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Abstract
We continue the study of the effects of selfish behavior in the network design problem. We provide new

bounds for the price of stability for network design with fair cost allocation for undirected graphs. We consider
the most general case, for which the best known upper bound is the Harmonic number Hn, where n is the
number of agents, and the best previously known lower bound is 12/7 ≈ 1.778.

We present a nontrivial lower bound of 42/23 ≈ 1.8261. Furthermore, we show that for two players, the
price of stability is exactly 4/3, while for three players it is at least 74/48 ≈ 1.542 and at most 1.65. These are
the first improvements on the bound of Hn for general networks. In particular, this demonstrates a separation
between the price of stability on undirected graphs and that on directed graphs, where Hn is tight. Previously,
such a gap was only known for the cases where all players have a shared source, and for weighted players.

1 Introduction

The effects of selfish behavior in networks is a natural problem with long-standing and wide-spread practical
relevance. As such, a wide variety of network design and connection games have received attention in the
algorithmic game theory literature (for a survey, see [TW07]).

One natural question is how much the users’ selfish behavior affects the performance of the system. Kout-
soupias and Papadimitriou [KP99, Pap01] addressed this question using a worst-case measure, namely the Price
of Anarchy (PoA). This notion compares the cost of the worst-case Nash equilibrium to that of the social opti-
mum (the best that could be obtained by central coordination). From an optimistic point of view, Anshelevich et
al. [ADK+04] proposed the Price of Stability (PoS), the ratio of the lowest Nash equilibrium cost to the social
cost, as a measure of the minimal effect of selfishness.

There has been substantial work on the PoA for congestion games, a broad class of games with interesting
properties originally introduced by Rosenthal [Ros73]. Congestion games nicely model situations that arise in
selfish routing, resource allocation and network design problems, and PoA for these games is now quite well-
understood [RT02, CK05b, CK05a, AAE05]. By comparison, much less work has been done on the PoS: The
PoS for network design games has been studied by [ADK+04, CR06, Alb08, FKL+06, Li08], while the PoS
for routing games1 was studied by [ADK+04, CK05a, CFK+06]. However, PoA techniques cannot easily be
transferred to study of the PoS. New techniques thus need to be developed; this work moves toward this direction.
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The particular network design problem we address here is the one which was initially studied by Anshelevich
et al. [ADK+04], sometimes referred to as the fair cost sharing network design (or creation) game. In it, each
player has a set of endpoints in a network that he must connect; to achieve this, he must choose a subset of the
links in the network to utilize. Each link has a cost associated with it, and if more than one player wishes to
utilize the same link, the cost of that link is split evenly among the players. Each player’s goal is to pay as little
as possible to connect her endpoints. The global social objective is to connect all player’s endpoints as cheaply
as possible.

Anshelevich et al. [ADK+04] showed that if G is a directed graph, the price of anarchy is equal to n, the
number of players, whereas the price of stability is exactly the nth harmonic number Hn. The upper bound is
proven by using the fact that our network design game, and in fact any congestion game, is a potential game. A
potential game, first defined by Monderer and Shapley [MS96], is a game where the change to a player’s payoff
due to a deviation from a game solution can be reflected in a potential function, or a function that maps game
states to real numbers. The potential function for this game is

Φ(X) =
∑

e∈E

ceHne ,

where X is an outcome or strategy profile of the game, and ne is the number of players on edge e in X .
This upper bound of Hn holds even in the case of undirected graphs (since the potential function of the game

does not change when the underlying graph is undirected), however the lower bound does not. Hence the central
open question we study is:

What is the price of stability in the fair cost sharing network design game on undirected graphs?

In the case of two players and a single common sink vertex, Anshelevich et al. [ADK+04] show that the
answer is 4/3. Some further progress has also more recently been made toward answering this question. Fiat
et al. [FKL+06] showed that in the case where there is a single common sink vertex and every other vertex is a
source vertex, the price of stability is O(log log n). They also give an n-player lower bound instance of 12/7.
For the more general case where the agents share a sink but not every vertex is a source vertex, Li [Li08] showed
an upper bound of O(log n/ log log n). Chen and Roughgarden [CR06] studied the price of stability for the
weighted variant of the game, where each player pays a fraction of each edge cost proportional to her weight.
Albers [Alb08] showed that in this variant, the price of stability is Ω(log W/ log log W ), where W is the sum of
the players’ weights.

Our contributions We show for the first time that the price of stability in undirected networks is definitively
different from the one for directed networks in the general case (where all players may have distinct source and
destination vertices). In particular, we show that PoS is exactly 4/3 for two agents (strictly less than PoS in the
directed case, which is H2 = 3/2), while for three agents it is at least 74/48 ≈ 1.542 and at most 1.65 (again
strictly less than PoS in the directed case, which is H3 = 11/6). Furthermore, we show that the price of stability
for general n is at least 42/23 > 1.8261, improving upon the previous bound due to Fiat et al. [FKL+06].

1.1 The model

We are given an underlying network, G = (V, E), where V is the set of vertices and E is the set of edges in the
network. Each player i = 1 . . . n has a set of two nodes (endpoints) si, ti ∈ V to connect. We refer to si as the
source endpoint of player i and ti as the destination or sink endpoint of player i. The strategy set of each player
i consists of all sets of edges Si ⊆ E such that Si connects all the vertices in Ti. There is a cost ce associated
with each edge e ∈ E. The cost to player i of a solution S = (S1, S2, . . . , Sn) is Ci(S) =

∑
e∈Si

ce/ne
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Figure 2.1: On the left are two levels in our construction. The situation on the right is not a Nash equilibrium
because of the added ε’s on the horizontal edges. The numbers in the right figure give the costs for each agent
that uses these edges.

where ne is the number of players in S who chose a strategy that contains e. Each player i has payoff function
πi(S) = −Ci(S). The global objective is minimize

∑n
i=1 Ci(S).

2 A Lower Bound of 1.826

Consider a 3 by N grid for some large N . There are three nodes and two horizontal edges in every row. The
levels are numbered starting from the bottom. We denote the horizontal edges on level i by Li and Ri (from left
to right). The nodes on level i are denoted by vij (j = 1, 2, 3) and the vertical edges connecting level i to level
i + 1 are denoted by eij (j = 1, 2, 3). Each node vij for i = 1, . . . , N − 1 and j = 1, 2, 3 is the source of some
agent pi,j , who has node vi+1,j as its sink. We say that player pi,j starts at level i. Also we will call player pi,j

the owner of edge ei,j , with pi,j owning only edge ei,j (one of the possible paths for a player to reach its sink is
to use just the edge it owns).

Horizontal edges cost 6 + ε and 5 + ε, vertical edges cost 12, 15, and 15 (from left to right), where ε is a
small positive number. We do not refer to ε in the calculations, but simply state when relevant that the costs of
horizontal edges are “more than” 6 and 5, respectively. One motivation for choosing the numbers as we do is
shown in Figure 2.1, right.

Proof outline It is possible to connect the sources and sinks of all the players by using all the horizontal edges
and only the vertical edges on the left. For large N and small ε, the cost of this tends to 23 per level.

Our goal is to show that in a Nash equilibrium, all players use the direct link between their source and their
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sink. Let us assume that some players deviate from this. We start by considering a level i which is not visited by
any agents with higher sources, and also not by agents that have lower sinks. In Lemma 2.7, we show that any
agent that reaches such a level moves immediately to its sink.

We prove in Lemma 2.9 that as long as no agent uses any edge below its source vertex, all agents move straight
to their sinks. Section 2.3 is devoted to showing that it is indeed the case that no player moves below its source
vertex. To do so, we first bound the number of players that can reach a given level from below in Lemmas 2.12-
2.16. We find that there can be at most two such agents. This in turn helps us to show in Lemmas 2.18-2.20 that
players that move below their sources would have to pay too much for their paths, thus showing that no agent
moves below their starting levels. This immediately gives us our result, which is summarized in Theorem 2.21.

Observation 2.1. In a Nash equilibrium, all player paths are acyclic, and the graph that is formed by the paths
of any pair of players is acyclic as well.

Thus, whenever we find a cycle of one of these types, we know that this is not a Nash equilibrium.

Observation 2.2. If eij is used by any player, it is used by player pi,j .

Proof. If this were not true, the path of any player using eij together with the path of pi,j forms a cycle.

Definition 2.3. We call a node a terminal if it has a single incident edge at the graph induced by all the player
paths in a Nash equilibrium.

Observation 2.4. Consider the graph induced by all the player paths in a Nash equilibrium. (This graph is not
necessarily acyclic!) Any path which leads to a terminal and where all intermediate nodes have degree 2 is used
only by agents with sources and/or sinks on that path. In particular, an edge which leads to a terminal is used by
at most two players: the one with its source at the terminal, and the one with its sink at the terminal.

Observation 2.5. Any player that uses a vertical edge ei,j without owning it, must also be using at least one
horizontal edge in some level i′ ≤ i, and one in some level i′′ ≥ i + 1.

Players on the left We begin by making sure that players on the left always use the edge they own (the di-
rect link between their source and sink). To do so, for all levels i, we substitute ei,1 by a path of three edges
êi,1, êi,2, êi,3 each of which has cost 4 (and thus the path of the three edges together has cost 12). Player pi,1

is also substituted by three players p̂i,j(j = 1, 2, 3), with p̂ij having as source and sink the lower and upper
endpoints of edge êi,j , respectively. (Player p̂i,1 has node vi,1 as its source and player p̂i,3 has node vi+1,1 as
its sink.) One can now see that the players p̂i,j(j = 1, 2, 3) will never deviate from their own edges; each such
player would have to share two edges of cost 4 with only their owners, since its sink and/or its source would
be terminals. Given that these players will never deviate, we will treat them as one player pi,1, and the path
êi,1, êi,2, êi,3 as the single edge ei,1, with pi,1 using edge ei,1 in any Nash Equilibrium.

2.1 Separators

Definition 2.6. Level i is called a separator if no player with source above level i and no player with sink below
level i visits level i.

The proof of the following lemma is in the appendix.

Lemma 2.7. Let level i be a separator. Let p = pi−1,2 and p′ = pi−1,3.
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1. If player p arrives at level i via edge ei−1,1 (ei−1,3), and there is no other player which uses that edge
besides its owner, then p uses edge Li (Ri), and shares that edge with at most 2 players.

2. If player p′ arrives at level i via ei−1,1 together with p, it uses Li and Ri, and pays at least 4 for them. In
particular, there are at most 4 agents on Li.

3. If p′ arrives at level i via edge ei−1,2, it uses edge Ri, and pays at least 5/2 for it.

Lemma 2.8. Let level i be a separator. Let p = pi−1,2 and p′ = pi−1,3. Assume that player p′ does not move
below its source. If it arrives at level i via edge ei−1,1, then there is some other player which uses ei−1,1 besides
its owner.

Proof. The first three edges on the path of p′ are Ri−1, Li−1, and ei−1,1 in this case. Consider agent p. It cannot
use edge ei−1,3 (in that case, by Observation 2.2, player p′ would use it too) or edge ei−1,1 (assumption) in this
case, so p uses edge ei−1,2. This means that p′ cannot use edge Li (Observation 2.1). It also implies that edges
ei−1,2 and ei−1,3 are used by at most three players, since they are not used by any left player, any player with
source at level i + 1 or higher, or p, leaving only pi,2, pi,3 and p′ = pi−1,3 as candidates. Therefore, the cost of
these edges is at least 5 to any player. Player p′ must use one of them. In addition, p′ pays 6 for edge ei−1,1,
and also 6 for edge ei,1 as long as player pi,2 or pi,3 do not join it. But in that case, the total cost of p′ is at least
6 + 6 + 5 > 15, a contradiction. So pi,2 or pi,3 must be on ei,1. Only one of them can in fact be there since one
of the vertical edges ei,2 and ei,3 must be in use. This means that the cost for ei,1 is 4 in this case. However, in
this case, the edge that p′ uses to come back down to level i costs 7.5. We conclude that if p′ pays 6 for ei,1, its
total cost is at least 6 + 6 + 5 > 15, and otherwise, its total cost is at least 6 + 4 + 7.5 > 15. In both cases, this
implies that this is not a Nash equilibrium.

Lemma 2.9. Consider a Nash equilibrium in which no agent uses any edge below its source. Then all agents
move straight to their sinks.

Proof. We twice use induction. We first show that all players on the right move straight to their sinks, while
players in the middle either move straight to their sink or move left, up, and immediately right. Using this, we
then show that all players in the middle move straight to their sink.

Consider first level 1. By the assumption of this Lemma, level 2 is a separator. If player p1,3 uses L1, player
p1,2 must do this as well by Lemma 2.8. In addition, in this case p1,3 uses R1 as well, but p1,2 does not, and
neither does any other player. Both p1,3 and p1,2 then use edge e1,1, and then p1,3 continues via edge L2 and R2

by Lemma 2.7, Case 2. This fixes its entire path. We can now calculate the cost for this path depending on the
first edge on the path of p2,2.

If this is L2, the cost is more than 5 + 3 + 4 + 1.5 + 2.5 = 16 (p2,2 is not on R2 in this case, and neither is
p1,2). If the first (and only) edge is e2,2, the cost is more than 5+3+4+2+2.5 = 19. If the first edge is R2, the
cost is more than 5 + 3 + 4 + 3 + 2.5 = 17.5 (p2,3 is not on R2 in this case, because p2,2 uses e2,3, Observation
2.2). In all cases, this is too much.

This shows that p1,3 does not use edge L1. Suppose that p1,3 uses R1. It then uses e1,2 together with p1,2

(Observation 2.2). Since R2 is used by at most one of the players p2,2 and p2,3 (by Observation 2.1 and because
no agents move down below their source), p1,3 pays more than 5 + 15/2 + 5/2 = 15, a contradiction. The exact
same calculation shows that p1,2 does not use R1.

The only case left open is the one where p1,2 uses L1, but p1,3 does not. However, in this case, due to Lemma
2.7, Case 1, it also uses L2 to reach its sink, making level 3 a separator, because level 3 is not visited by p1,2 or
p1,3. Note that if p1,2 does move directly to its sink from its source, then level 3 is a separator too.

We can now continue the proof by induction. Consider a level i and assume that all lower players on the
right move straight to their source, where lower players in the middle might deviate and use the left edge. Also
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by induction, assume that level i + 1 is a separator, so that we can use the same lemmas as in the base case.
Compared to the calculations above for the case where p1,3 uses L1, the only change is that edge Li might cost
only 2 + ε/3 instead of 3 + ε/2, since at most one additional agent (pi−1,2) may be using it. This still gives a
total cost of more than 15 in all cases, completing the first part of the proof.

We can now prove, also using induction, that agents in the middle move straight to their source. If p1,2 uses
L1, it pays more than 6 + 6 + 3 = 15 since L1 now costs more than 3, so it does not do that. By induction, if no
player below level i deviates, we find the same calculation for any middle player that moves left. This completes
the proof.

2.2 The number of agents that visit a certain level

Definition 2.10. Let S` be a set of players that visit a horizontal edge at or above level ` and that all have sinks
at or below level `.

Observation 2.5 implies the following Corollary:

Corollary 2.11. For any level i, any player with source below i that uses an edge ei−1,j , j ∈ {1, 2, 3}, without
owning it, belongs to Si.

We will derive bounds for the number of agents that can be in S`. The following useful lemma is proved in
the appendix.

Lemma 2.12. Let i be a level with a source of an agent in S` that is not the lowest such level.

1. There is only one agent in S` with a source on level i.

2. Any player that uses an edge ei,j and does not own it is in S`.

Corollary 2.13. Let i be a level with an agent in S` that is not the lowest such level. Each edge ei−1,j is used
only by its owner and by agents in S` (if it is used at all).

Lemma 2.14. We have |S`| ≤ 3. If the lowest level which contains a source of an agent in S` only contains one
such source, we have |S`| ≤ 2.

Proof. Let i be the lowest level with a source from a player in S`. Assume first there is only one player p ∈ S`

who starts on level i. Denote by Ep the set of levels in the path of p that contain other sources of players in S`.
Player p must traverse two edges ek,j for each k ∈ Ep, and by Lemma 2.12, only players in S` traverse them.
The cost of p for these edges is then at least (12 + 15)(1

3 + 1
4 + · · ·+ 1

|S`|+1) > 15 for |S`| ≥ 3.
Suppose level i has two players from S`, say p and p′, and |S`| > 3 (and hence i < ` − 1). These agents

must use the left edges ei,1 and ei+1,1 to move up, else at least one of them travels no further than its sink and
in particular, does not use a horizontal edge above level i + 1. The edges Li+1, ei,2 and ei,3 are not used by any
player, so the edges ei,1 and ei+1,1 are only used by p, p′, and the owners, at a cost of 8. In particular, ei,1 costs
at least 4.

Their total cost is then more than 4 + (12 + 15)(1
4 + 1

5 + · · ·+ 1
|S`|+1) > 15 for |S`| ≥ 4.

By symmetry, we have the following corollary.

Corollary 2.15. For any level `, there are at most three players which have sources at level ` or above and which
use a horizontal edge on level `. Hence there are at most 6 players on any horizontal edge, and at most 7 on any
vertical edge.
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Proof. A horizontal edge can be used by at most three agents from that level or below by Lemma 2.14 and at
most three agents from that level or above by symmetry. A vertical edge e is used by its owner; other players
moving on e must use a horizontal edge both before and afterwards, thus there are at most three such players
going up and three going down by Lemma 2.14 (and its symmetric version).

Lemma 2.16. We have |S`| ≤ 2.

Proof. Again, let i be the number of the lowest level with agents in S`. Assume |S`| = 3 and hence i < ` − 1.
As in the proof of Lemma 2.14, we see that p and p′ have a total cost of at least 4 + 27/4 = 10.75 for vertical
edges. For horizontal edges, the leftmost player (say p) on level i pays at least 2(5/6+6/6) > 3.66 by Corollary
2.15. That player cannot use any additional vertical or horizontal edge by Corollary 2.15 (the total cost becomes
too high), hence, its path is contained in the levels i, i+1, i+2. The remaining player in S` must have its source
on level i+1. There is then simply no room for any players to visit level i from above, meaning that the first two
edges on the path of p (which are horizontal) cost p more than 5/3 + 6/3 > 3.66, for a total cost of more than
3.66 + 10.75 + 1.83 > 15.

Corollary 2.17. Any horizontal edge is used by at most four agents, any vertical edge by at most five.

Proof. The proof is completely analogous to the proof of Corollary 2.15.

2.3 Agents do not move down

Due to Lemma 2.9, all we need to show is that no player moves below its starting level in a Nash equilibrium.
Consider the topmost level i such that there is a player A, with source at level i, that moves below i. Denote
the other player that has its source on level i and that does not start on the left by A′. (Note that the player with
source vi,1 never deviates). A must visit levels below i before it reaches level i + 1. Otherwise, either i reaches
its sink before going down to i−1, or it will have to form a cycle within its path to go back up to i+1. Similarly,
since A goes both below and above level i, it cannot use both Li and Ri. In the following, we will be repeatedly
making use of Lemma 2.16 and Corollary 2.17, and the fact that no player with source above level i ever visits a
level i′ ≤ i (by definition of A,A′).

Lemma 2.18. A does not move first horizontally and then down.

Proof. Assume that A uses first one of the horizontal edges of level i and then immediately goes down. Since
A has to go back up to level i, it creates a path connecting all three nodes of level i using only edges incident to
nodes of levels j ≤ i. This implies that there is no player p with source at level i − 1 or below, that visits level
i+1. To see this, note that after reaching i+1, p would eventually have to go back down to level i, thus creating
another path connecting two nodes of i, this time containing only edges incident to nodes in levels j′ ≥ i (with
at least one vertical edge incident to a node of level i + 1). Therefore, the paths of A and p would form a cycle.
By definition of A, there is also no player with source above level i that visits level i.

Let c1 be the column that A starts from, c2 6= c1 the column it reaches after using the first horizontal edge,
and c3 the remaining column of the grid. Note that since A uses a horizontal edge of level i, one of c1, c2 must
be the middle column. A cannot create a cycle going from its source back to level i, therefore it must use edge
e = ei−1,c3 . Moreover, edge (vi,c3 , vi,2) is not used by any player, otherwise a cycle with A’s path would be
formed. Therefore, any player on e that does not own it (including A), must also use e′ = ei,c3 . Given that no
player with source below i visits level i + 1, and no player with source above i visits level i− 1, the edges e′, e′′

can only by used by the owners and A,A′. Therefore, A pays at least 2 · 12
3 = 8 for them.

Consider now the first edge that A uses to reach level i − 1. By Corollary 2.17 there are at most 5 players
using it, and thus A pays at least 12

5 > 2 for it. Finally, A visits both the first column and the third column of
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the grid, therefore it must use at least two “right” horizontal edges (of cost 5), and at least two “left” horizontal
edges (of cost 6), each of which can be used by at most four players (by Corollary 2.17). Thus, A pays at least
2 · 6+5

4 = 5.5 for horizontal edges, implying a total cost more than 8 + 2 + 5.5 > 15, a contradiction.

Lemma 2.19. If A starts in the middle column, it does not move straight down from its source.

Lemma 2.20. If A starts in the right column, it does not move straight down from its source.

Proof. Assume that A goes straight down from its source. We denote by e that first edge down (i.e., e = ei−1,3).
Let e′ be the edge that A uses to reach level i again, after going down. By Lemma 2.18 and Lemma 2.19, A′

does not move down which means that A′ does not use e, e′. Any other player using them, apart from A and the
owners, will belong to Si (remember that no player with source above i visits a level below i + 1). Therefore A
shares e, e′ with at most 3 more players (the owners and two more players that will belong to Si). Let e′′ be the
edge A uses to reach level i+1 from i. Any player on e′′ (apart from the owner) will belong to Si+1 together with
A. Again, since |Si+1| ≤ 2, A shares e′′ with at most two more players (the owner and one more player that will
belong to Si+1). If any of e′, e′′ is in the left column, then the path of A must cross from the right side of the grid
to the left and back, implying a total cost of at least 15/4 (for e) +12/4 (for e′) +12/3 (for e′′) +2 · 6+5

4 > 15. If,
on the other hand, none of e′, e′′ are in the left column, then the total cost of A is more than 15/4 (for e) +15/4
(for e′) +15/3 (for e′′) +2 · 5/4 = 15.

Theorem 2.21. The price of stability in undirected networks is at least 42/23 > 1.826.

Proof. Due to Lemma 2.18, Lemma 2.19 and Lemma 2.20, no agents move down below their source. Therefore,
by Lemma 2.9, all agents move straight to their sink in the (unique) Nash equilibrium. On every level, the total
cost of the agents in the Nash equilibrium is 12+15+15 = 42, whereas the optimal cost is only 12+6+5 = 23.
The optimal solution has an additional cost of 11 for the two horizontal edges on level 1, but this cost is negligible
for large N .

3 Two Players

Anshelevich et al [ADK+04] gave a two player lower bound instance for our problem showing price of stability
is at least 4/3. They then show that if both players share a sink, the price of stability is at most 4/3. In this
section, we show an unconditional two-player upper bound on the price of stability of 4/3. The proof is in the
appendix.

Theorem 3.1. In the fair cost sharing network design game with two players, price of stability is at most 4/3.

4 Three players

Lower bound Figure 4.2 shows a three player instance where the best Nash equilibrium has cost 37/24 times
that of OPT. Node si, ti is the source, destination, respectively of player i, i ∈ {1, 2, 3}. The optimal solu-
tion would only use the edges (s1, s2), (s2, s3), (s3, t1), (t1, t2), while the Nash solution uses the direct edges
(s1, t1), (s2, t2), (s3, t3). The cost of the optimal solution sums then up to 48 + 4ε, while the Nash Equilibrium
solution has cost 74. We have therefore the following theorem.

Theorem 4.1. In the fair cost sharing network design game with three players, the price of stability is at least
74/48 ≈ 1.5417.
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Figure 4.2: A three-player instance with price of stability more than 1.54.

Proof. Let p1, p2, p3 be the three players (with pi having to connect si to ti). It is clear that a solution of value
48 + 4ε exists. We will show that there is no other Nash Equilibrium besides the one mentioned above of cost
74, i.e., every player pi uses edge (si, ti). Note first that edge (s2, s3) cannot be used by both players p2 and p3

(since their paths would create a cycle, given that they both have to reach t2).
In the appendix, we show that player p1 must use (only) the edge (s1, t1). We next consider player p2.

Assume that p2 is not using the direct edge (s2, t2) (and thus p3 cannot use it either). p2 will not use (s2, s3),
since its cost will then be at least 14 + ε + 26

2 > 24.
Therefore, p2 uses edge (s1, s2) and afterwards it either uses (s1, s3) or (s1, t1).

• Assume p2 uses (s1, s3). In this case p3 cannot be in either of (s1, s3) or (s1, s2), as this would create a
cycle (either in its own path, or together with p2). p2 would then have to pay at least 8+ε+15+ε+ 26

2 > 24.

• Assume p2 uses (s1, t1). Consider player p3. Assume that p3 is not using the direct edge (s3, t2), or (s3, t1)
and then (t1, t2).

Since (s2, t2) is not used by any player, p3 must be using (s1, t1) with direction from s1 to t1 (just as p2

does). The cheapest way that p3 has to reach node s1 though is via edge (s1, s3). Therefore p3 would pay
in total at least 15 + ε + 24

3 + 8+ε
2 > 26, so it would rather use the direct edge (s3, t2) instead. Therefore

p3 is either on (s3, t2), or (s3, t1) and (t1, t2). As a result, the cost of p2 is at least 8 + ε + 24
2 + 8+ε

2 > 24.

Therefore also p2 uses the direct edge (s2, t2). Now player p3 would not use edge (s2, t2) since it would require
a total cost of at least 14 + ε + 24

2 > 26. It cannot then reach node s2 as this would create a cycle with p2. If it
uses (s1, s3) it must also use (s1, t1), and pay at least 15 + ε + 24

2 + 8 > 26. Edge (s3, t2) results in a lower cost
than using both (s3, t1) and (t1, t2), and thus p3 also using the direct edge (s3, t2).

The above imply that the Nash Equilibrium is unique.

Upper bound Given an instance of our problem, let OPT refer to an optimal solution. We refer to the union
of the players’ paths at OPT as the OPT graph. Recall that the potential function for our game is Φ(X) =∑

e∈E ceH(Xe) where ce is the cost of edge e, H(x) is the xth harmonic number, X is a game state or solution,
and Xe is the number of players on edge e in X . Let N be a potential minimizing Nash solution (or, alternatively,
N can be defined as a Nash solution reached by starting from OPT and making alternating best-response moves).
Hence, we have

Φ(N) ≤ Φ(OPT ). (4.1)

We now give names for various sets of edges, each of which may or may not be empty. Let A, B, and C be
the sets of edges that player 1, player 2, and player 3 (respectively) use alone in N . Let Sij for i = 1 . . . 2 and
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j = i + 1 . . . 3 be the set of edges that players i and j alone share in N . Let S123 be the set of edges that all three
players share in N . Let A∗, B∗, C∗, S∗12, S

∗
13, S

∗
23 and S∗123 be defined analogously for OPT. We will also use the

same names to refer to the total cost of the edges in each set.
Let C(X) refer to the cost of the solution X and let Ci(X) refer to the cost just to player i of the solution X .

By definition, we have

C(N) = A + B + C + S12 + S23 + S13 + S123

C(OPT ) = A∗ + B∗ + C∗ + S∗12 + S∗23 + S∗13 + S∗123

C1(N) = A +
S12

2
+

S13

2
+

S123

3

C2(N) = B +
S12

2
+

S23

2
+

S123

3

C3(N) = C +
S13

2
+

S23

2
+

S123

3

We proceed by case analysis. For our first case, assume that S∗123 = 0.

Lemma 4.2. In the fair cost sharing network design game with three players, if no positive-cost edge is shared
by all three players in the optimal solution, the price of stability is at most 3/2.

Proof. From (4.1) and the assumption that S∗123 = 0, we can say

A + B + C +
3
2
(S12 + S23 + S13) +

11
6

S123 ≤ A∗ + B∗ + C∗ +
3
2

(S∗12 + S∗23 + S∗13) .

Hence

C(OPT ) = A∗ + B∗ + C∗ + S∗12 + S∗23 + S∗13

=
2
3

(
A∗ + B∗ + C∗ +

3
2

(S∗12 + S∗23 + S∗13)
)

+
1
3
(A∗ + B∗ + C∗)

≥ 2
3

(
A + B + C +

3
2

(S12 + S23 + S13) +
11
6

S123

)
≥ 2

3
C(N).

Next, we proceed to the case where S∗123 > 0.

Lemma 4.3. In the fair cost sharing network design game with three players, if all three players share at least
one edge of positive cost in the optimal solution, the price of stability is at most 33/20 = 1.65.

Proof. First observe that the edges in the set S∗123 must form a contiguous path, that is, once the three players’
paths in the OPT graph merge, as soon as one player’s path breaks off, the three may never merge again. (Oth-
erwise the OPT graph would have a cycle, contradicting the fact that it is an optimal solution.) Without loss of
generality, we can exchange the labels on the endpoint vertices so that the three endpoints on the same side of the
edges in S∗123 are all source endpoints, and the three endpoints on the other side are all destination endpoints.

Then observe that at least one of S∗12, S∗23, and S∗13 must be empty. Otherwise the OPT graph would have a
cycle, contradicting the definition of OPT. Without loss of generality, we assume that S∗13 is empty, hence S∗13 = 0
and C(OPT ) = A∗ + B∗ + C∗ + S∗12 + S∗23 + S∗123.

We know by definition of N that each player i pays not more at N than by unilaterally defecting to any
alternate si − ti connection path. The right hand sides of each of the following inequalities represents an upper
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bound on the cost of a feasible alternate si − ti path for each player i. The existence of these alternate paths
depends on the assumption that the OPT graph is connected and S∗13 = 0.

C1(N) ≤ A∗ + B∗ + S∗23 +
B

2
+

S12

2
+

S23

3
+

S123

3
(4.2)

C2(N) ≤ B∗ + A∗ + S∗23 +
A

2
+

S12

2
+

S13

3
+

S123

3
(4.3)

C2(N) ≤ B∗ + C∗ + S∗12 +
C

2
+

S23

2
+

S13

3
+

S123

3
(4.4)

C3(N) ≤ C∗ + B∗ + S∗12 +
B

2
+

S23

2
+

S12

3
+

S123

3
(4.5)

To interpret the above inequalities intuitively, consider for example the first inequality. It states the fact that
player 1 pays an amount at Nash that is at most the cost of unilaterally deviating and instead taking the path in
the OPT graph from s1 to s2 where player 2’s OPT path begins (possibly using edges from A∗, B∗, and S∗23),
then following along player 2’s path in N from s2 to t2 (using edges from B, S12, S23, and S123), then taking
edges in the OPT graph from t2 to t1 (again possibly using edges from A∗, B∗, and S∗23). The costs of S∗12 and
S∗123 need not be included in the right-hand side of the first inequality for the following reasoning. Recall that
by assumption, source vertices are on one side of the edges in S∗123 and sink vertices are on the other side of the
edges in S∗123, so traversing any edges in S∗123 is not necessary for player 1 to go from s1 to s2 or from t2 to t1 in
the OPT graph. Also note that the edges in S∗12 must be adjacent to the contiguous path formed by edges in S∗123

(since otherwise, the OPT graph would contain a cycle), and so in fact, s1 and s2 are on one side of S∗12 ∪ S∗123,
while t1 and t2 are on the other.

Figure 4.3: A sample OPT graph. Each edge is labeled with the name of the set of edges it belongs to. Each edge
here may represent a sequence of edges forming a path. Note that more generally, any of the sets A∗, B∗, C∗,
S∗12, S∗23, and S∗13 could be empty.

From inequality (4.1) and the assumption that S∗13 = 0, we can say

A + B + C +
3
2
(S12 + S13 + S23) +

11
6

S123 ≤ A∗ + B∗ + C∗ +
3
2
(S∗12 + S∗23) +

11
6

S∗123. (4.6)

Scaling the inequalities 4.2 and 4.5 each by 10/99, 4.3 and 4.4 each by 8/99, and 4.6 by 6/11, then summing
all five resulting inequalities yields

20
33

(A + B + C) +
257
297

S13 +
245
297

(S12 + S23) + S123 ≤ 8
11

(A∗ + C∗) +
10
11

B∗ + S∗12 + S∗23 + S∗123. (4.7)
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Hence 20/33C(N) ≤ C(OPT ).

We are now ready to present our main theorem of this section.

Theorem 4.4. In the fair cost sharing network design game with three players, the price of stability is at most
33/20 = 1.65.

Proof. All possible OPT graph structures are handled by Lemmas 4.2 and 4.3. The worst upper bound for price
of stability over these two exhaustive cases is that given by Lemma 4.3.

5 Conclusions

The lower bound instance that we use for large n could be generalized by adding more columns. However, it
seems that this would require a significantly longer and more involved proof. More importantly, we believe that
even with an unbounded number of columns we could only show a lower bound of a small constant. Hence, the
question of whether the price of stability grows with n remains open. We conjecture that it is in fact constant.
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A Two Players

Given an instance of the problem, let OPT refer to any optimal solution for that instance. Then we define A∗,
B∗, and S∗ to be sets of edges in OPT as follows. A∗ is the set of edges that player 1 buys alone in OPT. B∗ is
the set of edges player 2 buys alone in OPT. And S∗ is the set of edges players 1 and 2 share in OPT. We define
the OPT graph to be A∗ ∪B∗ ∪ S∗, or the union of the players paths at OPT.

First, observe that if the OPT graph is disconnected, price of stability is 1. (If not, then OPT is not a Nash
equilibrium. Which means a player can unilaterally defect and pay less than she does at OPT. But then, since
by assumption no players share any edges at OPT, the new state reached after this defection would cost less
than OPT, contradicting the definition of OPT.) Hence, we can assume the OPT graph is connected, i.e., that the
players paths cross. Second, we observe that after the players paths join, they cannot separate, then rejoin. This
is simply because there cannot be any cycles in the OPT graph as it would contradict the fact that OPT is an
optimal solution.

Without loss of generality we can relabel the endpoints so that both source endpoints are on the same side of
the edges in S∗ and both destination endpoints are on the other side. We refer to the point in OPT where the two
players’ paths first join as the merge point and the successive point where they separate, if such a point exists, as
the departure point. Note that the merge point and the departure point may be the same point in the graph.

Recall potential function Φ(P ) =
∑

e∈E ceHne where ce is the cost of edge e and ne is the number of players
on edge e in strategy profile P . Let N be the nash that minimizes the potential function. Let S be the set of shared
edges at N . Let A be the set of edges that are only bought by player 1 at N . Let B be the set of edges that are
only bought by player 2 at N . We will also use the same variables to refer to the total cost of the edges in each
set. Hence if C(X) refers to the cost of the solution X and Ci(X) refers to the cost just to player i of the solution
X , then we have C(N) = A + B + S, C1(N) = A + S/2 and C2(N) = B + S/2.

Since Φ(N) ≤ Φ(OPT ) (by definition of N ) we have

A + B + 3S/2 ≤ A∗ + B∗ + 3S∗/2. (A.8)

Also, since N is a nash, we have A+S/2 ≤ (cost to player 1 of defecting to any alternate path from s1 to t1).
In particular, if we let P refer to the path from s1 to the merge point in OPT, continuing in OPT onto s2, next
continuing along player 2’s path in N from s2 to t2, then continuing along player 2’s path in OPT from t2 back
to the departure point in OPT, and finally following player 1’s path from the departure point to t1, then we know
that

A + S/2 ≤ (cost to player 1 of defecting to P ) ≤ A∗ + B∗ + B/2 + S/2

Symmetrically, we have B + S/2 ≤ A∗ + B∗ + A/2 + S/2
Summing these last two inequalities gives us A + B + S ≤ 2(A∗ + B∗) + A/2 + B/2 + S, or

A + B ≤ 4(A∗ + B∗). (A.9)

13



Now we can say:

4C(OPT ) = 4(A∗ + B∗ + S∗)
= 4/3(A∗ + B∗) + 8/3(A∗ + B∗ + 3S∗/2)
≥ 1/3(A + B) + 8/3(A + B + 3S/2)← by A.8 and A.9

= 3(A + B) + 4S ≥ 3(A + B + S) = 3C(N)

B Missing proofs for the lower bound

Proof. (Lemma 2.7) First of all, since level i is a separator, then on Li, Ri, ei,j , and ei−1,j(j = 2, 3), there can
be at most four agents: p, p′, and the two players with non-left sources at level i.

1. Suppose p uses edge ei−1,1, and shares it only with the owner. If edge Li is not in use, p moves up some
amount of levels and then right along edge Lj for some j > i. But then ei,1 already costs 6 because the sets
of agents on ei−1,1 and ei,1 are identical appart from the owners of those edges, and its final edge down costs at
least 15/4 since there are at most four agents on it, so this cannot happen: p would prefer the direct edge at cost
at most 6 + ε.

So Li is in use, and then it must be used by p, else the path of its user and the path of p together forms a cycle.
Besides agent p, agent pi,2 can be on Li, along with at most pi,3. This holds because no players from above visit
level i and the players need to reach their sinks without creating cycles, so there is no valid path for pi−1,3 to use
Li, given that it does not use ei−1,1. We conclude that there are at most 3 agents on Li.

If p uses edge ei−1,3, then p′ does as well, but stops at vi,3. In this case, if p moves further up along ei,3, it
pays already 15/2 for that edge since in this case Ri is not in use (Observation 2.1), which is also too much. So
in this case, p uses Ri. Player p′ does not, so there are at most three agents on Ri.

2. Suppose both p and p′ arrive at level i via edge ei−1,1. This implies that the edges ei−1,2 and ei−1,3 are not
used by any player. If edge Li is not used, p and p′ must later use edge ei,2 or ei,3 to move back down. For ei−1,1,
they pay 4. The edge that p uses to get back down to level i (ei,2 or ei,3) costs at least 15/4, so p pays more than
7.75 to get from vi,1 to vi,2, where it could use Li at a cost of at most 6, a contradiction.

If edge Li is used, but Ri is not used, then p′ uses edge ei,1 or ei,2 at cost at least 4 (it is only shared with
the owner and possibly pi,2), and edge ei,3 at cost at least 7.5 (only shared with the owner—note that vi,3 is a
terminal in this case), for a total cost of at least 11.5 to get from vi,1 to vi,3. But it could travel via Ri and Li and
pay only at most 3 + 5 = 8, a contradiction.

We still need to lower bound the cost of edges Li and Ri. On these edges, only p, p′, pi,2 and pi,3 can travel.
Moreover, pi,2 can only travel on one of them, since otherwise it has a cycle in its path. Finally, if pi,2 uses Ri,
it also uses ei,3, since ei−1,3 is not in use. So in this case, pi,3 travels straight to its goal. Thus, the cost to p′ of
using Li and Ri is at least 3/2 + 5/2 (pi,2 uses Li), 2 + 5/2 (pi,2 uses Ri), or 3 + 5/2 (pi,2 uses ei,2). This is at
least 4 in all cases, which is what we wanted to show.

3. Finally, if p′ uses ei−1,2, it shares that edge only with p, and p stops at vi,2. If p′ moves further up (possibly
after first moving to the left), it shares its final downward edge ei,3 also only with its owner (because vi,3 is a
terminal, which follows since edges Ri and ei,3 are not in use in this case), so p′ already pays 15/2 for edge ei,3

alone, a contradiction.

Proof. (Lemma 2.12) 1. Two of the edges {ei,j |j = 1, 2, 3} must be in use, since there exists a lower agent in
S`, which must go up and come down over different vertical edges. In particular, at least one of ei,2 and ei,3 is in
use, and its owner is therefore not in S`. Furthermore, no agent in S` starts on the left.
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Figure B.4: Paths in Lemma 2.7, Case 1, 2, and 3

2. Suppose there is a player p /∈ S` which uses ei,j but does not own it. The source of p is not at level i,
because two vertical edges going up are in use and the third column contains a source of a player in S`.

If the source of p is below level i, p must return to level i or below, using the unique other vertical edge
among {ei,j |j = 1, 2, 3} that is in use. Player p can only use the same path as the nonempty set of players in S`

that come from below level i, since otherwise a bad cycle would be formed (two alternate paths connecting these
two vertical edges). Hence p must visit level ` as well, and p ∈ S`, a contradiction.

If the source of p is above level i, then its sink is above level i as well and it must return back up after dropping
to level i. Thus, again, it must use the unique other vertical edge among {ei,j |j = 1, 2, 3} that is in use between
level i and i + 1. But in that case, we again find a cycle if we combine the paths of p and any agent q ∈ S`

below level i (p forms a continuous path linking two nodes in level i from below, while q forms a continuous
path linking those two nodes from above). So this case cannot occur, and we are done.

Proof. (Lemma 2.19) Assume that A moves straight down along edge e = ei−1,2. A uses a side of the grid to
move back up to level i, say column c, and let e′ = ei−1,c be the corresponding edge. The horizontal edge vi2vic

is not in use, otherwise there would be a cycle with A’s path. Thus, any player on e′ that does not own it must
also use e′′ = ei,c and belong to Si+1 together with A. Since |Si+1| ≤ 2, there can be at most one such player
and there are at most three users in total on e′, e′′.

Consider player A′. By Lemma 2.18, A′ does not use Ri followed by e. Edges vi2vic, ei,2 are not used by
any player, which means that the only ways that A′ has to reach level i + 1 is to either move directly to its sink
(using edge ei,3), or first move straight down from its source and eventually follow A through e′, e′′. In the latter
case, column c must be the leftmost column of the grid. A′ pays 2 · 12

3 = 8 for using e′, e′′. Its first edge down
costs least 15/5 = 3 (by Corollary 2.17), and A′ has to pay in total at least 2 · 6+5

4 > 5 for horizontal edges (as it
has to move from the right side to the left and back). This sums up to more than 15, implying that A′ would use
its own edge ei,3 instead.

Consider again the edges e′, e′′ that A uses to reach level i+1. If the column of e′, e′′ is the rightmost column
(the column of A′), then A would pay 2 · 15

3 = 10 for them. Edge e is used by at most 3 more players (the
owner and two players in Si), implying a cost of at least 15/4 > 3, while A would also have to use at least two
horizontal edges, at a cost of at least 2 · 5

4 > 2, implying a total cost more than 15.
Therefore e′, e′′ are on the leftmost side of the grid and are not used by A′. If they are not used by any other

player apart from A and the owners, then A would pay 2 · 12
2 for using them, plus at least 15/4 > 3 for using

e. Therefore, there must be one more player p on e′, e′′, and A pays 8 for them. By definition of A, p has its
source below level i, and since it uses e′ it will belong to Si (by Corollary 2.11). Now a player q that uses e
together with A and the owner will also belong to Si (since again q must have its source below i), therefore also
q is unique. Finally, p cannot be on e, as that would create a cycle either in its own path, or together with A’s
path. This means that A shares e with at most 2 more players, at the cost of 15/3 = 5. Since A will also have to
use at least two horizontal edges at cost at least 2 · 5/4 (by Lemma 2.17) the total cost of A would be more than
15.
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C Part of the proof of lower bound for three players

Assume that p1 does not use the direct edge (s1, t1) (and also no other player is using it, as this would create a
cycle with p1).

• Assume first that p1 is using edge (s1, s2). p1 must then use either edge (s2, t2) or (s2, s3).

p1 uses (s2, t2) Then it must also use (t1, t3). p2 will also then be on (s2, t2) (and will not be using any
other edge). If p3 is on (s2, t2) as well, then p1 must be alone on (s1, s2) and (t1, t2), implying a total cost
for p1 equal to 8+ ε+ 24

3 +8+ ε = 24+2ε > 24 so p1 would have preferred to use the direct edge (s1, t1)
instead. If p3 is not on (s2, t2), then it is also not on (s1, s2) (otherwise there would be a cycle with p2).
p1’s cost would then be 8 + ε + 24

2 + 8+ε
2 > 24. So p1 again would prefer (s1, t1).

p1 uses (s2, s3) No player uses (s1, s3) (since that would create a cycle with p1), and since (s1, t1) is
also not in use, p1 is alone on (s1, s2). Moreover, at most one of p2, p3 can be on (s2, s3). Then p1 pays at
least 8 + ε + 14+ε

2 > 15 + ε in order to reach s3. Therefore it would have used edge (s1, t1) instead.

Therefore p1 is not on (s1, t1).

• Suppose p1 is on (s1, s3). Then it has to use either(s2, s3) or (s3, t1).

p1 uses (s2, s3) Then it must also use (s2, t2) (implying that p2 is only using (s2, t2)) and (t1, t2). Even
if player p3 was on all edges p1 uses, its total cost would still be at least 15+ε+14+ε+8ε

2 + 24
3 > 24, so p1

would have preferred edge (s1, t1) instead.

p1 uses (s3, t1) Consider then player p2. Assume that p2 is not using the direct edge (s2, t2). Given that
(s1, t1) is not used, p2 has only two options: Either it uses (s1, s2) and (s1, s3), or it uses (s2, s3).

If p2 is on (s1, s2) and (s1, s3), player p3 cannot have used (s1, s2) without creating a cycle either in its
own path or with p2 (remember that edge (s1, t1) is not in use). Therefore the cost of p2 would be at least
8 + ε + 15+ε

2 + 18+ε
3 + 8+ε

2 > 24, implying that p2 would have used the direct edge (s2, t2) instead.

If p2 is on (s2, s3) then p3 cannot be using it. Therefore, p2 pays at least 14 + ε + 18+ε
3 + 8+ε

2 > 24.

Thus, p2 will be using (s2, t2).

Given now that p2 is only using (s2, t2) and the fact that p3 cannot be both on (s1, s3) and (s3, t1), the cost
of p is at least 15 + ε + 18+ε

2 > 24 (if p3 is not on (s1, s3)), or 15+ε
2 + 18 + ε > 24 (if p3 is not on (s3, t1)).

In all cases, p1 would therefore prefer to use the direct edge (s1, t1).
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