
Bounds for online bounded space hypercube packing

Leah Epstein∗ Rob van Stee†

October 12, 2006

Abstract

In hypercube packing, we receive a sequence of hypercubes that need to be packed into unit
hypercubes which are called bins. Items arrive online and each item must be placed within its
bin without overlapping with other items in that bin. The goal is to minimize the total number
of bins used. We present lower and upper bounds for online bounded space hypercube packing
in dimensions 2, . . . , 7.

1 Introduction

In the general multidimensional bin packing problem, we receive a sequence σ of items h1, h2, . . . , hn.
Each item h has a fixed size, which is s1(h) × · · · × sd(h). I.e., si(h) is the size of h in the ith
dimension. We have an infinite number of bins, each of which is a d-dimensional unit hyper-
cube. Each item must be assigned to a bin and a position (x1(h), . . . , xd(h)), where 0 ≤ xi(h) and
xi(h) + si(h) ≤ 1 for 1 ≤ i ≤ d. Further, the positions must be assigned in such a way that no two
items in the same bin overlap. A bin is empty if no item is assigned to it, otherwise it is used. The
goal is to minimize the number of bins used. Note that for d = 1, the box packing problem reduces
to exactly the classic bin packing problem.

In this paper, we consider this problem under the following restrictions:

• items arrive online: each item must be assigned in turn, without knowledge of the next items.

• all items are hypercubes: in the hypercube packing problem we have the restriction that all
items are hypercubes, i.e. an item has the same size in every dimension.

• bounded space: an algorithm has only a constant number of bins available to accept items at
any point during processing. The bounded space assumption is a quite natural one, especially
so in online box packing. Essentially the bounded space restriction guarantees that output of
packed bins is steady, and that the packer does not accumulate an enormous backlog of bins
which are only output at the end of processing.

The offline versions of these problems are NP-hard, while even with unlimited computational
ability it is impossible in general to produce the best possible solution online. We consider bounded
space online approximation algorithms.

∗Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il.
†Computer Science Department, University of Karlsruhe, Germany. vanstee@ira.uka.de. Research supported

by the Alexander von Humboldt-Stiftung.

1



The standard measure of algorithm quality for box packing is the asymptotic performance ratio,
which we now define. For a given input sequence σ, let costA(σ) be the number of bins used by
algorithm A on σ. Let cost(σ) be the minimum possible number of bins used to pack items in σ.
The asymptotic performance ratio for an algorithm A is defined to be

R∞
A = lim sup

n→∞
sup

σ

{

costA(σ)

cost(σ)

∣

∣

∣

∣

∣

cost(σ) = n

}

.

Let O be some class of box packing algorithms (for instance online algorithms or bounded space
online algorithms). The optimal asymptotic performance ratio for O is defined to be R∞

O =
infA∈O R∞

A . Given O, our goal is to find an algorithm with asymptotic performance ratio close
to R∞

O .

Previous work The classic online bin packing problem was first investigated by Ullman [11].
He showed that the First Fit algorithm has performance ratio 17

10
. This result was published

in [6]. Johnson [5] showed that the Next Fit algorithm has performance ratio 2. Yao showed that
Revised First Fit has performance ratio 5

3
.

Define u1 = 2, ui+1 = ui(ui − 1) + 1, and h∞ =
∑∞

i=1
1

ui−1
≈ 1.69103. Lee and Lee showed

that the Harmonic algorithm, which uses bounded space (i.e. can have only a constant number
of active bins at any time), achieves a performance ratio arbitrarily close to h∞ [7]. They further
showed that no bounded space online algorithm achieves a performance ratio less than h∞ [7].

The online hyperbox packing problem was first investigated by Coppersmith and Raghavan [1],
who give an algorithm based on Next Fit with performance ratio 13

4
= 3.25 for d = 2. Csirik,

Frenk and Labbe [2] give an algorithm based on First Fit with performance ratio 49

16
= 3.0625 for

d = 2. Csirik and van Vliet [3] present an algorithm with performance ratio (h∞)d for all d ≥ 2
(2.85958 for d = 2). They also show that this is a lower bound for bounded space algorithms.

Coppersmith and Raghavan [1] showed an upper bound of 43/16 = 2.6875 for online square
packing, and an upper bound of 6.25 for online cube packing. They also show a lower bound of 4/3
for any dimension d ≥ 2. The upper bound for square packing was improved to 395/162 < 2.43828
by Seiden and van Stee [10]. They also presented a lower bound of 1.6217. For d = 3, Miyazawa
and Wakabayashi [9] showed an upper bound of 3.954. A lower bound of 1.60185 was given by [10].
The same paper gave lower bounds for higher dimensions as well, but they all have lower values
than the bound for d = 3.

In a recent paper, we presented an optimal online bounded space algorithm for multi-dimensional
bin packing [4] by matching the lower bound of [3]. In the same paper [4], we also presented a
(simpler) optimal online bounded space algorithm for (hyper-)cube packing. For this last algorithm,
we show [4] that the asymptotic performance ratio is Ω(log d) and O(d/ log d) but we have no explicit
formulas for it. That is, we know that our algorithm is optimal (has the best possible asymptotic
performance ratio among online algorithms) but we do not know what its asymptotic performance
ratio actually is.

New results The current contribution explores the asymptotic performance ratio of our algo-
rithm for low dimensions. In [4], we state some preliminary results for these values. In this paper,
we describe the methods which we used to develop them, and some further methods, and give
improved upper and lower bounds.

We summarize the results in the following table.

2



d Lower bound Upper bound

1 1.69103 1.69103
2 2.36343 2.3692
3 2.95642 3.0672
4 3.38984 3.7595
5 3.78744 4.4052
6 4.10246 5.0126
7 4.34946 5.7084

Table 1: Overview of results (d = 1 is included for completeness, and is given by [7])

In Section 2, we explain how we calculate upper bounds for our (optimal) algorithm. In Section
3, we give lower bounds for square packing. In Section 4, we give lower bounds for cube packing.
Finally, in Section 5, we give lower bounds for general d, which improve on the best known lower
bounds for small dimensions but do not improve the general result.

2 Upper bounds

In this section, we show how to calculate upper bounds for our algorithm.
We use the well-known weighting function technique [11]. We define weights for items based

on the amounts of items that are placed together in one bin. Consider items that have size in the
interval (1/(i + 1), 1/i] for i = 1, . . . ,M − 1. The d-dimensional version of our algorithm places id

of them in one bin. We therefore define the weight of one such item to be 1/id.
The smallest items, that is, items of side in (0, 1/M ] are combined together into bins (in a way

that only uses a constant number of open bins). It is proved in [4] that in bins used for this type,
a volume of at least (Md − 1)/(M + 1)d is occupied. We therefore need to define the weight of an
item of this type as its volume times a constant that we fix, which is at least (M + 1)d/(Md − 1).
The weight of items of side in the interval (1/M, 1/(M − 1)] is 1/(M − 1)d. It is not difficult to
prove by induction that Md/(M −1)d ≥ (M +1)d/(Md−1) for all d ≥ 2 and M ≥ 2. Therefore, we
define the weight of items of side in the interval (0, 1/(M −1)] (that is, the last two types together)
to be Md/(M − 1)d times their volume.

It is straightforward to see that with these definitions, the number of bins that our algorithm
requires to pack a given input sequence is upper bounded by the total weight of the items in that
input sequence. Since the optimal algorithm needs to pack the same amount of weight (possibly
combining items of very different sizes in one bin), it can be seen that the asymptotic performance
ratio of our algorithm is upper bounded by the amount of weight that can be packed into a single
bin (of any algorithm). Note that the weights we defined are valid not only for our algorithm with
parameter M but for larger parameters.

Unfortunately, it is in general NP-hard to determine whether a given set of items fits into a
single bin or not [8]. However, it is possible to derive upper bounds on the total amount of weight
that can be packed into a single bin, and this is how we derived our upper bounds for the asymptotic
performance ratio of our algorithm in several low dimensions.

To be precise, in order to give constraints on the contents of a single bin, we repeatedly use the
following claim from [4].

3



Claim 1 Given a packing of hyperboxes into a bin, such that each component j is bounded in an

interval (1/(kj + 1), 1/kj ], where kj ≥ 1 is an integer, then this bin contains at most
∏d

j=1
kj

hyperboxes.

For instance, according to this claim at most 25 squares larger than 1/6 fit in a bin. A square
larger than 1/2 can be partitioned into 9 squares larger than 1/6; a square larger than 1/3 can be
partitioned into 4 squares larger than 1/6. Therefore, if we consider a packing with one item larger
than 1/2 and three items larger than 1/3, then at most 25 − 9 − 3 · 4 = 4 items larger than 1/6 fit
with them inside one bin.

We can formulate similar constraints by expressing items as multiples of items of size 1/(k + 1)
for k = 1, . . . ,M − 2. Each time we start with k = 1. Only one hypercube larger than 1/2 can fit
in a bin. For k = 2, we already have that 2d hypercubes of size in (1/3, 1/2] can fit in a bin. If
there is already a hypercube of size larger than 1/2, at most 2d − 1 additional hypercubes of size
in (1/3, 1/2] can fit with it in the bin, that is, 2d hypercubes of size in (1/3, 1] can fit in a bin. In
general, kd items of size in (1/(k + 1), 1] fit in a bin, but an item of side in (1/(i + 1), 1/i] can be
seen as (⌊k+1

i+1
⌋)d items of size in (1/(k + 1), 1/k], at it takes at least this amount of space.

To formulate our constraints, we now define the following variables. For i = 1, . . . ,M − 2, let
Xi ≥ 0 denote the number of items of side in the interval (1/(i + 1), 1/i] in the bin. Moreover,
XM−1 ≥ 0 is the area of items of side at most 1/(M − 1).

We find the following linear constraint for k ≤ M − 2:

k
∑

i=1

(⌊

k + 1

i + 1

⌋)d

· Xi ≤ kd.

An additional constraint follows from the areas of items, which cannot exceed 1 if they reside in
one bin. Thus we get

M−2
∑

i=1

1

(i + 1)d
· Xi + XM−1 ≤ 1.

The goal is to maximize the total weight under these constraints, which is

M−2
∑

i=1

1

id
· Xi +

Md

(M − 1)d
· XM−1.

This generates a linear program that can be created and solved by a computer (using Matlab).
Note that this is just a partial set of constraints, and thus we actually solve a relaxation of the
problem. The linear program does not necessarily produce a feasible solution (that is, a set of items
which can actually be packed into one bin), and moreover, the variables X1, . . . ,XM−2 can turn
out to be fractional. (Of course, XM−1 is allowed to be fractional.)

A simple example of a linear program for d = 2 and M = 9 is as follows.
Maximize cx (for x ≥ 0) where c = (1, 1/4, 1/9, 1/16, 1/25, 1/36, 1/49, 81/64) and x has length

8, subject to Ax ≤ b, where A is below and b = (1, 4, 9, 16, 25, 36, 49, 1). Here x = (X1, . . . ,XM−1),
cx is the weight as defined above, and Ax ≤ b is our list of constraints on the amounts of items
that can be packed together.

4



A =

























1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
4 1 1 0 0 0 0 0
4 1 1 1 0 0 0 0
9 4 1 1 1 0 0 0
9 4 1 1 1 1 0 0
16 4 4 1 1 1 1 0
1/4 1/9 1/16 1/25 1/36 1/49 1/64 1

























In this way we generated the upper bound for d = 3, . . . , 7. See Table 1. We used M = 101
for d = 2, and smaller values of M for larger values of d (because the numbers grow exponentially
with d).

2.1 Upper bound for square packing

For square packing (that is, for d = 2), we have additionally created a computer program which
can check for particular sets of items whether they can be packed inside a bin by trying all possible
packings. This can be used in case the LP constraints do not give sufficiently good bounds, by
taking these additional restrictions into consideration. We denote this program by F . We begin by
describing how this computer program works.

The computer program F In any feasible packing, items can be shifted down and to the left
until every item touches another item or the edge of the bin.

We add coordinates to the bin in the obvious way, the origin is the lower left corner of the bin.
For any given input, we are going to try and construct a feasible packing for this input by placing
the items one by one in all possible orderings.

We maintain an array of “available positions” for items. At the start, this array contains only
the point (0, 0) (lower left corner). Each time that an item is placed in an available position, this
position is removed and two new available positions are formed: namely, at the top of the current
item and to the right of it. These positions are marked top and right. (Example: item of size 1/3
is placed at (x, y). New available positions are right: (x + 1/3, y) and top: (x, y + 1/3).)

In general, if an item cannot be placed at a certain position because there are other items to
the right or on top of it that were placed earlier, we move to the next position.

It is possible that some of these positions are “incorrect” in the sense that no item should be
placed there. For instance, consider the packing in Figure 1, left. In this figure, the available
positions are marked with circles and numbered. We are going to try these positions one by one
with the next item in S. Suppose that placing item C in position 1 does not lead to a feasible
packing. Then we would try item C in position 2. However, this item can be shifted towards the
left, leaving more room for items at the right of the bin.

Therefore we would not put this item in position 2 but in fact in the shifted position 2’ indicated
in the figure. It seems that this might block future items from being put in position 1, so that we
are missing some packings and not trying all possibilities. However, it should be noted that if we
do not find a feasible packing with item C in position 2’ or in position 3, we will then try to place
item D in position 1 and continue like this. Eventually, if we do not find any feasible packing, we

5



3

1

3

22’

A

C
B

D

E

2’ 2

A

B

Figure 1: Illustration of available positions in partial packings

will try all possible items in position 1 before going to position 2’. Thus it can be seen that we do
check all the possibilities.

An important thing to note is that we cannot immediately modify position 2 (shift it left) when
we create it. To see this, consider the packing in Figure 1, right. After placing items A through
D, we would not consider placing item E as drawn, because this position is no longer available to
us. Therefore we keep the unmodified positions in the array and shift items that are placed there,
if possible.

We use some further heuristics to prune the positions:

• If a position coincides with an already available position, one of the pair in one location is
marked unavailable.

• If a top position is too close to the top of the bin (the distance is smaller than the size of the
smallest item in the pattern), it is marked unavailable. Note that any item in such a position
is not allowed to be shifted down, even if this were possible after first shifting it to the left: if
we did allow this, the final position would always coincide with some other available position.

• If a right position is too close to the right of the bin, it is marked unavailable for the same
reason.

The second and third heuristic explain why we need to distinguish between top and right positions.
We are now ready to describe the overall algorithm used in the program, which works recursively.

It is called with a given possible pattern (p1, p2, . . . , pk), where pi denotes the number of items of
size si for i = 1, . . . , k, and the positions of previously placed items, plus the array of available
positions. The main loop of the algorithm is over the item sizes s1, . . . , sk. We try every size si for
which pi > 0. For a given available position A and item of size si, we construct a ”real” position
A′: if A is top, we shift it left as far as possible; if A is right, we shift it down. How far it can be
shifted possibly depends on si, so A′ needs to be recalculated for every item.

We then try all available positions for the current item size. That is, we do the following:

6



��
��
��

��
��
��

��
��
��

��
��
��

1/2

1/4 1/5 1/5

1/3

1/7 1/7

1/3

1/8

1/13

1/4

1/21

1/8

1/3
1/7

1/7

1/7
1/13

1/21
1/14

1/18

Figure 2: The lower bound for square packing. The arced items have size 1/25 + ε. The grey areas
contain items of size 1/43 + ε (12 bottom left, 12 top right, 24 in total).

7



• calculate A′ depending on A and the size si

• put an item of size si in position A′

• if A′ is top and the item can be shifted down, skip this position (we could shift the item
down, but then it would coincide with another available position);

• similarly for a right position

• if the item is not completely inside the bin, skip this position;

• if the item overlaps with another item, skip this position;

• else, remove A from the array of available positions, and create new available positions as
described above

• decrease pi by 1

• try (recursively) to pack the remaining set

• on failure, add 1 to pi; remove the item of size si from position A′ and restore the set of
available positions to the previous set

As soon as we find a feasible packing, we break off the search and return true. If this never happens,
we eventually return false.

This function is called originally with the set S that we are interested in, and the available
position (0,0).

The upper bound We used the results of the program F by adding constraints to the linear
program as below. Our reasoning is as follows, where in parentheses we mention whether the
conclusion follows from a linear program (LP) or from this computer program (F).

We are looking for upper bounds on the weight of a set of items that can be packed into one bin.
We can do a case analysis based on properties of the contents of such a bin. If there is no item larger
than 1/2, we can set X1 = 0. The maximum weight that can be packed is at most 1.8862 (LP).
Else, since according to our constraints, X1 ≤ 1 and it is integer, we can let X1 = 1 and continue
the analysis as follows. If there are at most two items larger than 1/3, we can (temporarily) replace
the constraint X1 + X2 ≤ 4 by X2 ≤ 2, and find that the upper bound becomes 2.3235 (LP). Else,
due to the constraints X1 = 1 and X1 + X2 ≤ 4, we can set X2 = 3. Next, to analyze the case
where at most one item has side in (1/4, 1/3], we replace 4X1 + X2 + X3 ≤ 9 by X3 ≤ 1 (the other
option is X3 = 2) and find that the bound is 2.3551 (LP). Else, we fix X3 = 2, and find that if we
set X4 = 1 we get the bound 2.3661 (LP).

The conclusion is that in order to get a total weight which is higher than 2.3661, we need to
pack one item of side larger than 1/2, three items of side in (1/3, 1/2], two items of side in (1/4, 1/3]
and two items of side in (1/5, 1/4]. At most five items of side in (1/7, 1/6] can be packed with them
(F). (No items of side in (1/6, 1/5] can be packed with them—see above.)

If there are only at most four items of side in (1/7, 1/6], we additionally set X6 = 4 and the
upper bound becomes slightly less than 2.3692 (LP). Else, there can be at most two items of side
in (1/8, 1/7] (F), and the upper bound becomes 2.3691 (LP). We conclude that the asymptotic
performance ratio of our algorithm is not worse than 2.3692.

8



3 Lower bound for square packing

Consider the packing shown in Figure 2.
If an item is marked with 1/i for some integer i, it means that the size of the associated item

(length of a side) is (1 + ε)/i for some very small ε > 0. It is straightforward to verify that the
packing shown in Figure 2 is in fact a valid packing for these items, by checking that the total
horizontal size of items along each horizontal line through the packing is strictly less than 1. This
implies that all the items can be scaled up by a small amount and the items will still fit in the bin.

When many items of one type arrive, a bounded space algorithm will have to pack almost all
of these items into bins of their type. Thus it needs N/(i − 1)2 − O(1) bins to pack N items of
size (1 + ε)/i. We say that the weight of an item of size (1 + ε)/i is 1/(i − 1)2. Then the total
amount of bins needed by a bounded space algorithm is at least the total weight of the items minus
a constant. We give an overview of the items used and the number of times that they occur in
Figure 2 in the table below. In the first line containing the item sizes, we ignore the constant ε.

Size 1

2

1

3

1

4

1

5

1

7

1

8

1

13

1

14

1

18

1

21

1

25

1

43

Amount 1 3 2 2 5 2 5 2 1 2 2 24
Weight 1 1

4

1

9

1

16

1

36

1

49

1

144

1

169

1

324

1

400

1

576

1

1764

Each copy of each item that is in this packing is going to appear N times in the input for the
bounded space algorithms. Then the offline cost to pack these items is exactly N . The total area
of the items in one bin is less than 0.985216. We can therefore add sand (squares of infinitesimal
size) of total volume 0.014784 · N . The weight of sand is equal to its volume. The total weight is
then more than 2.363432 · N which implies the lower bound.

4 Lower bound for cube packing

On the next pages you will find a list of figures. These figures represent intersections of the unit
cube at particular heights, starting at height 0. In these figures, for clarity it is assumed that
all item sizes are exact inverses of integers. The reader should verify that in every figure, every
horizontal and vertical line through the plane intersects some area without any items. This shows
that if we replace the items by the real items (of size 1/2 + ε etc.), the items still fit in the bin.

Moreover, the reader should verify that when taking all the empty areas in all the figures
together, they cover the unit square. Thus also in the vertical dimension, the packing still works
with the real item sizes.

We give a table of the heights at which new items start, and specify these items. An item
“starts” if its lower boundary is at the current height. See Table 2.

The total volume of these items is less than 0.868125. Therefore we can add sand of total
volume 0.131875. This implies a lower bound of 2.95642.

5 Lower bound for higher dimensions

We assign coordinates to the bin: one corner is the origin, and all edges connected to this corner
are along a positive axis. All edges have length 1, so the point furthest from the origin is denoted
by (1, 1, . . . , 1).

9



1/91/8

1/5
1/4

1/3

1/13

1/13

1/13

1/91/8

1/4

1/3

1/13

1/4
1/5

1/9
1/13

1/13

1/4
1/5

1/9
1/13

1/13

1/7

1/7

1/7

1/5

1/13

1/13

1/7

1/7

1/7

1/13

1/13

Figure 3: Intersections at heights 0, 1/5, 1/4, 4/13, 1/3 and 1/4 + 1/5 = 0.45

10



1/7

1/7

1/7

1/7

1/7

1/2
1/8

1/8

1/3

1/5

1/5

1/5

1/5

1/8

1/3

1/7

1/9

1/9

1/7

1/9

1/9

1/7

Figure 4: Heights 6/13 ≈ 0.461, 1/3 + 1/7 ≈ 0.476, 1/2, 11/20, 5/8 and 1/4 + 2/5 = 0.65

11



1/7

1/8

1/5

1/9

32 items of size 1/13
(6 x 6 items, minus
a 2 x 2 square)

1/7

1/8

1/5

32 items of size 1/13
(6 x 6 items, minus
a 2 x 2 square)

1/7

1/8

1/5

1/4

1/8

1/4

1/7

1/2

1/7

1/7

1/8

1/8

1/7

1/7

1/4

Figure 5: Heights 2/3, 5/8 + 1/9 ≈ 0.736, 2/3 + 1/13 ≈ 0.743, 3/4, 1/3 + 3/7 ≈ 0.762, 19/24

12



1/4

1/21/7

1/7

1/4

1/5

1/5

1/7

1/4

1/5

1/2

Figure 6: Intersections at heights 1/4 + 2/5 + 1/7 ≈ 0.793, 4/5, 1/3 + 4/7 ≈ 0.905

Item size
Height 1/2 1/3 1/4 1/5 1/7 1/8 1/9 1/13

0 4 5 2 2 1 12
1/13 12
1/9 1
1/8 2
2/13 12
2/9 1
3/13 12
1/4 2 5
4/13 8
1/3 3 11
5/13 8
9/20 2
10/21 5
1/2 1 4

11/20 2
13/21 5
5/8 6

13/20 2
2/3 4 32
3/4 5

16/21 2
4/5 7

Totals 1 7 12 18 25 12 9 96
Weight 1 1/8 1/27 1/64 1/216 1/343 1/512 1/1728

Table 2: Overview of item placements

13



We now describe where to place the items of each size in the bin. Type i items have size
(1 + ε)/(i + 1).

We will describe anchor points for items of several types. If we say that an item is placed at an
anchor point, we mean that one of its corners coincides with the anchor point and no point inside
the item has a smaller coordinate than the anchor point. That is, the item is placed parallel to the
coordinate axes and as far away as possible from the origin while still intersecting with the anchor
point.

Type 1: (1 + ε)/2 This item is placed with one corner in the origin.

Type 2: (1 + ε)/3 We define type 2 anchor points as follows. All coordinates of an anchor point
are equal to 1− 1

3
(1+ε) or 1− 2

3
(1+ε). Since for each coordinate there are two choices, this defines

2d anchor points in total. Of these, only one is contained in the type 1 item that was placed first:
this is the anchor point with all coordinates equal to 1 − 2

3
(1 + ε). We place one item of type 2 at

all other anchor points. It can be seen that no type 2 item overlaps with the type 1 item (since all
points inside the type 1 item have at least one coordinate smaller than that of any anchor point).

Type 3: (1+ ε)/4 Anchorpoints are points with all coordinates equal to 0, (1+ ε)/4 or (1+ ε)/2.
There are 3d such points.

We define two disjoint subsets of this set of anchor points which we will not use. First, the
anchor points for which all coordinates are 0 or 1

4
(1 + ε) are contained in (or at the edge of) the

type 1 item. There are 2d such points.
Second, the anchor points for which all coordinates are 1

4
(1+ε) or 1

2
(1+ε) and for which at least

one coordinate is 1

2
(1 + ε) are not suitable because any item placed there would overlap with an

item of type 2. (There are 2d − 1 such points.) In particular, in a dimension where the coordinate
is 1

2
(1+ ε), an item placed there would extend to 3

4
(1+ ε) and then overlap with some type 2 item,

because all points that have all coordinates equal to at least 1

2
(1 + ε) and at least one coordinate

3

4
(1 + ε) are inside type 2 items.

We place one type 3 item at each of the remaining 3d − 2d+1 + 1 anchor points. In this way
there is no overlap with any previously placed item.

Type 4: (1+ε)/5 Consider anchor points with all coordinates equal to i(1+ε)/4 with 0 ≤ i ≤ 3,
and at least one coordinate equal to 3

4
(1 + ε).

There are 4d − 3d such anchor points. (Compare to the anchor points we used in the previous
step.)

We will only use anchor points of this set that have at least one coordinate equal to 0. There
are 3d points with all coordinates equal to a multiple of (1 + ε)/4 between 1 and 3, but 2d of them
have all coordinates equal to (1 + ε)/4 or (1 + ε)/2 and are thus not in our set of anchor points. In
summary, we exclude 3d − 2d anchor points in this way (they are not suitable).

It can be seen that at all remaining anchor points, an item of type 4 can be placed: consider
the coordinate that is 0. Adding (1 + ε)/5 to it gives a point where that coordinate is (1 + ε)/5. It
can be seen that the type 1 item and the type 3 items could not possibly overlap with any anchor
point used in this step (or with a point which has all coordinates at least equal to the coordinates
of an anchor point), because all those items are placed closer to the origin. Furthermore, all points

14



inside a type 2 item have coordinates that are all at least (1+ ε)/3, whereas we showed that points
inside a type 4 item placed at an anchor point have one coordinate at most (1 + ε)/5.

This shows that we can place 4d − 2 · 3d + 2d items of type 4 inside the bin.

Type 60: (1+ε)/61 Anchorpoints are points with all coordinates equal to multiples of (1+ε)/60
between 0 and 59. It can be seen that all previously defined anchorpoints are in this set, apart from
the ones defined for the items of size (1+ ε)/3. For each of the 2d − 1 anchorpoints for those items,
there exists an anchorpoint in the current set which is less than a vector (ε, . . . , ε) away from it.

Moreover, for all previously placed items, each corner point coincides with some anchor point,
apart from the items of size (1+ε)/3, for which all corner points (except for ones with one coordinate
equal to 1) are less than a vector (ε, . . . , ε) away from some anchor point.

In an empty cube, we could place 60d items of size (1+ε)/61 by using all possible anchor points.
It is straightforward to verify that the larger items take away the following amounts of items of size
(1 + ε)/61:

• (1 + ε)/2: 30d

• (1 + ε)/3: (2d − 1)20d

• (1 + ε)/4: (3d − 2d+1 + 1)15d

• (1 + ε)/5: (4d − 2 · 3d + 2d)12d

Let the amount of items of size (1 + ε)/61 that we can place be A = 60d − 30d − (2d − 1)20d −
(3d − 2d+1 + 1)15d − (4d − 2 · 3d + 2d)12d.

This concludes the description of the placement of all the items. Ignoring ε, the remaining
empty volume if all these items are placed inside a bin is

V = 1 −
1

2d
−

2d − 1

3d
−

3d − 2d+1 + 1

4d
−

4d − 2 · 3d + 2d

5d
−

A

61d
.

Thus we can add sand of almost this volume to the bin.
The weight of type i items is 1/id. Hence the total weight packed in the bin is (for ε → 0)

1 +
2d − 1

2d
+

3d − 2d+1 + 1

3d
+

4d − 2 · 3d + 2d

4d
+

A

60d
+ V.

The values of this expression for d = 4, . . . , 7 are given in Table 1. It can be seen that this expression
tends to 6 for d → ∞, so for large d, the general lower bound of Ω(log d) is better.

References

[1] Don Coppersmith and Prabhakar Raghavan. Multidimensional online bin packing: Algorithms
and worst case analysis. Oper. Res. Lett., 8:17–20, 1989.

[2] János Csirik, J. B. G. Frenk, and M. Labbe. Two dimensional rectangle packing: On line
methods and results. Discrete Appl. Math., 45:197–204, 1993.

[3] János Csirik and André van Vliet. An on-line algorithm for multidimensional bin packing.
Operations Research Letters, 13(3):149–158, Apr 1993.

15



[4] Leah Epstein and Rob van Stee. Optimal online algorithms for multidimensional packing
problems. SIAM Journal on Computing, 35(2):431–448, 2005.

[5] David S. Johnson. Fast algorithms for bin packing. J. Comput. Systems Sci., 8:272–314, 1974.

[6] David S. Johnson, A. Demers, J. D. Ullman, Michael R. Garey, and Ronald L. Graham. Worst-
case performance bounds for simple one-dimensional packing algorithms. SIAM J. Comput.,
3:256–278, 1974.

[7] C. C. Lee and D. T. Lee. A simple online bin packing algorithm. J. ACM, 32:562–572, 1985.

[8] Joseph Y.-T. Leung, Tommy W. Tam, C. S. Wong, Gilbert H. Young, and Francis Y. L. Chin.
Packing squares into a square. Journal on Parallel and Distributed Computing, 10:271–275,
1990.

[9] Flavio Keidi Miyazawa and Yoshiko Wakabayashi. Cube packing. Theoretical Computer Sci-

ence, 297(1-3):355–366, 2003.

[10] Steve S. Seiden and Rob van Stee. New bounds for multi-dimensional packing. Algorithmica,
36(3):261–293, 2003.

[11] Jeffrey D. Ullman. The performance of a memory allocation algorithm. Technical Report 100,
Princeton University, Princeton, NJ, 1971.

16


