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Abstract

Consider the following scheduling game. A set of jobs, each controlled by a selfish agent, are to
be assigned to m uniformly related machines. The cost of a job is defined as the total load on the
machine that its job is assigned to. A job is interested in minimizing its cost, while the social objective
is maximizing the minimum load (cover) over the machines. This goal is different from the regular
makespan minimization goal, which was extensively studied in a game theoretic context.

We study the price of anarchy (POA) and the price of stability (POS) for unrelated machines. We
consider use the parameter smax, which is the maximum speed ratio between any two machines.

We show that on related machines, POS is unbounded for smax > 2, and the POA is unbounded for
smax ≥ 2. We study the remaining cases and show that while the POA tends to grows to infinity as smax

tends to 2, the POS is at most 2 for any smax ≤ 2. Finally, we analyze the POA and POS for m = 2.

1 Introduction

Job scheduling games have been widely studied in recent years. In this work, we consider the problem of
maximizing the minimum load, seeing jobs as selfish agents. For applications of this problem and related
models see [7, 15].

In our scheduling model, the coordination ratio, or price of anarchy (POA) [17] is the worst case ratio
between the social value (i.e., minimum delay of any machine, or cover) of an optimal schedule, denoted by
OPT, and the value of any Nash equilibrium. If both these values are 0 then we define the POA to be 1. The
price of stability (POS) [1] is the worst case ratio between the social value of an optimal solution, and the
value of the best Nash equilibrium. Similarly, if both these values are 0 then we define the POS to be 1.

The non-selfish version of the problem has been well studied (known by different names such as “ma-
chine covering" and “Santa Claus problem") in the computer science literature (see e.g. [4, 2, 6, 8]). Various
game-theoretic aspects of max-min fairness in resource allocation games were considered, but unlike the
makespan minimization problem POA and POS of which were extensively studied (see [15, 3, 16]), these
measures were not previously considered for the uncoordinated machine covering problem in the setting of
selfish jobs with respect to related machines. A different model, where machines are selfish rather than jobs
with the same social goal was studied recently in [9, 5].

In [7], we considered the problem for identical machines. We showed that the POS is equal to 1 while the
POA and show close bounds on the overall value of the POA is at least 1.691 and at most 1.7 for an arbitrary
number of machines. For small numbers of machines, namely, 2,3 and 4 machines, the POA is 3

2 , 3
2 and 13

8 ,
respectively.
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In contrast to these results, we show that for uniformly related machines even the POS is unbounded
already for two machines with a speed ratio larger than 2, and the POA is unbounded for a speed ratio of
at least 2. The same property holds for m machines (where the speed ratio, denoted by smax, or simply s)
is defined to be the maximum speed ratio between any pair of machines). Surprisingly, we prove that the
POS is equal to 3

2 for two machines with the threshold speed ratio 2. We show that the POS is constant for m
machines of speed ratio at most 2, and the POA is Θ( 1

2−s) for m machines of speed ratio s < 2. Additionally,
we show cases where the POA and POS are unbounded. These results are very different from the situation for
the makespan minimization social goal. For that problem, the POS is 1 for any speed combination. Chumaj
and Vöcking [3] showed that the overall POA is Θ( logm

log logm) (see also [11, 15]).
Note that for identical machines, the results given in [7] are more similar to the situation for makespan

minimization, where the POS is 1 and the POA is constant [12, 18].
The model. We now define the model of scheduling on related machines. A set of n jobs J =
{1, 2, . . . . , n} is to be assigned to a set of m machines M = {M1, . . . ,Mm}, where machine Mi has a
speed si. If si = 1 for i = 1, . . . ,m, the machines are called identical. The size of job 1 ≤ k ≤ n is
denoted by pk. An assignment or schedule is a function A : J → M . The load of machine Mi, which is
also called the delay of this machine, is Li =

∑
k:A(k)=Mi

pk
si

. The value, or the social value of a schedule
is the minimum delay of any machine, also known as the cover. We denote it by COVER(A). This problem
is a dual to the makespan scheduling problem.

The non-cooperative machine covering game MC is characterized by a tuple MC = ⟨N, (Mk)k∈N ,
(ck)k∈N ⟩, where N is the set of atomic players. Each player k ∈ N controls a single job of size pk > 0
and selects the machine to which it will be assigned. We associate each player with the job it wishes to run,
that is, N = J . The set of strategies Mk for each job k ∈ N is the set M of all machines. i.e. Mk = M .
Each job must be assigned to one machine only. Preemption is not allowed. The outcome of the game is
an assignment A = (Ak)k∈N ∈ ×k∈NMk of jobs to the machines, where Ak for each 1 ≤ k ≤ n is the
index of the machine that job k chooses to run on. Let S denote the set of all possible assignments. The
cost function of job k ∈ N is denoted by ck : S → R. The cost cik charged from job k for running on
machine Mi in a given assignment A is defined to be the load observed by machine i in this assignment,
that is ck(i,A−k) = Li(A), when A−k ∈ S−k; here S−k = ×j∈N\{k}Sj denotes the actions of all players
except for player k.

The goal of the selfish jobs is to run on a machine with a load which is as small as possible. At an assign-
ment that is a (pure) Nash equilibrium or NE assignment for short, there exists no machine Mi′ for which
Li′(A) + pk

si′
< Li(A) for some job k which is assigned to machine Mi (see Figure 1(a) for an example).

For this selfish goal of players, a pure Nash equilibrium (with deterministic agent choices) always exists
[13, 10]. We can also consider mixed strategies, where players use probability distributions. Let tik denote
the probability that job k ∈ N chooses to run on machine Mi. A strategy profile is a vector p = (tik)k∈N,i∈M
that specifies the probabilities for all jobs and all machines. Every strategy profile p induces a random sched-
ule. The expected load E(Li) of machine Mi in setting of mixed strategies is E(Li) =

1
si

∑
k∈N pkt

i
k. The

expected cost of job k if assigned on machine Mi (or its expected delay when it is allocated to machine
Mi) is E(cik) = pk

si
+

∑
j ̸=k pjt

i
j/si = E(Li) + (1 − tik)

pk
si

. The probabilities (tik)k∈N,i∈M give rise to a
(mixed) Nash equilibrium if and only if any job k will assign non-zero probabilities only to machines Mi

that minimize cik, that is, tik > 0 implies cik ≤ cjk for any j ∈ M . The social value of a strategy profile p is
the expected minimum load over all machines, i.e. E(mini∈M Li).
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2 m Related machines

In the setting of related machines, we show that for large enough speed ratios the POA and the POS are
unbounded already for two machines.

Denote the speeds of the m machines by s1, s2, . . . , sm, where si ≤ si+1 and let s = sm
s1

. Without loss
of generality, we assume that the fastest machine has speed s ≥ 1, and the slowest machine has speed 1.

We now characterize the situation in all cases.

Theorem 1. On related machines with speed ratio s, POA(s) = ∞ for s ≥ 2 and POS(s) = ∞ for s > 2.

Proof. We only consider the case s > 2 here. Consider an instance that contains m identical sized jobs of
size s. Clearly, COVER(OPT) = 1 for this input.

For s > 2, we show that any assignment where each job is assigned to a different machine is not a Nash
equilibrium. In fact, in such an assignment, any job assigned to the first machine sees a load of s, while if it
moves to the m-th machine, its load becomes 2s

s = 2 < s. Thus, any NE assignment has a cost of 0 and the
claim follows.

For s = 2, consider the assignment A where each machine is assigned a single job, the first machine has
no jobs, and the m-th machine has two jobs. It is not difficult to see that this is an NE. Each job assigned
to the m-th machine will not move to the first machine, since it will have the same load. It would not move
to another machine since it would be assigned there together with another job, and this machine is not faster
than its current machine. A job assigned to another machine would not move to the first machine, since
it is not faster. Moving to a machine which has at least one job assigned to it would result in load of at
least 2, while the current load that the job sees is at most 2. Thus, we have presented an instance for which
COVER(OPT) = 1 and COVER(A) = 0, which implies the claim for s = 2.

We next characterize the situation in all other cases.
We can in fact show that if we define ε = 2− s, the POA grows with 1/ε.

Theorem 2. Let ε = 2− s. The POA as a function of ε has the order of growth Θ(1ε ).

Proof. For the upper bound, consider an instance with COVER(OPT) = 1, and an arbitrary NE assignment
A for this instance. We define a weight function g(x) to be applied on sizes of jobs.

g(x) =

{
1 , for x ≥ 1
x , for 0 < x < 1

We show that the total size of jobs in any set I is at least 1 if and only if their total weight (by g(x)) is at
least 1. In addition, if their total weight is strictly larger than 1, then |I| ≥ 2.

Claim 3. Let I be a set of jobs. The total size of jobs in I is at least 1 if and only if their total weight is at
least 1. In addition, if their total weight is strictly larger than 1, then |I| ≥ 2.

Proof. If I has a total size of at least 1, we consider two cases. If it contains a job of size at least 1, then the
total weight is at least its weight, which is 1. Otherwise, it contains only jobs of sizes less than 1, thus their
total weight is equal to their total size. In both cases we get a total weight of at least 1.

If I has a total weight of at least 1, we consider two cases. If it contains a job of weight 1, then the total
size is at least its size, which is 1. Otherwise, it contains only jobs of weight less than 1, thus their total size
is equal to their total weight. In both cases we get a total weight of at least 1.

If |I| = 1, then the weight of jobs in I is at most 1. Thus if the total weight exceeds 1, then |I| > 1.
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Let P be the least loaded machine in A, and let G denote the total weight of jobs assigned to P (if this
set is empty then G = 0). Let sp denote the speed of P .

If G ≥ 1, then the total size of jobs is at least 1, thus the load of P is at least 1
sp

≥ 1
2 .

If G < 1, then since every machine of OPT has a load of at least 1 and all speeds are at least 1, each such
machine has a total size of jobs of at least 1 and thus weight of at least 1. Therefore, the total weight of all
jobs is at least m. Therefore, there exists a machine of A with a total weight of jobs of more than 1, and
thus at least two jobs assigned to it. Denote this machine by Q and its speed by sq.

Let p denote the total size of jobs assigned to P and let q denote the total size of jobs assigned to Q.
Since the total weight of jobs assigned to Q is at least 1, we have q ≥ 1. Let a be the size of a smallest size
job assigned to Q (and thus q ≥ 2a). Since the job of size a has no incentive to move, we have p+a

sp
≥ q

sq
or

p
sp

> q
sq

− a
sp

≥ q
2−ε − a, using 1 ≤ sp and sq ≤ 2− ε.

If a ≥ 1
3 , using q ≥ 2a we have q

2−ε − a ≥ 2a−2a+aε
2−ε ≥ ε

6 . If a < 1
3 , we have q

2−ε − a ≥ 1
6 since q ≥ 1.

Thus the load of P is Ω(1ε ), and since COVER(OPT) = 1, we have a ratio of O(1ε ).
For the lower bound, consider an instance with m identical jobs of size s = 2 − ε, and one job of size

ε. We show that the schedule which assigns one large job to each machine, except for machine m which
receives two such jobs, and machine 1 which receives the small job.

Similarly to the proof of Theorem 1 the large jobs assigned to machines 2, 3, . . . ,m−1 have no incentive
to move. Similarly, the jobs assigned to machine m have no incentive to move to any machine, except for
possibly the first machine. We have 2s

s = 2 = s + ε, and therefore these jobs do not have an incentive to
move. Finally, the small job would not move since every machine except for machine 1 is already loaded by
at least 1. For this instance, COVER(OPT) ≥ 1, while COVER(A) = ε.

We next show that the POS has a finite value for any s ≤ 2. For this purpose we use a well-known
algorithm for scheduling, called LPT (see [14]). This algorithm sorts the jobs in a non-increasing order of
their sizes, and greedily assigns each job to the machine which would have a smaller load (taking the speed
into account) as a result of assignment of the job. In a case of a tie (a job can go to either machine), it assigns
the job to the slowest machine which has the largest index among the slowest candidate machines.

It is known that for scheduling games on uniformly related machines with the same selfish goal of the
players, LPT produces a pure NE schedule [13]. As this algorithm is deterministic, the value of POS is
upper-bounded by its approximation ratio. We use this to derive an upper bound on the POS.

We first show that a ratio between the optimal cover and the cover of the schedule it creates (and accord-
ingly the POS) is finite for s ≤ 2.

Theorem 4. On related machines with speed ratio s, POS ≤ 2 for any s ≤ 2.

Proof. Suppose a counterexample exists, which shows that POS > 2 on m related machines that all have
speeds in [1, 2]. Let z > 2 be a ratio which can be achieved by an example, i.e., the ratio between the cover
of an optimal solution, and the maximum cover achieved by every Nash equilibrium, for a specific set of
jobs. By normalizing, we may assume the optimal cover of the counterexample has a value of 1. Then, the
total size of the jobs in it is at least m. There may be an unbounded number of (normalized) counterexamples
for which the cover of the best Nash equilibrium assignment is 1/z. Let Tz be the infimum total size of jobs
in all normalized counterexamples with a best NE cover of 1/z. Let I be such a counterexample for which
the total size of all the jobs is at most Tz + 1/(16m). We will derive a contradiction.

Consider the Nash equilibrium assignment A which is determined by the LPT assignment of the jobs
in I . LPT begins by sorting the machines in order of nonincreasing speed, and gives each machine a fixed

4



index according to this sorting. Let P be the least loaded machine in A. By assumption, the load of P is
exactly 1/z < 1/2, implying that the total size of the jobs assigned to P is less than 1 (since sP ≤ 2).

We herein prove a set of claims regarding qualities of assignment A, which will lead us to a contradiction
to the existence of such I .

Claim 5. If there are at least m jobs in the input, then for s ≤ 2, LPT assigns the i-th job (for 1 ≤ i ≤ m)
to machine m− i+ 1.

Proof. Consider a sorted list of m jobs, where the size of the i-th job is denoted by pi. We have p1 ≥ p2 ≥
. . . ≥ pm. We show the claim by induction. By definition, the first job is assigned to the m-th machine.
Assume that jobs 1, 2, . . . , k (k ≤ m− 1) have been assigned as claimed. Consider the job of size pk. If the
machine to which this job is assigned is chosen among the machines of indices 1, 2, . . . ,m − k + 1, then
by definition it should be assigned to the machine of index m − k + 1. If the job is assigned to machine
j > m − k + 1, the resulting load would become pm−j+1+pk

sj
≥ pk (since pm−j+1 ≥ pk and sj ≤ 2). The

load resulting from assigning the job to machine m− k + 1 is pk
sm−k+1

≤ pk. Thus, by definition, the job is
assigned to machine m− k + 1, as claimed.

We show in the next claim that the set of machines with load at least 1 is fixed until the end of LPT run
after the first m jobs have been assigned.

Claim 6. The set of machines with load at least 1 is fixed after the first m jobs have been assigned. These
machines do not receive further jobs.

Proof. By the definition of LPT, P received one of the m largest jobs (Claim 5). After this and until LPT

is finished, P had load of less than 1/2, so any additional single job that P received after its first job could
not by itself increase the load of P to 1 or more. This means that no assignment of any later job j increases
a load of any machine above 1 once each machine has a job, because LPT would assign j to P instead. In
addition, a machine which already has a load of 1 or more cannot receive this job.

A job that is among the m largest jobs and that on assignment by LPT makes the load of its machine 1
or more is called huge. By Claim 6, the precise size of any huge job does not affect the assignment of LPT.
As long as the size satisfies the following conditions, the LPT assignment is fixed:

• the size is at least the speed of the machine that it is assigned to (because then that machine receives
no further jobs),

• the size is at least the size of the next job in the LPT ordering, and

• the size is at most the size of the previous job in the LPT ordering.

However, the size may of course affect the value of the optimal cover. Regarding the last two conditions,
if we have two jobs of different sizes, then making those sizes equal might lead LPT to assign them in
a different order. However, we ignore this and still say that the assignment is the same (i.e., we do not
distinguish between jobs that have the same size). In the remainder of our proof, we will sometimes change
the size of a huge job, but always in such a way that the LPT assignment (and its cover) remain unchanged,
and the value of an optimal cover would not be affected. In particular, we will not increase the size of any
huge job.

We furthermore show that there is a machine with load at least 1 + 1/(4m).
Let Q′ be a machine with maximum load.
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Claim 7. Q′ has load at least 1 + 1/(4m).

Proof. Suppose not. Then all machines have load less than 1 + 1/(4m), whereas P has load less than 1.
The total load on all the machines in A is then at most

m∑
i=1

si

(
1 +

1

4m

)
− sP

(
1 +

1

4m

)
+

sP
2

<

m∑
i=1

si +
2m

4m
− sP

2
≤

m∑
i=1

si.

On the other hand, since OPT = 1, the total load of all the jobs must be at least
∑m

i=1 si. This is a contradic-
tion.

We will return now to the proof of the main theorem.
Let Q be the machine with load at least 1+1/(4m), which has the smallest index out of such machines.

Machine Q exists by Claim 7. Let A be the set of machines which received their first job before Q did, and
let A′ = A∪ {Q}. Let m′ = |A′|. By Claim 6, all machines in A′ that have load more than 1 have only one
job. In particular, Q has a single, huge job jQ of size

x ≥
(
1 +

1

4m

)
sQ ≥ 1 +

1

4m
> 1.

All machines in A′ have at least one job of size at least x > 1. All machines that are not in A′ have speed at
most sQ.

We say that the jobs on machines with load at least 1 + 1
4m are threshold jobs (they have size at least

x, and are huge) while the first jobs on the other machines in A′ are called big (their size is also at least
x). Together, these are m′ jobs that all have size at least x due to the definition of LPT. All big jobs were
assigned before jQ by LPT.

Consider an optimal schedule OPT. We may assume that no threshold job j is assigned to a machine of
smaller index than a big job j′ of the same size (j and j′ can be switched if necessary).

If OPT has any threshold job j on Q or on a machine that is not in A′ (and hence is not faster than Q),
we claim that j can be made smaller. Let M(j) be the machine that j is assigned to by LPT. First, note that
j must be one of the first m− 1 jobs in the LPT ordering, since all machines that get a job before M(j) have
a job of size at least x and hence a load at least x/2 > 1/2. Hence, none of these machines can be P , and
M(j) ̸= P as well. This shows that M(j) must be one of the first m− 1 machines in the ordering used by
LPT.

We now decrease pj by 1/(8m). As a result, LPT may assign pj to some later machine, but pj is still
more than 1 and j remains one of the m− 1 largest jobs (otherwise, there are m jobs of size more than 1, so
both before and after the modification, P receives a load more than 1/2 which is a contradiction).

If LPT still assigns j to M(j), then the load of M(j) remains more than 1, so A and cover(A) do not
change. If LPT assigns j to a later machine M ′(j), then the machines M ′(j), . . . ,M(j) all have a load
at least 1 after assignment of their first job, both before and after the change. This holds because they all
have a job of size at least pj − 1/(8m) (by definition of LPT) and all these machines have speed at most
sM(j) ≤ pj/(1+

1
4m) < pj − 1/(8m). Hence they receive no more jobs and the assignment of all later jobs

and cover(A) remain unchanged.
Hence, the value pj can be decreased by at least 1/(8m) without affecting cover(A). This also does not

affect the value of OPT, since OPT assigns j to a machine which is not faster than Q. We have now found a
counterexample with total size of jobs below Tz , a contradiction. Hence, all threshold jobs are on machines
in A in the optimal assignment.
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If any threshold job j is together with a big job on machine M ′ in the optimal assignment, it can again
be made 1/(8m) smaller without affecting the value of OPT, since this means the load on M ′ is at least
2x/2 ≥ 1 + 1

4m on that machine (since sM ′ ≤ 2). (Again, the LPT assignment remains unchanged apart
from possibly the order of some huge jobs, as above.)

If any big job j is on a machine with higher index than Q (i.e., not in A′) in the optimal assignment, or
if j is together with another big job on machine M ′, j can be switched with jQ (which is assigned to a
machine in A by the above) without decreasing the value of OPT (since the size of jQ is more than sQ, but
not more than that of j, and M ′ has a load of at least 1+ 1

4m as above). After this, the size of jQ can again
be decreased for a contradiction.

We thus find that we may assume that all big and threshold jobs are on A′ in the optimal assignment,
one per machine. But then, Q must have a big job j′ since it does not have a threshold job, and then jQ and
j′ can again be switched in the optimal assignment (and, after this, jQ can be made smaller as described
above). We find a contradiction to the definition of I in all cases.

We note that unlike the POA which continuously grows from constant values to infinite values, the POS

jumps from a constant value for s = 2 to ∞ for s > 2.

3 Two related machines

In this section we study the problem on two uniformly related machines. Recall that we denote the speed
of the faster machine by s ≥ 1, and the other machine has speed 1. We analyze the POA and the POS as a
function of s. Thus POA(s) and POS(s) denote the POA and POS (respectively) of instances where the speed
ratio between the machines is s.

The case where s = 1 was already analyzed in Section 1, and it was shown that POA(1) = 3
2 and

POS(1) = 1. Hence, from now on, we assume that s > 1. Moreover, Theorem 1 restricts us to the case
s < 2 in the analysis of the POA as a function of s.

We give a complete analysis of the exact POA as a function of the speed of the faster machine, s, for
s < 2.

Theorem 8. For two related machines and 1 < s < 2,

POA(s) = min

{
s+ 2

(s+ 1)(2− s)
,

2

s(2− s)

}
=

{
s+2

(s+1)(2−s) for 1 < s <
√
2

2
s(2−s) for

√
2 ≤ s < 2

Proof. In order to generate the bounds on the value of the POA we use Linear Programming. First, we show
that we can restrict our analysis for the upper bound to instances involving no more than 4 jobs. Thus, we
need to consider a small number of cases. We then formulate for each one of these cases a linear program
(LP) whose optimal objective function is exactly the POA for any s (or for some subinterval of s, depends
on the case). It is possible to find the tight values using the solution for the corresponding dual linear
program (DLP). Since we have several cases, we choose our bound on POA for each 1 < s < 2 to be the
highest bound accepted among all the cases. The idea for this analysis is motivated by the classic paper by
Graham [14], where he used a similar approach to analyze the performance of an algorithm for a variant
of the makespan minimization problem for m identical machines, and is often used since in the study of
various scheduling problems. To the best of our knowledge, it was not applied to analyze the POA for any
non-cooperative version of a scheduling problem before.

Consider an input instance I and an arbitrary Nash equilibrium assignment A for it.
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Claim 9. We can assume that I contains at most four jobs.

Proof. If there are at least 5 jobs, then one of the machines in the optimal schedule has at least three jobs
assigned to it. If a pair of jobs share a machine in both A and OPT (which must happen in this case), we
can merge them. This is applied to any pair of jobs that behave the same in both solutions. The equilibrium
properties are kept, so an alternative NE is created, which has at most four jobs, and the same ratio between
the values of the optimal solution and the value of the NE solution.

Thus we have to consider only a small number of cases. Yet, since crucial constraints in the linear
programs state the fact that a given job does not have an incentive to move, it is not always possible to
assume that a job, which does not exist, simply has a size of zero. Thus we need to consider the cases of
one, two, three and four jobs, but some of the cases of three jobs would be seen as special cases of four jobs.

The case of one job is trivial as any schedule has a value 0, and we defined that in this case POA = 1.
Consider a schedule with two jobs. Let A and B denote both the jobs and their sizes. A schedule where both
are assigned to the same machine cannot be optimal. Moreover, such a schedule cannot be an NE either.
Specifically, if both jobs are assigned to M1, then any job has an incentive to move. If they are both assigned
to M2, then the job of size min{A,B} would have a load of at most min{A,B} ≤ A+B

2 being assigned to
M1, while the load of M2 when both jobs are assigned to it is A+B

s > A+B
2 .

Otherwise, COVER(OPT) > 0 and COVER(A) > 0. Thus each schedule has one job on each machine.
We prove that for s < 2, POA ≤ s. Suppose that the optimum schedule has job A assigned to M1 and job
B assigned to M2. If A gives the same assignment we have have a ratio of 1. Else, we consider the four
possibilities: If A ≤ B

s and B ≤ A
s , COVER(OPT) = A and NE = B, we have the ratio A

B ≤ 1
s < 1

for s < 2. If A ≤ B
s and B > A

s , COVER(OPT) = A and NE = A
s , and A

A
s

≤ s. If A > B
s and

B ≤ A
s , COVER(OPT) = B

s and NE = B, and the ratio is at most
B
s
B ≤ 1

s < 1. If A > B
s and B > A

s ,

COVER(OPT) = B
s and NE = A

s , and the ratio is at most
B
s
A
s

< s for s < 2. We conclude that the asserted

upper-bound of s holds. For s ≥
√
2, since 2

s(2−s) ≥ 2, and s < 2, the obtained ratio s does not exceed the

claimed bound. For s <
√
2, since s+2

(s+1)(2−s) ≥ 3
2 , and s < 3

2 , the obtained ratio s again does not exceed
the claimed bound.

We next consider the cases of three and four jobs. Whenever it is possible, we study the case of three
jobs as a special case of the case of four jobs, with one of the jobs having size 0. There are four cases of
three jobs, when each time a different job of the four has size 0. Also, we need two linear programs for
every configuration, that is, one for the case where in A the slow machine is less loaded (which we call the
short machine), and one for the opposite case. The linear programs do not state the fact that no job would
benefit from leaving the short machine, which always holds.

We assume COVER(OPT) = 1 which can be achieved by scaling all instances.
So, suppose that the four jobs (and their sizes) are denoted by A, B, C and D. Both A and OPT assign

exactly two jobs to each machine. Suppose also that the optimum schedule has jobs A and B assigned to
M1, and jobs C and D assigned to M2. Suppose further that A assigns jobs A and C to M1 and jobs B and
D to M2. Given these NE and optimal assignments and knowing that COVER(OPT) = 1, we illustrate the
following linear programs, where all variables are non-negative.

The constraints first state the properties of OPT (that both machines have a load of at least 1), next the
fact that the jobs assigned to the more loaded machine do not have an incentive to move, and finally, the
relation between the loads of the two machines in A. We wish to minimize the minimum load, which is the
inverse of the ratio between COVER(OPT) = 1 and COVER(A).

8



Since we would like to provide an example which achieves the POA for each value of s, it is sufficient
that we use only the primal linear programs and prove an upper bound on the POA, which is later matched
by our examples.

The programs for four jobs are as follows.
(i) There are four jobs and the slow machine is short:
minA+C subject to: A+B ≥ 1, C+D ≥ s, A+C+B ≥ B+D

s , A+C+D ≥ B+D
s , B+D

s ≥ A+C.
(ii) There are four jobs and the fast machine is short:
min B+D

s subject to: A+B ≥ 1, C +D ≥ s, A+D+B
s ≥ A+ C, C+D+B

s ≥ A+ C, A+ C ≥ B+D
s .

In the first program, it is assumed that B > 0 and D > 0, thus each one of the cases B = 0 and D = 0
need to be considered separately. In the second program, it is assumed that A > 0 and C > 0, thus each one
of the cases A = 0 and C = 0 need to be considered separately. Thus we have additional four programs.

(iii) There are 3 jobs with non-zero sizes, A = 0, and the fast machine is short:
min B+D

s subject to: B ≥ 1, C +D ≥ s, C+B+D
s ≥ C, C ≥ B+D

s .
(iv) There are 3 jobs with non-zero sizes, B = 0, and the slow machine is short:
minA+ C subject to: A ≥ 1, C +D ≥ s, D +A+ C ≥ D

s , D
s ≥ A+ C.

(v) There are 3 jobs with non-zero sizes, C = 0, and the fast machine is short:
min B+D

s subject to: A+B ≥ 1, D ≥ s, A+B+D
s ≥ A, A ≥ B+D

s .
(vi) There are 3 jobs with non-zero sizes, D = 0, and the slow machine is short:
minA+ C, subject to: A+B ≥ 1, C ≥ s, B +A+ C ≥ B

s ,Bs ≥ A+ C.
Before we consider the first two programs, we show that the last four programs do not give a ratio larger
than s.
Program (iii) gives a worst case ratio of at most s; as B ≥ 1 and D ≥ 0, we get that B+D

s ≥ 1
s = OPT

s .
Program (iv) gives a worst case ratio of at most 1; as A ≥ 1 and C ≥ 0, we get that A+C ≥ A ≥ 1 = OPT.
Program (v) gives a worst case ratio of at most 1; as D ≥ s and B ≥ 0, we get that B+D

s ≥ D
s ≥ 1 = OPT.

Program (vi) gives a worst case ratio of at most 1; as C ≥ s and A ≥ 0, we get that A+C ≥ C ≥ s ≥ 1 =
OPT.

We next consider the first two programs. Though it is possible to solve the programs parametrically
and together with solving the corresponding parametric dual programs for all values of 1 < s < 2. The
minimum of the solutions is the POA (provided that it is not below s, the upper bound which we got for the
case of two jobs).

For Program (i) with s ≤
√
2, we multiply the first two constraints by 2−s, and the next two constraints

by s, and sum all of the four resulting constraints. This gives (2 + s)(A+ C) + 2(B +D) ≥ 2(B +D) +

(s+ 1)(2− s), and thus A+ C ≥ (s+1)(2−s)
s+2 . This gives an upper bound of s+2

(s+1)(2−s) .

For Program (i) with s ≥
√
2, we multiply the second two constraint by 2− s, the third constraint by 1,

the fourth constraint by s − 1, the constraint A ≥ 0 by 2 − s, and sum all of the four resulting constraints.
This gives 2(A+C) +B +D ≥ B +D+ s(2− s), and thus A+C ≥ s(2−s)

2 . This gives an upper bound
of 2

s(2−s) .
For Program (ii) we multiply the first two constraints by 2s − 1, and the next two constraints by s, and

sum all of the four resulting constraints. This gives 2s(A + C) + (2s + 1)(B +D) ≥ 2s(A + C) + (s +

1)(2s− 1), and thus B+D
s ≥ (s+1)(2s−1)

s(2s+1) . This gives an upper bound of s(2s+1)
(s+1)(2s−1) . It is easy to verify that

for 1 ≤ s < 2, s(2s+1)
(s+1)(2s−1) ≤

s+2
(s+1)(2−s) and s(2s+1)

(s+1)(2s−1) ≤
2

s(2−s) hold.
We can see from this discussion that Program (i) gives an upper bound of s+2

(s+1)(2−s) on the POA for

1 < s <
√
2 and gives an upper bound of 2

s(2−s) on the POA for
√
2 ≤ s < 2.
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We conclude that

POA(s) ≤

{
s+2

(s+1)(2−s) , for 1 < s <
√
2

2
s(2−s) , for

√
2 ≤ s < 2 .

This bound is tight, as can be seen from the following two feasible solutions to the corresponding LPs.
For 1 < s <

√
2, consider the following 4 jobs of sizes: A = 2−A2

s+2 , B = s(s+1)
s+2 , C = s

s+2 and

D = s(s+1)
s+2 . The optimal solution has a balanced schedule of value 1. In the NE, the load of M1 is 2+s−A2

s+2 ,

and the load of M2 is 2(s+1)
s+2 . Moving a job of size s(s+1)

s+2 from M2 to M1 would result in a load of 2(s+1)
s+2 ,

thus this is indeed a NE. Its value is (s+1)(2−s)
s+2 .

For
√
2 ≤ s < 2, consider the following 3 jobs of sizes (where the job of size A is absent): B = A2

2 ,
C = (2−s)s

2 and D = A2

2 . The optimal solution has a load of 1 on M2 and a load of A2

2 ≥ 1 on M1. In the
NE, the load of M1 is 2s−A2

2 , and the load of M2 is s. Moving a job of size A2

2 from M2 to M1 would result
in a load of s, thus this is indeed a NE. Its value is (2−s)s

2 .

We can see that as s approaches 2, POA(s) tends to infinity, as implied by Theorem 2.

Theorem 10. For two related machines and s ≤ 2, POS ≤ 2 − 1/s. For s ≤ 3/2, POS ≤ 1/(2s − s2).
These bounds are tight for s ∈ [1, 4/3] and s ∈ [14(3 +

√
17), 2]. (We have 1

4(3 +
√
17) ≈ 1.78078).

Proof. Consider an instance I that shows a POS of at least 2 − 1/s for some s ∈ [1, 2]. For this instance,
the optimal solution OPT is not a Nash equilibrium. Hence, there must be at least one job in OPT that could
improve its delay by moving.

Suppose there is such a job j that is alone on its machine in the optimal assignment. Then it must be
on the slow machine, else it could not improve. Normalize all the job sizes so that j has size 1. The total
size q of all other jobs must be less than 1, else (1 + q)/s ≥ 2/s ≥ 1, contradicting that job j can improve.
Consider what happens if we switch the contents of the two machines. The cover is min(1/s, q), whereas in
the optimal assignment, it was min(q/s, 1). Since q < 1, we have min(q/s, 1) = q/s. However, the cover
of the new schedule is either 1/s > q/s or q > q/s, contradicting that the original schedule is optimal. This
shows that this situation cannot happen.

Therefore, any job that can improve its delay in the optimal assignment is sharing its machine with at
least one other job. We consider the smallest job that can improve and denote it by j. We now normalize
such that this job has size 1. Denote the delay that j experiences by D, and the delay on the other machine by
D′. If j is on the fast machine, then D′ must be less than D−1 < D−1/s. But then the current assignment
does not give an optimal cover, since the cover is at most D′ < D − 1/s and min(D − 1/s,D′ + 1) can be
achieved by moving j.

We conclude that j must be on the slow machine. Then D ≥ 2. Since j can improve by moving, we
have

D′ + 1/s < D.

We also have
D′ ≥ D − 1,

else the cover of the optimal assignment could be improved by moving j. Hence, after j moves, no other
job can improve its delay by moving to the fast machine, since the delay on the slow machine is now only
D − 1 < D′ + 1/s. The cover of the new assignment is hence min(D − 1, D′ + 1/s) = D − 1, whereas
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the cover of the optimal assignment was min(D,D′) = D′ < D − 1/s, where the equality holds because j
can improve. This gives us a ratio of

D′

D − 1
<

D − 1/s

D − 1
≤

2− 1
s

1
= 2− 1

s
. (1)

We have now reached a Nash equilibrium unless there are jobs on the fast machine which can improve. Any
such job must have size strictly smaller than 1, since j preferred the fast machine.

We let such jobs move one by one, starting with the largest. Note that any job q which moves towards
the slow machine (and thereby improves its delay) strictly improves the cover. The only case where this is
not immediately clear is where the minimum load is achieved on the fast machine after q moves. Denote the
loads before q moves by D1 on the fast machine and D2 on the slow machine. Then D2 + q < D1, the old
cover was D2 and the new cover is D1 − q/s > D2.

We claim that we end up in a Nash equilibrium. Suppose not. Then some job r can improve by moving
back to the fast machine. Since all the jobs that moved to the slow machine have size strictly less than 1,
this must be one of the jobs that moved in our process (after j moved). It cannot be the last job that moved.
Consider the first time that r can improve. This happens just after another job r′ moves to the slow machine
which is not larger than r. But then, if r′ prefers the slow machine at this point, r must do so as well, a
contradiction. Since we showed that the cover only improves after job j moves, this process ends in a Nash
equilibrium with a cover of at least 2− 1/s due to (1).

We now improve this upper bound for s ≤ 3/2. Consider the schedule OPT− that we get by switching
the jobs on the fast and the slow machines. The new loads are D′s and D/s.

The optimal cover is min(D′, D) = D′. The cover of OPT− is min(D/s,D′s). For s ∈ [1, 3/2], we
have D′s ≥ (D− 1)s > D/s since D ≥ 1/(s− 1). For s ∈ [3/2, 2], this holds because D ≥ 2. Therefore,
COVER(OPT−) = D/s. This cannot be more than COVER(OPT) = D′ < D − 1/s. We conclude that
D/s < D − 1/s and hence D > 1/(s − 1). This is a stronger condition than D ≥ 2 for s ≤ 3/2. Instead
of (1) we now get

POS ≤ D − 1/s

D − 1
<

1
s−1 − 1

s
1

s−1 − 1
=

s− (s− 1)

s− s(s− 1)
=

1

2s− s2
for s ≤ 3/2.

Since D/s < D′s, the only job that might be able to improve in OPT− is a job which is now on the
slow machine. Such a job currently experiences a delay of D′s, and after moving, has a delay of at most
D/s+D′ (the bound is reached if there is a single job on the slow machine).

Lower bounds Let s0 = 1
4(3 +

√
17). Consider some value s0 ≤ s ≤ 2. Let M1 be the slow machine

and M2 be the fast machine. Consider a list of 3 jobs, having sizes 2s− 1, 1+ ε (for some small ε > 0) and
1. The jobs are listed in a non-increasing order of the sizes, as 2s − 1 > 1 + ε for any s > 1 + ε

2 , which
is the case here. The LPT algorithm applied to this list of jobs first assigns the job of size 2s − 1 to M2,
then assigns the job of size 1 + ε to M1, and as 2 + ε > 2s−1+1

s = 2, assigns the job of size 1 to M2. This
schedule is an NE (as any schedule produced by the LPT rule), and has a value of 1 + ε. Obviously, LPT

produces an NE schedule, but there may exist other schedules that are NE for this list of jobs. We claim that
for s ≥ s0 this is the best NE schedule, that is, this is a schedule with the largest cover among all possible
NE schedules for this instance. A different schedule, that assigns a job of size 1 to M1 and the jobs of sizes
2s− 1 and 1 + ε to M2, is also an NE, but has a smaller cover (of 1). Clearly, no schedule that has all three
jobs assigned to one of the machines and has a cover of value 0 is stable. Now consider a schedule that has
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the job of size 2s−1 assigned to M1 and the two jobs of sizes 1+ ε and 1 assigned to M2. As 2+ε
s > 2s−1

for any s > 1.28, it has a cover of 2s − 1, which is larger than the cover of the schedule produced by the
LPT for s in the considered interval. This is not a NE schedule for s ≥ s0 though, as for these values of s
we find 2s− 1 > 2s−1+2+ε

s holds, and the job of size 2s− 1 will benefit from moving to M2. The optimal
schedule assigns the two jobs of sizes 1 + ε and 1 to M1, and the job of size 2s− 1 to M2, and has a cover
of 2s−1

s = 2 − 1
s and (2 − 1

s < 2, for positive s). It is not stable, though, as the job of size 1, for example,
will benefit from moving to M2. We conclude that POS(s) ≥ 2− 1

s for s ∈ [s0, 2] (letting ε tend to 0).
Now consider the case 1 ≤ s ≤ 4/3. We now use an instance with four jobs, two of size 2 − s + ε

and two of size s − 1 (note that 2(s − 1) < 2 − s + ε). The optimal cover is (1 + ε)/s (two jobs on each
machine). Consider the possible allocations of the jobs. If there is a machine with one job, then the cover is
at most 2− s+ ε for a bound that tends to 1/(2s− s2) as desired. If the two small jobs are on one machine,
the cover is at most 2(s − 1), which is even less. If each machine has two different jobs, we do not have a
Nash equilibrium, because the small job on the slow machine can improve by moving. Its current delay is
1 + ε, and the delay on the fast machine would be only (2(s− 1) + 2 − s + ε)/s = 1 + ε/s. Hence in all
cases, either the cover is at most 2− s+ ε or the schedule is not a Nash equilibrium.

It is interesting to note that while the POS is equal to 3
2 for s = 2, it becomes unbounded already for

s = 2 + ε for arbitrary small positive ε.
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