this t&)h By Global assumption 2, a
J-large job which does not yet exist can only arrive duringeRkecution of an even larger job,

6.4 Amortized analysis

93

s 0, x] 0, x] (z, 3] (z, 3] (32, 22)

rl 0, x] (z, 3] (z, 2] (S, 2] (2, 22)
ToJ ||ri—s|ri+w —s ™ +w,— S T +w— S ™ +w,— S
To J? 0 r—x r—s rL—s r—s
To J? 0 0 0 r— 3z r—s
To J* 0 0 0 r — s rL—s
Total |1 —s| 2rm 4wy |2(ri—s)+wy | 4ri+w; | 4(r —) +w;

—(s+x) —2s — 3z

Table 6.1: Credit given by, to other jobs

or whenrspTbecomes idle. In both of these cases, we will calculate titielinredit for such a
job at the point at which it arrives, based on its arrival tirmed we will not use the credit that
it might have received from this jold;. Thus any credit that according to this table would be
given to a non-existing job (a job that has not arrived yetyidirnot arrive) is simply lost.

Completions Suppose a jold completes at time + x. We give the following property without
proof.

COML1 The jobs iPARRIVE!) (wherel = (s, s + z]) need to get at most(z — b,(.J)) of credit
from J.

By this (“needing” credit) we mean that the amount of creuliise jobs receive initially, together
with at most} (z—b,(.J)), is sufficient for these jobs to satisfy the conditions thetwill specify
in the next section.

Small jobs As long as a jobJ has not been completed yet, it is possible that smaller jobs
than.J arrive that are completed befoseby RSPT. If OPT completes them aftef, thenD;(.J)
increases.

6.4.2 The invariant

From the previous section we see that for a job, sometimekt éserequired to pay for inter-
ruptions of jobs that are run before it, (e.g. on page 92 heldwaysz — s for an interruption
of .J), and sometimes to make sure that jobs that arrive durirfgnasrun have sufficient credit
(COM1). We will make sure that each job has enough credit ydyo#h for interruptions of jobs
before it and for its own completion (i.e. for jobs that aerturing its final run).

For a job.J, we define thenterrupt-delayassociated with an interruption as the amount of
increase ofD,(.J) compared to the previous event. This amount is at mest at the end of a
run-interval(s, t]. (Itis less for a jobJ if sopT(./) also increases).

Credit can also be required because the situation markealt$obs” in Section 6.4.1 oc-
curs. Thesmall job-delayof .J associated with an event at times the total size of jobs smaller
thanJ in ARRIVET) that are completed beforeby RspTand after/ by opT.

From Table 6.1, we can derive bounds for the amount of cridit} and later jobs should
have themselves so that they still have nonnegative criditthis interruption. We denote this

94 Chapter 6. Minimizing the total completion time online onirggge machine, using restarts

amount byN;yr(J;, t) at timet (Needed credit folNTerruptions).
Consider an event at timte Suppose&)(t) = {.J1, ..., Ji.}, wherew; < w, < ... < w;. We
write s; = s,(J;) =t + >_:_} w;. From Table 6.1 it can be seen that

3
NINT(Jia t) = maX(O, W;—1 — 82‘-1) + maX(O, 5102'—2 - Si—?) + maX(Oa 2wi_g — t)7 (6-5)

where each maximum only appears if the corresponding joktsexiFor the third maximum
in this equation, note that the total interrupt-delayJpfcaused by interruptions of the jobs
Ji,...,Ji_s IS at most2w,_, — t after timet, sincerRSPT starts to run/; at timet and does
not interrupt any of the jobdy, ..., J;_, after time2w,;_, by Property 4. Using a simple case
analysis, we can see that in all cases

NINT(Ji7 t) < max(O, Wi—1 + %wi_g + %wi_4 — t). (66)
For any existing jol/ ¢ Q(t), i.e. it has already been completed, we def\jg(J,t) = 0.
When a jobJ completes, it will transfer its credit to the jobs that asdvduring the last run
interval in which it was running. In Section 6.6, we will debe in detail how this credit is
distributed. Job/ will never give away more thaf(w(J) — b,(.J)) if it completes at time. We
therefore definéVoon (J;, t) (Needed credit foCOMpletions) as follows: for a jol; € Q(¢),
we have

NCO]\/I(Jia t) = Imax (0, %(’LUZ - bt(Jz))) . (67)

For any job.J that is already completed at timewe defineNcon(J, t) = 0.
For all jobs.J that have arrived at time we will maintain

Ki(J) =2 Noom(J,t) + Ninr(J,). (6.8)

Invariant We now define our invariant, that will hold at specific tintéa the execution, and
in particular when a sequence is completed:

Invariant: Attime t, for all jobs that have arrived, (6.8) holds; furthermo2] holds\

Theorem 6.2 R(RSPT) = 3/2.

Proof outline. The proof consists of a case analysis, which makes up theftdsis paper.
In the rest of this section we show that (6.2) can be maintkarel that (6.8) holds for large
jobs. In section 6.5 and beyond, we consider all possiblrrimptions and completions. “All
possible” refers to both the times at which these eventsrpaad the possible schedules of the
off-line algorithm.

For every possible event, we will give a time at which the abmwariant holds again, as-
suming that it held after the previous event. This will be att than at the completion of the
last job ino. At that time, the invariant implies that all completed jdtz/e nonnegative credit,

6.4 Amortized analysis 95

since for completed jobs we havé- o, (J,t) = Nynr(J,t) = 0. Also, (6.2) holds. We can
then apply Theorem 6.1.
We divide the analysis into the following cases.

1. Aninterruption of a job/ (Lemmas 6.12, 6.13, 6.14) in all but one case, Case 3 below
2. Completion of a joly (Lemmas 6.15, 6.16, 6.17, 6.18)

3. A slow interruption of a jobJ of sizex in the case thakspPT started it before tim@x/3
(Section 6.7), andpPT does not run any-large jobs befordRRIVET).

For almost all events, it will be the case that the invariaslilh again immediately after
the current event. However, there is one event for whichkiegeslightly longer: this is a slow
interruption of a jobJ, wheres(J) < 2w(J). If such an event occurs at some timave will
show that the invariant is restored no later than wReRrT has completed the second-smallest
job in ARRIVEI). (This job exists by Lemma 6.4 and Definition 6.8.)

In order to ensure that the invariant holds again after antewee will often transfer credits
between jobs. Also, we will use the credit that some jobs rhage because the invariant was
true previously, to pay for their interrupt-delay or for theompletion. We need to take into
account thatV, yr(J, t), s°PT(.J) etc. of some jobs that arrived before or at the previous event
can change as a result of the arrival of new jobs, compardtktodlculations in that event (that
were made under the assumption that STATIC held). By theudgon following Theorem 6.1,
(6.2) holds at each event if it held at the previous event a@HFl’T(J) is not changed for any
job J that arrived at or before the previous event. We also havéotlosving lemma.

Lemma 6.7 Suppos&)(t) = {Ji, ..., Jr}, wherew; < wy < ... < wy, andrRSPTStarts./; at
timet. A job J; satisfies (6.8) in any of the following situations.

1. Ki(J;) > max(0,§ >, wy; —).

2. Kt(Jz> Z %(— W;— 1) + = Zg 1 Wy andt 2 Wi—1

3. K,(J)

A%

%(— W,;— 1) + 5 Z] le (wi_l — t) andt < Wi_1
4. Ky(J;) > 5(w; — w;_y) and J; starts to run at time’

Proof. Note first of all thatw; ; < ¢,(J;) becaus&spTruns the jobs in order of increasing size.

1. We havel S0 wy — t = (w; — wim) + wimy + 33wy — t > S(wi — 4,(J])) +
Nint(Jist) > Neom(Ji, t) + Nine(Js, t).

2. Here we havéV[NT(JZ,t) < Hw;—o + wiy), sincet > w;_1 > w;_» > w;_4. Hence
Kt(JZ) > ;(— W;_ 1) + = Z] 1 W, > NCOM<Jz,t) -+ N[NT<JZ,t)

3. Now Nyyr(J;,t) < 2(w2 9 + w;— 4) + (w;—1 — t) and we are done similarly.

4. This can only happen if, ..., J;_; are completed, becaugspPTruns jobs in order of
size. We haveViyr(J;,t') = 0 by (6.6), since’ > > . ;s compieredt?(J'). Furthermore, since
wi—y < ly(J;), Kp(J;) > %(wz —ly(J;)) > Neom (i, t). O

96 Chapter 6. Minimizing the total completion time online onirgde machine, using restarts

Notation Definition Long notation
t time of the current event

s start of the most recent run-interval= (s, t|

J job thatrRspTwas running in/ = (s, J(I)

x its size w(J(I))
ARRIVE jobs that arrive in/ ARRIVE]I)
k number of jobs iIMRRIVE k(I)

%% total size of jobs iIMARRIVE Wi (1)

Ji smallest job that arrives in J1(I)

T its arrival time ri(1)

wy its size wy (1)

f index of job INARRIVEthatoPT runs first fopt(d)

Table 6.2: Notations

Corollary 6.2 SupposersPT starts to run jobs at time, wheret = 0 or ¢ is the end of a
(nonzero) interval in whiclkspTwas idle. Then (6.8) and (6.2) hold for the jobs that arrive at
timet.

Proof. This follows directly from (6.4) and Lemma 6.7, Case 1. U
We can apply this corollary at the arrival time of the first jabr, and anytime afteRsPThas
been idle.

6.4.3 Analysis of an event

As described in the previous subsection, for the analysiss®T we need to analyze every
possible event that can occur during its execution, i. ewsthat the invariant holds after the
event, if it holds after the previous event. For each evestywil focus on the credits of jobs
at the time of the current event, denotedtbysenerally, we will drop the subscripand write

K (J;) for each jobJ;. Furthermore, the job that was interrupted or completetiatime of the
event will be denoted by, and the set of smaller jobs that arrived during the mosintace of J

will be denoted byARRIVE= {J;, ..., Jx}. The most recent starting time dfwill be denoted
by s. We will call J-large jobdarge, and othersmall Remember thafopT, abbreviated by,

is the index of the job iIMRRIVEthatopPT completes first. Our notation is summarized in Table
6.2.

Lemma 6.8 After opT completes/;, then if STATIC holdsopT does not run any/-large job
until all jobs in ARRIVE are completed.

Proof. This is a direct consequence of Lemma 6.6 and Event assumsptiand 2: after/;,
oPT will complete first the remaining jobs IARRIVEin order of increasing size, and then the
remaining large jobs - as long as no new jobs arrive. O

Using this lemma, the schedule @b Tis completely determined by which large jobs it runs
beforeARRIVE(the rest will be run after, in order of increasing size).

6.4 Amortized analysis 97

Lemma 6.9 Suppose that there is a jdbthatRspTcompletes on or before tintewhereaopPT
completes it after a jold; in ARRIVE. TherL has%wi of credit that was not taken into account
before.

Proof. In the analyses of previous evemMRRIVEwas not taken into account when considering
the credit of jobL. Compared to that analysis, we have th@PT(L) increases by at least;.
Rule C2 implies thatf. now has%wi more credit than calculated at the previous events. []

Since for a completed job we haveNcon (L, t) = Niy7(L,t) = 0, we can give this credit
of %wi to other jobs, whilel still satisfies (6.8).

Suppose thabPT runs at least one large joB beforeARRIVE In this case we will not use
any lower bound on the optimal starting time.Bf(except that it is at least 0). This enables us
to make the following assumption.

Event assumption 3If OPT runs at least one large job before ARRIVE (i.e., at least atre |
from the sef{ J! = J, J2, J3,...}), thenJ is one of these jobs.

We explain why we can make this assumption without loss oégaity. Suppos®PTruns
J' # J beforeARRIVE but notJ. By Global assumption 1]’ then has some size> x where
x is the size ofJ. This can only increase the optimal starting time of jobARRIVEcompared
to the situation wherepT does runJ beforeARRIVE if opPT runs onlyJ beforeARRIVE it
can start to run the jobs iIARRIVEat timex, whereas with/’ it can only start to run them at
timey > x. A similar statement holds bPT runs two (or more) large jobs befoARRIVE

Consider an event at timewhere.J is interrupted or completed after starting at timéNe
will calculate how some relevant variables change from tinte time ¢ in this situation (i.e.
opTruns.J after ARRIVEand.’ before it). First of all, we have®PT(.7) > sOPT(.J) + W, so
by Rule C2,

3
K(J) > K (J) + §W (minus interrupt-delay — s in case of an interruption) (6.9)

Secondgs;(J') = ss(J') + W (plus interrupt-delay) so by Rule C1,
Ki(J') = K,J')—W (minus interrupt-delay) (6.10)

Third, it can be seen that X
N[NT(J/,t) S N[NT(J/, S) + §W (611)

We briefly explain why. If there is an interruption at timethen since; > x there is at least
one job (/) betweerARRIVEand.J’ in RSPTs schedule, and (6.11) follows from (6.6). If there
is a completion at time, thent > x > wy, so by (6.6) we havéV;yr(J',t) < wy + %(wk_l +
Wy—2) —t < %(wk—l + wy_2) < %(W —wi) < Nyyr(J', s) + %(W — wy,).

Now, if opTruns.J beforeARRIVEinstead of/’, we havek,(J) = K,(J) instead of (6.9).
However, (6.10) and (6.11) still hold. Therefore, it is stiffnt to analyze the case wheveT
runs.J beforeARRIVE(i.e. attime 0), and ensure that the invariant is maintaifiéen, we can
switch J and.J’, and transfer an additionéW worth of credit (that we have by (6.9), but did
not use) fromJ to J'. We will not make this explicit anymore in the rest of the paipat simply
make Event assumption 3.

98 Chapter 6. Minimizing the total completion time online onirgde machine, using restarts

Lemma 6.10 The condition (6.2) can be maintained throughout the execwfo.

Proof. Using Lemma 6.6 we can calculate valid initial valué¥’T(.) for any arriving job
J. The only modification we will make in later events, is that &y J(I)-large job.J’ that
opT completes afteARRIVEI), we increases°PT(.J') by Wy (I). (Here we will use Event
assumption 3.) Since the s&RRIVE) was not taken into consideration wheRPT(J") was
originally determined, the resulting bound is still valss, (6.2) holds. U

Lemma 6.11 The large jobs that botbPT andrRSPTcomplete after ARRIVE besidéssatisfy
(6.8).

Proof. Consider such a jobi®. It receives extra credit oé‘W by Rules C1 and C2, since both
s(J*) andsOPT(.J%) increase byV. It possibly loses some credit if there was an interruption.
However, Table 6.1 combined with (6.5) ensures that anyhabdoes not have enough credit
to pay for the interruption of gets the remainder fronf,.

Note thatNcon (J',t) < Neom(J', s) for all s > t. Moreover, exactly as above (after
Event assumption 3), we havé y(J',t) < Nyyr(J%,s) + 3W. Thus the extra credit of IV’
that.J’ receives ensures that it satisfies (6.8). O

By the results in this section, in the remainder of the papsisufficient to check (or ensure)
thatJ, the jobs inARRIVE and any other jobs thatPT has completed blRSPThas not satisfy
(6.8). Moreover, by Event assumption 3 the optimal schedul#efined by nothing but the
numberof large jobs that it runs befor®RRIVE(and the size of those jobs, if there is more than
1).

6.5 Interruptions

Consider an interruption at time of a jobJ that started at time. The interrupt-delay associated
with this interruption is; — s for all jobs that were already i) at times. The small job-delay of
this event of the jobs thaiPT completes beforARRIVE andrspTdoes not, idlV = Zle w;.
The last event before this one was the starf/ pat times. No jobs were completed since
then byrRsPT. We divide the interruptions into three types, based on timabrer of large jobs

OPTruns beforeARRIVE
Large jobs befordRRIVEbyorPT| 0 | 1 | 2

Lemma | 6.12] 6.13] 6.14

We need to distinguish between the cages 1 and f > 1. First suppos¢ = 1, i. e.OPT
runs the jobs fromARRIVEIn the same order agsPT. The credit reassignments in this case
take place in four steps.

1. On arrival of.J;, the jobsJ, /5, . . ., J, are shifted. However, for the moment we keep the
order of those jobs the same (as in the situation whigrdoes not arrive). We reassign
credit from./; to J so that its credit remains constant. (Some jobs can haveinegeedit
in this step.)

2. We reorder the jobs so that the orderis nw. . ., J,, J. However, the credits of the jobs
stay “in the same place”, so that e..g.now has the credit that had in Step 1.

6.5 Interruptions 99

3. We calculate the extra credit that this reordering gerasrdf a completion is now time
earlier, there i$ more credit available by Rule 1.

4. We reassign credits to make sure all waiting jobs sat&f§)((This step is not always
required.)

A graphical representation of the first three steps of this@dure can be seen in Figure 6.2.

t J % 7
before
restar
rJ J J, Js P
Step 1
X—W, i i
i x-W ; } Step 3
Step 2
N J Jz J P

Figure 6.2: Credit transfers

In casef > 1, we proceed similarly. However, in the first step we consdifferent orders
for the jobs (which will be described at the time), insteathef order described above. We then
put the jobs in the order they will be executedryPTin Step 2 and continue as above.

Lemma 6.12 If RSPTinterrupts a jobJ at timer;, andOPT runs no large jobs before ARRIVE,
ands > z/2, and STATIC holds, and the invariant held at timy¢hen it holds at time;.

Proof. Case 1 f = 1. Only in this very first case will we not use the procedure ioetl
above, and instead calculate the credits for the proper dickectly. We begin by showing that
Jp still satisfies (6.8) after giving credit td and./-large jobs as described in Table 6.1. We have
initially K'(J1) = 1(r1 + wy). Also, Nyyr(Ji,r1) = 0@andNeon (J1,m1) < $w; by definition.
We need to check every column in Table 6.1.

Supposes < r; < z. Sinces > x/2, we haver; < 2(s+x) < 2s. Theni(r; +w;) — (1, —
s) = %wl +5— %7’1 > %wl.

Suppose < z < ry. Sincer;+w; < 2(s+x), then using Table 1, we have thhtis left with
credit Of%(r1+w1)—(2r1+w1—s—x) = s—i—x—grl—%wl > s+x—%(§(s+x)—w1)—%w1 = w.

Supposer < s < ry < 3z. Jyisleftwith £ (ry+wi)—2(r —s)—w; = 2s—3r —Jw; > wy,
sincer; + w; < 3s.

Supposer < s < 2z < ri. We take2(r; — s) + wy + 2(r; —) out of J;. J; still has
%(rl +wy) —4ry 4+ 25+ 3z —w; > —% . %(s+x)+3w1+23+3x = —%s+§x+3w1 > 3w,
of credit.

Supposgz < s. We takel(r; —s)+w; outof J, leaving it withs (1 +-w;) —4r +4s—w; >
4s — %(s+x)+3w1 = %s— %x—l—Bwl > 3w;.

100 Chapter 6. Minimizing the total completion time online oniiggée machine, using restarts

| 1 [2] 3 | 4 | final
Ji lw, + 3D, T, 0 ~Ip, o,
Jy oyt awy = J2 0 3D, Ly
1= 2, .. ,f —1:
Ji %(Tf +wy + W;) — D1 | Jia wy — w; 0 Tf+3wf+2Wi—1—wi — D,
i=f+1,... k:
Ji H %(rf“’vvi)_Dl J; 0 0 %(rf+l/[/i)_D1
J H Neom(J,s) + %W J 0 0 Neon (J,71) + Ninr(J, 1)

Table 6.3: Credits in Lemma 6.12

In all cases/ (J;) satisfies (6.8). Fa < i < k, we haveK (.J;) = 1(r+W;) so that we are
done by Lemma 6.7, Case 1. Firwe have that®P (/) increases by W (see proof of Lemma
610) Note tha%W > Wi + %wk_l + %wk_g —ry > N[NT(J, 7“1), Sincerl > s > 1’/2 > wk/2.
We also haveNeon (J, 1) < Neowm(J, s), soJ still satisfies (6.8).

Case 2. f > 1. We defineD, =r; —r; > 0 (if r; = ry, then by Lemma 6.6PTruns the jobs
in order of increasing size after timg and hencef = 1) and D, = (r; +wy) — (11 +wy) > 0
(if D, = 0, either.J; would have already caused a restart before timer .J; would not have
caused a restart).

As in Case 1, we begin by checking the credit/ef In this case, initially K (J;) = 3(r; +
wy) + 2wy — 7y sinces®PT(J,) = r; + w; ands(J;) = r1. We take an extra, out of K (J;)
for J,.

Suppose; < z. Then3(r; + wy) — Jwy — 2r1 + s = 3Dy + wy — 311 + s > w;. We have
usedr; < 2(s 4+ z) < 2s which holds since > 2x.

Supposes < x < rq. In this case we taker, + 2w, — s — = of credit out of J;. Since
i+ w; < %(s + x), we have that/; is left with credit of%(rf +wp—wy) =3 +s+a=
%DQ — %7’1"‘8"—1’ > %Dng%wl

Supposer < s < r; < 3z. We take2(r; — s) + 2w, of credit out of.J;. Sincer; +w; < 3s
in this case, agaid, is left with at leastw; + 2D,.

Supposer < s < %x < r1. We take2(r; — s) + 2wy + 2(r, — %x) out of J;. J; still has
S(ry+wp—wi) —5r14+25+3x > 30425 —2r1+ 3Dy > 2 —iry + 5 Do+ 3wy > 3iw, + 2D,
of credit, using3(ry + wy) < 2(s +).

Supposéx < s. We taked(r; — s) + 2w, out of J1, leaving it with%(rf +wp—wy) —5r1+
4s > 4s—35r+ 3Dy > 4s — L(3(s+x) —wy) + 3Dy > 35— Lo+ 3Dy + Zwy > w4+ 3D,
sincels > Sz > Ix.

In all cases, (6.8) holds fof;. For the other jobs, we use Table 6.3. In this table, the colum
marked 1 contains the credits of the jobs assuming the okdél;, Jo, ..., Jr_1, Jrs1,. .., Jg,
J, and afterJ; has given away credit td-large jobs as described in Table 1. Column 2 shows
the new order of the jobs. The credits stay in the same plasgehe. g./; now has a credit
of %rf + %wf — r1. Column 3 shows how much credit is gained by the reorderingejobs.

6.5 Interruptions 101

Column 4 shows credit transfers; in this ca%@Q is transferred frony; to J,. The last column
contains the final credit of each job. The numbers above thevsts refer to the steps in the
procedure described at the start of this section.

We now show that the credit in the last column is sufficientrsa &ll jobs satisfy (6.8).

We begin with jobJ,. We havew, = (r1 + wy) =7 < 2(s+2) —s = 2z — 35 < z/2 and
ry > x/2, soJ; cannot start before time,. HenceN;yr(J2,71) = 0. Also Neoy(Jo,r1) <
2(ws — wy). Asin Case 1, we use thaPPT(.J) has increased byW. There are two cases.

Suppose; > wy. ThenN;yr(J,r1) < 3(wy_1 + wy_3). Therefore/ can givelw;, > 1wy
of credit toJ,, and still satisfy (6.8). Furthermorey; + 1wy — r; > 0 sincer; < 2s < 2r, so
we are done.

Suppose; < wy < z. If f =k, thenr; < wy and%rf—r1+%D2 > 3rf+%wf—%r1—%w1 >
0 sincer; + w; < max(2ry,ry + wy). If f < k, thenJ, givesir, to J;, and2r; —r; > 0.
Below we will see that/, can spare this credit.

ForjobsJs, ..., Js, we distinguish between two casesrf> w;_,, we useD; = wy—w; —
D, < w; and are done by Lemma 6.7, Case 21k w,;_;, then we usev; — Dy = wy + Ds.
We need to check%w +wi+ Dy > %(wi —w;_1)+ %Wi_g + (w1 —r1) = %Wi —7r.
This is equivalent té(r; + wy) > w;, which holds.

For jobsJs.4, ..., Ji, we have the same two cases.r{f> w,;_;, thenK(J;) > %(rf +
VVZ) — Dy > %(wl — W;—1 + V[/i_Q) (USinng < wf), And if ry < w;_q, then%VVi — Dy >
%(wi — w1 + Wi_a) + (w;—1 —). We use from Lemma 6.7 either Case 2 or Case 3. [J
Lemma 6.13 If RSPTinterrupts a job.J at timer;, andoPT runs one large job before ARRIVE,
and STATIC holds, and the invariant held at timy¢hen it holds at time.

Proof. We distinguish between three cases depending and f. We ignore thabPT has to
run the jobs iINBEFORE ,(J) too at some point; this can only decrease the optimal cost®n t
other jobs.

Case 1. s < z/2. We haver; + w; < %(s +x) < x,s0f = 1by Lemma 6.6. Also
bs(J) < s < .

We haves®PT(J;) > 2 andD(J,) < ry — z, SOK(J;) > 32 + Lw, — ;. On arrival of J,,
job J is in Step 1 shifted brspPTby | + w; — s time. We take; 4+ 2w, — s of credit out of.J;
for J, so that/y is left with 2 + Jwy — 2(r1 +w1) +s > w; + g2 — 35 > Jwy, S0.J; satisfies
(6.8).

For the other jobs, we refer to Table 6.4. For the Step 1-colume use (6.3)./; satisfies
(6.8) by Lemma 6.7, Case 1 as well, sinceNcon(J2, 1) < Neon(J,) using thatr > ws
andbs(J) < b,,(J2); the other jobs too by Lemma 6.7, Case 3.

Case 2. s > z/2andf = 1. Sincef = 1, we have in Step 1 of our calculations that
D(J;) < min(z,ry) for 2 < i < k: after timer, + w,, RSPTfirst runs.J (of sizex) whereas
OPTruns.Js, ..., J, immediately after/ and.J;, at mostmin(z, 1) time earlier. We also have
wy < %(8 +z)—r < %x — %s < %x < 8, SON N7 (J2,1m1) = 0.

102 Chapter 6. Minimizing the total completion time online oniiggée machine, using restarts

1 2 3 final
Jl %wl Jl 0 %wl
J NCOM<J7 S) +wy | Jo 0 NCOM(J, 8) -+ wq

Jo %(l'—l—Wz)—m Js | ©—wy %($+W1—w2)+(x—r1)

Jo|| 3@+Wi)—r | J |z —wi| i@+ Wiy —wi) + (. — 1)

Table 6.4: Credits in Lemma 6.13, Cases1] z/2)

1 2 3 final
Jl %wl Jl 0 %wl
J Neom(J,s) | J2 0 Neom(J, s)

J2 %(.T"—WQ)—JI Jg T — Wa %(x+Wl—w2)

Iy %(x+Wk)—x J |z — w %(x+Wk_1—wk)

Table 6.5: Credits in Lemma 6.13, Cases2{(z/2andf =1),r; >z

If r; < z, we are done exactly as in Case 1. Otherwise, we can cli¢dk) as in Lemma
6.12, Case 1. For the other jobs, we refer to Table 6.5. Since x > w; for1 < i < k, it
follows immediately from Lemma 6.7, Case 2, that all jobss$at(6.8).

Case 3. s > z/2andf > 1. Write 7 = max(x,r;). Suppose, < z. Then at time’ > ry,
oPT will run the remaining jobs in order of increasing size by lreen6.6. But thery = 1, a
contradiction. Therefore, > x andD(.J;) < r; — (7 + wy) < 0 using Property R3.

Claim: At most two jobs inARRIVEare interruptible.

Proof: Suppose there are three. Then by Property R5 the first (st)allas size at least
p = (r1+w1)/2 > z/2, the second one has size at lgast (1 + w; +p)/2 > 3z, so the third
one has size at leagt; + w; + p + p’)/2 > x,a contradiction to Global assumption 2. [J

Claim: If some jobJ; is interruptible, then 1) eithef,_; or J;,; or no job iInARRIVE{J;}
is interruptible, 2)N;nr(J;,71) = 0 @and 3)Neoar (Ji, 1) < 5 (w; — Wisy).

Proof: 1) As the first claim. 2) We have;,_, — s,_; < 0fori =1,...,k. JobsJ;_, and
earlier are not interruptible. 3) We haVi,_; < w;_1, since all jobs irARRIVEstart after time
r1 > x > w; andJ; is interruptible. O

Claim: If J; is not interruptible, and;_, is, thenN;yr(J;, 1) = max(%wi_g —$;_9,0) and
NCOM(Ja T‘l) = 0.

Proof: We havew;_» + w;_1 > x > w;, 11 > x > w; andJ;_, is not interruptible. O

SincesOPT(J)) > 7 + wy, we haveK (J;) > 2(7 + wy) + w, — ri. Define Dy = (7 +
wy) — (11 +wy) > 0,andD; = r; — 7 > 0. We will make much use of the following property:

(]

F<ox < ST (6.12)

W~

1
3

Wl =

(s—l—x)—fﬁgx—

Wl o

wf—Dgz(r1+w1)—f§

6.5 Interruptions

103

I J | Js
1 %wl -+ %DQ NCOM(Ja 8) r+2wf - D1 — T — Wy
2a Jp J Jo
3a 0 0 0
2b Jl JQ J3
3b 0 0 T — ws
4 —3D, 0 :D,
final %wl + Dy NCOM(Ja S) %(wg — 'LUQ)
| n@2<i<f-1) |L(f+1<i<k-1)| Ji
1| 2t pa W Dy —a L+ Wy) =Dy —a
2a Jit1 Ji Ik
3a Wy — w; 0 0
2b Jiva Jit1 J
3b T — Wiy T —w; T — W
4 0 0 0
final F+wf+vv573_wi72 — Dy w + Dy + wn Wﬁ% + Dy + wy

Table 6.6: Credit transfers in Lemma 6.13, Case 3

This property implieD; = w; — wy — Dy < wy — Dy < %x andD; < wy.

We consider the various possibilities felandr; and take credit out of; as described in
Table 6.1. The calculations are identical to the ones in Lanem2, Case 2, except that
is replaced by and D; is defined as above. It follows thdt ends up with credit of at least
2(D, + wy) and satisfies (6.8).

Credit transfers Sincer; > z, we can again use Case 2 of Lemma 6.7 to check if jobs satisfy
(6.8). We transfer credits as in Table 6.6. We now have cotufonjobs in stead of rows as
before, due to space constraints. Note that in this cases #re two reorderings of the jobs (a
and b). Also, there is an additional row 4, indicating créidihsfers between jobs. Note that the
entries in this row add up to 0. The entries in the last row kéllexplained below.

Jy is not interruptible because, < 2(s +x) — s = 22 — 35 < 32 < r1. Moreover,; >
x > Wo, SON[NT(JQ,’I“l) = N[NT(Jg,’f’l) = 0. ForJ,, we haVGNCO]\/j(J, S) = %([L’ — bs(J)),
x > wy andby(J) < b, (J2). Therefore/, satisfies (6.8).

For Js, we haveK (J3) = 2(F +wy) — Dy —x —wy + @ — wa + 3Dy = 2 (7 +
wy —wyp > %(f—ng—wf)+%D2 = %(wg—w2)+%(f—w2—w3 —ws+3Dy)
using (6.12).

Fori=4,..., fwefind

1
K(J;) 57+ ws + Wisg) = Dy — & + 2 — wiy +wy — Wiz

A%

1
§(f+wf+Wi_3 _wi—2) — Dy (613)

104 Chapter 6. Minimizing the total completion time online oniggée machine, using restarts

1,
= §(T+m_3—Wf —wi_2)+D2+w1 (6.14)
_ (Wit Wi —wio) + (7 —wy —wi +2D5) _ wi + Wiy —winy

2 - 2

If J; is interruptible,/; _» and earlier jobs are not and we are done. Suppgpisanot interruptible
ands;_» < 3w;_s. (If 5,0 > 3w;_,, we are done.) Then we use that, > r; and we have
from (6.13)

1

- 3
9 (T — W;_9 + Wi_g) + —w;_o.

1
K(JZ')—FSZ'_Q>§(f—|—U)f+m_3—wi_2)+fZ 5

For Jy41, the calculations are similar, but from (6.14) we now dedvé/;.,) > 1W;_; +
t(wyer — Wy)andK(J;) > 1W,_; (using (6.12)). Thus there is sufficient completion-credit
and the case;_; < %wf_l is handled as above.

Fori= f+2,...,kwe haveK(J;) > %(fthi_l) —Di—z4+zr—wi1 > %(f+Wi_2—
w;_1) — Dy. There are five cases.

1) If w,_o > 25, 9, thenJ,_, is interruptible and by the third claim above it is sufficient

to show K (J;) Zzng — $;_2. Since we have<(J;) +r3 > %(f + Wig —wiq) +7 >
5(F+ Wig — wi_1) + 3w, thisimpliesK (J;) > 3w;_o —r1 > Jw;_s — s;_».

2) OtherWise,N]NT(Ji,’f’l) < 2w;_qy — r1. In fact, if r < 2W;_4 then K(JZ) +r; >
TP+ Wisg —wimq) + 7 > sW o + 7 > 3wy + 7 > 2w;_y, Which is sufficient since
NCOM<Ji7 Tl) =0.

In the remaining case\;nr(Ji, 71) = 0 andNeon (Ji, 1) < 2 (w; — Wiy).

3)Ifi > f+3,thensWi_y — Dy > Jwi_3 + jw; o — Dy > wy — Dy = wy + Dy > 0, S0
K(J;) > 5(F — w;_1) and we are done.

We are left with.J;,». We haveK (J;.2) > %(f + Wiy —wp —wppq) + Dy + w;y. Clearly
K(Jyi2) = 2(wpp2 — W), S0 itis sufficient to showk (J;.2) > 0.

4) If wy > %JI, thean > %f and thUS[{(Jf+2) > %(U)f_i_g -+ Wf_1 — wf+1) + %(f — (wf —
D,)) — %(wf+2 —Dy) > %(wz + Wisg — wi_1).

5) If wy < %x then alsav, < %x For this particular case only, we consider wioeT runs
the jobs iNBEFORE(J). If any job in BEFORE,(J) is completed afte/, then by Lemma
6.9 there is extra credit available §fo;. We give this toJ;., which then has credit of at least
%(wi + Wisg —wi—q) + %(7: —w;) > %(wz + Wisg — wi_1).

If all jobs in BEFORE ,(J) are completed beford;, then the credit of/; is 2b,(J) larger
than previously calculated. We give this fo. ThenK(.J,) > 1z. Howeverw, < 2z, so we
take .z out of the credit of/, again and give it td/; . ThenK (Jy) > L(F+Wp_y —wpyiq)+
s+ gwy — Dy > $(F + Wiy —wyyq) sinceD; < iz andD; < wy.

For.J, we calculate as fov,,, in casek = f and as for/;,, and higher in casg > f + 1.
(The calculations fody. 4, . . ., J; hold for any job size at most, so they also hold when applied
toJ.) O

Lemma 6.14 If RSPTinterrupts a job.J at timer;, andOPT runs at least two large jobs before
ARRIVE, and STATIC holds, and the invariant held at tint&en it holds at time; .

6.5 Interruptions 105

Proof. SincerspToNly interrupts/ before time2x, we havef = 1: opTstarts to run the jobs in
ARRIVEafterrspTdoes, and will use the optimal order for them by Lemma 6.6.t Tekanma
also implies thabPT runs not more than two large jobs befdkBRIVE If s < z/2, we have
r; < x for all jobs J; € ARRIVE Then, again by Lemma 6.6, we may assubma runs only
one large job beforARRIVE a contradiction. Hence/2 < s < 2x andr; > .

Suppos€,(J) < z. In this case, we ignore thatPT has to run the job of this size too at
some time. This can only helpPT.

Credit of J; and large jobs We defineD; = —D(J;) =z +x9 — 1 > %x — %s + w;. We
haveK (J;) = %(x +x9) + %wl —r1. We consider the various possibilities foandr, and take
credit out of.J; as described in Table 6.1, and an extraor the small-job delay of 2. By these
reassignments, and becausand.J? satisfied (6.8), we have in Step 1 thét.J) > 1 (z—b,(J))

andK(J2) > %(1’2 — .T) — Wi + ws.

Supposes < x. Thenr; < 2(s+) < 2. We take2(r, +w;) — s — of credit out of.J; to
give to.J and.J?, and we let it keeéwl for itself. We denote the remainder, which will be given
to J2, by K. We haver; < 2(z+s) —wy, sointhis casé&; = 3(z+x2) —3r) — 2w, +s+x >
%x—i—%@ — S+ wy > Ty + wi.

Now suppose: < s < r; < %x In this case we nee?{r; + w;) — 2s for J and.J?. Hence
K, = %(x—i—xg) —3ry — 2wy + 25 > %(x+x2) — 27+ wy > x9 + wy.

Thirdly, supposer < s < %x < r1. Now the required credit is in total(r; — s + wy) +
2(ry — %x) Hencek; > %(m + x5) — %s — %x + 3w, > %x + 3w;.

Finally, if gx < s < rq the jobs requird(r; — s) + wy, and againk; > %x + 3w;.

Credit transfers We transfer credits as in Table 6.7.

For2 <i: < k,wehaveD(J;) < (r+x+W,_1) — (z+x+W;_1) =1 —x9in Step 1.
Using (6.3) we have<(J;) > %(9: + a0+ W) — (r1 — o) > %Wi + D, for2 <i <k.

Jy is not interruptible by Property R5 sinee > max(z,s) andr; + w; < %(s +z) <
%max(s, x), henceN;yr(J;, 1) = 0for 1 <i < 3. FurthermoreD; = x + 2, — 1 iS an upper
bound for the total amount of future interrupt-delays causyg interruptions of jobs beforg?
that have arrived so far.

Suppose: < 2. In this case we do not use the tablek = 1, we are done immediately. If
k=2, thenN[NT(J,Tl) =0 andK(J) = %WQ +Di+x—wy = %([L’ — W2 +w1) + %IL’ + D;.
ThusJ can giveiz + D, to J?, and.J; can give an additionak’; > 1 to J%. Then.J* receives
in total z + D; > w, + Dy, and it receivedy; already from.J; at the start. Thug? satisfies
(6.8). For job.J,, we haveK (J5) = Neowm(J, s) = 5(z — by(J)), © > wy andb,, (J2) > by(J),
SOK(JQ) > NCOM(JQ, 7’1).

Supposeé: > 3. In this case we use Table 6.7, can giveD, away becaus&/;yr(J3, 1) =

0. We distinguish between two cases:< 3z andr; > 3.

Casel. r < gx: The jobsJ,, ..., J,, J, J* have sufficient interrupt-credit because they have
D;. Sincex > w; fori =4, ..., k, these jobs also have sufficient completion-creditsatisfies
(6.8) as above. Hence we only need to show that the totalfenaied credit in Column 4 is at

106 Chapter 6. Minimizing the total completion time online oniiggée machine, using restarts

H 1 2| 3 | 4 | final
Jl %wl +K1 Jl 0 —Kl %wl
J NCOM(J, 8) JQ 0 0 NCOM(cL S)
Jo %WngDl Js | — we —% — D %(x—wg)
1=3,....,k—1:
Ji SWi+ D, Jipr | @ —wi | =3 +w,) | SR 4D,
Ji %Wk—FDl J |z —w —%(m—l—wk_l) W"‘Dl
J* || Neom(J%s) = Wi4+w | J2 | 0 | +Wi+Dy | Neom(J?, s)+ Dy

Table 6.7: Credit transfers in Lemma 6.14 £ %x k > 3)

most 0, i. e. all the credit given té” is actually available. To see this, note tBat + w;_;) >
w;_ for 2 < i < k. Furthermore, if; < %x (shown in the table), we hav€; > x5 > wy. The
additionalD; from .J; completes the credit given t&.

Case 2. r > %x: Denote the jobs thatspTstarts to run at time, alternatively by.J;, ..., .J;,,
then by (6.5) we havéV;yr(J/,r1) < iw,_,. We takeD; from J; as before and alsp, from

the very next jobJ; (J; € {J4, J}). We can do that becausé yr(.J;,r;) = 0. This makes in
total again at leastl’, + D to give to.J,, since in this cas&’; + D; > x5 > wy. Giving it to
J? again ensures that® satisfies (6.8).

Now supposé,(.J) > z. In this caseoPT runs only one more large job tha&spPT before
ARRIVE Hence in this case]? does not have small-job delay and we are done after Step 3 in
the table: all jobs already satisfy (6.8). O

6.6 Job completions

We divide the job completions into cases based on how mame lppbsopPT runs before
ARRIVE The case where no jobs arrived at all whlgPTwas running/ is treated separately
in Lemma 6.15. An overview can be found in the following table

Large jobs befordRRIVEbyopT| 0 | 1 | 2 | Morethan2
Lemma 16.16| 6.17| 6.18| 6.19,6.22

Remember that to calculate the initial credit of jobs, wd usle Event assumption 2. Since
all jobs in ARRIVEare smaller tharn:;, and complete afted, we haveN¢oy (J;,t) = 0 for
Ji, ..., Ji. We use again Event assumption 3.

Lemma 6.15 If RsPTcompletes a job’ and no jobs arrived while it was running and STATIC
holds, and the invariant held at tim then it holds at time.

Proof. RSPTnow starts the run the smallest available job at the timewlaat calculated in the
analysis of the most recent event. Hence, for the remaimibg fhe situation (and the credit)

6.6 Job completions 107

does not change. The completed job has nonnegative credit. O

Lemma 6.16 If RsPTcompletes a joly without interruptions anebPT does not run any large
jobs before ARRIVE, and STATIC holds, and the invariant aetone s, then it holds at time.

Proof. We use similar tables as in Section 6.5, starting with a jaleofor which it is easy to
calculate the credits and then reordering the jobs. Hergm@ e tharspPTstarts to run the jobs
already at times and not only at time';. This gives us a lower bound for the amount of credit
that is actually available.

Applying Lemma 6.9 repeatedly, we have that theréﬂé of credit available. We give this
to J. We consider first the credit of the jobsrREPT would run the jobs in the same order as
OPT, and starting at time;. ThenJ startsi¥’ time later than calculated at the previous event,
and thus only haéW left of the %W that it just received. In Step 1, we have tiRaPT starts
each job at the same time agT starts it. See Table 6.8. We use (6.3).

1 2 3 final
Jf %(Tf—wa) J —(.T—U)f) 0
Ji(i=1,...,f=1) %(rerwf—l—W}) Ji | —(x —wy) %WZ
Ji(i=f+1,...,k) 2y + W) Jio1 | —(z —wy) (W, — wy)
J NCOM(Ja S) + %W Jk 0 NCOM(J7 S) + %W

Table 6.8: Credits in Lemma 6.16

We use in this table thal(r; + wy) — (z — wy) = 3wy — x + 3ry > s — rp > 0, which

holds sinc&w; > s +x — 3ry. ForJy, ..., Jy,_, we also use that — w; < z — w;. Note that
W; —wy; > W,;_; fori > f. Hence all the jobs in Table 6.8 satisfy (6.8) by Lemma 6.%eCh
Note that this proof also holds fgr= 1. O

Lemma 6.17 If RSPT completes/ without interruptions andPT runs one large job before
ARRIVE, and STATIC holds, and the invariant held at tien it holds at time.

Proof. If s < x/2, the jobs inARRIVEstart within a factor o% of their optimal starting time
(and run in the best possible order), so that the credit of at Ieas% Z;zl w; by (6.3): all jobs
in ARRIVEsatisfy (6.8) by Lemma 6.7. The same thing holds ¥ 2.

Supposer/2 < s < 2x. This impliesN;y7(J;,t) < 2w;_4 — t < %wi_4 for4 <i<kand
Ninr(Ji,t) = 0for 1 <i < 3. Recall thatNeon (J;, t) = 0 for all J; € ARRIVE

Supposd < f < k. We definev; = sOPT(J;) — 2(s + z) > 0 and5 = max(s, z + by(J)).
Suppose first thadPT runs the jobs iIBEFORE,(.J) beforeARRIVE thensOPT(.J)) > 5+ w;.
We have

K(Jf)Z%(E—i-wf)—(erx—é)

3~+1 (s +2) 3
5+ -wy —)= =V — wy.
9 9 ! 2f !

< 2(z+by(J)+a) = (x+by(J) = 5(z—bs(J])).
—bs(J)) as well. Using this bound, we transfer

If s < z+b,(J), thenw; —vy < 2(s+x)—3
If s > 2+0,(J), thenw; — vy < %x— %s < %(m

108 Chapter 6. Minimizing the total completion time online oniiggée machine, using restarts

credits as in Table 6.9. It can be seen that the entries inndlodiadd up to at most 0, and that
all jobs satisfy (6.8).

| 1 | 2| 3 | 4 | final

7 T bu())) TT 0 | le_bi) 0

Jf %Uf—wf Jl 0 %(x—bs(J)) QUf

Ji %Uf —wy+ %wl Jo | wp —wy %wl %vf
1=2,...,f:

& 2~ Uy —:/_V%MZZ Jiv1 | Wy — wi %l)(uf; wie1) | gvr+3Wios
Jf+1 %Uf_wf_k% Jf—l—l 0 I_T&() — %UJf_l 'Uf—l—%Wf_Q
1=f4+2,....k:

J; ‘ %Uf —wy + Wi;wf J; 0 0 %Uf + %VVi_g

Table 6.9: Credit transfers in Lemma 6.417< f < k)

If f = k, then we cannot takéwf_l of credit out of J;,, because there is no such job.
However, we can now give~2) from J to J; instead of taJ; 1, and“% > Ly, — ;) >
s(wp-1 —vy).

Finally, consider the case wheoe T does not run all jobs IBEFORE(J) before all the
jobs in ARRIVE ThenopPT runs one job inBEFORE(J) in particular after jobJ;, which
implies that there is an additionéiuf of credit available by Lemma 6.9. We can give to .J;
and %wf to Jy41 (instead of giving those jobs credit frorf). For the other jobs, we can still
transfer credits as in Table 6.9. ff= k, we give3w, = 3wy, to J;. O

Corollary 6.3 If RSPT completes/ without interruptions andPT runs one large job before
ARRIVE, and STATIC holds, the jobs in ARRIVE need to recéivest an additional (w, —

vy) < 2(x — by(J)) of credit in total in order to satisfy (6.8), wherg = sOPT(J;) — 2(s +).

Lemma 6.18 If RSPT completes/ without interruptions andPT runs two large jobs before
ARRIVE, and STATIC holds, and the invariant held at tigtden it holds at time.

Proof. If /,(J) > x, there is nothing to prove since the same number of jobs &y/ddlbyrsPT
and byoPT, andRsPT starts the jobs iARRIVEat most a factor o8 /2 after opT starts them
sinces > x. Hence, the jobs iMRRIVEsatisfy (6.8) and the remaining large jobs gain credit
by Rule C2 and still satisfy (6.8). (We can assuorr runs the same two large jobs before
ARRIVEasRsPT, similarly to Event assumption 3.)

Supposé€(J) < z. Denote the largest of the two jobs tte@T completes befordRRIVE
by J2. We distinguish between the cases z, ands > .

Casel. s < x,. ThenK(JZ) > %([L’—HIL‘Q—FVVZ) Note thaWCO]\/j(Ji,t) =0, andN[NT(Ji,t) <

1W;_>. We let each jobJ; keepiWW;_; and gives (z + x5 + w;) > 3w, to J2. This is sufficient
to both pay for the small job-delay oF, which is1/, and to add%W for Kn7(J?%), which
ensures< (J?) > Neom(J?,t) + Ninr(J?, 1),

6.6 Job completions 109

Case 2. s > z,. Then the jobs irARRIVEare not interruptible, hencd®; y(J;,t) = 0 and
Neowm(Ji, t) = 0 for all jobs J; € ARRIVE Therefore,N;yr(J2,t) = 0. Consider the set
BEFORE,(J) of jobs thatRspTalready completed, and suppaseT completes all these jobs
beforeJ,.

Then we haveX (J;) > 3(max(s,z + 2)) + W, — (s +2) > sW;fori =1,... k-1
andK (J;,) > 3(max(s, z + z2) + by(J)) + Wi — (s + x) > 3b,(J) + 3W,. All the credit of
these jobs can go td?. The sum is at Ieas?bs(J) + Wi_1 + %wk. Furthermore,J? receives
5(z — by(J)) from J, and it loses at mos¥;, because it is delayed lysPT. Hence in total/?
does not lose credit and still satisfies (6.8).

Finally, suppose there is a job BEFORE(J) thatopT does not complete before the final
job J, in ARRIVE By Lemma 6.9 there i%wk of credit available that we can give t&, in
addition to thelV,,_; + %wk that it gets from the jobs iMRRIVE This is sufficient for.J? to
satisfy (6.8) again. O

6.6.1 OPT runs at least three jobs befordRRI VE

Defined(t) as the number of jobsPT has completed minus the number of jebsPThas com-
pleted at time. Property R4 implies that RSPTis running a job of size at timet < 2z, then
d(t) < 1. In other wordsy(t) > 2 = t > 2z. Thus as long as(¢) > 2, no jobs are ever
interrupted byrRsPTby Property R5.

Lemma 6.19If 4(s) < 1, and a jobJ is completed byrspT, and STATIC holds, and the
invariant held at times, then it holds at time.

Proof. Because of Lemma 6.15, 6.16, 6.17 and 6.18 we only need tadesritke case where
OPTrunsa > 3 large jobs befordRRIVE Sinced(s) < 1, after times oPT still startsa —2 > 1
J-large job before it runs the jobs MRRIVE Therefore RsPTcompletes the jobs iIARRIVE
no later tharopT does. Moreovely = 3 since the jobs iMRRIVEarrive beforeoPT completes
the third J-large job. We have\ (J;) > 1(3z + W;) > 2w;. We givew; to any jobs thaRspT
completes afteARRIVEandopPT beforeARRIVE since the jobs i\RRIVEare not interruptible
and do not need any credit themselves: we havexr, elsea < 2. There are at most two such
jobs, and their credit decreased Bybecause of the jobs MRRIVE using Rule C1. Therefore
they get all the lost credit back from the jobsARRIVE and again satisfy (6.8). U

Suppose(s) > 2. It can only happen during the final run of a job th&t) increases from
at most 1 to above 1, because we can apply Property R4 whem@seis interrupted. For any
maximal intervala, b) in which§(s) > 2 and whererspTcompletes a job at time, denote the
job that it completes at time by J(a).

Lemma 6.20 Suppos®PT starts its next/(a)-large job after time: at times,. Then there is a
timet € (a, s2 + w(J(a))] such thav(¢) < 1.

Proof. At time a, RSPTstarts to run the/(a)-small jobs that arrived while it was runninga).
Supposé(t) > 2 in the entire intervala, s2 + w(.J(a))], thenrRsPTdoes not interrupt any job
in this interval. Then in this interval, it certainly compds at least as many jobs @sT starts

110 Chapter 6. Minimizing the total completion time online oniggée machine, using restarts

and completes in the interval — w(J(a)), so] (it is possible thabpT decides not to run some
small jobs that have arrived yet, but then it can only congaliess jobs ifa — w(J(a)), s2] than
RSPTdoes in(a, se + w(J(a))]). Thuso(sy +w(J(a))) < d(a) < 1. O

Lemma 6.21 Supposeé(s) > 2 for ajob J. Then 1)J(a) is J-large; 2) s > 3x; 3) at times
the total size of the smalle§ts) — 1 jobs inRSPTs queue is at moshin(w(J(a)), a/3).

Proof. 1) Attimea—w(J(a)), OPThas completed at most one job tikatrThas not completed,
and such a job can only bEa)-large. Attimea, RSPTcompletes & (a)-large job, namely/(a)
itself. oPT completes at most onga)-large job in the intervala — w(.J(a)), a]. Thus at time
a, OPT has (still) completed at most onéa)-large job more tharsPT.

By Lemma 6.20pPT does not complete any othé(a)-large job within the current interval
whered(t) > 2. On the other hand, at timeRsSPT has completed alV-small jobs that have
arrived, sooPT must have completed at least twelarge jobs tharRsPT has not completed.
ThenJ must beJ(a)-small. O

2) At time s, RSPT has completed alf-small jobs that have arrived. Also it has completed
J(a). There are two cases. d&fPT completes/(a) before times, and at least two othef-large
jobs, thens > w(J(a)) + 2z > 3z. If oPT does not completd(a) before times, there must
be at least three othef-large jobs thabpPT has completed at time sinced(s) > 2, and thus
5 > 3. U

3) We begin by showing this holds at time At that time, we have that(a) — 1 jobs that
OPT has completed anRSPT has not, were started and completedd®r in (a — w(J(a)), al.
Thus their total size is at most(.J(a)). Then the total size of th&a) — 1 smallesisuch jobs is
certainly at mostu(.J(a)).

If « > 3w(J(a)), the other bound also follows immediately. Otherwisep#T completes
two J(a)-large jobs before time, we user —2w(.J(a)) < a/3. Finally, if it completes only one,
then the first/ (a)-small job thatoPT completes iffa—w(.J(a)), a] must complete after timgu,
since it does not cause an interruption. Thusitfag — 1 smallest jobs can start and complete in
an interval of size:/3. (Note that ifoPT completes a/(a)-large job in(a — w(.J(a)), a] in this
case, then(a — w(J(a))) <0.)

Now we show that it holds later, by induction. Consider a tirfer which (still) 6(s) > 2.
Denote the number of jobs thRspTandopPT complete in(a, s| by ¢; ande,, respectively. From
thesec, jobs and the lasi(a) — 1 jobs thatopPT starts and completes {la — w(.J(a)), a], there
are then exactly(a) — 1 + co — ¢; = d(s) — 1 jobs thatrRsPTmust still run. The total size of
thec; jobs thatRspTcompletes in«, s| is exactlys — a, so the total size of thesés) — 1 jobs
is again bounded byin(w(J(a)), a/3). Then this certainly holds for the smallé$t) — 1 jobs
thatRsPTmust still complete. O

Lemma 6.22 If 6(s) > 2, and a jobJ is completed, and STATIC holds, and the invariant held
at times, then it holds at time.

Proof. Sinced(s) > 2 = s > 3z by part 2 of Lemma 6.21, the jobs ARRIVE) require O
credit because they cannot be interrupted and a larger joipletes before them. By part 3 of
Lemma 6.21, thé(s) — 1 smallest waiting jobs also require just O credit for the sae@son
(usings > a).

6.7 Interruptionss < x/2 111

We first consider an alternative schedule, whes®T runs the jobs irARRIVE) not just
after J, but after thej(s) — 1 > 1 smallest waiting jobs iRSPTs queue. (Ifé(s) = 2, this is
only J.) The jobs inARRIVE) then cause only small-job delay for at most one jékand they
are executed Withiés of their optimal starting time. Therefore each such jpbas credit of at
leastl(s + W;) — £ > iW; + +s > LW, + 1x(I) > w;, which it can give toJ’ to make up for
its small-job delay. By finally putting the jobs in the correcder (but keeping the credits in the
same locations as usual), the total amount of credit doedawease. This proves the lemma.
O

Lemma 6.23 If RSPTcompletes a joly/, and STATIC holds, and the invariant held at time
then it holds at time.

Proof. This follows from Lemmas 6.15, 6.16, 6.17, 6.18, 6.19 an@6.2 O

6.7 Interruptions, s < z/2

In Section 6.5, it was shown for several situations that tivariant keeps holding if an inter-
ruption occurs. There is only one case left of the situatitreneoPT does not complete any
large jobs befordRRIVE and this is the complement of Lemma 6.%52< x/2. See for some
examples sequences 2) and 3) in Lemma 6.1.

We will use the following Lemma. We daot use Global assumption 2 at timer r.

Lemma 6.24 For any input sequence, where some run-interval = (s(J/), ;] ends with an
interruption, and wheres(J) < 1w(J), and whereopT does not run any/-large job before
ARRIVEI), it is possible to modify the release times of some jobs dastban be divided into
two sequences,, o, so that the schedule efspTfor o, is unchanged and the schedule tor
is unchanged starting from time&./); no job in o, arrives before time(.J); J € o, arrives at

times(.J); all other J-large jobs arrive at time-, or later; andoPT(o;) + OPT(02) < OPT(0).

Proof. We divides into two parts: we let; contain the jobs frorr thatRspPTcompletes before
time s(.J), ando?, all the other jobs.

All jobs in oy are finished byrspTbefore times(.J) < sw(.J). The jobs inc}, either have
size at leastv(.J) or arrive after times(.J) by definition ofRSPT. Therefore, when processiag
the total completion time aksPTof the jobs ino; is the same as it would have been if the jobs
in ¢/ all arrived after times(.J): any job ing} that is running before time(.J), is interrupted
immediately whenever a job i, arrives, since such a job froad has size at least(./).

Moreover,0PTdoes not start any-large job ino’, before timer;, sinceoPTrunsARRIVE)
before any.J-large job andopPT does not complete any job IRRRIVE) before timer; by
Property R3. Therefore, the optimal total completion tini¢he jobs inc’, is unaffected if we
constructo, by changing the release time 8fto s(.J) and the release time of all othérlarge
jobs ing’, that arrive before time,, tor,. Clearly, this cannot affect the optimal total completion
time of the jobs inr;. (Note that it is possible thaiPT still runs some jobs i, after times.)

ThusRSPT(0;) + RSPT(02) = RSPT(0), OPT(ay) is the cost o, in o, OPT(09) is at most
the cost o), in o and we are done. O

112 Chapter 6. Minimizing the total completion time online oniiggée machine, using restarts

Thus if there is an interruption at time, ands < %x we can consider all the jobs completed
earlier as a separate job sequence and make the followingasisn:

Global assumption 3 The interrupted job was the first job in the input sequence.

Consider such an interruption and make assumption 3.2 1, we can in fact assunl
jobs ing arrive at timery, since bothoPT andrsPT start and complete all jobs in after time
r1. Then we are in the case whergeis the end of an interval in whicRspTwas idle, and we
apply Lemma 6.2.

In the remainder of this section, we only need to considerctds/ > 1. The important
thing about Global assumption 3 is that it implies that thet #vent of this sequence occurred
at times, and the job that started then still has all of its origin&dit. This is much more credit
than could be deduced from the invariant.

Lemma 6.25 If RSPTinterrupts a job.J at timer,, andoPT runs no large jobs before ARRIVE,
andz/3 < s < z/2,andf > 1, and STATIC holds, then the invariant holds at time

Proof. We use Global assumption 3 and consider the credits of tree gdgsuming/ arrived at
time s. Again we can assume altlarge jobs besideg arrived at timer; (thus not using Global
assumption 2 in this case). Defilg = r; —r; > 0 andD,y = (ry+wy) — (r1 +wy), as before.
See Table 6.10.

| 1 | 2| 3 | 4 | final
Jr|l B —-Dy | 0 R Lwy + Dy
Jl rf+w2f+w1 . Dl J2 wy — wy w1+272‘f—wf %Tf +wq + D2
i=2,...,f—1:
J; %ﬁWi_Dl Jis | wy —w; 0 %Wi—l—wijLDﬁwl
i=f4+1,...,k:
Ji|| D, | o 0 0 it p,

Table 6.10: Credit transfers in Lemma 6.25

J satisfies (6.8) by Lemma 6.7, Case 1. Fgmnote thatr; > 25 > 12 > lw,, and use the
same lemma. Far=3,..., f,weusev; > w;, Do+wy = (re+wyp)—ry > wp—ry > w;_1—7ry
and D, + w; > 0. This shows these jobs satisfy (6.8) by Lemma 6.7, Cases Barfebr
i=f+1,...,kweuseK(J;) > iW; — Dy = $(w; — w;—1 + Wi_3) + (w;—; — D;) and note
thatw,-_l — Dy >wi_—1m andwi_l — Dy =wi_1+ Dy — Wy +wy; > Dy +wy > 0, and we
use the same Lemma. We can reason analogously (onplying that we can indeed talézerf
out of the credit of/) and for.J-large jobs. O

Note that the proof of Lemma 6.25 works as long-as> =/3. From now on, we assume
ry < x/3. For this case, we use the same credit transfers as desariffatlle 6.10. However,
in this case, this may not be enough for jdbto satisfy (6.8). We make one additional transfer
apart from the ones mentioned in Table 6.10: we disefrom J; to J,. By Definition 6.6, we
haveD, = 7, — 7, wherer; > 0 andr; < 0. See Figure 6.3.

6.7 Interruptionss < x/2 113

OPT

RSPT !

restartof job of size x

Figure 6.3: An example of a late interruption

Lemma 6.26 Consider the jobs involved in a slow interruption as abovel; Idoes not satisfy
(6.8), then

s(J1) = wy
wf>%x

T+ wp > %1’
fe{k—1k}

Proof. After the above transfers, we haig J;) = %rf + wy + 2Ds.

HpowbdpPE

1. Suppose; < wi. Thenw; + Dy = wy +7rp+wp—r1 —w; > wy—1ry > 5(wy+ws) —ry,

andw; + Dy > 0, s0.J; satisfies (6.8).

2. Supposev; < 1z. Thenalsav, < fx. Moreover, since;+w; > 2(s+z) > 2z we have
ry > . If J, does not satisfy (6.8), then (using item) + w; + 2D, < 3 (wy — wy)
and thusiw, + 2D, < £ — £ = 0, a contradiction.

3. Suppose; +w; < sz. We haveD, > rp+wy — (11 +wy) > rp+ws — sz If wy > 2,
then2Dy > 2wy —x > %wg. If wy < %x, thenDy > rp+w; — %x > %x and2D, > %wg.
In both cases, we find that satisfies (6.8).

4. If f=k—2orf <k—4,wecan tak%wf out of the credit of/ and still satisfy (6.8). If
f =k — 3, we can takdwy,, out of K'(.J). O

Jo may not have enough credit to pay for its completion (it dasweed to pay for interrup-
tions of .J;, or of smaller jobs that arrive beforg starts). The credit to pay for the completion
of J, will have to come from another job. We will show that we can ssme of the credit of
to pay for this. To begin with, we transfep, of credit from.J, to J. Then, we divide the credit
of J as follows. First supposg = k.

— +4D +rr— + + 3D 1 3
Koou(J) = = ng P2 (7’12 & 2> gl@t7s) + 502615
1 1
K[NT<J) §Wf_1 + wy — D, > §Wf_1 -+ (wf — Tl). (616)

114 Chapter 6. Minimizing the total completion time online oniiggée machine, using restarts

If f =k — 1, note that/, cannot start before time > w, sincer; + w, +wy > 5 + 5 =z by
Lemma 6.26. Henc&;y7(J,r1) < 2Wi_s + 2wy — 1. We have

1
Keom(J) = §(x—wk)+2D2

Kine(J) = %Wk—l + (wy — Dy) > %sz—Q + (gwk — D)

so.J can certainly givel (w), — wy) to its own completion-credit, so that we again have (6.15).

We now consider the events after timg using the analysis from the previous sections.
Note that in those analyses, in some cases a/jdkansfers its completion-credNco (/' s)
to another job: this happens.ff is interrupted. However, the target job can only be a smaller
job thanJ’. We need to keep track of the job that does not have enoughletorpcredit. This
job will be calledred and be denoted byy. Job.J above, that was slowly interrupted, will be
calledgreenand be denoted by,,. It satisfies (6.15) at time,.

Lemma 6.27 Suppose there exists a red jol3 and a green jobJ/;. Until Jz completes, all
jobs besidegr and J satisfy (6.8), and (6.2) holds. Moreover, there will appearfurther red
jobs until Jz completes.J; is the job that was slowly interrupted at timg and satisfies (6.15).
Kint(Je) > Ninr(Jg, t) holds for all timest where an event occurs, up to and including the
completion of/y.

Proof. We consider the events in the sequence from the first evestttafier; until the last
event before/p completes, and use induction. At time(the base case), all the statements of
the lemma hold.

SinceoPT starts.J; before timer;, it completes/; before any job that arrives later. Since
wgr < wy by induction, we are always in the case wherer completes at least on&/)-large
job beforeARRIVE). This implies in particular that as long dg is not completed, there can
occur no further slow interruptions wheo®T does not run any large jobs befodRRIVE so
no further red jobs can appear.

Consider a later event. If it is an interruption (either/gf, or of smaller jobs), consider the
credit of the jobs i). As can be seen from the credit reassignments in lemmas 6dl3. &4, if
Jg is interrupted, it is possible that another job in stead pbecomes red as a result. However,
this can only be a job smaller thak,. Furthermore, jolJ; keeps satisfying (6.15) throughout
such interruptions, since ofz-large jobs only the amount of interrupt-credit can be aédc
Also, the credit ofJ; is not transferred to another job, so it is the same job thratines green.

If there is an interruption of a job smaller thdp, then.Jz remains red for the same reason. In
both cases, all other jobs satisfy (6.8) by the analysesdsettlemmas, including the job that
was.Jy if another job is red now.

Now consider a completion of a jolf beforeJz completes. Then’ and any smaller jobs
that arrived whileJ’ was running are all small relative t&; and.J;. In Lemma 6.17,/z and
Jg are then among the large jobs whose credit increas%MbM’), and remain red and green
respectively. Their completion credit is unaffected. Inrimea 6.18 and Lemma 6.19, the same
holds. In Lemma 6.22, the credit gf; can be moved to another job (that thus becomes red), but
then that is again a smaller job. O

6.7 Interruptionss < x/2 115

At some point, the red jobi will complete. By (6.7), as long as we maintdifv.oy (J) >
+(z — by(J)), we can take credit out of to pay for the completion of .

Lemma 6.28 Suppose there is a red job. When it completes, credits carabsférred so that
all jobs satisfy (6.8).

Proof. Denote the set of jobs that arrive durirdg’s final execution byARRIVE, and their total
size bylV’. Note thatopT completes/; > .Jr beforeARRIVE. There are thus three cases.

Case 1. opTcompletes exactly onéz-large job beforeARRIVE (i.e. job Jy).

By Corollary 6.3, the jobs i\RRIVE need at most (w/, — v},) < swgr < jwy of credit to
satisfy (6.8). We have that the credit.dincreases b)}W’.

Claim: K(J) > %(Jf + Tf) + %Dg + N[NT(J, t,) + %W’

Proof: At the previous event/ satisfied (6.15) an&’;xr(J) > Nynr(J,t). If Jg started
after timewg, none of the jobs IMRRIVE are interruptible and the claim follows. Otherwise,
note that/ had enough credit to pay for interruptions.bf until time wg, because it was green.
(By Table 6.1, any job following a job* that is interrupted after it started before timéJ*),
needs to pay for this itself until time)(J*).) This credit can now instead be used for any
interruptions of jobs iIARRIVE until time 2wg. U

Thus3 1’ can go to the jobs iIARRIVE that need it. Moreover, sinag}, —v), < Jw; < 3
using Corollary 6.3, we can also ta%éw}, =) < ¢ out of the credit of/ and still have
Keom(J) > Neowm(J,t), because we take at most half the size of a job that complefeseh
J out of J’s credit, and/J actually has at least this amount of credit by (6.15).

If f* <k, we have; W’ > w', and hencg (w), — v},) < 3W' + §(w), —v},), which is the
amount we could take frond.

If f' =k > 1, wehaveyIW' > L(w}, + w)_,). We can givejw’, _, to J}, andiw), to J}.
Also, we gives(w'}, — v),) < sw/, fromJ to Ji. It can be seen from the proof of Lemma 6.17
that this is sufficient.

If f' =k =1,theniW’ = Lw. Giving this and an additiondl(w} — v}) < min(}z, 1w})
from J to J] is sufficient as in the proof of Lemma 6.17.

Case 2. opTcompletes twa/i-large jobs befordRRIVE.

If oPT runs two large jobs other thahbeforeARRIVE, we again have that the credit &f
increases bgW’ and we can reason as above.

SupposePTcompletes/ and.J; beforeARRIVE. Following the proof of Lemma 6.18, we
are done immediately if < x, so suppose > z. This implies the jobs iARRIVE are not
interruptible, soN;nr(J,t) < Ninr(J,s). ThenK (J)) = 3(wg + z) + W/ — (s + wg) =
(W] 4+ wg) + 32 — s. This implies that as long as< 2z, we can give} (w] + wy) > w)to J
from each jobJ/, which is sufficient:./ receives in total at lea$t”’, which it lost because,(.J)
increased.

Otherwise, note that we only need to find an e%w%, of credit to give toJ, sinceJ gets at
leastiV,_; + Jwj, from the jobs inARRIVE.

116 Chapter 6. Minimizing the total completion time online oniiggée machine, using restarts

Supposewr < 2z. If s < z + wp thenK(J},) > Lwg +) + IW' —wp > (z -
wg) + %w;, > %x + %w,{c, > %w;,, and ifs > o 4+ wg then K (J},) > %s + %W’ — wp >
s(z — wg) + 3w}, > 2w),. We can take the lagtw,, < jwr < 3 out of the credit of/, and

then all the small job-delay is paid fof;still satisfiesKcon (J) > Neowm(J, t).

Finally, if wg = 22 + a for somea > 0, thenDy = (ry +wy) — (11 +wy) > s + 2z +
a— %(s +) > a and we can takéw,@, + %Dz out of Kooy (J) itself, since we then still have
Keom(J) > 2z —wy) + 2Dy — 2wy — 32Dy > Lz — 3(wy — Dy)) + D, > 0. Here we use

[\)

2
wr—Dy=r+w —1y < =(s+2x)—rp< gx
Since we take only less than half of the size of a job that ceteplbefore/ out of the credit
of J, we also still have<con (J) > Neown(J, s) as before. To complete the missing credit, we
can takeZ (v}, — a) out of K(.J;,); the calculations are similar to above.

w

Case 3. opTcompletes three or motés-large jobs befordRRIVE. Note from the proofs of
Lemmas 6.19 and 6.22 that in this case, no completion cnexfit §/ is required to pay for any
small job-delay. Hence we are done immediately. O

Chapter 7

Online scheduling of splittable tasks

In this paper, we consider the problem of distributing taskgarallel machines, where tasks
can be splitinto a limited amount of parts. A possible agtian of the splittable tasks problem
exists in peer-to-peer networks [70]. In such networksdditps are typically split and the
parts are downloaded simultaneously from different lacetj which improves the quality of
service (QoS). More generally, computer systems oftemilblige computation between several
processors. This allows the distributed system to speedheigitecution of tasks. Naively it
should seem that the fastest way to run a process would bé &l [grocessors participate in
the execution of a single process. However in practice thisnpossible. Set-up costs and
communication delays limit the amount of parallelism pblesiMoreover, some processes may
have limited parallelism by nature. In many cases, the lhedtdan be done is that a process
may be decomposed into a limited number of pieces each ofhwhigst be run independently
on a single machine.

The definition of the model is as follows. In the sequel, we ited tasks “jobs” as is done
in the standard terminology. We consider online schedutihgplittable jobs onn parallel
machines. A sequence of jobs is to be scheduled on a set oimeactunlike the basic model
which assumes that each job can be executed on one machoselchy the algorithm), for
splittable jobs, the required processing timeof a job j may be split in an arbitrary way into
(at most) a given number of parts Those parts become independent and may run in parallel
(i.e. simultaneously) or at different times on differenb@essors. After a decision (on the way a
job is split) has been made, the scheduler is confronteddipdisic scheduling problem, where
each piece of job is to be assigned non-preemptively to orodime. In the on-line version, jobs
are presented to the algorithm in a list, this means that jdamust be assigned before the next
job is revealed. Only after the process of job splitting assignment is completed, the next job
is presented to the algorithm. The goal is to minimize theespkn which is the last completion
time of any part of job.

We consider two machine models. The first one is the well knowadel of identical ma-
chines, where all machines have the same speed (w.l.0.gd 9)e The second case relates to
systems where several processors are faster (by some lioattie factor) than the others. In
this case let be the speed of the fast processors. The other process@se®d 1. This also
contains the model where one processor is fast and all adiherdentical [124, 81, 37, 122]. We

117

118 Chapter 7. Online scheduling of splittable tasks

call the machines of speedast and all other machines aregular machines. The number of
fast machines is denoted fywhereas the number of regular machinesis f. The processing
time of jobj on a machine of speeds p;/s. Each machine can process only one job (or part of
job) at atime, and therefore the completion time of the maels the total processing time of all
jobs assigned to it (normalized by the speed), which is a@#iedattheload of the machine. In the
context of downloading files in a peer-to-peer network, teesls correspond to the bandwidths
for the different connections.

Our results: We first analyze a simple greedy-type algorithm that sptitssjinto at most
parts, while assigning them in a way that the resulting madess as small as possible. We
improve on this algorithm by introducing a type of algorittimat always maintains a subset of
k < ¢ machines with maximal load (while maintaining a given cofitppe ratio), and show that

it is optimal as long ag is sufficiently large in relation ten + f. The casef = m — 1 is treated
separately. For smallér we give an algorithm for identical machines that unifornmhproves
upon our greedy algorithm. Finally, we consider the spesaak of four identical machines and
¢ = 2, which is the smallest case for which we did not find an optisedlition. The algorithms
assume that it is always possible to compute the valu@raffor a subsequence of jobs which
already arrived. In section 7.2 we explain how to compute vhiue.

7.1 A greedy algorithm

In this section, we analyze a simple greedy-type algorithat works as follows. Recall that
we consider the case where there is a grouj ofachines of speed > 1, and the remaining

m — f machines have speed 1. For each arriving job, the algorithds fihe way to schedule

it on at most/ machines, in a way that the resulting makespan is as smatissiye. This is
done by assigning the job to a subset of least loaded fastinmeschnd a subset of least loaded
regular machines. To implement this algorithm, we need tsicter the combination of the least
loadeda regular machines with the least loadefdst machines, for all feasible casestb < /,

0 <a < min{{,m— f}and0 < b < min{/, f}. There are only)(¢?) such combinations. If
the job is split into less thaf parts, it means that the makespan did not change. Note that fo
¢ = s =1, this algorithm reduces to the standard greedy algorithrtotd balancing.

Consider an arbitrary subsgtof / machines, and denote the number of fast machines in this
subset byy. Consider the time where the maximum load is achieved firlsis appened after
assigning a job oexactly / machines. Denote the total processing time scheduled oitthe
machine in subset by W (i = 1,...,¢). Letx be the job that achieves the maximum load
(and by a slight abuse of notation, also its processing tindenoted by). LetWW = >"" W},

I.e. the total processing time of all jobs right before theigisment ofz. Let GREEDY denote
the makespan of the greedy algorithm. By our assignmentawe for any subsef

Wi+ +W+a

GREEDY <
sg+Ll—g

= (sg+ ¢ — g)GREEDY < W} + ... + W/ +z.

There arg("}) such subsets, and each machine occu(¥'it}) of them. Summing the above
inequality over all(?) subsets, we have that each time a fast machine occurs, ithrgets to

7.2 Computing the optimal makespan 119

the left hand side; a regular machine contributes 1. Thus
GREEDY m=1 f+ m- (m—f)) < m—1 Wit W)+
-1 (—1)" =\e—q)T)

(sf +m — f)GREEDY < W + zm/.

or

Furthermore, we havept > —Y+2_ |f f > ¢ we also haveorPT > =, otherwiseoPT >

; _ sT+m=7
py Thusiff >/

W+ a7 ¢-oPT(Z —1 -/
GREEDY < < i (5)<(1 _mer S)OPT.

m_OPT+ sf+m—f +sf+m—f'

and otherwise

(sf+0—floPT(F —1) sf+0—f /m
GREEDY < OPT+ ftm—7f = (1+m <7—1>) OPT.

These ratios are decreasing/iand are 1 fo# = m. For f = 0 (or equivalentlys = 1) the
second ratio applies, which then becorges ¢/m. For largerf satisfyingf < ¢, the ratio is
lower.

7.2 Computing the optimal makespan

In the remainder of this paper, we assume that the valo@ofs known to the on-line algorithm.
There are several options to achieve this knowledge. Tlogithgn of [112] can solve an offline
problem exactly using time which is polynomial seeing thenber of machines as constant.
The drawback is that their algorithm must be exercised aftery arrival of a job to find out the
new value ofoPT. Another and better option is simply to use the two followiager bounds
on oPT. the sum of processing times of all jobs divided by the sumpefesis, and the size of
the largest job divided by the sum of speeds of tHiastest machines. We already used these
bounds in Section 7.1.

All the proofs of upper bounds use only these boundspn and therefore the knowledge
of the actual values abPT is not required. Naturally, those bounds are not alwayg agtthe
offline problem is NP-complete already for identical maesiand any constantf144]. Note
that in almost all cases in this paper where we get tight bswmdthe competitive ratio, the
value of OPT is actually given by the maximum of the two bounds opT. This is always
true for¢ > (m + 1)/2. In these cases an optimal offline schedule (not only its) @ast be
computed by the following algorithm. This algorithm works the general case of uniformly
related machines (where each machiias some speeq). It is based on the sliding window
algorithm from [144].

120 Chapter 7. Online scheduling of splittable tasks

7.2.1 Offline algorithm for ¢ > (m +1)/2

Calculate the maximum of the two lower bounds émT. We say that a jolfits on a subset of
machines if it can be placed there without any machine exuegedoad ofopT (normalized by
the speed). Sort the machines by nondecreasing speedsdé&uahe largest joly. Clearly it
fits on thel fastest machines. We consider two cases.

1. There is an indexsuch that/ fits on machines, ..., + ¢ — 1, where all these machines
except possibly the last are used completely. Asgigmthose machines. We are left with
m — ¢ empty machines and possibly a part of machiinel — 1. We haven — (+ 1 </
since our assumption is that> (m + 1)/2. Therefore the number of machines that we
can use for the remaining jobs is at mésHence the remaining jobs can be split perfectly
among these machines. Since the other machines are fillepletaty, they must all fit.

2. There is no such index In this case, fits on machineg, ...,/ — 1 or on less machines.
Note that these are the slowest machines. Therefore, thregnam jobs can be placed one
by one on the machines, such that each machine has a lagt ¢éxcept perhaps the last
one). If the first part of a job is on machingts last part is placed on machine with index
at most + ¢ — 1. Otherwise, this job does not fit on machiries1,...,i+ ¢ — 1, which
means it is larger thari, a contradiction. Hence all jobs can be assigned uspayts or
less. Since each machine has a loadpf apart from maybe the last machine used, all
jobs fit.

These two cases show that the maximum of the two lower bowndsHT indeed gives the true
value ofopTin case/ > (m +1)/2.

7.3 Algorithm HIGH (k, R)

An important algorithm that we work with is the following,lt=d HIGH (%, R). It maintains the
invariant that there are at leastregular machines with load exactlR times the optimal load,
whereR is the competitive ratio that we want to prove. The idea befinms algorithm is that it
tries to 'fill' the regular machines, and to preserve thiast machines for a large job that may
arrive. We will use this algorithm several times in this papéth various values oRR andk.

In all cases, we will show that a new job is never too small orlarge for the invariant to be
maintained.

We will use this algorithm in the context of identical maaksrand in the case where there
are several fast machines of speedRecall that the identical machines case is a special case
of the second case (with = 1). We immediately present the more general algorithm. This
algorithm also uses the sliding window technique from [144]

On arrival of a jobJ of sizex, HIGH(k, R) assigns the job to at moéimachines such that
the invariant is kept. We denote the optimal makespan béfherarrival of/ by opT;, and after
the arrival ofJ by opPT,. We would like to sort the machines by the capacity of joby tten
accommodate. For a machindet L; be its load and’ be its speeds{ = 1 or s’ = s). Let;
be thegapon machine, which is the maximum load that can be placed on the machittgsn

7.3 AlgorithmHIGH (k, R) 121

step. Thatish, = s'(R - OPT, — L;) fori = 1,..., m. We first sort only the regular machines
in non-increasing order by their gaps. Clearly, the maahimkich had loadRoprT, have the
smallestgap. We gét > ... > b,,_y andb,,_y_j4+1 = ... = by,_y = ROPT, — ROPT;.

LetS; =b;+...+bjx1forl <i<m-—f—k+1. Thisisthe sum of the gaps érconsec-
utive regular machines. The algorithm can work only underdbindition thatS,,,_ ;41 < z:
if x is smaller, then after assigningthere are less thakh machines with loadRoPT,. This
condition will always hold for the choices & and#k that we analyze later. We distinguish
between two cases.

1. S; > x. We can find a valué such thatS; > » andS;,; < z. If S; = x, we can clearly
assignJ such that there arke regular machines with logROPT;.
SupposeS; > z. Theni < m — f — k sincesS,,_;_+1 < z. We use the machines
i,...,i+k. Thisis a set ok +1 machines. We adtl to machinej for j =i+1,...,i+k
and put the nonzero remainder on maching&he remainder fits there since the job can fit
on machines, ..., i+ k — 1 even without machiné+ k. Clearly we get at leagtregular
machines with loaRoPT,. The assignment is feasible sinte k + 1.

2. 51 < z. Here we introduce another condition which is the followingonsider the:
regular machines with the largest gaps, and among the nexctiiat are not the regular
machines with smallest gap, choose another sétof: machines with largest gaps. The
condition for the algorithm to succeed is that the sum ofelfegaps is at least the size
x. The assignment of first fills the gaps on thé least loaded regular machines, and the
non-zero remainder is spread betweenthek machines with largest gaps.

We use this algorithm several times in this paper. Each timshow that it maintains some
competitive ratioR, we will show the following two properties.

(P1) A new job is never too large to be placed as describedt i§h#& we place it on the
¢ machinesk of which are the regular machines with largest gaps, and ttiner 6 — &
are the machines with the largest gaps among the othersu¢exglthe regular machines
that have maximum load before), then afterwards the loacheset machines is at most
ROPT,.

(P2) A new job is never too small for the invariant to be mamgd. |.e. if we assign the job on
thek machines that had logdoprT,, then it fits exactly in the gaps, or there is a remainder.
This will show that in all cases we can make at Idastachines have loaBOPT,.

Note that for each arriving job, the new valuea# T can be computed in tim@(1), and the
worst step in algorithm KsH (&, R) with regard to the time complexity is maintaining the sorted
order of the regular machines, which can be done efficiently.

7.3.1 Many splits

We consider the cage> (m + f)/2 (sincek < ¢ —1,if f = 0we need > (m + 1)/2). Note
that this leaves open the casefof m — 1. This case will be considered separately in the next
subsection.

122 Chapter 7. Online scheduling of splittable tasks

We need some definitions in order to state the next Lemma/’ lbet the sum of speeds of
the/ fastest machines and let' be the sum of all speeds. Cleafly> f and so’ = sf +/(— f
andm’ = sf +m — f. Lete = ¢'/m’ and

1

Rl = 5T

Note thatR,(c) = Ri(1 — ¢). Finally, letc; be the real solution te® — ¢ +2¢c —1 = 0
(c1 ~ 0.56984).

Lemma 7.1 For ¢ > ¢, algorithmHIGH (m — ¢, R, (c)) maintains a competitive ratio 2, (c).

Proof Letk =m —/¢ < /¢— 1. We first show that the new job is never too large to be placed as
described (P1). Ifitis put on themachines which are all machines that did not have maximum
load before the arrival of, then the othek = m — ¢ regular machines have lo&g, (c)oPT;
because of the invariant (they were the machines with htgbad). Thus we need to show that
("R1(c)OPTy + kR4 (c)OPTy > W + 2z wherelV is the total load of all the jobs beforkarrived.

We haveoprT, > W/m/, OPT, > (W + x)/m’ andoPT, > x/¢'. Therefore

W+

m/

+(1— a)% forany0 < a <1 (7.1)
Takinga = ¢'/m/, we getkoPT, + ¢'OPT, > kW/m' + a(W + x)/m' + V(1 — @)z /0 =
(W+az)(al'/m' +1—a)= (W +z2)(1 =0 /m +0?/m?) = 72/1?5 as needed.

Second, we show that is always large enough such that we can again nmkakegular
machines have loa®,(c)oPT, (P2). Thatis,x > kRi(c)(OPT, — OPTy). There are three
possibilities foropT,: it is eitherxz /¢, (W + x)/m’ or y/¢', wherey is the processing time of
some old job.

If oPT, = y/¢' we are done, since thePT, = y/¢' as well. Otherwise, we use thapT; >
W/m'. ThusoPT, — OPT; < max(z/¢,z/m') = x/¢'. We need to show thatR,(c)z /¢’ < x
or kRy(c) < ¢'. This holds ifc* — ¢* + 2¢ — 1 > 0, which holds forc > ¢;. This completes the
proof of the upper bound of igH(m — ¢, R4(c)). O

OPTy, > «

Lemma 7.2 No algorithm for the scheduling éfsplittable jobs on a system g¢ffast machines
of speeds andm — f regular machines has a better competitive ratio thay(c).

Proof The valuesn’ and/’ are defined as above. Thus = sf +m — f. Furthermore/{’ is
the sum of speeds of tifastest machines, $6=sf + ¢ — fif { > f, /' = sl otherwise. The
lower bound consists of very small jobs of total sizé = sf + m — f, followed by a single
job of sizeW — m/, wherelV will be determined later. The optimal offline makespan afer
small jobs isopPT; = 1, and after the large job itiePT, = W/m'.

Consider an online algorithtd. After the small jobs have arrived, the algorithm “knows” it
has to keep room for another single job. Therefore it canibad: — ¢ machines it is not going
to use for that job with the maximum lo&opPT; (if it puts more on some machine, the final
job does not arrive). There are many cases according to haw faat machines it loads. Lét

7.3 AlgorithmHIGH (k, R) 123

be the number of fully loaded regular machines é&ne- m — ¢ — k; the number of fully loaded
fast machines.
If A maintains a competitive ratio &, we must have

W < ROPTl(k’l + Sk’g) + ROPTQ((m — f —]{51) + S(f —]{52)) (72)

This implies

w
> . 7.
R_m—f—k‘2+3k2+OPT2(k‘2+f—f+sf—sk‘g) (3)

We can see that this number is minimized by minimiziagsince the coefficient of, in the

denominator igOPT, — 1)(1 — s) < 0. Therefore the lower bound is obtained by taking= 0

if ¢ > f,andky = f — ¢ otherwise. We choos®’ such that?’ — m’ = m/¢'/(m' —). We

rewrite (7.2) to getV < (m/—¢')RoOPT, +/"ROPT,. Then sincepT; = 1 and since fronl" =

(m')2/ (m’ — £') follows OPT, = m'/(m' — £'), We getR > @' =

'Rl(c). O
These two lemmas imply the following theorem.

Theorem 7.1 For ¢//m' > ¢, and/{ >
HIGH(m — ¢, R,(¢'/m’)) is well-defined

9-’ |3

+ Lmax(f,1) (ie. f # m — 1), the algorithm
nd optlmal

7.3.2 The case of = m — 1 fast machines

For completeness, in this section we consider the ¢gasem — 1. We give tight bounds for
many cases, including the caseraf— 1 parts, i.e. each job may run on all machines but one.
Clearly we already solved the casgs= 0,...,m — 2 and f = m (this is the same case as
f = 0) for large enouglt. The solution of the casg = m — 1 is very different from the other
cases. First the algorithm is not the same for all values Bbr smalls, for the first time we use
an invariant on the fast machines. For lasgéor the first time we do not use all the machines.
Again we usenr’ as the sum of all speeds, ix@! = (m —1)s+ 1, and¢’ as the sum of speeds of
the/ fastest machines, i.¢. = s¢. We introduce a new notatidi which is the sum of speeds
of the machines that are kept at maximum load. This valuetexaened by the algorithm.

For larges, we use an algorithm which never uses the regular machine. theocase
¢ = m — 11itis a simple greedy algorithm that splits each job in a WEQI ihkeeps the load
balanced on all fast machines. This gives the algorithm &tie it + D) (easily proved
by area considerations). Fér< m — 1 the algorithm ignores the regular machlne and uses
HIGH(m — 1 — ¢, R,;) onm — 1 fast machines only, wherR,; is defined as a function of’
and/’ (which are functions ofn, ¢ ands):

_ (m/)z _ (m/)z
(m/)Q _ (m/ _ €/><£l + 1) (m/)Q —m! — /{3/6/ :

We havel’ = sk = s(m — ¢ — 1). The algorithm keeps = m — ¢ — 1 fast machines with load
R210OPT. Sincek must be smaller thafy we require/ > m/2.

124 Chapter 7. Online scheduling of splittable tasks

On arrival of a job, lebPT; andoPT, be the optimal offline makespan before and after the
arrival of the new job, respectively. The algorithm is thensaas before but the properties are
slightly different. We need to show that the following twaperties hold:

(P1) x > K'R(OPT, — OPTy).
(P2) The gaps on théleast loaded fast machines can contain
The second property can be reformulated as

('ROPTy + K'ROPT, > W +

wherelV is the total processing time of jobs which arrived beforejtieof processing time
x. This follows from/¢ + £ = m — 1. Regarding (P1), similarly to before, we can bound
the difference of the optimal offline costs kT, — oPT; < x/¢'. This gives the condition
Roy < UK.

To show (P2) we again use the bouradsr; > % and (7.1). We need to show
klw+€/<aw+x x)ZWva.

m/ m/

Takingl — a = 7’;— we get that this condition is satisfied fRr = R»;.
For smalls, we use a variation on previous algorithms. The algorithepké = m — ¢ fast
machines with loadROPT, where
m/2 (m/)z
m?2 —(m' +s—1—0)0 - (m/)2 — k0

The value we use fok’ is k' = s(m — [). The algorithm is defined asi&H(m — ¢, Rs2),
except that the roles of the fast machines and the regulahimabave been reversed. In other
words, we use the gaps @estmachines to fit the job, and if it needs more room we use at most
m — k — 1 fast machines and the regular machine as well.

On arrival of a job, lebPT; andoPT, be the optimal offline makespan before and after the
arrival of the new job, respectively. We again need the Yaithgy two properties to hold:

(P1) x > K'R(OPT, — OPTy).

Ras = (7.4)

(P2) The gaps on the — & other machines (that do not maintain the invariant) canaiont

(m' — k'YROPT, + K'ROPT; > W + .

(P1) again translates infd,, < ¢'/k’. To show (P2) we again use the bourmisr;, > % and
(7.1). We need to show

kK'W W +x x W +x
o + (m/ _]{;/) (a iy + (1 — OZ)E) > R
K

Takingl — a = iy We get that this condition is satisfied f& = Ra,.
We now give a lower bound that proves that these bounds dre tihe lower bound is

actually more general, and holds for all valueg ahds.

7.3 AlgorithmHIGH (k, R) 125

Lemma 7.3 For f = m — 1, any online algorithm has competitive ratio at leasin(Ro;, Ra2).

Proof We define a sequence of jobs with the following processingsin’, = 1, P; =
mf—_z 25;11 P;. Let oPT; be the optimal offline cost on the subsequence of thefias. Then

we see that foj > 3 we have

1 = P; m'
_ § : _ 5 _
OPT; = m — P = a and F; = mpj_l'
i=1

Consider the behavior of the on-line algorithm startingrfritnethird job .

If the algorithm never splits a job using the regular machime need to consider two cases.
If / = m — 1, the competitive ratio tends to the ratio+ S(ml_l) of the greedy algorithm that
does not use the regular machine. The secondasen — 2 is slightly more difficult. Only
the first two jobs might be scheduled on the regular machinesf@er jobP;. If .4 maintains a
competitive ratio ofR until this point, then on each of the fast machines that isdu# use for

job j it has placed a load of at masRoPT;_,, and we find

I 4P — (m—{—1)sROPT;_,
El

< ROPT;

which implies thatR (£'OPT; + s(m — £ — 1)OPT,_;) + Py + P, > >, .. We use}], P, =
Py + Y020 P = Py(1+ ™7%) = ™ P; to rewrite this condition in terms aP;, and divide by
P;. For large enoughi we can neglecP, and P, and find

R<1+s(m—€—1)(m’—€’)) o

m'l =

This givesR > Ro;.
Otherwise (some job uses the regular machine); bet the index of the first job for which a
part is assigned to the regular machinedlfaintains a competitive ratio & until this point,
then on the machines that it does not use for jolvhich are all fast) it has placed at most
sROPT;_;, and we find
7, P —s(m — 0)ROPT;_,

s(l—1)+1

< ROPT;

which implies thaR (OPT;(s({—1)+1)+s(m—L)OPT;_1) > S0 P Weuse) /_, P, = ™' P,
to rewrite this condition in terms af;, and divide byP; to find

st —s+1 s(m—20)(m —1) m’
> 7
R(I ol =7

which leads toR > R,,. O
We summarize our results in the following Theorem.
Lets; = (m — 1+ vVm?2—2m + 1+ 40)/(20).

126 Chapter 7. Online scheduling of splittable tasks

Theorem 7.2 For the case ofn — 1 fast machines of speed|f s > s;,and (n/2 < ¢ < m—2
andRy < ¢'/(m' — ¢ — 1)) or £ = m — 1, then the optimal competitive ratio of any online
algorithm isRy;. If s < s1, £ > m/2 and Ry < ¢'/(m' — ' + s — 1), then the optimal
competitive ratio of any online algorithm 78.,.

Corollary 7.1 For f = ¢ = m — 1, the optimal competitive ratio isiin(Rs;, Ra2).

Proof For smalls, if £ = m — 1 then the value ofR,; is defined properly to bé + S(m—l_l)
attained by the greedy algorithm that only uses fast mashifleis ratio is thus tight.

For larges, if /£ = m — 1 then the first property to be checked leads to the condition
sR(OPT, — OPTy) < x. Similarly to before, we can bound the difference of the rojli of-
fline costs byoPT, — oPT; < z/(sm — s). Using (7.4), this leads to the conditief(m — 1)* <
(m—2)(sm—s+1)2 Thisis true since(m —1) < sm —s+ 1 andm > 3. Thus the condition

on the ratio in Theorem 7.2 is satisfied as well as the comddit/. O

7.3.3 Few splits on identical machines

Following Theorem 7.1, we now consider the case ¢; ~ 0.56984. Let

7—\),3(0):%<02—C—|—2—(C—1) 02+4>.

We examine algorithm HKsH(¢/R3(c), R3(c)), i.e.k = £/Rs(c), and verify that it maintains a
competitive ratio ofR3(c). Condition (P2) is immediately satisfied, since the onlgvaht case
isoPT, — OPT; < x/¢, which leads to the constraihi?;(c) < ¢ as in the previous subsection.
Moreover, we have thdt+ ¢ < m for all ¢ < ¢y, sincec/R3(c) + ¢ < 1for e < ¢.

Suppose a new job is placed on themachines with lowest load. By the invariant and since
k + ¢ < m, there arék machines with loatR;(c)oPT,. Denote the total load on the remaining

machines (not thé old machines or thé machines that were just used) by Then
m—k—/

since these machines were not the least loaded machinas bleénew job arrived.
Thus we need to check that

kRs(c) - OPTy + {R3(c) - OPT, + V > W + x

or
14 14
kRs3(c) - OPTy p— + (Rs3(c) - OPTy > W R +x

As before, we use thatPT, > W/m andoPT, > o' + (1 — a)% forany0 < a < 1. We
takea = ;2=b < m=k ¢ [0, 1].

2m—k—¢ —
We find
k(OPT, ket W a Wt
OPT, > | —— 4+ la | —+ (0-—+1— > m
m—k 2_<m—l{:+a)m+< m oz)x_ Rs(c) ’

sinceRs(c) satisfiesR;(c) = 222 (ysingk = (/Rs(c) = cm/Rs(c)).

7.4 A special case: four machines, two parts 127

Theorem 7.3 For //m < ¢y, the algorithmHIGH({/R3(c), R3(c)) maintains a competitive
ratio of R3(c), wherec = ¢/m.

We now show a lower bound for this case. This lower bound ugestaique originally
introduced by Sgall [142, 143].

Theorem 7.4 For m divisible by/, the competitive ratio of any randomized (or determinjstic
algorithmis at |eastW. This gives a general lower bound &f(c) = (1 — (C;l)c)_1

(1-%) ‘

forc=1/(/m.

Proof Fix a sequence of random bits to be used by the algorithmt \Biidw (1 — ¢) /¢ jobs of
sizel. Then defing: = m/(m — ¢) and give jobsJ; of size/u'~' fori =1,...,m/(.

Sincep — 1 = ¢/(m — (), we havey ™! (i~ = f% = (m — £)(u™* —1). Therefore
the total size of all the jobs I8 = m — £ + (m — £)(u™* — 1) = (m — Op™* = mu™/*1.
After job .J; has arrived we havepT; = it So> " opT, = (u™/* —1)/(u — 1).

Forl < i < m, let L; be the load of machingat the end of the sequence after sorting the
machines by non-increasing load. Removing any1 jobs still leaves a machine with load of
at leastL; ;. ThereforeA(J,,) = L1, A(Jm—1) > Leyr and in generald(J;) > Lym—i41 >
51 Lim—iy sy SO A(J) = We.

It follows that

wje _mpm Tt p =)0 pmt

R > Z:i/f OPT, Ium/e -1 - Ium/é -1
B 1 B 1
- m \—m/l m/e’
1= (%) 1-(1-5)

The value of the lower bound tends ¢g(e — 1) for m/¢ — oo, for instance whert is
constant anan grows without bound. Famn = ¢/ we find a lower bound of

(- ()

independent ofn. O
We give an overview of the various upper and lower boundsguaife 1.

7.4 A special case: four machines, two parts

Already for this sub-problem it is nontrivial to give an apal algorithm. Surprisingly, in this
case the lower bound from Theorem 7.4 is not tight. This hivsfor the cases where we do not
give matching upper bounds, it is likely that the lower bosiace simply not the best possible.

For the case of three parts the previous section gives amithlgoof competitive ratio
16/13 ~ 1.23. For two parts, we use the algorithmd+ (1, 10/7) which maintains the invariant
that at least one machine has load exaéﬂyPT. Note that our greedy algorithm maintains only
a competitive ratio of + £ (2 — 1) = 3/2.

128 Chapter 7. Online scheduling of splittable tasks

1.

1.

1.

1.

0.2 0.4 0.6 0.8 1

Figure 7.1: Upper and lower bounds for identical machinelse forizontal axis i€/m, the
vertical axis is the competitive ratio. The top line is theegpty algorithm, the middle line is our
best upper bound and the lower line is our best lower bounde Eol /2, this lower bound also
holds for randomized algorithms.

Theorem 7.5 For four machines and 2-splittable jobs, the algorititrcH(1, 10/7) maintains
a competitive ratio ol0/7 ~ 1.428.

Proof The proof proceeds similarly to before.

First, we show that a new joh/, is not too large (P1). Suppose it is placed on the two
lowest machines. Then the other machines have the I@a{dsrl (because of the invariant) and
3> (W — 2Lopt)/3 (because it was the second highest machine befaeived). The total
load on all the machines must be boundedbyrT; +Z0PT,+3 > L(20PT; +20PT,) + W/3.

Recall thatopT, > W/4 andoPT, > max((W + x)/4, xz/2); then, using (7.1), we have

OPTy W oW ax x 7
OPTy > — + — + — l—a)= = —(2W
tOPT 2 o+ ——+ + (a)2 60(+ 31)

by takinga = 3/5. Therefore?opT; + 20PT, + 3 > W + z, as needed.
Second, we show that a new job is always large enough so thatetr maximum load is
10/7 times the optimal load (P2). We haweT, — oPT, < z/2, and2% < z. O

Lemma 7.4 Any on-line algorithm for minimizing the makespan of 2isgatile jobs on four
parallel machines has a competitive ratio of at le®&st= (47 — v/129)/26 ~ 1.37085.

Proof Supposed maintains a competitive ratio ak. Two jobs of size 2 arriveorPT = 1
(already after the first job). We number the machines from 4, tand denote the loads of the
machines by\l; > M, > M3z > M,. If A puts the first two jobs on two or fewer machines, we
are done immediately. This leaves us with two cases. Wedlgealso denote the makespan of
A.

7.4 A special case: four machines, two parts 129

Case 1.A puts the first two jobs on 3 machines. Théfi = 0, M; < Ry, M3 > 4 — 2Ry,
M, + M3 > 4 — R4 and thereforély > (4 —Ry)/2 =2 — Ry /2.

A job z of size 2 arrives. If4 puts no part of: on machine 4, we are done sinkg +1 >
5—2R, > 3R4/2 (we haveoPT = 3/2).

So.4 must put a part of on machine 4. Finally, a job of size 6 will arrive. The beshthi
A can do is to put it on the two machines with lowest load (aftéras been assigned).
Which machines are these?

Case Lowestload ison and is at least
la 2and3,1and3orland 2l — R,

1b 2and 4 8 — 4R,

1c 3and 4 8 — 4R,

This covers the cases, since if partab put on 4, either machine 2 or machine 3 receives
nothing and remains lower than machine 1. We now prove thréesnn the last column.

(1a) Suppose machines 2 and 3 are the lowest. Already befsigningr we hadM, +
Ms > 4 — R4. Now suppose machines 1 and 3 are the lowest. Clédily- M3 >
My + Mz > 4 — Ry4. Finally, if machines 1 and 2 are the lowest theh + M, >
Mz + My > 4 —Ry.

(1b) It must be that: goes to machines 3 and 4 should put as little as possible on 4
in order to minimize the load on the two lowest machines dftisr (2 and 4).4 can
put at mosBR,/2 — (4 — 2R,) = TR4/2 — 4 on machine 3 and thus puts at least
2 — (TR4/2 —4) = 6 — TR4/2 on machine 4. After this, the load of the two lowest
machines (2 and 4) is at least- R4/2 + 6 — TR4/2 = 8 — 4R,.

(1c) AgainA should put as little as possible on 4 in order to minimize tasllon the two
lowest machines after this (3 and 4). It can put at 3@&t/2—(2—R4/2) = 2R4—2
on machine 1 or 2 and must therefore put at IeasRR,—2) = 4—2R 4 on machine
4. After this, the load of the two lowest machines (3 and 4} is@st’8 — 4R ,.

This concludes the discussion of the subcases. We find tiesiteesigning:, the load on
the two lowest machines is at leasin(4 — R4, 8 — 4R,) = 8 — 4R, sinceRy > 4/3.
Finally the job of size 6 arrives, noaPT=3 andA > (8 — 4R, + 6)/2 > 3R4.

Case 2.4 puts the first two jobs on 4 machines, each machine has onefparte job. Then
M2+M3:M1—|—M4:2and
M; < Ry.

It is possible that a job of size 4 arrives. TheRT = 2 and.A must be able to place it
such that4d < 2R,. Therefore we must havé/; + M, + 4)/2 < 2R, or

Mz + My < 4(Ry—1).

130

Chapter 7. Online scheduling of splittable tasks

Together these equations give

M1—|—M228—4R4, My > 8 —HRy and My=2—M >2—Ry.

Thus, if these inequalities do not hold after the first twasjalbrive, a job of size 4 arrives
and we are done. Otherwise, we let a job of sizér < 1) arrive wherex will be
determined later. TheaPT = 1 + /4. After this a final job of size) = = + 4 will arrive.
We have a similar division into cases as in Case 1.

Case Lowestload is on and is at least
2a 2and3,1and3orland 2

2b (1or2)and4 10 — 6R4

2c 3and 4 10 — 6R4

(2a) We havell, + M3 = 2, therestis as in Case la.
(2b) We havell, + M, > 10 — 6R4, so alsoM; + My > 10 — 6R 4.

(2c) We are left with the case where machines 3 and 4 are thestowVe will choose
x SO large that it cannot be assigned to machines 1 and 2 djy+ M; + = >
2R4(1 4 x/4), in other wordse > (12R4 — 16) /(2 — R4).

Thus some part of is assigned to machine 3 or 4L will use machines 3 and 4 for
the last job, so it is best to put as muchuadis possible on 1 or 2. WLOG this part is
put on machine 2 sinckl, < M,. Denote the part of that is assigned to machine
by z;. We haver, < (1 + z/4)R, — M, and

M3—|—IL'3 = 2—M2—|—IL'—IL'2 2 2—M2+$(1—R4/4)—R4+MQ = 2—R4+{E(1—R4/4)

ThereforeMs + My + 23 > 4 — 2Ry + (1 — R4 /4).

We takexr such thatl0 — 6R, = 4 — 2Ry + z(1 — R4/4), in other wordsz =
(24 — 16R4) /(4 — Ry) = (16V/129 — 128)/(v/129 + 57) ~ 0.7859. Note that
x> (12R4 — 16)/(2 — R4), as needed.

This concludes the discussion of the subcases. We find tedo#u of the two lowest
machines is at leagb — 6R, after assigning jobr, independently ofd’s decision. (Note
10 —6Ry < 2for Ry > 4/3.)

After the last job arrivespPT = y/2. The best thing thatl can do is to puy on the two
machines with lowest load. Its final load is thus at |éa8t-6R,+y)/2. The competitive
ratiois(10 —6R, +4 + z)/(4 +) = R4.

7.5 Conclusion 131

7.5 Conclusion

This chapter considered the classical load balancing modeé context of parallelizable tasks.
We designed and analyzed several algorithms, and showsdtgnds for many cases. As for
open problems, there is a large amount of work done on varutple machines scheduling
and load balancing problems. Many of those on-line (andn&fflproblems are of interest to be
studied for scenarios where parallelization is allowed.

For the special case of four machines and two parts, whicheisinallest case for which
we do not have a tight solution, we show a lower bound of 1.878&d an upper bound of
10/7 ~ 1.428. This is a better lower bound than Lemma 7.2, hinting thatréasa where our
bounds are not tight, the lower bound can be improved.

132 Chapter 7. Online scheduling of splittable tasks

Chapter 8

Speed scaling of tasks with precedence
constraints

8.1 Motivation

Power is now widely recognized as a first-class design caimstfor modern computing de-
vices. This is particularly critical for mobile devices,céuas laptops, that rely on batteries
for energy. While the power consumption of devices has beewigg exponentially, battery
capacities have been growing at a (modest) linear rate. Gmenon technique for managing
power is speed/voltage/power scaling. For example, cuméeroprocessors from AMD, Intel
and Transmeta allow the speed of the microprocessor to laysamically. The motivation for
speed scaling as an energy saving technique is that, asebd sppower functior(s) in all
devices is strictly convex, less aggregate energy is usada$k is run at a slower speed. The
application of speed scaling requires a policy/algoritbrdétermine the speed of the processor
at each point in time. The processor speed should be adjsstdtit the energy/power used is
in some sense justifiable by the improvement in performattae@gad by running at this speed.

In this paper, we consider the problem of speed scaling tsawe energy in a multipro-
cessor setting where there are precedence constraintedretiesks, and where the perfor-
mance measure is the makespan, the time when the last taskeBni We will denote this
problem bySm | prec, energy | Cna.. Without speed scaling, this problem is denoted by
Pm | prec | Cha. in the standard three field scheduling notation [85]. Herés the num-
ber of processors. This is a classic scheduling problemideresi by Graham in his seminal
paper [83] where he showed that list scheduling produc(@s—a%)-approximate solution. In
our speed scaling version, we make a standard assumptibthéra is a continuous function
P(s), such that if a processor is run at speethen its power, the amount of energy consumed
per unit time, isP(s) = s*, for somea > 1. For example, the well known cube-root rule
for CMOS-based devices states that the speisdoughly proportional to the cube-root of the
power P, or equivalently,P(s) = s* (the power is proportional to the speed cubed) [132, 24].
Our second objective is to minimize the total energy consura@ergy is power integrated over
time. Thus we consider a bicriteria problem, in that we wanbvptimize both makespan and
total energy consumption. Bicriteria problems can be foized in multiple ways depending on

133

134 Chapter 8. Speed scaling of tasks with precedence cortstrain

how one values one objective in relationship to the otherséyethat a schedulg is ab-energy
c-approximate if the makespan féris at mostcA/ and the energy used is at maégt where
M is the makespan of an optimal schedule which usasits of energy. The most obvious
approach is to bound one of the objective functions and aopéitme other. In our setting, where
the energy of the battery may reasonably be assumed to beafinceinown, it seems perhaps
most natural to bound the energy used, and to optimize makesp

Power management for tasks with precedence constraintsehaswed some attention in
computer systems literature, see for example [86, 125, 183} and the references therein.
These papers describe experimental results for variousshies.

In the last few years, interest in power management has demp from the computer
systems communities to the algorithmic community. For avesyiof recent literature in the
algorithmic community related to power management, sep [93

8.2 Summary of results

For simplicity, we state our results when we have a singleabje of minimizing makespan,
subject to a fixed energy constraint, although our resuétsdoit more general.

We begin by noting that several special caseswf | prec, energy | C.q. are relatively
easy. If there is only one processdfl(| prec, energy | Cpa), then it is clear from the
convexity of P(s) that the optimal speed scaling policy is to run the proceasar constant
speed; if there were times where the speeds were diffetesn, bty averaging the speeds one
would not disturb the makespan, but the energy would be extiukf there are no precedence
constraints §m | energy | Chaz), then the problem reduces to finding a partition of the jobs
that minimizes the,, norm of the load. A PTAS for this problem is known [6]. One cdsoa
get anO(1)-approximate constant-speed schedule using Grahaméglisduling algorithm. So
for these problems, speed scaling doesn’t buy you more than &) factor in terms of energy
savings. Note that th@(1) notation mentioned above means that the multiplicativeofas a
constant that is independent of the input parameters even thiey are taken into consideration.

We now turn toSm | prec, energy | Cha.. We start by showing that there are instances
where every schedule, in which all machines have the same $peed, has a makespan that
is a factor ofw(1) more than the optimal makespan. The intuition is that if ¢here several
jobs, on different processors, that are waiting for a paldicjob j, then; should be run with
higher speed than if it were the case that no jobs were wadimg. In contrast, we show
that what should remain constant is the aggregate powetseqgfrocessors. That is, we show
that in any locally optimal schedule, the sum of the powenstdth the machines run is con-
stant over time. If the cube-root rule holds (power equaéedcubed), this means the sum of
cubes of the machines speeds should be constant over timealWehedules with this prop-
erty constant power schedule®/e then show how to reduce our energy minimization problem
to the problem of scheduling on machines of different spéetithout energy considerations).
In the three field scheduling notation, this problem is deddty @ | prec | Cpa. Using
the O(logm)-approximate algorithms from [34, 39], we can then obtaif? (@og” m)-energy
O(log m)-approximate algorithm for makespan for our problem. We thleow a trade-off be-

8.3 Formal problem description 135

tween energy and makespan for our problem. That i§)@jp-energyO(c)-approximate sched-
ule for makespan can be converted itg- - b'/*)-approximate schedule. Thus we can then get
anO(log" ¥ m)-approximate algorithm for makespan.

We believe that the most interesting insight from thesestigations is the observation that
one can restrict one’s attention to constant power schediilaeis fact will also hold for several
related problems.

8.2.1 Related results

We will be brief here, and refer the reader to the recent U8&] for more details. Theoretical
investigations of speed scaling algorithms were initidigdrao, Demers, and Shankar [160].
They considered the problem of minimizing energy usage wdaarh task has to be finished
on one machine by a predetermined deadline. Most of thetsesuthe literature to date fo-
cus on deadline feasibility as the measure for the qualitthefschedule. Yao, Demers, and
Shankar [160] give an optimal offline greedy algorithm. Thening time of this algorithm can
be improved if the jobs form a tree structure [121]. Bansahlitel, and Pruhs [14] and Bansal
and Pruhs [16] extend the results in [160] on online algarghand introduce the problem of
speed scaling to manage temperature. For jobs with a fixedtgriYun and Kim [161] show
that it is NP-hard to compute a minimum energy schedule. igrttodel, priorities of jobs are
given as part of the input, and an available job with the hsgjipeiority should be run at any
time. They also give an FPTAS for the problem. Kwon and Kim3ldive a polynomial-time
algorithm for the case of a processor with discrete speekdsnuo and Lu [36] give a PTAS
for some special cases of this problem. Pruhs, Uthaisonalndt\Woeginger [137] give some
results on the flow time objective function.

8.3 Formal problem description

The setting for our problems consistsoivariable-speed machines. If a machine is run at speed
s, its power isP(s) = s*, a > 1. The energy used by each machine is power integrated over
time.

An instance consists of jobs and an energy bourid. All jobs arrive at time 0. Each job
has an associated work (or size) If this job is run consistently at speedit finishes inw; /s
units of time. There are precedence constraints amonglise i < 7, then jobj cannot start
before jobi completes.

Each job must be run non-preemptively on some machine. Tlohimes can change speed
continuously over time. Although it is easy to see by the eaity of P(s) that it is best to run
each job at a constant speed.

A schedulespecifies, for each time and each machine, which job to ruratimdhat speed.

A schedule ideasible at energy level if it completes all jobs and the total amount of energy
used is at mostl. SupposeS is a schedule for an input instanée We define a number of
concepts which depend ¢h The completion time of job is denoted”’. The makespan of,
denotedC? , is the maximum completion time of any job. A schedul®jgimal for energy

max’

136 Chapter 8. Speed scaling of tasks with precedence cortstrain

level E if it has the smallest makespan among all feasible schedukssergy leveE. The goal
of the problem is to find an optimal schedule for energy levelWe denote the problem as
Sm | prec, energy | Chax-

We uses; to denote the speed of jab The execution time of is denoted byr?. Note
thatz? = w;/s?. The power of joki is denoted by?. Note thatp? = (s7)*. We useE? to
denote the energy used by jabNote thatE? = pPz?. The total energy used in schedflés

denotedt®. Note thate® = """ | E7. We drop the superscrigt if the schedule is clear from
the context.

8.4 No precedence constraints

As a warm-up, we consider the scheduling of tasks withoutgmience constraints. In this case
we know that each machine will run at a fixed speed, since wikerthe energy use could be
decreased without affecting the makespan by averagingoteds

We may assume that there are at least as many jobs as theracimes. (Ifm > n, we
simply ignore the last: — n machines.) We then know that each machine will finish at theesa
time, since otherwise some energy from a machine which fsigarly could be transferred to
machines which finish late, decreasing the makespan. Fartie there will be no gaps in the
schedule.

For any schedule, denote the makespard/hyand denote the load on machipewhich is
the sum of the work of the jobs on machifeby L;. Since each machine runs at a fixed speed,
in this section we denote by; the speed ofmachinej, by p; its power, and byt; its energy
used. By our observations so far we haye= L;/M.

The energy used by machines

o L§
By =piM =siM ==
We can sum this over all the machines and rewrite it as
1
a—1 __ «
M= > L. (8.1)
J

It turns out that minimizing the makespan is equivalent taimizing the/, norm of the loads.
For this we can use the PTAS for identical machines givenJinp@note the optimal loads by
OPTy,...,OPT,,. Similarly to (8.1), we have

1
-1
oPT! = E oPTY, (8.2)
J

whereoPTis the optimal makespan. For any- 0, we can find load4.,, . . ., L,, in polynomial
time suchthad _, L$ < (1 +¢) >, OPT§. For the corresponding makespahit now follows
from (8.1) and (8.2) that

1 1
Aot :EZL? < (1+5).EZOPT§F:(1+5)OPT“—1
j J

8.5 Main results 137

or
M < (1+¢)/Dopr.

Thus this gives us a PTAS for the probleéim | energy | Chax-

8.5 Main results

8.5.1 One speed for all machines

In the remainder of the paper, we only consider the case wébgaence constraints. Suppose
all machines run at a fixed speedWe show that under this constraint, it is not possible tcaget
good approximation of the optimal makespan. For simpljeity only consider the special case
a = 3.

Consider the following input: one job of size'/? andm jobs of size 1, which can only start
after the first job has finished. Suppose the total energyadlaiis £ = 2m. It is possible to
run the large job at a speed of = m!/? and all others at a speed of 1. The makespan of this
schedule is 2, and the total amount of energy required ism = 2m.

Now consider an approximation algorithm with a fixed speed he total time for which
this speed is required is the total size of all the jobs digibgs. Thuss must satisfys®(m!/? +
m)/s < E = 2m, ors* < 2m/(m'/? + m). This clearly impliess < 2, but then the makespan
is at leastn'/? /2. Thus the approximation ratio {3(m'/?) = w(1).

8.5.2 The power equality

To discuss the relationship among the powers of jobs in amapschedule, we need the fol-
lowing definitions. Given a schedule of an input instancd, we define theschedule-based
constraint<s among jobs i/ as follows. For any jobsandj, i <s jifand onlyifi < jin I,

ori runs beforei on the same machine 1 Suppose is a schedule where each job is run at a
constant speed. Thmower relation graplof a schedul& of an instancd is a vertex-weighted
directed grapltz = (V, E) created as follows:

e For each jobi, create vertices; andv;, each with weighty, wherep; is the power at
which jobi is run. Vertexu; corresponds to th&tartof job i. Vertexwv; corresponds to the
completionof job i.

e In S, if 1 <5 j and jobj; starts as soon as jolfinishes (maybe on different machines),
then create a directed edge, u;).

e Two dummy vertices, andu,, are added. Irf, if job ¢ starts at time O, then create
a directed edgéuvy, u;). In S, if job i completes at time&®_ | then create a directed

edge(v;, u,+1). Letpy = Zi:(vmui)eEm, and let the weight ofy, be py. Letp, .1 =
> iitvraneyer Pir @0d let the weight ofi,, ; bep, ;1.

138 Chapter 8. Speed scaling of tasks with precedence cortstrain

O
o
o\\
7OOO
6
5 5
OO
4
O
w
o O O
1 2 3
o O O

Figure 8.1: An example of a schedule and the correspondiwgip@lation graph. In the sched-
ule on the left, the arrows denote precedence constraitweba jobs. Note that the precedence
constraint between jobs 1 and 6 is not represented in therpelation graph. However, in the
power relation graph there is an edge between jobs 2 and & #ieg run back to back on the
same machine. In this example, the graph has six connecteparents.

Basically, the power relation gragh tells us which pairs of jobs on the same machine run back
to back, and which pairs of jobs with precedence constraibetween them run back to back.
For an example, see Figure 8.1.

In this paper, we define a connected component of a directgzhgt to be a subgraph af
that corresponds to a connected component of the undetyidigectecgraph ofz. Note that an
isolated vertex will form a connected component by itselfp@ose”' is a connected component
of a power relation grapty. DefineH (C) = {u | (v,u) € C} andT(C) = {v | (v,u) € C}.
Note thatH (C') andT'(C) is the set of vertices at the heads and tails, respectivetiirected
edges inC'. If C' contains only one vertex, theii(C) = T(C') = (). The completion of jobs in
T'(C') and the start of jobs i/ (C') all occur at the same time. This holds simply because for
each edg¢v;, u;) in C, the completion time of jobis the starting time of jo by definition of
an edge. Travelling through all the edges of a component shioat all completions and starts
occur at a common time. If timeis when this occurs, we say th@toccurs at time. We say
that a connected componefitsatisfies thgpower equalityif

Zpizzpi

tu, EH(C) 10, €T(C)

Note thatp; is the power at which jobis run, and is also the weight of verticesandv;. We
say that a power relation graghsatisfies thgpower equalityf each connected component@f
has at least one edge, and each connected compon@reaifsfies the power equality. We now
need to establish some properties of optimal schedulestollbeiing observation is an obvious
consequence of the convexity of the speed to power function.

8.5 Main results 139

Observation 8.1 If S is an optimal schedule for some energy leifekthen each job is run at a
constant speed. This also implies that each job is run at ataom power.

Lemma 8.1 If S is an optimal schedule for some energy lekklthen in the power relation
graphG of S, each component contains at least one edge.

Proof Let(be any connected component of the power relation géaphan optimal schedule
S. Assume to reach a contradiction thatontains no edges, that iS,contains only one vertex
x. Lett be the time inS corresponding to the occurrence®@f Vertexx either corresponds to
the start of some job(xz = u;), or the completion of some job(x = v;).

If + = wu,; for some jobi, thenx corresponds to the start of some jobSince there is no
edge incident ta;, then no jobs complete at tinte Thus, the machine that jolruns on is idle
right before timef. We can modify the schedule by starting jobi earlier and running job at
a slower speed without violating the precedence conssaBibwing down the job reduces the
energy used. The energy saved could be reinvested elsetehget a better makespan. This
contradicts the fact thet is optimal.

If x = v; for some jobi, thenx corresponds to the completion of jéb Since there is no
edge incident fromy;, then no jobs start at time Thus, the machine that jabruns on is idle
right after timet. We can modify the schedulg by running job: at a slower speed so that
it completes later without violating the precedence camsts. Also this does not increase the
makespan because jolzould not be the last job to finish from the constructiorofSlowing
down the job reduces the energy used. The energy saved mudilbested elsewhere to get a
better makespan. This contradicts the fact that optimal. O

Lemma 8.2 If S is an optimal schedule for some energy leiethen the power relation graph
G of S satisfies the power equality.

Proof Let GG be the power relation graph of an optimal schedillé=rom Lemma 8.1, every
component of7 contains at least one edge. Thus, it only remains to showetwt component
of (G satisfies the power equality. The idea of the proof is to @®rsan arbitrary component
C of G. Then create a new scheduféfrom S by slightly stretching and compressing jobs in
C. SinceS is optimal, S’ cannot use a smaller amount of energy. By creating an egualit
represent this relationship and solving it, we have thatust satisfy the power equality.

Now we give the detailsC' contains at least two vertices by Lemma 8.1. ket 0 be a
small number such that, + ¢ > 0 for any jobi in T'(C), andx; — ¢ > 0 for any jobi in H(C).
Note that we allow to be either positive or negative.

We create a new schedu$é by modifying schedulé' in the following manner. Increase the
execution time of every job ii’(C') by £, and decrease the execution time of every joH {{t)
by . All other jobs are unchanged. Note the following:

(1) The execution time of jobin T'(C') in S’ is positive because; + ¢ > 0.

(2) The execution time of jobin H(C') in S’ is positive because; — ¢ > 0.

(3) For|e| small enough$’ has the same power relation graphSas

In particular, we choose such thate| is less than the smallest difference between two succes-
sive times at which connected components occur (i.e., atiwthie set of jobs being executed

140 Chapter 8. Speed scaling of tasks with precedence cortstrain

changes). Therefore is a feasible schedule having the same power relation graph @b-
serve that the makespan 8fremains the same as that®f All that has changed is the timing
of some inner changeover point.

As an example, in Figure 8.1 we might take the connected caemd@onsisting of;, vy, .4,
us. Changing the execution times in this component as destabeve means that the horizontal
line between jobs 1 and 2 and jobs 4 and 5 gets moved slightby dpwn, without affecting the
rest of the schedule. Our restriction (3) omeans that this line is not for instance moved above
the starting point of job 6, which would violate a precedencastraint and give an infeasible
schedule.

The change in the energy usedlE (¢), is

AE() = BEY —F%

- > (B-E)+ Y (B -E)

10, €T (C) tu; €H(C)
w wy w w
— ? _ ? _|_ 7 . 1
Z (i a—1 O‘_1> Z < _ sa—1 a—l)
suner(cy N TE) Ti suerc) NF T E) Ti

Since S is optimal, AE(e) must be non-negative. Otherwise, we could reinvest theggner
saved by this change to obtain a schedule with a better make§ince the derivativA £’ (¢)
is continuous foifs| small enough, we must have£’(0) = 0. We have

AE/(E) _ Z (1 B Oé)'LU? + Z (Oé B 1)'LU?

v, €T(C) (xl T 6) tu; €H(C) (xl N E)
Substitutes = 0 and solve forAE’(0) = 0.
AE'(0) = 0
(1 - ajuw (1-ajuwi
y oy o,
10, €T(C) ¢ tu; €H(C) v
(1 - Juwy (1 = Jw
Z T o Z T
v, €T(C) t tu; €H(C) ¢
2. s =)
0, €T(C) tu; €H(C)
2=)
v, €T(C) tu; €H(C)

Thus, this connected componefitsatisfies the power equality. Sincéis an arbitrarily
chosen connected componentinthenG satisfies the power equality, and the result follows.
O

Note that the above proof also establishes that the powealiggmust also hold for any
schedule that locally optimal schedule with respect to trenge considered in the proof.

8.5 Main results 141

Let p;(t) be the power at which job runs at timet. Let p(k,t) be the power at which
machinek runs at time. By convention if jobi starts at timeé; and completes at timig, we say
that it runs in the close-open intenja, ¢,). If a job has just finished at timeand another has
just start at time on machinet, thenp(k, t) is equal to the power of thetartingjob. We will
usep(k, t~) to denote the power of theompletingob. Also by convention, if no job is running
at timet on machinet, thenp(k,t) = 0.

Lemma 8.3 If S is an optimal schedule for some energy lelfethere exists a constaptsuch
that at any time, >, , p(k,t) = p, i.e. the sum of the powers of all machines at tirieep.

Proof Supposes is an optimal schedule. Ley = 0. Fori > 1, lett; be the earliest time, if
it exists, strictly aftert;_; at which some job completes or starts. Supppsethe completion
time of the last job. Foi = 0, ...,1 — 1 and for any time’ such that; < ¢’ < t,, 1, we will show
that

plkt) = S p(kt) and (8.3)

NE
NE

=
Il

1

B
Il

1

NE
NE

B
Il
—
B
Il
—

If this is the case, then the result follows.

Leti be an index such th@t < i < [— 1. Lett’ be any time such that < ¢’ < ¢;,,. We
now prove (8.3). Since no jobs start or complete in the irtefy, ¢'], then the same set of jobs
are running at time and¢’. By Observation 8.1, each job runs at a constant speed ahall t
This also means that each job runs at a constant power anall fihus, (8.3) follows.

We now prove (8.4). Letl be the set of jobs that are running (or have just started)red ti
t;. Let B be the set of jobs that are running (or have just startedirattti, ;. Since no jobs start
or finish during(¢;, t;11), thenA — B is the set of jobs that completes at time,;, B — A is the
set of jobs that starts at tinte, ;, andA N B is the set of jobs that has been running since time
t; (or earlier) and until aftet;. ;. If X is a set of jobs, then |e¥/ (X)) be the set of machines on
which jobs inX run.

m

doplkit) = D p(t)

k=1 JEA
= Z p;(t:) + Z p;(t:)
jEA-B JEANB
= > pilti)+ > pi(tin) by the same argument as (8.3)
JjEA-B jEANB
= Z p(k, i) + Z pj(tit1)
keM(A—-B) jEANB

= Y plktis)+ Y pi(tin) fromLemma8.2
keM(B—-A) JEANB

142 Chapter 8. Speed scaling of tasks with precedence cortstrain

— Z pi(tiv1) + Z pj(tit1)

jeB-A jEANB
= ij(ti+1> = Zp(k>ti+1)
j€B k=1

8.5.3 Algorithm

Lemma 8.3 implies that the total power at which all the maekirun is constant over time (only
the distribution of the power over the machines may vary) viledescribe a scheme to use this
lemmato relat&m | prec, energy | Chax to the problen®) | prec | Cpax. Then, we can use an
approximation algorithm for the latter problem given in[84 obtain an approximate schedule.
The schedule is then scaled so that the total amount of enaey is within the energy bound
E.

Let p be the sum of powers at which the machines run in the optinfedideoPT(/, £).
Since energy is power times makespan, we haveF /oPT(/, E'). However, an approximation
algorithm does not know the value oPT(/, F), so it cannot immediately compuge Never-
theless, we will assume that we know the valug.of he value ofp can be approximated using
binary search, and this will be discussed later. Giwettefine the sed/(p) to consist of the fol-
lowing fixed speednachines: 1 machine running at powe machines running at powgy2,
and in genera?’ machines running at powey'2’ for : = 0, 1, ..., [log(m + 1)| — 1. Denoting
the total number of machines so far by, there are an additionak — m’ machines running
at powerp/2°em+1] " Thus there aren machines in the set/(p), but the total power is at
most(logm + 1)p. We show in the following lemma that if the optimal algorithsngiven the
choice betweem: variable speed machines with total enefgyand the sef\/(p) of machines
just described, where it is allowed to use preemptions, litalivays take the latter, since the
makespan will be smaller.

Lemma 8.4 We have
PRMOPTy 5 (I) < OPT(I, E),

wherePRMOPT, ;) (/) is the makespan of the optimal preemptive schedule using speed
machines in the set/(p), and oPT(/, E) is the makespan of the optimal schedule using
variable-speed machines with energy bound

Proof In an abuse of notation, we [BRMOPT)(5 (/) andoPT(I, £) refer to the makespans of
the two optimal schedules as well as those respective stdsthiemselves.

We will create a preemptive schedufeusing fixed speed machines in the 3étp). We
will consider each time and assign jobs ioPT(/, £') to machines irc. We will show that the
assignment can be feasibly done. We abuse the notation by $id0 refer to the makespan of
schedule S. Thus,

PRMOPTy 5 (/) < S < OPT(/, E).

8.5 Main results 143

FindSchedule(I, p)

1. Find a schedule for instandeand machines in the sét (p) using the algorithm from
Chekuri and Bender [34].

2. Reduce the speed of all machines by a factdo@¥* m

3. Return the resulting schedule.

ALG(I, F)

1. Setp* = (%)%1 wherelV is the total work of all jobs.

2. Using binary search of), p*] with p as the search variable, find the largest value for
p such that this 2-step process returns true. Binary searotinates when the binary
search interval is shorter than 1.

(a) Call FindSchedule(1,p).
(b) If for the schedule obtained we hay¥e!" | s¢'w; < E, return true

Figure 8.2: Our speed scaling algorithm. The input consistst of jobs and an energy bound
E.

Consider any time in oPT(/, E'). Denote the power of machirkeof oPT(7, F) at this time
by P.. Suppose the machines are labeled so that P, > ... > P,,. Now we simply assign
the job on machine 1 to the machine of powein S. And for: > 1 we assign the jobs on
machine®?, ... 271 — 1 to the machines of power/2! in S.

Clearly, P, < p, since no machine can use more thgpower at any time. In general, we
have that

P, <p/jforj=1,...,m.

If we can show that the first machine in any power group hasedt las much power as the
corresponding machine afPT(/, £), this holds for all the machines. But since mactihi S
has power exactly/2¢, this follows immediately.

It follows that S allocates each individual job at least as much poweyrRg/, £) at timet.
We can apply this transformation for any timevhere we only need to take into account tHat
might finish some jobs earlier thaPT(/, £). So the schedule fdf might contain unnecessary
gaps, but itis a valid schedule, at least when we allow préiemg This proves the lemmall

To construct an approximate schedule, we assume the valpésdénown, and the set of
fixed speed machines il (p) will be used. The schedule is created using the algorithrargiv
in [34]. The schedule created may use too much energy. Toifixtthe speeds of all jobs are
decreased so that the total energy used is withat the expense of having a longer makespan.
The steps are given in subroutif&ndSchedule in Figure 8.2.

144 Chapter 8. Speed scaling of tasks with precedence cortstrain

8.5.4 Analysis

Lemma 8.5 Suppose = E/OPT(I, E). SubroutineFindSchedule(I,p) creates a schedule
which has makespafi(log'™*/* m)opT(I, E) and uses energ9(E).

Proof Let.S; andS, denote the schedules obtained in steps 1 and2i0flSchedule(!, p),
respectively. Schedul§, is the one returned b¥indSchedule. First we analyze the makespan.
From the results in [34],
O3t = O(log m)PRMOPT(,) (1).

This holds because although their algorithm does not usenptons, it has this approximation
ratio even when compared against an optimal preemptiveitiiga In step 2, the speed of every
job decreases by a factor bfg>“m. Thus, the makespan increases by a factdogt’® m.
From Lemma 8.4PRMOPT;(y (/) < OPT(I, E). Therefore, taken together, we have

C% = (log?*m)C3

max max

= (log”*m)O(log m)PRMOPTy() (1)
= O(log""¥*m)oPT(I, E).

Next we analyze the energy. The machines in the schesieité/, £) run for op1(/, E) time
units at the total power gf = E/0PT(I, E') consuming a total energy df. Recall that if all
machines inV/ (p) are busy, the total power is at mggt + log m).

ScheduleS; runs the machines fap (log m)PRMOPTy () (/) time units at the total power at
mostp(1 + logm). Thus, it uses energy at most

p(1 +logm) O(logm)PRMOPTy() (1)
< O(log?m)poPT(I, E) = O(log*> m) E (8.5)

where the inequality follows from Lemma 8.4. The speeds athvthe machines i, run are
log¥® m slower than those in/ (p), which S; uses. Thus, the total power at which the machines
in S, run islog® m times smaller than that &f,. By (8.5), this isO(E). O

Note that when we decrease the speeshiby some constant factor, the makespan increases
by that factor and the energy decreases by a larger conataat.fTo find the value gf, we use
binary search in the intervdl, p*] wherep* is an initial upper bound to be computed shortly.
We continue until the length of the interval is at most 1. Werthise the left endpoint of this
interval as our power. Now we compute the initial upper bophdFor a given schedule, the
total energy used is

n n
(e}
E Dit; = E Siwi/si
i=1 i=1
n
= E 5O ;.
i=1

8.5 Main results 145

The best scenario that could happen for the optimal algarithwhen the work is evenly
distributed on all the machines and all the machines runeaséime speed at all time. LBt
be the total work of all the jobs. Completingunits of work at a speed of requiress®~ 'z
units of energy. If each of the: machines processég/m units of work, then it takes a total
W s>~! units of energy. This must be less than For the speed we fingt~! < F /W and thus

a—

P a < E/W. This gives us an initial upper bound fpffor the binary search:

E\ a1
<p'=|—= .
o ()

OPT does not use a higher power than this, because then it wonldutiof energy before all
jobs complete.
From Lemma 8.5 and our analysis above, the following thedrelus.

Theorem 8.1 ALG is an O(log'™*/* m)-approximation algorithm for the problerfim | prec
energy | Ciax Where the power is equal to the speed raised to the poweraofd o > 1.

146 Chapter 8. Speed scaling of tasks with precedence cortstrain

Chapter 9

Real-time integrated prefetching and
caching

In this chapter, we present a new theoretical model for tieed-prefetching and caching. In-
terestingly, there is very little theoretical work on tha@lrféme setting of this problem. We are
only aware of [65] which covers parallel disk prefetchingiread-once setting without caching.
This is astonishing, since real-time properties are esdéot more and more important applica-
tions such as games, virtual reality, graphics animationsyultimedia. Memory hierarchies get
more and more important for these applications since lagdrlarger data set are considered
and since mobile devices have only very limited fast memory.

In Section 9.1, we propose to model real time aspects by @ssara time windows with
each request during which it needs to be in cache. As befordonmefetching and caching,
and as soon as a fetch for a page starts, this page occupiskbirethe cache. We believe that
our model may be a more accurate representation of theisituatpractice. In particular, time
windows rather than just deadlines allow us to efficientlydeldhe amount of time a data block
is needed for processing and we can also require sever&idtimbe available concurrently. The
only simpler model we could think of would use unit time wimg But then we would need
many repeated requests to model longer time windows. Thigdttead to exponentially longer
problem descriptions in the worst case.

We fist prove some generally useful properties of the probfe8ection 9.2. In Section 9.3
we present our algorithm BALMISER which uses a “semi’-greedy approache(R® MISER).
REALMISER uses the frequently used basic trick to build the scheduté&veard in time [108,
91]. Apart from this it is a new algorithm however. Its maimaniant is that it uses as little space
as possible at all times and in order to achieve that it hasoieemreviously scheduled requests.
The algorithm therefore has quadratic worst case perfocmawioreover it is I/0O-optimal, i.e.,
it does not perform more fetches than necessary.

We additionally consider an online version of our problentSiction 9.4. In our online
model, algorithms have a certain amount of lookahead, iapivtes incrementally, and a partial
solution needs to be determined without knowledge of theareimg input. We say that an
algorithm has dookaheadof ¢ if at time ¢, it can see all requests for pages that are required
no later than at time + /. In theresource augmentatiomodel, the online algorithm has more

147

148 Chapter 9. Real-time integrated prefetching and caching

resources than the offline algorithm that it is compared ther& are several ways to give an
online algorithm more resources in the current problemait receive a larger cache, a faster
disk (so that fetches are performed faster) or a combinatidmese.

We show that competitive algorithms are possible usinguesoaugmentation on the speed
andlookahead, and we provide a tight relationship between tieuat of resource augmenta-
tion on the speed and the amount of lookahead required.

Section 9.5 concludes with a short summary and some pogstole questions.

More Related Work Inthe model introduced by Cao et al. [27] and further studhiglimbrel
and Karlin [108] and Albers et al. [4], the requests are giasra simple sequence without an
explicit notion of time. It is assumed that serving a request page residing in cache takes one
time unit, and fetching a page from disk takEégime units. When a fetch starts and the cache
is full, a page must be evicted. If a page is not in cache whierréquired, the processor must
wait (stall) until the page has been completely fetched. Jdw is to minimize the processor
stall time.

Thus in this model, pages have implicit deadlines in the es¢ingt each page should be in
cache exactly one time unit after the previous request. Mewe/hen the processor incurs stall
time, these implicit deadlines are shifted by the amounttaf §me incurred. Additionally,
this model does not cover the cases where many pages arescegua small time interval and
conversely, where more time may elapse between two sugeassjuests. Nor is it possible to
model the case where a page is required over a certain tieraht

Albers [2] considers the impact of lookahead in the classica-real-time situation. She
shows that in order to be useful in a worst case sense, loakidias to be measured in terms of
the number of distinct pages referred to in the lookaheats ddn be a problem in practice since
very long lookahead sequences might be required if somédblme accessed again and again.
In our real-time setting the situation is different and veagural — we can measure lookahead
in terms of time.

9.1 Problem definition

We consider the problem of prefetching pages into a cach&exf 8izek. The request sequence
o serves as input and consists of paits:= (p;, [d;, e;)) denoting a page and the interval in
which it must reside in the cache. The are also denotedeadlines the ¢; are theends of
intervals Without loss of generality we may assume the input is sateth that/; < ... <d,
for n = |o|. Transferring a page to the cache takes tim& he earliest possible fetch time is
t=0.

The output is given by a sequengg . .. f,, of fetch times for the corresponding requests.
One cache slot is occupied by in the time interval[f;, e;), and possibly longer. Multiple
requests of the same page can be served by the same fetclagdenpist then reside in the
cache until the last of these requests is served. A feasibksile must satisfyi € {1,...,n}:
fi +1 < d; to match the real-time requirements. In addition to this,dache must be sufficient,

9.2 Problem properties 149

ie.vt: |{fi: fi <t <e}| <k, and the disk must not be overcommitted¥: |{p; : t €

fi, i+ 1)} < 1.

9.2 Problem properties

Definition 9.1 (FIFO property) A schedule satisfies tl@FO Propertyif, when it has a fetch at
time f for a page that is next required at timk there is no later fetch which loads a page that
is required before timd. More formally, this is the case if and onlyif, j € {1,...,n} : (f; <

If algorithm ALG constructs a schedule that fulfills the FIFO property, weaenfi/ F'O(ALG).

Definition 9.2 (BUSY property) A schedule satisfies tlBJSY Propertyif, when it has a fetch
at time f for a page that is next required at timg it defines fetches at all times -+ i for
i=1,2,...[d—f]-1.

Lemma 9.1 There exists an 1/O-optimal schedule with both the FIFO proypand the BUSY
property.

Proof Consider an arbitrary 1/0O-optimal schedule. We can makeldwal improvements:

1. If pagep is fetched before pagg but after the fetch fop the first deadline for occurs
before the first deadline i@ we can switch these two fetches without violating any dead-
lines or the cache capacity (the amount of slots occupieddndq remains the same, we
only load a different page first).

2. If a fetch for page ends at time;, but pagep is first requested at timg > t;, and
moreover no new fetch starts until timg> ¢,, we can move this fetch forforward until
it ends at timenin(t,, t3).

Since these improvements do not increase the number okfetuit only move them, the sched-
ule always remains I/0O-optimal. It is now easy to show usiagkward induction that if we can
not make any local improvement to an optimal schedule, isfsad the FIFO property and the
BUSY property. O

9.3 Algorithm REAL MISER

In this section we present the algoritnE R MISER for the real-time integrated prefetching and
caching problem. This algorithm works by working backwairdsn the last deadline. For each
new request, it modifies the existing schedule to maint&adptimality. While the schedule
is being constructed, our algorithm keeps track of a valog which is the time at which
the earliest fetch of the current schedule starts ARBMISER uses a predicate which is called
INFEASIBLE and is defined as follows.

150 Chapter 9. Real-time integrated prefetching and caching

INFEASIBLE = (NOwW < 0 or there exists a time at which there are at léast 1 pages in
cache).

The algorithm itself is defined in Figure 9.1. It uses thedwing definition. We also define
a concept calleglackwhich will be important later.

Definition 9.3 A tight fetchis a fetch which starts one time unit before the page is regdes
I. e., at the latest possible time.

Definition 9.4 Theslackof a fetch is the amount of time between the end of the fetchhand
corresponding deadline.

SetNow :=d,, — 1. Fori = n, ..., 1, do the following.

1. Define a fetch for thé&h request, say page with deadlined;, at timeNOw. Let NEXT
be the next time that the pageis fetched at or after timaow. If there is no such
time, then if NFEASIBLE, output FAIL, else, setow := NOW —1, evict pagep; attime
e; and stop (i. e. stop processing requ@st

2. If NEXT < d; — 1, remove the fetch that was just defined at tin@av and stop.

3. If NEXT > ¢;, consider the intervgk;, NEXT]. Let FULL be the first time the cache |s
full in this interval. If this does not happen, satLL = oo. If there is a tight fetch
which finishes in the intervaFuLL,NEXT], then

(a) evictp; at timee;
(b) if INFEASIBLE, output FAIL, else, setiow := NOwW —1 and stop.

4. We are in the caseexXT € (d; — 1,¢;], Ofr NEXT > ¢; but the condition in the previous
step does not hold. Remove the fetch at tigxT. For each fetch before timeeXT in
order of decreasing starting time, move the fetch forwarchash as possible withou
violating its deadline or overlapping with the next fetckeafit. SetNow equal to the
earliest fetch time in the resulting schedule and subtract 1

—

Figure 9.1: Algorithm RALMISER

In Step 2, we do not need to check feasibility because we dohasige the schedule. We
will prove in the following that we also do not need to checkiStep 4. Note that the condition
in Step 2 can easily be satisfied even though deadlines amexsaf a fetch for a page; is
defined a long time beforé;, p;, might be requested again between this fetch and timéVe
give an example of the execution oERLMISER for k£ = 2 in Figure 9.2.

9.3 AlgorithmREALMISER 151

0 1 2 3 4 5 1 2 3 4 5
a a
b b
c c
d _d
a
An infeasible schedule After the optimization

Figure 9.2: Suppose = 2. REALMISER treats the requests in order of nondecreasing deadline.
Horizontal lines represent a cache location which is ocaliply the page at the end of this line
(which is where this page is needed). WhemARMISER gets to the request for pageat time

3, it initially creates the infeasible schedule on the I¢fftere are three pages in cache in the
interval [2, 3]. However, REALMISER then removes the fetch for pageat time 4. The other
fetches move forward by 1 time unit, and the resulting scleedueasible.

9.3.1 Analysis of REALMISER

We say that a cache fall if there are no empty slots in the cache (recall that a pagepies

a slot as soon as it starts being fetched) and moreover adispiagthe cache are still needed
at some point in the future. Pages that are evicted at tiare not taken into consideration to
determine whether the cache is full or not at tim&or convenience, we consider fetches to be
half-open intervals of the forrtf, f + 1].

Lemma 9.2 The schedule dREALMISER has the FIFO property and the BUSY property at all
times during the execution ®EALMISER. Specifically, for any fetch, this holds both before
and after the optimization that RealMiser performs on thisl.

Proof By backwards induction, starting with the last request. therlast request, there is
nothing to prove (if its deadline is at timk its fetch is scheduled at timk- 1, at least initially).

Consider an earlier requestfor pagep needed at timel. The first time that RealMiser
schedules a fetch far, it only considers the current schedule, based on requests . . ., n,
which have the same or later deadlines. The initial definitbthe new fetch is one time unit
before the earliest current fetch. Say the earliest cuffietnh starts at timef + 1. This is
for requesti + 1, which is needed at timé& > d because this is how the input is ordered by
RealMiser. By induction, fetches start at all times 1 +jforj =1,2,.... [d—(f+1)] — 1.
Wehavef +1+ [d — (f+1)|-1=f+[d —fl—1> f+]d— f] — 1. Thus the FIFO
property and the BUSY property hold before the optimizatarequest.

If the fetch is immediately removed again in Step 2, we areedmninduction. This is also
true if REALMISER does not change the schedule (does not execute Step 4). drd Stke
next fetch top is removed and all or some earlier fetches are moved forwafdraas possible,
including the earliest one fgr. Thus the BUSY property holds again. Moreover, RealMisdr wi
never reorder existing fetches. Thus the FIFO properthtsiltls as well. O

Lemma 9.3 All fetches that RealMiser defines occur at times of the féym j, wherej is an
integer, unless there exists a time interval after the eatlfetch and beforé, where no page is

152 Chapter 9. Real-time integrated prefetching and caching

being fetched.

Proof This follows immediately from the BUSY property. If page® dreing fetched at all
times during the execution, RealMiser schedules thesenasti,, — j, since it schedules each
fetch as late as possible. If this is not the case, there @glglsome interval where no pages are
being fetched. O

Theorem 9.1 If there exists a feasible schedule, RealMiser computefaoptimal one.

Proof LetALG(:) be the number of fetches that algoritnG defines to serve the sequence
consisting only of the requesits. . . , n. Denote an optimal algorithm bypPT, and without loss
of generality assume it satisfied the FIFO and BUSY properilée use a proof by induction.

Hypothesis:The schedule of RealMiser is I/O-optimal for any input cetisag of at most
i requests that allows a feasible schedule, and there is sibfeachedule that fetches its first
page later.

Base caseConsider an input consisting of a single request. RealMisénes a single fetch
for it, at the last possible time. Thus, RealMiser is I/O#myatl, and no schedule can start its first
fetch later than RealMiser.

Induction step:Consider the requests. .., n. By the induction hypothesis, RealMiser is
optimal for an input that contains only the requests 1,...,n. (We assume that a feasible
schedule for the input exists, so it certainly exists for angset of the input). Consider request
i, for pagep;. We abbreviate; by p in this proof. We need to check the following properties:

T1. RealMiser does not define more than the optimal numbestohés
T2. The first fetch cannot start later in any schedule
T3. The schedule created by RealMiser is feasible.

Property T2 follows immediately, because in all cases ResMeither puts the first fetch
immediately before the next fetch (so we can use inductioseghe optimal schedule also sat-
isfies the FIFO property), or one time unit before its dea(so it clearly cannot be postponed).
This also means that if RealMiser defines a fetch before tinthebe does not exist a feasible
schedule.

RealMiser starts by defining a fetch feat timeNow, whereNow +1 is the earliest current
fetch time. It then checks whether any optimization is dassiWWe now consider the execution
of RealMiser step by step.

Step 1 If REALMISER stops in Step 1, thepis not requested again later. This implies im-
mediately that T1 holds, becaus& /R MISER defines one extra fetch and this is the best you
can do. Also the new schedule is feasible if the old one wagadueduction and T2) and the
instance allows a feasible schedule. This proves T3.

9.3 AlgorithmREALMISER 153

Step 2 If NEXT > d;—1, the fetch is immediately removed again and we are done lictrah:
we have the previous schedule again, for which the desimguipties hold.

Suppose page is again fetched later. After timeow, say that this happens for the first
time at timeNEXT (in the current schedule). Thyss required at timelexT +1 or later. The
question is whether we can afford to keem the cache in the intervaNjpw,NEXT].

Step 4, case 1 If NEXT < e;, we have no choice: we simply must kegjn cache until the
end of the interval that we fetch it for. So in this case theHedt timeNEXT can certainly be
removed. RealMiser executes step 4 in this case. It rembneefetch at timeNexT, so T1
holds by induction. The new schedule also satisfies the FHDBUSY property. Thus if it is
infeasible, no feasible schedule exists by induction.

Now assume thatEXT > ¢;, SO again Step 4 is executed. Removing the accesstdme
NEXT means that all fetches in the intervaldw +1, NEXT] can be postponed by one time unit,
unless one of those fetches had slack less than 1.

Step 4, case 2 If all fetches in Now +1, NEXT] haveslack at least 1 there can be no interval
in[Now +1, NEXT] in which no fetch takes place (then the fetch immediatefpteethat interval
could be postponed, and RealMiser would have done this)s @ihall times, some page is being
fetched. In this case all fetches can be postponed by 1 (afteoving the access at tilm&EXxT)
without violating any deadlines, meaning that we can saweaache slot in every time step,
and we can save one access by keepingcache. An example of this situation can be seen in
Figure 9.2. It is clear that the resulting schedule is I/@iropl (T1) and feasible (T3).

Step 4, case 3 If the cache is nowhere fullduring [Now +1, NEXT], we can keep in cache
and save an access. The schedule for the other pages map temsame, or some fetches may
now occur later. Similar, if the cache is only falfter the last fetch with slack less than 1, all the
fetches after that one can be tightened as above after ragnthe access at timeeXxT. Clearly,
the new schedule does not violate cache capacity consti@inteadlines. INow < 0, then no
feasible schedule exists.

In all these cases, we find

REALMISER(i) = REALMISER(i 4+ 1) = OPT(i + 1) = OPT(7)

(the last equality follows sincepPT(i + 1) < oPT(i) < REALMISER(i)). So T1 holds if
RealMiser executes step 4.

Step 3 We also have the following lemma which shows that in the remgicases, RealMiser
can simply evict page after the end of its inverval and still be optimal. So T1 alstds if it
stops in Step 3.

Lemma 9.4 Let a fetch of page (requesti) start at timeNow. Suppose that is again fetched
later, and that this happens for the first time at timexT. Suppose there is at least one tight

154 Chapter 9. Real-time integrated prefetching and caching

fetch in the interval Row +1, NEXT], and denote the last time at which a tight fetch finishes by
TIGHT. If the cache is full at some point no later th&rGHT, thenoPT(i) = OPT(i + 1) + 1.

Proof If the cache is full at timeruLL € [NOW+1,TIGHT], there are two simple cases. The
third, more difficult case follows below. We call the fetchialinis running at timeruLL the
currentfetch.

1. k different pages are requested within an interval of lengtictly less than 1 starting
at timeFuLL. By assumption, all these pages are different fp@anThis means that no
algorithm can keep in cache until its next fetch, so the request sequence thhtdasp
forces an extra fetch, amabPT1(i) = oPT(i 4+ 1) + 1.

2. All pages in the cache are either required during the ontifetch, or before (these pages
were kept in cache to save a fetch on them). Suppose Realhaséf pages loaded at
time FULL that are needed only after the current fetch (k €.k’ pages are needed during
the current fetch). This means that RealMiser has s&vadcesses to those pages.

SupposeoPT(i) keepsp in its cache throughout the interval¢w+1NEXT]. Then one
of thesek’ pages must be evicted by it, and later loaded again. HowReziMiser has
the optimal number of fetches for the sequeneel, . .., n. We have thadbpT(i) has one
fetch more than RealMiser for the requestsl, . .., n. ThusoPT(i) = REALMISER(i +
1)+ 1=o0PT(i+1)+1.

The only tricky case is where the cache is full at tima.L € [NOw+1,TIGHT], but some
pages are already loaded to satisfy future requests (arizbnatise they were requested before).
This means that there are three sets of pages atHime:

1. k;, pages required during the current fetch
2. ko pages already requested before, still needed after thertdatch
3. k3 pages that are needed only after tima.L.

Of coursek; + ko + k3 = k, above we treated the caBge= 0. Let FULL now be thdasttime
the cache is full infjow+1 NEXT]. If k3 > 0, some pages are loaded that are needed only later.

Suppose that in the optimal schedylas in the cache throughoutipw+1,NEXT], so def-
initely at timeFuLL. Then at least one of the pages that RealMiser has in the eddimae
FULL, sayq, must be missing in the optimal cache, since the cache oMReat is full. Page;
is not requested during the current fetch, but there is a teded for it. If RealMiser is saving
an access on pagssince it was requested before timeLL, we are done: the optimal schedule
still needs to load, and without the request farthere exists a schedule with one less fetch for
q (namely, the one of RealMiser), &PT(i) = OPT(i + 1) 4+ 1. Otherwisey is loaded only to
satisfy a future request. In this case, consider the tinrérsgefrom FULL.

Consider the pages that are loaded purely to satisfy regjaéist the current fetch. Say that
the last time such a page is first needed (afterL) is timet¢;, and denote that page by.
(Possiblyp; = ¢.) Attimet;, we can make a similar division into sets as above. If any page
in cache at time;, but the interval for which they were loaded has alreadyrexiwe can find

9.3 AlgorithmREALMISER 155

a timet, > t; where the last such page (sm) is first needed. We can continue this process
until some timet, =: t*, which is defined as the earliest possible time such thatagép in
cache were fetched to satisfy a request at or before timgSome of these pages might have
been kept in cache to also satisfy later requests.)

We claim that RealMiser fetches pages continuously in tteral [FuLL, t*]. This follows
simply by applying the BUSY property (Lemma 9.2) at timeLL, ¢, to, . . . Successively until
time ¢t* is reached. Consider the last fetch that starts before tim®y definition oft*, this
fetch cannot be for a page that is requested only &ftéFhus this fetch must in fact be tight (no
slack). Therefore

t* < TIGHT < NEXT.

Since the cache is not full in the intervalLL, ¢*], RealMiser never fetches the same page
twice during FuLL, t*]. All of these pages are needed RULL, t*], includingq. Denote the set
of fetched pages irFULL, t*] by S.

The optimal schedule must logdat some point. So it must load at least one pgldethat
RealMiser loads in the intervak{LL, t*| already before this interval, since there is no time to
fetch|S| + 1 pages. This implieg is not required during the fetch which runs at timetL,
and RealMiser does not have eithesr p™V) in its cache at tim&uLL. Therefore RealMiser has
yet another page'") in cache that the optimal schedule does not have, sincedteda full.

We can now repeat this reasoning: if RealMiser saves a reques” since it was already
requested before, we immediately haveT(i) = oPT(: + 1) + 1 (the optimal schedule must
still pay for ¢™V). Otherwise, we again find that the optimal schedule mugt ld4 in the
interval [FULL, *], leading to yet another pagé” that it must load before the interval due to
time constraints.

Each such page® implies an additional distinct pagg” that RealMiser has in its cache
at timeFuLL which the optimal schedule does not have, because the pagés. .., p® are
all in the cache of the optimal schedule at tim@a L and the cache of RealMiser is full. (Each
time we find that RealMiser does not ha¥€ in its cache, because this page is requested in the
interval [FULL, t*] and we know that RealMiser loads it after tireLL: if p*) were already in
the cache at timeuLL, RealMiser would never drop it since the cache is not fuB@afaards.)

Finally, after at mosk steps we either run out of pages and find a contradiction, dinde
a page that RealMiser saves a request on and that the optiheadide must pay for, implying
that

OPT(i) = REALMISER(i + 1) + 1 = OPT(i + 1) + 1.

O

This Lemma immediately implies that T1 holds if RealMisaps in Step 3 for this request.
It is moreover clear that the new schedule does not violadldees. Thus if the new schedule
is infeasible, no feasible schedule can exist by inductmther the cache capacity constraint
is violated in all possible schedules, but then the instatoms not admit a feasible schedule
because the schedule starting from the next request wagpti®wal and busy, okow < 0, but
the next fetch already started as late as possible by iratucti O

156 Chapter 9. Real-time integrated prefetching and caching

9.4 Online algorithms

In the pure online model, it is impossible for an online aitfon to handle the hard deadlines
properly. In fact, we have the following lemma which showattéven lookahead does not help
much.

Lemma 9.5 Any finite amount of lookahead is insufficient by itself toste feasible schedules.
Proof Letthe lookahead be — 1 time units. Consider the following request sequence.

Page ‘a b x1 o ... x, af(ord)
Deadline]1 2 3 4 .. n+2 n+2

At time 2 the online algorithm needs to decide whether it reesgpage: or pageb from its
cache to fetchr;. However, with a lookahead of — 1, it is impossible to know which page to
evict. O

The explanation is that an online algorithm cannot handleertttan 1 pages being requested
per time unit on average, because it will need to decide wpagfes to evict and will inevitably
make the wrong decisions. We therefore consider the res@ugmentation model.

An option is to give the online algorithm a larger cache tHandffline algorithm it is com-
pared to. However, the above example also shows that a leagée does not really help: at
some point a page must be evicted, and this will be the pageharhwhe algorithm fails later.

We can also allow the online algorithm to fetch pages fasi@n the offline algorithm. We
show in the following that this does allow for a competitivgaithm.

In particular, we show that using a very simple algorithm,ca@ handle any sequence of
requests which allows a feasible schedule as long as we himgkahead oft and can fetch
pages with twice the speed of the offline algorithm. Equintife we can also give the online
algorithm the power to fetch two pages at the same time, hynaisg that it has two parallel
disks that both store all the data that is required.

The next assumptions on how the optimal offline algorithmelvek simplify the analysis.

Global assumption 4 No pages are evicted during a fetch.

It can be seen that evicting pages during fetches, insteaaiting until the end of the current
fetch and then evicting them, cannot help an algorithm vésipect to deadlines of later requests.

Global assumption 5 At most one page is evicted at the start of a fetch.

Since at most one page can be loaded during a single fetobest ot help to evict more than
one page at the start of a fetch, since you can only fill onevglit this fetch anyway. On the
other hand, it also does not harm to keep as many pages ablpasghe cache, since you do
not need more than one free slot for a fetch.

Global assumption 6 Pages are evicted only at the start of fetches.

Since at the beginning the cache is empty, and each fetck twag one page, there is no need
to evict pages at any other time.

9.4 Online algorithms 157

Lemma 9.6 The contents of the cache of the optimal offline algorithrmgeaor at most one
slot in any (half-open) interval of length 1.

Proof This follows immediately from the above assumptions. O

Lemma 9.7 In an instance that allows a feasible solution, in an intéryaof length strictly
smaller thani € N, there cannot be more than+ ¢ — 1 requests for distinct pages.

Proof At the deadlined of the last request i, before any page is evicted, by the above
assumptions of the requested pagesirare in the offline cache. During any fetch, the configu-
ration of the offline cache does not change. By Lemma 9.6 asdmption 3, the configuration
only changes at the end of fetches, and only by one page. fhyshe configuration can only
change at most — 1 times before the final fetch. This means that in total, at mosti — 1
distinct pages are present in the cache at some point dirifyis is then an upper bound for
the number of pages that can be requested in a feasible praté¢éance. O

Remark 9.1 Itis also clear that in any interval0, t|, at most ¢ | distinct pages can be requested
in a feasible instance.

Consider the greedy algorithm for genekalThis algorithm simply loads pages in the order
in which they are requested, as early as possible, and gagfss that it does not see in its
lookahead.

Lemma 9.8 Greedy with a speed ofand a lookahead of/(s — 1) creates a feasible schedule
for each input for which a feasible schedule exists.

Proof We prove by induction that the greedy algorithm providesasitde schedule, if one
exists. Suppose the algorithm sees its first request at tiffieen this request has deadline k.
If the algorithm fails at this point, there are at le&ast 1 pages requested at tinhe- &, which
means there is no feasible schedule.

Consider a fetch (of page® that finishes at timé and suppose the algorithm did not fail yet.
Greedy plans to fetch the first requested page with deatlmereater that is not in its cache.
The only case in which this fails is if there exists a pagéth deadline smaller thaty- % which

is not in the cache of Greedy. This page was already visiblmatt+§— :’“1 Greedy must have
been loading pages throughout the intefvat £ — -~ ¢], loadings(-£; — 1) = =% — 1 pages
in this time. It was also loading a page immediately befomeeti + é — ;’“1 since otherwise
it would have started to loaglsooner. But this means that in the interftal- 1 — - ¢ + 1)
there aress_—’“1 distinct pages requested (Greedy would not eyt timet + % — ﬁ anymore).
However, by Lemma 9.7, there can be at most ﬁ -1 = % pages requested in an
interval of length less thagf—l, a contradiction. U
We next show a matching lower bound, showing a tight relatigmbetween the amount of
lookahead and the amount of resource augmentation on tled sipat is required for an online

algorithm to provide feasible schedules for feasible isput

158 Chapter 9. Real-time integrated prefetching and caching

Theorem 9.2 An online algorithm with a disk of speador s parallel disks of speed 1, needs
at least a lookahead df/(s — 1) in order to be able to create feasible schedules for all fielasi
inputs.

Proof Assume that the amount of lookahead is k/(s — 1) and consider the following in-
stance. It consists df pages requested at timefollowed by new distinct pages with deadlines
at each time: + i fori = 1,...,2k. Attime 3k — ¢, Greedy has at mogt of the at leasRk
pages with deadline no later thakh— ¢ in cache. We now add a request fopages that Greedy
does not have in its cache, but that were already requestiaheBk + 1.

The optimal offline solution is the following: first load tliepages requested at tiniein
the interval|0, k]. In each successive interval of length 1 until tifie load one page and evict
one page that will not be requested again. It can only happea that there is no such page
in cache, namely if alk pages in cache are requested at tihe- 1 (which is the only time at
which requests are repeated). In that case, evict an agbfieage, and reload it in the interval
[3k, 3k + 1]. In all cases, this produces a feasible solution.

In this instance, in the interva8k — ¢, 3k + 1], there are deadlines fér+ ¢ distinct pages.
Loading all these pages takes at le@st- /) /s time for Greedy. Thus we find as condition for
¢ such that Greedy might create a feasible schedule’thatk + ¢)/s,or¢ > k/(s—1). O

If we give the online algorithm parallel disks instead of stéa disk, we get slightly different
results because now loadikgt ¢ distinct pages takes at ledst: + ¢)/s| time, so the required
lookahead may be slightly larger dependingkor and/.

9.5 Conclusions

We have introduced a model for real-time prefetching andicacthat is simple, seems to
model practically relevant issues, and allows fast and Erlgorithm with useful performance
guarantees in offline and online settings. Although previaork from non-real-time models
provides useful ideas for algorithms, the situation in #&edtime setting is often different (e.g.,
wrt to 1/0 optimality of LFD or how to measure lookahead). ldengiven the importance of
real-time applications, we expect that more work will be elon this subject in the future.

One interesting open question is the case of parallel digkthough thehard real-time
case we currently consider is very important since hardtieed constraints are present in many
safety critical systems (e.g. avionics), we could also latsdoft real-timewvhere the applications
remains viable when some requests are missed but we wanhtminé the number of missed
requests (or the sum of importance weights given for theedissquests).

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Marjan van den Akker, Han Hoogeveen, and Nodari VakhaRastarts can help in the
on-line minimization of the maximum delivery time on a sieaghachine. Journal of
Scheduling3:333-341, 2000.

S. Albers. On the influence of lookahead in competitivgipg algorithmsAlgorithmica
18:283-305, 1997.

Susanne Albers. Better bounds for online scheduliB§AM J. Compuf.29:459-473,
1999.

Susanne Albers, Naveen Garg, and Stefano Leonardi.nMinmg stall time in single and
parallel disk systemsl. ACM 47(6):969-986, 2000.

Noga Alon, Yossi Azar, Janos Csirik, Leah Epstein, 8gry. Sevastianov, Arjen \Vest-
jens, and Gerhard J. Woeginger. On-line and off-line apiprakon algorithms for vector
covering problemsAlgorithmicg 21:104-118, 1998.

Noga Alon, Yossi Azar, Gerhard Woeginger, and Tal Yadi\bproximation schemes for
scheduling. IPMCM-SIAM Symposium on Discrete Algorithrmpages 493-500, 1997.

Baruch Awerbuch, Yossi Azar, Amos Fiat, Stefano Leonaadd Adi Rosen. On-line
competitive algorithms for call admission in optical netk& Algorithmicg 31(1):29—
43, 2001. Also in J. Diaz, M. Serna, editordgorithms - ESA 96, Proceedings Fourth

Annual European Symposiumolume 1136 of Lecture Notes in Computer Science, pages

431-444. Springer, 1996.

Yossi Azar. On-line load balancing. In A. Fiat and Gehdr Woeginger, editor§nline
Algorithms - The State of the Adhapter 8, pages 178-195. Springer, 1998.

Yossi Azar and Leah Epstein. On two dimensional packilpurnal of Algorithms
25(2):290-310, 1997. Also in Proc. SWAT’'96 pp. 321-332.

Brenda S. Baker, Donna J. Brown, and Howard P. Katseff5/#Aalgorithm for two-
dimensional packingJ. Algorithms 2:348—-368, 1981.

Brenda S. Baker, A. Robert Calderbank, Edward G. Cofffdrg and Jeffrey C. Lagarias.
Approximation algorithms for maximizing the number of stpgpacked into a rectangle.
SIAM Journal on Algebraic and Discrete Method$3), 1983.

159

160 Bibliography

[12] Brenda S. Baker, Edward G. Coffman, and Ronald L. Riv@sthogonal packings in two
dimensionsSIAM J. Comput.9:846—-855, 1980.

[13] Brenda S. Baker and J. S. Schwartz. Shelf algorithmsaiordimensional packing prob-
lems.SIAM J. Comput.12:508-525, 1983.

[14] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Dynamiped scaling to manage energy
and temperature. IEEEE Syposium on Foundations of Computer Sciepeges 520 —
529, 2004.

[15] Nikhil Bansal, Andrea Lodi, and Maxim Sviridenko. A éabf two dimensional bin
packing. InProc. 46th IEEE Symp. on Found. of Comp. Scie2085. To appeatr.

[16] Nikhil Bansal and Kirk Pruhs. Speed scaling to managepierature. IrSymposium on
Theoretical Aspects of Computer Scienuages 460—471, 2005.

[17] Nikhil Bansal and Maxim Sviridenko. New approximabjland inapproximability results
for 2-dimensional packing. IRroceedings of the 15th Annual Symposium on Discrete
Algorithms pages 189-196. ACM/SIAM, 2004.

[18] Nikhil Bansal and Maxim Sviridenko. Two-dimensionahlpacking with one dimen-
sional resource augmentation. Manuscript, 2005.

[19] Yair Bartal, Amos Fiat, Howard Karloff, and Rakesh Vahr New algorithms for an
ancient scheduling problend. Comput. Systems S&1:359-366, 1995.

[20] Laszlo A. Belady. A study of replacement algorithms¥yatual storage computer$BM
Syst. J.5:78-101, 1966.

[21] David Blitz, Andre van Vliet, and Gerhard J. Woegindeswer bounds on the asymptotic
worst-case ratio of online bin packing algorithms. Unpsitid manuscript, 1996.

[22] Allan Borodin and Ran El-YanivOnline Computation and Competitive Analysid&am-
bridge University Press, 1998.

[23] Allan Borodin, Sandy Irani, Prabhakar Raghavan, anduBla Schieber. Competitive
paging with locality of referencel. Comput. Systems S&0:244-258, 1995.

[24] David M. Brooks, Pradip Bose, Stanley E. Schuster, Hat®bson, Prabhakar N. Kudva,
Alper Buyuktosunoglu, John-David Wellman, Victor Zyubavianish Gupta, and Pe-
ter W. Cook. Power-aware microarchitecture: Design andetiog challenges for next-
generation microprocessof&EE Micro, 20(6):26—44, 2000.

[25] Donna J. Brown. A lower bound for on-line one-dimensibhin packing algorithms.
Technical Report R-864, Coordinated Sci. Lab., Urbaniadi$, 1979.

[26] Donna J. Brown, Brenda. S. Baker, and Howard. P. Katdedfwer bounds for on-line
two-dimensional packing algorithmécta Informatica 18:207225, 1982.

Bibliography 161

[27] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. Ady of integrated prefetching
and caching strategies. BIGMETRICSpages 188-197, 1995.

[28] Alberto Caprara. Packing 2-dimensional bins in hargndn Proc. 43th IEEE Symp. on
Found. of Comp. Sciencpages 490-499, 2002.

[29] Alberto Caprara, Hans Kellerer, and Ulrich Pferschppfoximation schemes for ordered
vector packing problemd$\aval Research Logistic82:58-69, 2003.

[30] Alberto Caprara, Andrea Lodi, and Michele Monaci. Fagproximation schemes for the
two-stage, two-dimensional bin packing probleliathematics of Operations Research
30:150-172, 2005.

[31] Alberto Caprara and Michele Monaci. On the 2-dimenaldmapsack problemOpera-
tions Research Letter82:5-14, 2004.

[32] Soumen Chakrabarti, Cynthia A. Phillips, A. S. Schidayvid B. Shmoys, C. Stein, and
Joel Wein. Improved scheduling algorithms for minsum cidteIn Proc. 23rd Interna-
tional Colloquium on Automata, Languages, and Programngl@\LP), volume 1099
of Lecture Notes in Comput. Sgbhages 646—657. Springer, 1996.

[33] C. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Appmation techniques for av-
erage completion time scheduling. Rroceedings of the 8th Annual ACM-SIAM Sym-
posium on Discrete Algorithmpages 609-618, New York / Philadelphia, 1997. ACM /
SIAM.

[34] Chandra Chekuri and Michael A. Bender. An efficient apmation algorithm for min-
imizing makespan on uniformly related machindeurnal of Algorithms41:212-224,
2001.

[35] Chandra Chekuri and Sanjeev Khanna. On multidimemsipacking problemsSIAM
Journal on Computing33(4):837—851, 2004.

[36] Jian-Jia Chen, Tei-Wei Kuo, and Hsueh-I Lu. Power4g\wscheduling for weakly dy-
namic voltage scaling devices. Workshop on Algorithms and Data Structur@905.
To appear.

[37] Y. Cho and S. Sahni. Bounds for list schedules on unifpratessorsSIAM Journal on
Computing 9:91-103, 1988.

[38] Marek Chrobak and John Noga. LRU is better than FIFKIgorithmica 23:180-185,
1999.

[39] Fabian A. Chudak and David B. Shmoys. Approximatiogoaithms for precedence-
constrained scheduling problems on parallel machinesrthmagt different speeds. In
ACM-SIAM Symposium on Discrete Algorithrmpages 581-590, 1997.

162 Bibliography

[40] Fan R. K. Chung, Michael R. Garey, and David S. Johnsanp&rking two-dimensional
bins. SIAM J. on Algebraic and Discrete Metho@s66—76, 1982.

[41] Edward G. Coffman, Michael R. Garey, and David S. JohnsDynamic bin packing.
SIAM J. Comput.12:227-258, 1983.

[42] Edward G. Coffman, Michael R. Garey, and David S. Johngg@proximation algorithms
for bin packing: A survey. In D. Hochbaum, edit@pproximation algorithmsPWS
Publishing Company, 1997.

[43] Edward G. Coffman, Michael R. Garey, David S. Johnsowl, Robert E. Tarjan. Perfor-
mance bounds for level oriented two-dimensional packiggrthms.SIAM J. Compuf.
9:808-826, 1980.

[44] Edward G. Coffman Jr., Peter J. Downey, and Peter M. V¢mkPacking rectangles in a
strip. Acta Inf, 38(10):673-693, 2002.

[45] Edward G. Coffman Jr. and Edgar N. Gilbert. Dynamic tffispackings in two or more
dimensionsinformation and Contrqgl61(1):1-14, 1984.

[46] Don Coppersmith and Prabhakar Raghavan. Multidingeradionline bin packing: Algo-
rithms and worst case analys@per. Res. Lett8:17-20, 1989.

[47] Jose Correa and Claire Kenyon. Approximation scheraesiultidimensional packing.
In Proceedings of the 15th ACM/SIAM Symposium on Discreteriftiguos pages 179—
188. ACM/SIAM, 2004.

[48] Jose R. Correa. Resource augmentation in two-dimaakjoacking with orthogonal
rotations.Operations Research Letter§o appear.

[49] Janos Csirik. An online algorithm for variable-sized packing. Acta Inform, 26:697—
709, 1989.

[50] Janos Csirik, J. B. G. Frenk, and M. Labbe. Two dimenagioectangle packing: On line
methods and result®iscrete Appl. Math.45:197-204, 1993.

[51] Janos Csirik and André van Vliet. An on-line algorittior multidimensional bin packing.
Operations Research Letters3(3):149-158, Apr 1993.

[52] Janos Csirik and Gerhard J. Woeginger. Shelf algostfonon-line strip packingnform.
Process. Lett.63:171-175, 1997.

[53] Janos Csirik and Gerhard J. Woeginger. On-line pagkind covering problems. In
A. Fiat and G. J. Woeginger, editor®nline Algorithms: The State of the Art, volume
1442 ofLecture Notes in Computer Scienpages 147-177. Springer-Verlag, 1998.

Bibliography 163

[54] Janos Csirik and Gerhard J. Woeginger. Resource anigitien for online bounded space
bin packing. InProceedings of the 27th International Colloquium on Auttam&.an-
guages and Programmingages 296—-304, Jul 2000.

[55] Mauro Dell’Amico, Silvano Martello, and Daniele VigoA lower bound for the non-
oriented two-dimensional bin packing problediscrete Applied Mathematic418:13—
24, 2002.

[56] Leah Epstein. On-line variable sized coveringformation and Computatiqr71(2):
294-305, 2001.

[57] Leah Epstein. On variable sized vector packiAgta Cybernetical6:47-56, 2003.

[58] Leah Epstein. Two dimensional packing: the power ddition. InProc. of the 28th Inter-
national Symposium on Mathematical Foundations of Comggteence (MFCS’2003)
pages 398-407, 2003.

[59] Leah Epstein and Meital Levy. Dynamic multi-dimensaibin packing. Manuscript,
2006.

[60] Leah Epstein and Rob van Stee. Lower bounds for on-linglessmachine scheduling.
In Proc. 26th Symp. on Mathematical Foundations of Computienge (MFCS)volume
2136 ofLecture Notes in Comput. Sghages 338-350. Springer, 2001.

[61] Leah Epstein and Rob van Stee. Optimal online boundadespultidimensional pack-
ing. InProc. of 15th Annual ACM-SIAM Symposium on Discrete Algorg (SODA’'04)
pages 207-216. ACM/SIAM, 2004.

[62] Leah Epstein and Rob van Stee. Online square and cubngacActa Informatica
41(9):595-606, 2005.

[63] Leah Epstein and Rob van Stee. Bounds for online bousgede hypercube packing.
Discrete optimization2007. To appear.

[64] Thomas Erlebach. Private communication, 2005.

[65] O. Ertug, M. Kallahalla, and P. J. Varman. Real time paraligk scheduling for vbr video
servers. InProc. of Fifth Intl. Conf. On Computer Science and Inforroat{CSI'00)
Chennai, India, 2000.

[66] Anja Feldmann, Jifi Sgall, and Shang-Hua Teng. Dyigasoheduling on parallel ma-
chines.Theoret. Comput. S¢il30:49-72, 1994.

[67] Wenceslas Fernandez de la Vega and George S. LuekepaBking can be solved within
1 + ¢ in linear time.Combinatorica 1:349-355, 1981.

[68] Carlos E. Ferreira, Flavio K. Miyazawa, and Yoshiko \@hakyashi. Packing squares into
squaresPesquisa Operacional 9(2):223-237, 1999.

164 Bibliography

[69] Amos Fiat and M. Mendel. Truly online paging with lodglof reference. IrProc. 38th
Symp. Foundations of Computer Science (FQ@&yes 326—335. IEEE, 1997.

[70] Amos Fiat and Jared Saia. Censorship resistant Pdeedo content addressable net-
works. InProceedings of the 13th Annual ACM-SIAM Symposium On Desékyo-
rithms (SODA-02)pages 94-103, 2002.

[71] Rudolph Fleischer and Michaela Wahl. On-line schaedulievisited.J. Sched.3:343—
353, 2000.

[72] Erich Friedman. Packing unit squares in squares: aesuand new resultElectronic J.
Comb, 7, 2000.

[73] D. K. Friesen and M. A. Langston. Variable sized bin gagkSIAM J. Comput.15:222—
230, 1986.

[74] Satoshi Fujita and Takeshi Hada. Two-dimensionalina-bin packing problem with
rotatable itemsTheoretical Computer Scienc289(2):939-952, 2002.

[75] Gabor Galambos. A 1.6 lower bound for the two-dimenalamline rectangle bin pack-
ing. Acta Cybernef.10:21-24, 1991.

[76] Gabor Galambos, H. Kellerer, and Gerhard J. Woegirigwer bound for online vector
packing algorithmsActa Cybernef.10:23—-34, 1994.

[77] Gabor Galambos and Andre van Vliet. Lower bounds foR1-and 3-dimensional online
bin packing algorithmsComputing 52:281-297, 1994.

[78] Michael R. Garey, Ronald L. Graham, David S. Johnsod, AnC. C. Yao. Resource
constrained scheduling as generalized bin packihgCombin. Theory Ser.,R1:257—
298, 1976.

[79] Michael R. Garey, Ronald L. Graham, and Jeffrey D. UtmaMNorst-case analysis of
memory allocation algorithms. IRroceedings of the Fourth Annual ACM Symposium on
Theory of Computingpages 143-150. ACM, 1972.

[80] Michael R. Garey and David S. Johnsd@omputers and Intractability: A Guide to the
theory of of NP-CompletenesSreeman and Company, San Francisco, 1979.

[81] T. Gonzalez, O. H. Ibarra, and S. Sahni. Bounds for LPAe8ales on Uniform Proces-
sors.SIAM Journal on Computing(1):155-166, 1977.

[82] Todd Gormley, Nick Reingold, Eric Torng, and Jeffery Silarook. Generating adver-
saries for request-answer games. Armceedings of the Eleventh Annual ACM-SIAM
Symposium on Discrete Algorithpmages 564-565. ACM-SIAM, 2000.

[83] Ronald L. Graham. Bounds for certain multiprocessamaalies. Bell System Techical
Journal 45:1563-1581, 1966.

Bibliography 165

[84] Ronald L. Graham. Bounds on multiprocessing timingraates. SIAM J. Appl. Math.
17:263-269, 1969.

[85] Ronald L. Graham, Eugene Lawler, Jan Karel Lenstra, Aledander H. G. Rinnooy
Kan. Optimization and approximation in deterministic seng: A survey.Annals of
Discrete Mathematic$:287-326, 1979.

[86] Flavius Gruian and Krzysztof Kuchcinski. Lenes: Tasieduling for low-energy sys-
tems using variable voltage processorsAbia South Pacific - Design Automation Con-
ference pages 449-455, 2001.

[87] Xin Han, Kazuo Iwama, and Guochuan Zhang. Online rerb®/square packing. IRro-
ceedings of the 3rd Workshop on Approximation and Onlin@tlgns (WAOA 2005)
Lecture Notes in Computer Science, pages 216—229. Spri2g@s.

[88] Xin Han, Deshi Ye, and Yong Zhou. Improved online hyp#dre packing. IfProceedings
of the 4th Workshop on Approximation and Online Algorithilv&QA 2006) To appear.

[89] Han Hoogeveen, Chris N. Potts, and Gerhard J. Woegin@gr-line scheduling on a
single machine: Maximizing the number of early job®per. Res. Lett.27:193-196,
2000.

[90] J. A. Hoogeveen and Arjen P. A. Vestjens. Optimal or-Bigorithms for single-machine
scheduling. InProc. 5th Conf. Integer Programming and Combinatorial @u#ation
(IPCO), volume 1084 of_ecture Notes in Comput. Sghages 404—-414. Springer, 1996.

[91] David A. Hutchinson, Peter Sanders, and Jeffrey Sattiiv Duality between prefetching
and queued writing with parallel disks. Algorithms - ESA 2001, 9th Annual European
Symposiunpages 62—73, 2001.

[92] Csanad Imreh. Online strip packing with modifiable bsxOperation Research Letters
66:79-86, 2001.

[93] Sandy Irani and Kirk Pruhs. Algorithmic problems in pemmanagemenSIGACT News
2005.

[94] Klaus Jansen and Rob van Stee. On strip packing withioots InProceedings of the
37th ACM Symposium on Theory of Computing (STOC 2Q#ges 755-761. ACM,
2005.

[95] Klaus Jansen and Guochuan Zhang. Maximizing the nurabpacked rectangles. In
Proc. of the 9th Scandinavian Workshop on Algorithm The&WAT 04) pages 362—
371, 2004.

[96] Klaus Jansen and Guochuan Zhang. On rectangle packiaximizing benefits. In
Proceedings of the 15th Annual Symposium on Discrete Algns (SODA'04) pages
204-213, 2004.

166 Bibliography

[97] Janusz Januszewski and Marek Lassak. Online packimgesees of cubes in the unit
cube.Geometriae Dedicate7:285—-293, 1997.

[98] David S. JohnsonNear-optimal bin packing algorithmsPhD thesis, MIT, Cambridge,
MA, 1973.

[99] David S. Johnson. Fast algorithms for bin packidggComput. Systems S@:272-314,
1974.

[100] M. Kallahalla and P. J. Varman. Optimal read-once l&radisk scheduling. In6th
Workshop on Input/Output in Parallel and Distributed Systepages 68—77, 1999.

[101] M. Kallahalla and P. J. Varman. Optimal prefetching aaching for parallel I/O systems.
In 13th Symposium on Parallel Algorithms and Architectupegyes 219-228, 2001.

[102] D. R. Karger, Steven J. Phillips, and E. Torng. A bettigorithm for an ancient schedul-
ing problem.J. Algorithms 20:400-430, 1996.

[103] Anna Karlin, Mark Manasse, Larry Rudolph, and Danida®or. Competitive snoopy
caching.Algorithmicg 3:79-119, 1988.

[104] Narendra Karmarkar and Richard M. Karp. An efficienpagximation scheme for the
one-dimensional bin-packing problem.Pnoceedings of the 23rd Annual Symposium on
Foundations of Computer Sciengages 312-320, 1982.

[105] Hans Kellerer and Vladimir Kotov. An approximatiorgatithm with absolute worst-case
performance ratio 2 for two-dimensional vector packi@per. Res. Lett.31(1):35-41,
2003.

[106] Claire Kenyon. Personal communication.

[107] Claire Kenyon and Eric Rémila. A near optimal solatim a two-dimensional cutting
stock problemMathematics of Operations Resear@®(4):645-656, 2000.

[108] Tracy Kimbrel and Anna R. Karlin. Near-optimal pagdiprefetching and cachinGlAM
J. Comput.29(4):1051-1082, 2000.

[109] Yoshiharu Kohayakawa, Flavio K. Miyazawa, PrabhaRaghavan, and Yoshiko Wak-
abayashi. Multidimensional cube packingigorithmica 40(3):173-187, 2004.

[110] L. T. Kou and G. Markowsky. Multidimensional bin paokj algorithms. IBM J. Res.
Dev, 21:443-448, 1977.

[111] P. Krishnan and Jeffrey Scott Vitter. Optimal prettintfor prefetching in the worst case.
SIAM J. Comput.27(6):1617-1636, 1998.

[112] Piotr Krysta, Peter Sanders, and Berthold Vockinghesluling and traffic allocation
for tasks with bounded splittability. [Rroc. of the 28th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2(q&8)es 500-510, 2003.

Bibliography 167

[113] Woo-Cheol Kwon and Taewhan Kim. Optimal voltage adlban techniques for dynam-
ically variable voltage processor8CM Transactions on Embedded Computing Systems
(TECS) 4(1):211-230, 2005.

[114] C. C. Lee and D. T. Lee. A simple online bin packing aition. J. ACM 32:562-572,
1985.

[115] Joseph Y.-T. Leung, Tommy W. Tam, C. S. Wong, Gilbertvdung, and Francis Y. L.
Chin. Packing squares into a squadaurnal on Parallel and Distributed Computing
10:271-275, 1990.

[116] K. Li and K. H. Cheng. Generalized First-Fit algoritenm two and three dimensions.
Int. J. on Found. Comput. S¢R:131-150, 1990.

[117] K. Li and K. H. Cheng. Heuristic algorithms for onlinagking in three dimensionsl.
Algorithms 13:589-605, 1992.

[118] Kegin Li and Kam-Hoi Cheng. A generalized harmonicaaithm for on-line multi-
dimensional bin packing. Technical Report UH-CS-90-2 Mdrsity of Houston, January
1990.

[119] Kegin Li and Kam-Hoi Cheng. On three-dimensional pagk SIAM Journal on Com-
puting 19(5):847-867, 1990.

[120] Kegin Li and Kam-Hoi Cheng. Static job scheduling inrtggonable mesh connected
systemsJournal on Parallel and Distributed Computin0:152—-159, 1990.

[121] Minming Li, Becky Jie Liu, and Frances F. Yao. Min-eggwoltage allocation for tree-
structured tasks. Idlth International Computing and Combinatorics ConfeeCO-
COON 2005)2005. To appear.

[122] R. Li and L. Shi. An on-line algorithm for some unifornngeessor schedulingSIAM
Journal on Computing?7(2):414-422, 1998.

[123] F. M. Liang. A lower bound for online bin packingnform. Process. Lett.10:76-79,
1980.

[124] Jane W. S. Liu and C. L. Liu. Bounds on scheduling alipons for heterogeneous com-
puting systems. In Jack L. Rosenfeld, ediignigceedings of IFIP Congress ;/olume 74
of Information Processingpages 349-353, 1974.

[125] Jiong Luo and Niraj K. Jha. Power-conscious joint sithieg of periodic task graphs
and aperiodic task graphs in distributed real-time embedgstems. Irinternational
Conference on Computer Aided Desigages 357-364, 2000.

[126] A. Meir and L. Moser. On packing of squares and culde€ombin. Theory5:126-134,
1968.

168 Bibliography

[127] Ramesh Mishra, Namrata Rastogi, Dakai Zhu, Daniel$vilaad Rami G. Melhem. En-
ergy aware scheduling for distributed real-time systemsiniernational Parallel and
Distributed Processing Symposiupage 21, 2003.

[128] Flavio Keidi Miyazawa and Yoshiko Wakabayashi. An aithm for the three-
dimensional packing problem with asymptotic performanoalysis. Algorithmica
18(1):122-144, 1997.

[129] Flavio Keidi Miyazawa and Yoshiko Wakabayashi. Apxiroation algorithms for the
orthogonalz-oriented 3-d packing problenSIAM Journal on Computing29(3):1008—
1029, 1999.

[130] Flavio Keidi Miyazawa and Yoshiko Wakabayashi. Cubeking. Theoretical Computer
Science297(1-3):355-366, 2003.

[131] Flavio Keidi Miyazawa and Yoshiko Wakabayashi. Pagkproblems with orthogonal
rotations. In M. Farach-Colton, editdrheoretical Informatics, 6th Latin American Sym-
posium number 2976 in Lecture Notes in Computer Science, pages3&s9 2004.

[132] Trevor Mudge. Power: A first-class architectural destonstraintComputer 34(4):52—
58, 2001.

[133] E. Naroska and U. Schwiegelshohn. On an on-line sdhegproblem for parallel jobs.
Information Processing Letter81(6):297-304, 2002.

[134] Pavel Novotny. On packing of squares into a rectanggiehivum Mathematicup32:75—
83, 1996.

[135] Konstantinos Panagiotou and Alexander Souza. Onusdegerformance measures for
paging. INSTOC '06: Proceedings of the thirty-eighth annual ACM sysmpm on Theory
of computingpages 487-496, New York, NY, USA, 2006. ACM Press.

[136] C.A. Phillips, C. Stein, and J. Wein. Scheduling jobattarrive over time. IriProceed-
ings of the 4th Workshop on Algorithms and Data StructureS®/95) volume 955 of
Lecture Notes in Computer Scienpages 86—97. Springer, 1995.

[137] Kirk Pruhs, Patchrawat Uthaisombut, and Gerhard Wiggy. Getting the best response
for your erg. InScandanavian Workshop on Algorithms and Thepages 14-25, 2004.

[138] Ingo Schiermeyer. Reverse-fit: a 2-optimal algoritttmpacking rectangles. IAlgo-
rithms - ESA '94, Proceedings Second Annual European Sympopages 290-299,
1994,

[139] Steve S. Seiden. An optimal online algorithm for boethdpace variable-sized bin pack-
ing. SIAM Journal on Discrete Mathematick4(4):458-470, 2001.

[140] Steve S. Seiden. On the online bin packing problémarnal of the ACM49(5):640-671,
2002.

Bibliography 169
[141] Steve S. Seiden and Rob van Stee. New bounds for maiestsional packingAlgorith-
mica, 36(3):261-293, 2003.

[142] Jifi Sgall.On-line scheduling on parallel machineBhD thesis, Technical Report CMU-
CS-94-144, Carnegie-Mellon University, Pittsburgh, PASIA., 1994.

[143] Jifi Sgall. A lower bound for randomized on-line mpfocessor schedulingnformation
Processing Letter$3:51-55, 1997.

[144] Hadas Shachnai and Tami Tamir. Multiprocessor sclreglwith machine allotment and
parallelism constraintsAlgorithmicg 32(4):651-678, 2002.

[145] David B. Shmoys, J. Wein, and D. P. Williamson. Schetdyparallel machines on line.
SIAM J. on Computing24:1313-1331, 1995.

[146] Daniel Sleator and Robert E. Tarjan. Amortized efficigof list update and paging rules.
Commun. ACM28:202—-208, 1985.

[147] Daniel D. K. D. B. Sleator. A 2.5 times optimal algomntHor packing in two dimensions.
Inform. Process. Lett10:37-40, 1980.

[148] W.E. Smith. Various optimizers for single-stage proton. Naval Research Logistics
Quarterly, 3:59-66, 1956.

[149] Rob van Stee and Johannes A. La Poutré. Running a jaod anllection of dynamic
machines, with on-line restartécta Informatica 37(10):727—-742, 2001.

[150] A. Steinberg. A strip-packing algorithm with abs@uygerformance bound &IAM Jour-
nal on Computing26(2):401-409, April 1997.

[151] Leen Stougie. Unpublished manuscript, 1995.

[152] Leen Stougie and Arjen P.A. Vestjens. Randomizedima-4cheduling: How low can’t
you go? Unpublished manuscript.

[153] Jeffrey D. Ullman. The performance of a memory allamaglgorithm. Technical Report
100, Princeton University, Princeton, NJ, 1971.

[154] Arjen P. A. VestjensOn-line Machine Schedulind?hD thesis, Eindhoven University of
Technology, The Netherlands, 1997.

[155] Jeffrey Scott Vitter and P. Krishnan. Optimal prefehg via data compressiod. ACM
43(5):771-793, 1996.

[156] André van Vliet. An improved lower bound for onlinengpacking algorithmsinform.
Process. Lett.43:277-284, 1992.

[157] André van Vliet.Lower and upper bounds for online bin packing and scheduiegyis-
tics. PhD thesis, Erasmus University, Rotterdam, The Nethdslat©95.

170 Bibliography

[158] Gerhard J. Woeginger. There is no asymptotic PTAS#ordimensional vector packing.
Inf. Process. Lett.64(6):293-297, 1997.

[159] A. C. C. Yao. New algorithms for bin packing. ACM 27:207-227, 1980.

[160] F. Frances Yao, Alan J. Demers, and Scott Shenker. &dsdimg model for reduced cpu
energy. InIEEE Syposium on Foundations of Computer Science (FOCS),1pages
374-382, 1995.

[161] Han-Saem Yun and Jihong Kim. On energy-optimal vatagheduling for fixed priority
hard real-time system#&CM Transactions on Embedded Computing Syst2(33:393—
430, 2003.

[162] Guochuan Zhang. A 3-approximation algorithm for tdimaensional bin packingOper-
ations Research Letter83(2):121-126, 2005.

[163] Yumin Zhang, Xiaobo Hu, and Danny Z. Chen. Task schadwnd voltage selection for
energy minimization. Iibesign Automation Conferengeages 183—-188, 2002.

