
Maximizing the Minimum Load: The Cost of Selfishness∗

Xujin Chen† Leah Epstein‡ Elena Kleiman§ Rob van Stee¶

Abstract

We consider a scheduling problem on m machines, where each job is controlled by a selfish agent.
Each agent is only interested in minimizing its own cost, defined as the total load of the machine that its
job is assigned to. We consider the objective of maximizing the minimum load (the value of the cover)
over the machines. Unlike the regular makespan minimization problem, which was extensively studied
in a game theoretic context, this problem has not been considered in this setting before.

We study the price of anarchy (POA) and the price of stability (POS). These measures are unbounded
already for two uniformly related machines [11], and therefore we focus on identical machines. We
show that the POS is 1, and derive tight bounds on the pure POA for m ≤ 7 and on the overall pure POA,
showing that its value is exactly 1.7. To achieve the upper bound of 1.7, we make an unusual use of
weighting functions. Finally, we show that the mixed POA grows exponentially with m for this problem.

In addition, we consider a similar setting of selfish jobs with a different objective of minimizing the
maximum ratio between the loads of any pair of machines in the schedule. We show that under this
objective the POS is 1 and the pure POA is 2, for any m ≥ 2.

keywords: scheduling; price of anarchy; machine covering; envy-ratio.

1 Introduction

Classical optimization problems, and network optimization problems in particular, are often modelled as
non-cooperative strategic games. Many solution concepts are used to study the behavior of selfish agents in
non-cooperative games. Probably the best known concept is that of the Nash equilibrium (NE) [24]. This is
a state which is stable in the sense that no agent can gain from switching strategies unilaterally. Following
recent interest of computer scientists in game theoretical concepts with respect to scheduling and routing
problems [25, 21, 27], we study Nash equilibria for a scheduling problem on identical machines where the
goal is maximizing the minimum load. The novelty of our study compared to other work in the area is that
the social goal is very different from the private goals of the players.

A set of n jobs J = {1, 2, . . . , n} is to be assigned to a set of m identical machines M = {1, . . . ,m},
such that each job is assigned to one of the machines. The size of job k (for 1 ≤ k ≤ n) is denoted by pk.
An assignment or a schedule is a function A : J → M . Thus A(k), also denoted by Ak, is the index of
the machine that job k is assigned to. The load of machine i, which is also called the delay of this machine,
is Li(A) =

∑
k:Ak=i

pk. We let Lmin(A) = min1≤i≤m Li(A) and Lmax(A) = max1≤i≤m Li(A). We
sometimes use Li, Lmin, and Lmax, if the schedule A is clear from the context. The value (or the social
∗A preliminary version of this paper appeared as [10].
†Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100190, PR China. xchen@amss.cas.cn. Re-

search supported in part by the National Science Foundation of China under grant 11222109.
‡Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il.
§Department of Mathematics, University of Haifa, 31905 Haifa, Israel. elena.kleiman@gmail.com.
¶Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany. vanstee@mpi-inf.mpg.de. Research supported by

the German Research Foundation (DFG).

1

value) of a schedule A is the minimum delay of any machine, Lmin(A), also known as the value of the
cover. We sometimes denote it by COVER(A). We study the problem of maximizing the value of the cover
[6]. This problem is dual to the makespan scheduling problem [18], where the goal is to minimize Lmax(A).

The problem of maximizing the minimum load, considering jobs as selfish agents, can be modelled
as a routing problem. In this setting, machines are associated with parallel links between a source and
a destination. The links have bounded capacities, and a set of users request to send certain amounts of
unsplittable flow between the two nodes. Requests are to be assigned to links and consume bandwidth that
depends on their sizes. The cost charged to a user for using a link equals to the total amount of the utilized
bandwidth of that link. Thus, the selfish users prefer to route their traffic on a link with small load. This
scenario is similar to the model proposed by Koutsoupias and Papadimitriou [21, 17, 14], but our model
has a different social goal function. Other motivations come from issues of Quality of Service, fair resource
allocation, and fair queuing.

A machine covering game is characterized by a set of atomic players N such that each player controls
a single job and selects the machine to which it will be assigned. We associate each player with the job it
wishes to run, that is, N = J . The set of strategies for each job is the set M of all machines. Each job must
be assigned to one machine. The outcome of the game is a schedule or an assignment A = (Ak)k∈N ∈
×k∈NM of jobs to the machines, where Ak for each 1 ≤ k ≤ n is the index of the machine that job k
chooses to run on. Let S denote the set of all possible assignments. The cost function of job k ∈ N is
denoted by ck(A) : S → R+ (abbreviated by ck). The cost ck(A) charged from job k running on machine
i in a given assignment A (a job k such that Ak = i) is defined to be the load observed by machine i in
this assignment, that is, ck(A) = Li(A). The goal of each (selfish) job is to run on a machine with a load
that is as small as possible. An assignment A is a (pure) Nash equilibrium (NE), if every job k satisfies the
following. Let i = Ak. There does not exist a machine i′ 6= i for which Li′(A) + pk < Li(A). That is, a
schedule is an NE, if no job can obtain a lower cost by changing its strategy while all other jobs keep their
strategies unchanged. For this selfish goal of players, a pure NE (with deterministic agent choices) always
exists [17, 14]. In these articles the private goals of players are defined as here, while a different social goal
is studied. The social goal is irrelevant to the property of a schedule being an NE since only the private
goals have a role in the definition, so the set of NE schedules is the same, no matter whether the social goal
is to minimize the makespan or to maximize the minimum load.

We can also consider mixed strategies, where players use probability distributions over possible strate-
gies. Let tik ≥ 0 denote the probability that job k ∈ N chooses to run on machine i (such that

∑m
i=1 t

i
k = 1).

A strategy profile is a matrix P = (tik)k∈N,i∈M that specifies the probabilities for all jobs and all machines.
Every strategy profile P induces a random schedule. The expected load E(Li) of machine i in the setting
of mixed strategies is E(Li) =

∑
k∈N pkt

i
k, that is, job k adds to the load of machine i its size times the

probability that it chooses this machine. The expected cost of job k if assigned to machine i (or its expected
delay when it is allocated to machine i) is E(cik) = pk+

∑
j 6=k pjt

i
j = E(Li)+(1−tik)pk. Here the expected

load is computed under the assumption that job k chooses machine i (with probability 1), while the other
jobs choose their machines according to the probability distribution. The probabilities (tik)k∈N,i∈M give
rise to a (mixed) Nash equilibrium if and only if any job k cannot strictly decrease its cost by changing its
probability distribution unilaterally, and it assigns non-zero probabilities only to machines i that minimize
E(cik), that is, tik > 0 implies E(cik) ≤ E(c`k) for any ` ∈ M . This is equivalent to saying that a job assigns
positive probabilities only to machines where the expected load resulting from other jobs is minimum. The
social value of a strategy profile P is the expected minimum load over all machines, i.e. E(mini∈M Li).

The sets of optimal solutions for the two goal functions, maximization of the minimum load, and
makespan minimization, may be different. An example given in [1], with m = 3, p1 = 13, p2 = p3 = 9,
and p4 = p5 = p6 = 6, has disjoint sets of optimal solutions for the two problems (see Figure 1 for an
illustration). However, the set of NE schedules is independent of the social goal as explained above, and
therefore this set is common to the two goal functions. To demonstrate the non-triviality of the problem of

2

maximizing the minimum load with respect to Nash equilibria, consider the following example (see Figure
2 for an illustration). Let m = 3, p1 = p2 = p3 = 8, p4 = p5 = p6 = 4, and p7 = p8 = 1. One optimal
solution assigns one job of size 8 and one job of size 4 to each machine, and machine 1 has also the last two
unit sized jobs. The social value of this assignment is 12, but this solution is not an NE (since moving job 7
or job 8 to another machine would result in a smaller cost for the moved job). On the other hand, assigning
the subsets of jobs {1, 2}, {4, 5, 6}, {3, 7, 8} to the three machines results in an NE, but its social value
is only 10. We will show, however, that the two sets, consisting of optimal solutions and of NE schedules
(for the same instance), are never disjoint, similarly to the situation for the makespan minimization problem
[17, 14]. In particular, for cases where the sets of optimal solutions for the two social goals are disjoint,
there must exist at least two distinct NE schedules.

0

6

15

18

9

12

2

5

6

4

3

1

13

19

2

5 6

4

3
1

Figure 1: The example of [1]. The unique optimal solution for makespan minimization is given on the left
hand side, and the unique optimal solution for maximizing the minimum load (up to swapping jobs of equal
size) is given on the right hand side.

For a game in this class, the coordination ratio, or price of anarchy (POA) [26] is the worst case ratio
between the social value (i.e., the minimum delay of any machine, or the value of the cover) of an optimal
schedule, denoted by OPT, and the social value of any NE. If both these values are 0 then we define the
POA to be 1. The price of stability (POS) [2] is the worst case ratio between the social value of an optimal
solution, and the social value of the best NE. Again, if both these values are 0 then we define the POS to
be 1. The POA and POS can be defined for one game (a specific instance of jobs and machines), but also
for the complete set of games, or for subclasses of games. We let POA(m) and POS(m) denote the POA

and POS, respectively, for the class of games with m identical machines. We let POA and POS denote the
overall values for all possible games, that is, POA = supm POA(m) and POS = supm POS(m). Note that
POS(1) = POA(1) = 1, as in the case m = 1 there is one schedule for every set of jobs (where this schedule
is socially optimal and an NE).

In addition, we study the mixed POA (MPOA), where we consider mixed Nash equilibria that result
from mixed strategies, where the players’ choices are not deterministic and are regulated by probability
distributions on a set M of pure strategies. A mixed Nash equilibrium (defined above) is characterized by
the property that there is no incentive for any job to deviate from its probability distribution (a deviation is

3

0

4

10

16

8

2

4
1

12

3
5

6
7
8

2

4

1 3

5 6
7
8

14

Figure 2: An exa,ple. An NE that is not a socially optimal solution is given on the left hand side, and an
optimal solution for the same input that is not an NE is given on the right hand side.

any modification of its probability vector over machines), while probability distributions of other players
remain unchanged. The existence of such an equilibrium over mixed strategies for non-cooperative games
was shown by Nash in his famous work [24]. The values MPOA and MPOS are defined similarly to the pure
ones, but mixed Nash equilibria are being considered instead of pure ones. Clearly, any pure NE is a mixed
NE. In this case we use MPOA to denote overall value for all machine covering games, and MPOA(m) for
games with m machines (and analogously, we use MPOS and MPOS(m)).

Our results and related work. The non-selfish version of the problem has been well studied (known by
different names such as “machine covering” and “Santa Claus problem”) in the computer science literature
(see e.g. [6, 3, 9]). Various game-theoretic aspects of max-min fairness in resource allocation games were
considered before this paper (e.g. in [28]), but unlike the makespan minimization problem for which the POA

and POS were extensively studied (see [21, 5, 23]), these measures were not previously considered for the
uncoordinated machine covering problem in the setting of selfish jobs. A different model, where machines
are selfish rather than jobs (with the same social goal function) was studied recently in [13, 7, 12].

For identical machines, we show that POS(m) = 1 for every m ≥ 2 in Section 3. Hence POS =
MPOS = 1. As our main result, we study the POA and show the tight bound of 1.7 on its overall value. This
is in contrast with the makespan minimization social goal, where it is known that the POA for m identical
machines is 2m

m+1 , giving an overall bound of 2 [16, 29].
For the analysis of our upper bound we use the weighting function technique, which is uncommon in

scheduling problems. Moreover, we use not only the weight function but also its inverse function in our
analysis. Surprisingly, this bound is the approximation ratio of the well-known algorithm for bin pack-
ing, First-Fit [19] (see also [8]). We furthermore prove that the POA is monotonically non-decreasing
as a function of m. For small numbers of machines we provide the exact values of POA: we find that
POA(2) = POA(3) = 3/2, POA(4) = POA(5) = 13/8 = 1.625, and POA(6) = POA(7) = 5

3 . As for
the MPOA, we show that its value is very large as a function of m, and MPOA(2) = 2. Note that for
the makespan minimization social goal MPOA(m) = Θ(logm

log logm) and MPOA(2) = 3
2 [21, 5]. The POA is

4

analyzed in Section 2, and the MPOA in Section 4.
In this paper, we focus on identical machines, which is an important special case of uniformly related

machines. It is shown in [11]1 that for this more general variant, even the POS is unbounded already for any
number of machines m ≥ 2 with a maximum speed ratio larger than 2, and the POA is unbounded for a
speed ratio of at least 2. This is very different from the results in the situation of the makespan minimization
social goal, where the POA is finite [5, 15]. A study of the cases where the speed ratio is no larger than 2 can
be found in [11, 20, 30].

In Section 5, we present a different model where the social goal is to minimize the ratio between the load
of the most loaded machine and the least loaded machine, and we show tight bounds on the POS and POA

for any number of identical machines. Similarly to the results of [11], one can argue that for any number of
uniformly related machines these measures are unbounded.

2 The POA of the machine covering game

An example given in the introduction demonstrates that not every NE schedule is optimal. In what follows
we measure the extent of deterioration in the quality of NE schedules due to the effect of selfish and unco-
ordinated behavior of the players (jobs), in the worst case. As described in the introduction, the measures
we use are the POA and the POS. In this section, we analyze the POA.

Throughout this section, we consider assignments of jobs to machines whose value of cover is exactly 1.
Every schedule whose value of cover is positive can be scaled to satisfy this requirement. We neglect other
schedules (where the value of cover is zero) since in such a schedule there is either a machine which has at
least two jobs, in which case the schedule is not an NE (since another machine has no jobs), or n < m. In
the latter case, such a schedule is socially optimal. Thus, neither of these cases is of interest for the study of
the POA. We letA denote an assignment for a given instance of the machine covering game (and we assume
COVER(A) = 1).

Before we proceed, we prove two useful observations.

Observation 1. A is an NE if and only if for every job the total size of all other jobs assigned to the same
machine is at most 1.

Proof. Assume that for every job k, the total size of jobs assigned with it is at most 1. All other machines
have loads of at least 1, and thus moving to another machine is not beneficial for k. Therefore, a schedule
satisfying this property for every job is an NE.

Assume now that the schedule is an NE, and assume by contradiction that a job k does not satisfy
this property. The machine of k is not the least loaded machine, as there is a machine of load exactly 1.
Thus, k would benefit from moving to the least loaded machine, contradicting the property that A is an NE
schedule.

Observation 2. The function POA(m) is monotonically non-decreasing as a function of the number of
machines m.

Proof. Assume thatA is an NE schedule for a set of jobs J = {1, 2, . . . , n} and m− 1 machines (such that
COVER(A) = 1). Let C ′ ≥ 1 be the optimal cover value for J and m− 1 machines. Let J ′ = J ∪ {n+ 1},
where pn+1 = C ′. LetA′ be the schedule that is identical toA form−1 machines, and job n+1 is assigned
to machine m. Similarly, modify an optimal schedule by adding a machine to which this job is assigned.
The value of cover of A′ is exactly 1, and the value of the cover of an optimal schedule for J ′ is at least C ′.
By Observation 1 A′ is an NE assignment.

1See also the conference version [10], where this result was claimed.

5

In what follows, in every upper bound proof we consider a specific NE scheduleA for m machines. We
denote a machine which is loaded by 1 inA by P . All other machines are called tall machines. We partition
the tall machines into three classes. Tall machines running a single job in A are called singleton machines.
Tall machines running two jobs in A are called paired machines, and other tall machines are called regular
machines. The jobs assigned to singleton, paired, and regular machines are called singleton, paired, and
regular jobs, respectively.

Let C be the value of the optimal cover for this instance. Out of all instances with m machines, and
an optimal cover of value at least C, we assume without loss of generality that the instance of A has a
maximum number of jobs of size 1; by Observation 1, the number of such jobs does not exceed 2m (in fact,
it does not exceed 2m−1, since a machine of load 1 inA, which must exist, can only contain one such job),
and thus A is well-defined. Let W denote the total size of jobs in this instance. Let x denote the number of
paired machines in A, let y denote the number of singleton machines in A, and let z denote the number of
regular machines in A. Including P , we have in total x+ y + z + 1 = m machines.

Observation 3. C ≥ 1 and W ≥ mC. All paired jobs have size 1.

Proof. The claims regarding C are obvious. If there exists at least one paired job whose size is not 1, then
by Observation 1, its size is below 1. Replace all such jobs with jobs of size 1 (without changing their
machines in A), and let A′ be the resulting schedule. The value of the cover of an optimal solution for the
new instance is at least C. By Observation 1, the scheduleA′ is an NE schedule. This contradicts the choice
of A as an NE schedule for m machines with a maximum number of jobs of size 1.

Lemma 4. Let k be a job assigned to a regular machine inA, and let T be the load of its machine inA. We
have T ≤ 1 + pk, T ≤ 2− pk, and T ≤ 1.5.

Proof. By Observation 1, the total size of all jobs except for k is at most 1, i.e., T ≤ 1 + pk. Let k1 and k2
be two other jobs assigned to the same machine in A. Using T ≤ 1 + pk1 and T ≤ 1 + pk2 , together with
T ≥ pk + pk1 + pk2 , we find 2T ≤ 2 + pk1 + pk2 ≤ 2 + T − pk, which implies T ≤ 2 − pk. The sum of
the two inequalities T ≤ 1 + pk and T ≤ 2− pk implies T ≤ 1.5.

Observation 5. If y ≥ 1, then there exists a schedule A′ for m− 1 machines that is an NE schedule, such
that the value of the optimal cover for it is at least C. Thus C ≤ POA(m− 1).

Proof. We construct an instance for m− 1 machines, for which the value of cover in an optimal schedule is
at least C, and an NE schedule A′ for which the value of cover is 1.

Remove a singleton job jk and the singleton machine running jk in A. By Observation 1, the resulting
schedule A′ is an NE. The value of the cover remains 1 as only a tall machine was removed. To create
a schedule whose value of cover is at least C, consider an optimal schedule that uses m machines for the
original number of jobs. Remove the machine running jk. If this machine has additional jobs, move them
to other machines. Let C ′ ≥ C be the resulting value of cover. We find C ′ ≤ POA(m − 1) and thus
C ≤ POA(m− 1).

Our analysis of the upper bound on the POA for small values of m strongly relies on the following two
observations, which hold for any m.

Observation 6. The total size of jobs assigned in A to a regular machine that has t ≥ 3 jobs assigned to is
at most t

t−1 , which is a decreasing function of t. The total size of jobs assigned to a paired machine is 2.

Proof. By Observation 1, every t − 1 of these jobs have a size of at most 1. Summing this up over all t
subsets of t−1 jobs produces the first inequality claimed, as every job participates in t−1 such inequalities.
The second part follows from Observation 3.

6

Observation 7. Assume that there are no singleton machines. Then C ≤ 4x+3z+2
2m = 3m−1+x

2m ≤ 2m−1
m =

2− 1
m .

Proof. From Observations 6 and 3 we get mC ≤ W ≤ 2x + 3
2z + 1, which gives C ≤ 4x+3z+2

2m =
3m−1+x

2m ≤ 2m−1
m , where the equality holds since 3(x+ z) = 3m− 3, and the second inequality holds since

x ≤ m− 1.

The next theorem gives a simple upper bound of 1.75 on the overall POA. It is used to prove upper
bounds on POA(m) for small values of m.

Theorem 8. For even values of m ≥ 2, POA(m) ≤ 7
4 −

1
2m . For odd values of m ≥ 3, POA(m) ≤

7
4 −

1
2(m−1) . Thus, POA ≤ 1.75.

Proof. We prove the claim by induction on m. For m = 2 the claim is POA(2) ≤ 3
2 . If there are no

singleton machines, then the claim follows from Observation 7. Otherwise, it follows from Observation 5,
as POA(1) = 1.

For the inductive step, we can only consider cases where there are no singleton machines (otherwise the
inductive hypothesis can be used).

Consider first the case that there are at most bm2 c paired machines. Thus, the number of regular machines
is at least dm2 e−1 (i.e., x ≤ m

2 and z ≥ m
2 −1 if m is even, and x ≤ m−1

2 and z ≥ m−1
2 if m is odd). Using

Observation 7 we find C ≤ 3m−1+bm
2
c

2m , which gives C ≤ 7
4 −

1
2m for even m, and C ≤ 3m−1+m−1

2
2m =

7
4 −

3
4m ≤

7
4 −

1
2(m−1) for odd m ≥ 3.

Next, suppose that x > bm2 c, i.e., x > m
2 . Consider a socially optimal schedule O where the number of

machines having at least three paired jobs is minimal. We show that no machine has more than two paired
jobs in O. Assume that there exists a machine having q ≥ 3 such jobs in O. There are at most m − 1
paired machines in A, and thus there are at most 2(m − 1) paired jobs. We show that we can move q − 2
jobs from this machine of O to other machines such that no machine will have more than two paired jobs.
The value of the cover of the resulting schedule cannot be larger than the cover value of the original one, as
this would contradict optimality. For every machine whose load has decreased, its new load is at least 2 (by
Observation 3), and since C < 2 (by Observation 7), its new load is at least C. Therefore, the value of the
cover of the resulting schedule is still exactly C. Thus, if moving these jobs can be done, then we can create
an alternative optimal schedule where the number of machines having more than two paired jobs is smaller,
contradicting the choice of O.

To satisfy the condition that no machine will have more than two paired jobs, it is possible to move
at most two jobs to each machine of O that has no paired jobs, and at most one job to a machine which
already has one paired job. Let γ0 and γ1 be the numbers of such machines inO (having no paired jobs, and
one paired job, respectively). The number of paired jobs is thus at least γ1 + 2(m − γ1 − γ0 − 1) + q =
2m− 2γ0 − γ1 − 2 + q, and since it is at most 2(m− 1), we find 2γ0 + γ1 ≥ q > q − 2, and all q − 2 jobs
can be moved appropriately.

Let ρ = 2x be the number of paired jobs (so m < ρ ≤ 2(m− 1)). In the optimal schedule O there are
at least ρ−m machines with exactly two paired jobs assigned to each of them (as otherwise some machine
would have more than two such jobs). Therefore, in O there are at least ρ − m machines of load at least
2, and we find W ≥ 2(ρ − m) + C(2m − ρ). By Lemma 4 we also have W ≤ 3

2(m − 1) + x
2 + 1 =

3
2m+ ρ

4−
1
2 . Combining the two inequalities we find 3

2m+ ρ
4−

1
2−2(ρ−m) ≥ C(2m−ρ), or alternatively,

C(2m− ρ) ≤ 7
4(2m− ρ)− 1

2 . Finally, using ρ ≥ m+ 1 we get C ≤ 7
4 −

1
2(m−1) .

Before we present the proof of our bounds on the POA for general m, to get the notion of the problem,
we prove tight bounds on the POA for simple cases where 2 ≤ m ≤ 7.

Theorem 9. POA(2) = POA(3) = 3
2 , POA(4) = POA(5) = 13

8 , POA(6) = POA(7) = 5
3 .

7

Proof. The upper bounds follow from Theorem 8. By Observation 2, we only need to prove lower bounds
form = 2, 4, 6. The lower bounds follow from the following instances. Form = 2, there are two jobs of size
1 and two jobs of size 1

2 . By assigning one job of each size to each machine, we can create a schedule whose
value of cover of is 3

2 . An assignment where one machine has the two larger jobs and the other machine has
the two smaller jobs is an NE by Observation 1, and its value of cover is 1. This shows POA(2) ≥ 3

2 . For
m = 4, there are four jobs of each of the sizes 1, 1

2 , 1
8 . By assigning one job of each size to each machine,

we can create a schedule whose value of cover of is 13
8 . An assignment where two machines have two jobs

of size 1 each, one machine has three jobs of size 1
2 , and another machine has the remaining jobs, is an NE

by Observation 1, and its value of cover is 1. For m = 6, there are six jobs of each of the sizes 1, 1
2 , 1

6 . By
assigning one job of each size to each machine, we can create a schedule whose value of cover of is 5

3 . An
assignment where three machines have two jobs of size 1 each, two machines have three jobs of size 1

2 , and
another machine has the six remaining jobs (each of which has size 1

6) is an NE by Observation 1, and its
value of cover is 1.

2.1 The overall POA

In this section, we improve the upper bound above, and prove that POA = 1.7. Recall that we consider an
NE assignment A for which the value of the optimal cover is C. Additionally to the prior assumptions,
we also assume that the analyzed assignment is minimal with respect to the number of machines (among
assignments for which COVER(OPT) ≥ C). Thus, no machine in A is a singleton machine. This can be
assumed due to Observation 5.

Claim 10. No job has a size larger than 1.

Proof. This follows from the fact that there is no singleton machine in A, and thus the condition of Obser-
vation 1 holds for any proper subset of jobs assigned to a tall machine. Jobs assigned to P obviously have
sizes no larger than 1.

We define a weight function w(x) on sizes of jobs.

w(x) =

1
2 , for x ∈ [23 , 1]
x

2−x , for x ∈ (12 ,
2
3)

x
x+1 , for x ∈ (0, 12]

The motivation for the weight function is to define the weight of a job j to be at least the fraction of its
size out of the total size of jobs assigned to the same machine in A.

Claim 11. The function w is continuously non-decreasing. For every x ∈ (0, 1], w(x) < x. For every
x ∈ (0, 23), w(x) < 1

2 . For every x ∈ (0, 23], w(x) ≥ 2x
3 . For a job of size x assigned to a tall machine of

load T in A, w(x) ≤ x
T .

Proof. It is not difficult to see that the function is piecewise non-decreasing, and continuous at breakpoints.
Thus w(x) ≤ 1

2 , and if x < 2
3 , then w(x) < 1

2 . For x < 1, 2− x > 1, and for x > 0, x+ 1 > 1. Therefore,
w(x) < x. If x ∈ (0, 12], then w(x)

x = 1
x+1 ≥

2
3 , as x ≤ 1

2 . If x ∈ (12 ,
2
3], then w(x)

x = 1
2−x ≥

2
3 , as x ≥ 1

2 .
Consider the last claim, and a job j of size x assigned to a tall machine. If j is assigned to a paired

machine in A, then by Observation 3, x = 1, w(x) = 1
2 , T = 2, and we have w(x) = x

T . Otherwise, j
is assigned to a regular machine i. By Lemma 4, the total size of jobs assigned to i in A is no larger than
min{1 + x, 2− x}. Thus the claim holds if x < 2

3 . Otherwise, using x ≥ 2
3 we have T ≤ 2− x ≤ 2x, and

w(x) = 1
2 = x

2x ≤
x
T .

8

Claim 12. The total weight of jobs scheduled on P in A is less than 1. The total weight of jobs scheduled
on a tall machine in A is at most 1.

Proof. The property for P follows from the fact that P has load 1 and w(x) < x. For a tall machine, where
the total size of jobs is T , the total weight is at most 1, as w(x) ≤ x

T for all x.

Claim 13. There is a machine in the optimal assignment whose total weight is strictly smaller than 1.

Proof. The total weight of all jobs is less than m by Claim 12.

The inverse function, f(y), of the weight function, w(x), is defined for y ∈ (0, 12) by

f(y) =

{
2y
y+1 , for y ∈ (13 ,

1
2)

y
1−y , for y ∈ (0, 13]

Note that f(y) is continuous at 1
3 , and that it is monotonically increasing in (0, 12). We do not define f for

y = 1
2 , since w(x) = 1

2 for all x ∈ [23 , 1].

Claim 14. The total size of any set of jobs with total weight below 1 is at most 1.7.

Proof. Consider a set of jobs I of a total weight strictly below 1. If there is no job of size at least 2
3 in I , then

as x
w(x) ≤

3
2 , the total size of the jobs in I does not exceed 3

2 . Otherwise, recall that for any x, w(x) ≤ 1
2 ,

thus there is exactly one job of weight 1
2 , and its size is no larger than 1. It is therefore sufficient to show

that the total size of any set of jobs I ′ which has total weight below 1
2 is at most 0.7, that is, if there is a

set of numbers µ1 ≥ · · · ≥ µ` > 0, such that
∑`

i=1 µi <
1
2 , then

∑`
i=1 f(µi) ≤ 7

10 . Clearly, µ2 < 1
3 (as

otherwise µ1 + µ2 ≥ 2µ2 >
2
3).

There is at most one job of weight in (13 ,
1
2) in I ′. If there is one such job we show that without loss of

generality, there is at most one other job in I ′, and its weight is in (0, 13]. Else, we show that there are at
most two jobs, and their weights are in (0, 13]. Let f1(y) = y

1−y and let f2(y) = 2y
y+1 .

The function f1(y) is convex, thus, for any pair of jobs of weights α, β such that α + β ∈ (0, 13],
f1(0) + f1(α + β) ≥ f1(α) + f1(β) holds. As f1(0) = 0, it turns into f1(α + β) ≥ f1(α) + f1(β).
Therefore, if there are two jobs of total weight at most 1

3 , then they can be combined into a single job while
as a result, their total size cannot decrease. If there exists a job of weight larger than 1

3 , then the total weight
of jobs of weight at most 1

3 is at most 1
6 , so they can all be combined into a single job. Moreover, among any

three jobs of a total weight of at most 1
2 , there exists a pair of jobs of total weight no larger than 1

3 , which
can be combined as described above, so if there is no job of weight larger than 1

3 , still jobs can be combined
until at most two jobs remain. Thus, there are only two cases to consider.

Case 1 There is one job of weight in [0, 13] and at most one job of weight in (13 ,
1
2). Let their weights be

0 ≤ y1 ≤ 1
6 and 1

3 < y2 <
1
2 − y1 (the case y1 = 1

6 has the meaning that the job of weight in (13 ,
1
2) does

not exist). We have f1(y1) + f2(y2) < f1(y1) + f2(
1
2 − y1), due to the monotonicity of f2. We bound

the function f1(y1) + f2(
1
2 − y1) = y1

1−y1 + 1−2y1
3
2
−y1

. This function of y1 is monotonically increasing for

y1 ∈ [0, 16], so its greatest value is for y1 = 1
6 , and it is 1

5 + 1
2 = 7

10 .

Case 2 There are at most two jobs, where each job has a weight in (0, 13]. If there is at most one job,
then its size is at most 1

2 . We therefore focus on the case of exactly two such jobs. Recall that the total
weight of the two jobs is larger than 1

3 (since they cannot be combined). The total weight of these jobs is
less than 1

2 , and we denote their weights by y > 1
6 and 1

3 − y < y′ < 1
2 − y. By the monotonicity of f ,

9

f1(y) + f1(y
′) ≤ f1(y) + f1(

1
2 − y) = y

1−y +
1
2
−y

y+ 1
2

. This function is monotonically decreasing in (16 ,
1
4] and

increasing in (14 ,
1
3], and its values at the endpoints 1

6 and 1
3 are both 7

10 .

Theorem 15. POA ≤ 1.7.

Proof. This follows from Claims 13 and 14.

Next, we provide a tight lower bound.

Theorem 16. POA ≥ 1.7.

Proof. For i ≥ 0, let ni = 2(4i−1)
3 . Note that n0 = 0, and ni = 4ni−1 + 2 for all i ≥ 1. We define an

instance of machine covering I (`) for every integer ` ≥ 1. Let

δ =
1

30n`
=

1

20(4` − 1)
.

There are m = 2(10` − 1) = 18
∑`−1

j=0 10j identical machines, and five types of jobs.
The first type of jobs are m jobs of size 1. The other job types 2, 3, 4, 5 are summarized in the following

table. These jobs are introduced for 1 ≤ i ≤ `.

Type Size Number of jobs

2 ai = 1
2 + (ni − 1)δ 6 · 10`−i

3 bi = 1
2 − (ni − 1)δ 12 · 10`−i

4 ci = 1
5 + 4ni−1δ 12 · 10`−i

5 di = 1
5 − niδ 6 · 10`−i

Note that c1 = 1
5 + 4n0δ = 1

5 , and d` = 1
5 − n`δ = 1

5 −
1
30 = 1

6 .

Lemma 17. For any I (`), there exists an assignment that has the cover value 1, and it is an NE.

Proof. We define an assignment where every machine has load of at least 1, and for every job, the total size
of other jobs assigned to the same machine is at most 1. This last property implies that the assignment is an
NE, by Observation 1.

Let assignment A be defined as follows.

(i) Jobs of size 1 are assigned in pairs to m1 = m
2 machines.

(ii) For every i = 1, 2, . . . , `, there are 6 · 10`−i machines with two jobs of size bi and one job of size ai
assigned to each such machine. This results in the load ai+2bi = 1

2 +(ni−1)δ+2(12 − (ni−1)δ) =
3
2 − (ni − 1)δ, and the total size of any two jobs assigned to such a machine is at most ai + bi = 1.
These jobs occupy m2 = 6

∑`−1
j=0 10j = 610`−1

9 machines in total.

(iii) The jobs of size c1 are assigned to m3 = 2 · 10`−1 machines, such that every such machine has six
jobs. The load of each machine is 6

5 , and the size of every five such jobs is exactly 1.
(iv) For every i = 1, 2, . . . , ` − 1, one job of size ci+1 is assigned with five jobs of size di to a machine.

The number of jobs of the first size is 12 · 10`−i−1, and the number of jobs of the second size is
6 · 10`−i = 5 · 12 · 10`−i−1 (note that ` − i − 1 ≥ 0), thus the number of required machines is
12 · 10`−i−1. The load of each machine is ci+1 + 5di = 1

5 + 4niδ + 5(15 − niδ) = 6
5 − niδ. The total

size of five jobs assigned to one machine is at most ci+1 + 4di = 1.
This subset of jobs occupies m4 = 12

∑`−2
j=0 10j = 1210`−1−1

9 machines in total.

10

(v) All the jobs of size d` (six such jobs) are assigned together to one machine. The load of this machine
is 1. Let m5 = 1.

Since
∑5

j=1mj = m
2 + 610`−1

9 + 2 · 10`−1 + 1210`−1−1
9 + 1 = m

2 + 10` − 1 = m, we see that A is
well-defined and has the cover value 1 (since there is one machine with load 1, and other machines have
larger loads).

Lemma 18. For any I (`), there exists an assignment that has a cover value of 1.7− δ = 1.7− 1
30n`

.

Proof. Every machine will be assigned one job of size 1, and a pair of jobs, either of sizes ai and di, or of
sizes bi and ci (for some 1 ≤ i ≤ `). We have 1+ai+di = 17

10−δ, and 1+bi+ci = 17
10 +(4ni−1−ni+1)δ =

17
10 − δ.

The number of machines is 18
∑`−1

j=0 10j = m, as required.

With ` tending to ∞, δ = 1
30n`

approaches zero, which implies that the POA of the covering game on
identical machines is at least 1.7.

3 The POS of the machine covering game

We show that for every instance of the machine covering game, there exists an optimal assignment that is
also an NE. Our proof technique is based upon the technique which was used in [17, 14] to prove that in
job scheduling games where the selfish goal of the players is to run on the least loaded machine (like in our
machine covering game), any sequence of improvement steps converges to an NE. To compare assignments,
we use a lexicographical non-decreasing ordering ≺L of the vectors of their loads, where these vectors are
first sorted internally by non-increasing load.

Lemma 19. For any instance of the machine covering game, an optimal schedule that is minimal with
respect to the lexicographical order is an NE.

Proof. Let A∗ be an optimal assignment such that no other optimal assignment A satisfies A ≺L A∗. We
show that A∗ is an NE assignment. Assume by contradiction that A∗ is not NE, that is, there is at least
one job that would benefit from moving to another (lower) machine. Consider the maximum index machine
with such a job, call it i and let the job be denoted by k, and its size by p. Job k is selfish, and will move to
the least-loaded machine (or one of the least-loaded machines if there are several such machines) in A∗. In
particular it will want to move to machine m. Denote the resulting assignment by A′.

We have Lmax(A∗) − p ≥ Li(A∗) − p > Lm(A∗) = Lmin(A∗) by the assumption and the sorting
of the machines. This implies that the maximum load does not increase and the minimum load does not
decrease as a result of the move of k. Hence, the cover can only increase, and since A∗ is optimal, it must
remain unchanged. So the minimum load remains the same as well.

As a result of k moving from i to m, i may move down in the machines since they are ordered by load,
while m may move up. If they do not pass each other, it is clear that the new vector is lexicographically
smaller since the loads on all machines until i (wherever it is now) are the same or smaller, and at least
one is really smaller. If they do pass each other, consider the machines in the order in which they are in
assignment A∗, but with machines i and m interchanged. Then move m down to its correct place (it does
not pass i). The resulting load vector, restricted to the first j entries where j is the final position of machine
m, is lexicographically smaller than A∗ analogously to before (the new load of m is less than the old load
of i). Then this also holds for A′ which only permutes the remainder of the vector, which we ignore for the
lexicographic comparison. But this contradicts the minimality of A∗.

Theorem 20. POS(m) = 1 for any m ≥ 2.

11

Proof. Since for any set of n jobs there are finitely many possible assignments, among the assignments that
are optimal with respect to our social goal there exists at least one which is minimal with respect to the total
order ≺L, and according to Lemma 19 this assignment is an NE. As no NE assignment can have a strictly
greater social value than the optimal one, we conclude that POS = 1.

4 Mixed equilibria for the machine covering game

In the setting of mixed strategies, we consider the case of identical machines, similarly to [21]. In that work,
it was shown that the mixed POA for two machines and the makespan minimization objective is 3

2 . In this
section, we prove that the mixed POA for two machines is equal to 2 for the objective of maximizing the
value of the cover.

We start by showing that for m identical machines, MPOA(m) can be exponentially large as a function
of m, unlike the makespan minimization problem, where the mixed POA is Θ(logm

log logm) [21, 5].

Theorem 21. MPOA(m) ≥ mm

m! .

Proof. Consider the following instance of the machine covering game with m machines. Let n = m, and
pj = 1 for 1 ≤ j ≤ n (the condition n = m is used in what follows). Next, we describe the strategy of each
job. Each job j, j = 1, . . . , n chooses each one of the m machines with probability 1/m. The expected
load of each machine is therefore 1 (every job contributes 1

m to the load of machine i, which is its size times
the probability to be assigned to machine i). The expected cost of job j if it is assigned to machine i is
1 + m−1

m . Thus, each job has the same cost on each one of the machines and thus has no incentive to change
its probability distribution vector. As there are exactly n = m jobs, if each job selects a different machine,
then the value of cover is 1, while otherwise it is 0. The probability that the resulting schedule is such
that each job selects a different machine is m!

mm . We find that for the mixed Nash equilibrium the expected
minimum load is m!

mm . A socially optimal solution can be achieved by (deterministically) allocating each
job to a different machine (and it has a social value 1), and so it follows that the mixed POA for this game is
mm

m! . We conclude that MPOA(m) ≥ mm

m! .

Theorem 22. MPOA(2) = 2.

Proof. The lower bound follows from Theorem 21.
Consider a mixed NE for a given machine covering game. Consider a specific job i and let qi be the

probability that the job (which has a size of pi) is assigned to the most loaded machine of the two. It
was shown in [21] that the expected maximum load over the two machines, call it E(MAKESPAN), satisfies
E(MAKESPAN) =

∑
k qkpk ≤ (32 − qi)

∑
k pk + (2qi − 3

2)pi, for any job i. We use E(COVER) to denote
the expected value of the cover.

As there are two machines, this implies that the expected minimum load over the two machines,

E(COVER) =
∑
k

(1− qk)pk =
∑
k

pk −
∑
k

qkpk =
∑
k

pk − E(MAKESPAN) ,

is at least ∑
k

pk − (
3

2
− qi)

∑
k

pk − (2qi −
3

2
)pi = (qi −

1

2
)
∑
k

pk − (2qi −
3

2
)pi .

Note that COVER(OPT) ≤
∑

k pk
2 , which is the case if we can distribute the weight of each job in an equal

manner over the two machines. Also, if there exists a job i such that pi >
∑

k 6=i pk, then COVER(OPT) ≤∑
k 6=i pk. In total, COVER(OPT) ≤ min{

∑
k 6=i pk,

∑
k pk
2 }.

12

One of the following may occur:
1. There exists a job i such that qi > 3

4 . Therefore, E(COVER) ≥ (qi − 1
2)

∑
k 6=i pk + (1 − qi)pi =

(1− qi)
∑

k pk +
∑

k 6=i pk(2qi −
3
2) ≥ (2(1− qi) + 2qi − 3

2)COVER(OPT) ≥ 1
2COVER(OPT).

2. For any job i, qi ≤ 3
4 . Therefore, E(COVER) =

∑
k (1− qk)pk ≥ 1

4

∑
k pk ≥

1
4 · 2COVER(OPT) =

1
2COVER(OPT).

In both cases, we get that E(COVER) ≥ 1
2COVER(OPT), which proves our claim.

5 The envy-ratio game

In this paper, we investigated up until now the tradeoff between fairness and optimality of an NE schedule,
when the fairness was considered with respect to maximizing the minimum load in the schedule. However,
there are different accepted notions of fairness of a job allocation. Another suitable fairness criterion that
we can consider in the same setting is the so-called maximum envy-ratio.

The envy-ratio of job i for job j is the cost of i over the cost of j. As before, the set of players is the set
of n jobs to be scheduled on m identical machines. The definitions of loads and costs remain unchanged.
The objective is to schedule the jobs so as to minimize the ratio of the maximum load over the minimum
load of the machines in the assignment. Going back to the application of data routing on identical parallel
links, this objective aims to reduce the “envy” of the job (or jobs) that suffers the greatest delay towards the
job (or jobs) that suffers the smallest delay in the network (assuming that each machine has at least one job
assigned to it).

For the study of this problem, we use the following notations. Let B be a schedule. The maximum
envy-ratio of schedule B is defined by e(B) = Lmax(B)/Lmin(B). Accordingly, we denote the maximum
envy-ratio of an optimal schedule OPT by e(OPT).

The maximum envy-ratio objective was previously considered in the context of scheduling by [4]. It is
shown that Graham’s greedy algorithm (also known as Longest Processing Time or LPT) [18] has an ap-
proximation ratio of exactly 1.4 for the maximum envy-ratio minimization problem. This fairness criterion
was considered in a game theoretic setting by [22]. They considered the envy-ratio objective for the problem
of envy-free allocation of indivisible goods. In the special case where all the players have the same utility
function for each good, one can think of the players as identical machines and the set of goods as a set of
jobs, and then this problem is equivalent to minimizing the ratio of the maximum completion time over the
minimum completion time.

Viewing this as a game similar to the machine covering game, with the only change that the social goal
is minimization of the envy-ratio, we call this the envy-ratio game. The measures POA and POS were not
previously considered for this objective in the setting of selfish jobs. They are respectively defined as the
worst-case ratio between e(A), whereA is an NE assignment with the highest/lowest maximum envy-ratio,
and e(OPT). We show tight bounds of 2 on the POA and 1 on the POS for any m ≥ 2. For the POS, we can in
fact follow the approach of Section 3 in its entirety, noting that the proof of Lemma 19 actually shows that
the envy-ratio does not increase as a result of the move of k. Thus, POS(m) = 1 for all m ≥ 2. Next, we
analyze the POA for this game.

Theorem 23. For the envy-ratio game, POA(m) = 2 for any m ≥ 2.

Proof. We start with the upper bound. Consider an NE assignment A with m machines. If all machines
in A are assigned at most one job then the schedule is optimal. Moreover, in the case that there is exactly
one machine that has more than one job assigned to it, and this is a machine of load Lmin, the schedule
is optimal as well. This holds since any schedule has a machine of load Lmax (since at least one machine
with this load has a single job assigned to it that must be assigned to a machine by any schedule), and any
schedule has a machine that does not contain any of the jobs that are assigned to a dedicated machine in

13

A, where the load of such a machine cannot exceed Lmin. Consider a machine i in A which has at least
two jobs assigned to it, having a maximum load among such machines. By the discussion above regarding
optimal schedules, the machine i cannot be the unique machine ofA with a load of Lmin. Consider the size
of a smallest job running on i, denoted by p. As this job is assigned with at least one more job, p ≤ 1

2Li. As
this schedule is an NE, and there is a machine i′ 6= i that has a load of Lmin, Lmin + p ≥ Li holds, since
the job does not benefit from moving to i′. Hence Lmin ≥ Li − p ≥ 1

2Li.
If Li = Lmax, then it immediately follows that e(A) ≤ 2, and as the envy-ratio of the optimal schedule

e(OPT) ≥ 1, we get that POA ≤ 2. Next, we consider the case Li < Lmax. In this case, by the definition
of i, all machines that run at least two jobs have loads no larger than Li, and thus Lmax is the load of at
least one machine of A that runs a single job. Let 1 ≤ k ≤ m − 1 denote the number of machines in
A having loads strictly above Li (and thus running exactly one job each), and let Jlong denote the k jobs
assigned to them in A. In particular, as among these machines there is a machine of load Lmax, there is
at least one job of size exactly Lmax. Thus we find Lmax(OPT) ≥ Lmax, since any schedule must assign
this job. In OPT there are at least m − k machines which have no jobs of Jlong, and the total size of all
other jobs is at most (m − k)Li. Therefore, Lmin(OPT) ≤ Li. We get e(OPT) = Lmax(OPT)

Lmin(OPT) ≥
Lmax
Li

and

POA ≤ e(A)
e(OPT) ≤

Lmax/Lmin

Lmax/Li
= Li

Lmin
≤ 2.

The matching lower bound is derived using the construction of [29]. Consider the following game
instance with m machines, where the set of the jobs contains m(m− 1) jobs of size 1

m and two jobs of size
1, and consider the schedule where each machine among machines 1, . . . ,m− 1 runs m of the jobs of size
1
m and has load 1, and machine m runs the two jobs of size 1. This schedule is an NE by Observation 1
(since its value of cover is 1, this observation can be used). The load of m is 2 while all other loads are
1. Thus, the maximum envy-ratio of this schedule is exactly 2 for any value of m. The optimal maximum
envy-ratio is 1, and it is obtained by a schedule where m − 2 machines run m + 1 jobs of size 1

m each,
and each additional machine runs one job of size 1 and one job of size 1

m . This results in a schedule with
an maximum envy-ratio of 1 since the machines are balanced (and have loads of 1 + 1

m). The POA of this
instance of the game is exactly 2.

References

[1] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for scheduling. In Proc. 8th
Symp. on Discrete Algorithms (SODA’97), pages 493–500, 1997.

[2] E. Anshelevich, A. Dasgupta, J. M. Kleinberg, É. Tardos, T. Wexler, and T. Roughgarden. The price of
stability for network design with fair cost allocation. SIAM Journal on Computing, 38(4):1602–1623,
2008.

[3] N. Bansal and M. Sviridenko. The Santa Claus problem. In Proceedings of the 38th Annual ACM
Symposium on Theory of Computing (STOC’06), pages 31–40, 2006.

[4] E. G. Coffman Jr. and M. A. Langston. A performance guarantee for the greedy set-partitioning
algorithm. Acta Informatica, 21(4):409–415, 1984.

[5] A. Czumaj and B. Vöcking. Tight bounds for worst-case equilibria. ACM Transactions on Algorithms,
3(1), 2007.

[6] B. L. Deuermeyer, D. K. Friesen, and M. A. Langston. Scheduling to maximize the minimum processor
finish time in a multiprocessor system. SIAM Journal on Discrete Mathematics, 3(2):190–196, 1982.

14

[7] P. Dhangwatnotai, S. Dobzinski, S. Dughmi, and T. Roughgarden. Truthful approximation schemes
for single-parameter agents. SIAM Journal on Computing, 40(3):915–933, 2011.

[8] G. Dósa and J. Sgall. First Fit bin packing: A tight analysis. Manuscript, 2012.

[9] T. Ebenlendr, J. Noga, J. Sgall, and G. J. Woeginger. A note on semi-online machine covering. In
Approximation and Online Algorithms, Third International Workshop (WAOA’05), pages 110–118,
2005.

[10] L. Epstein, E. Kleiman, and R. van Stee. Maximizing the minimum load: The cost of selfishness.
In Proc. of the 5th International Workshop on Internet and Network Economics (WINE’09), pages
232–243, 2009.

[11] L. Epstein, E. Kleiman, and R. van Stee. The cost of selfishness for maximizing the minimum load on
uniformly related machines. Journal of Combinatorial Optimization, to appear, 2012.

[12] L. Epstein, A. Levin, and R. van Stee. A unified approach to truthful scheduling on related machines.
CoRR, abs/1207.3523, 2012. To appear in Proc. of SODA’13.

[13] L. Epstein and R. van Stee. Maximizing the minimum load for selfish agents. Theoretical Computer
Science, 411(1):44–57, 2010.

[14] E. Even-Dar, A. Kesselman, and Y. Mansour. Convergence time to Nash equilibrium in load balancing.
ACM Trans. Algorithms, 3(3):32, 2007.

[15] R. Feldmann, M. Gairing, T. Lücking, B. Monien, and M. Rode. Nashification and the coordination
ratio for a selfish routing game. In Proc. of the 30th International Colloquium on Automata, Languages
and Programming (ICALP’03), pages 514–526, 2003.

[16] G. Finn and E. Horowitz. A linear time approximation algorithm for multiprocessor scheduling. BIT
Numerical Mathematics, 19(3):312–320, 1979.

[17] D. Fotakis, S. C. Kontogiannis, E. Koutsoupias, M. Mavronicolas, and P. G. Spirakis. The struc-
ture and complexity of Nash equilibria for a selfish routing game. Theoretical Computer Science,
410(36):3305–3326, 2009.

[18] R. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of Applied Mathematics,
17(2):416–429, 1969.

[19] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case performance
bounds for simple one-dimensional packing algorithms. SIAM Journal on Computing, 3(4):299–325,
1974.

[20] E. Kleiman. Packing, scheduling and covering problems in a game-theoretic perspective. CoRR,
abs/1110.6407, 2011.

[21] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In Proc. of the 16th Annual Symposium
on Theoretical Aspects of Computer Science (STACS’99), pages 404–413, 1999.

[22] R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. On approximately fair allocations of indivisible
goods. In ACM Conference on Electronic Commerce, pages 125–131, 2004.

[23] M. Mavronicolas and P. G. Spirakis. The price of selfish routing. Algorithmica, 48(1):91–126, 2007.

15

[24] J. Nash. Non-cooperative games. Annals of Mathematics, 54(2):286–295, 1951.

[25] N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic Behavior, 35(1):166–
196, 2001.

[26] T. Roughgarden. Selfish routing and the price of anarchy. MIT Press, 2005.

[27] T. Roughgarden and É. Tardos. How bad is selfish routing? Journal of the ACM, 49(2):236–259, 2002.

[28] A. Sahasrabudhe and K. Kar. Bandwidth allocation games under budget and access constraints. In
Proc. of the 42nd Annual Conference on Information Sciences and Systems (CISS’08), pages 761–769,
2008.

[29] P. Schuurman and T. Vredeveld. Performance guarantees of local search for multiprocessor scheduling.
INFORMS Journal on Computing, 19(1):52–63, 2007.

[30] Z. Tan, L. Wan, Q. Zhang, and W. Ren. Inefficiency of equilibria for the machine covering game on
uniform machines. Acta Informatica, 49(6):361–379, 2012.

16

