
Online interval scheduling on uniformly related machines

Leah Epstein∗ Lukasz Jeż† Jǐŕı Sgall‡ Rob van Stee§

August 27, 2012

Abstract

We consider online preemptive throughput scheduling of jobs with fixed starting times on
m uniformly related machines, with the goal of maximizing the profit of the completed jobs. In
this problem, jobs are released over time. Every job has a size and a weight associated with
it. A newly released job must be either assigned to start running immediately on a machine or
otherwise it is dropped. It is also possible to drop an already scheduled job, but only completed
jobs contribute their weights to the profit of the algorithm.

In the most general setting, no algorithm has bounded competitive ratio, and we consider a
number of standard variants. We give a full classification of the variants into cases which admit
constant competitive ratio (weighted and unweighted unit jobs, and C-benevolent instances,
which is a wide class of instances containing proportional-weight jobs), and cases which admit
only a linear competitive ratio (unweighted jobs and D-benevolent instances). In particular, we
give a lower bound of m on the competitive ratio for scheduling unit weight jobs with varying
sizes, which is tight. For unit size and weight we show that a natural greedy algorithm is
4/3-competitive and optimal on m = 2 machines, while for a large m, its competitive ratio is
between 1.56 and 2. Furthermore, no algorithm is better than 1.5-competitive.

∗Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il.
†Institute of Computer Science, University of Wroc law, Wroc law, Poland, and Institute of Mathematics, Academy

of Sciences of the Czech Republic. Research supported by MNiSW grant N N206 368839, 2010–2013, and grant
IAA100190902 of GA AV ČR. lje@cs.uni.wroc.pl.

‡Computer Science Institute, Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25,
CZ-11800 Praha 1, Czech Republic. Partially supported by the Center of Excellence – Inst. for Theor. Comp. Sci.,
Prague (project P202/12/G061 of GA ČR) and grant IAA100190902 of GA AV ČR. Email: sgall@iuuk.mff.cuni.cz.

§Max Planck Institute for Informatics, Saarbrücken, Germany. vanstee@mpi-inf.mpg.de.

1 Introduction

Interval scheduling is a well-studied problem with many applications, for instance work planning
for personnel, call control and bandwidth allocation in communication channels [1, 2]. In this
paper, we consider online interval scheduling on uniformly related machines. In this problem, jobs
with fixed starting times are released online to be scheduled on m machines. Each job needs to
start immediately or else be rejected. The completion time of an job is determined by its length
and the speed of a machine. Problems like these occur when jobs or material should be processed
immediately upon release, but there are different machines available for processing, for instance in
a large factory where machines of different generations are used side by side [12].

We consider the preemptive version of this problem, where jobs can be preempted (and hence
lost) at any time (for example, if more valuable jobs are released later). Without preemption, it is
easy to see that no online algorithm can be competitive for most models. The only exception is the
simplest version of this problem, where all jobs have unit size and weight. For this case, preemption
is not needed.

On a single machine and also on parallel identical machines, it is straightforward to solve the
case of unit size and weight to optimality in an online fashion using a greedy algorithm. However,
for related machines it is not possible to give a 1-competitive online algorithm, since it is in general
not clear which job should be run on which machine: this may depend on the timing of future
arrivals. We give a lower bound of (3 · 2m−1 − 2)/(2m − 1) on the competitive ratio for this case,
which for largem tends to 3/2 from below. We show that a simple greedy algorithm is 2-competitive
and we use a more complicated lower bound construction to show that it is not better than 1.56-
competitive for large m. For m = 2 machines, we show that it is 4/3-competitive, matching the
lower bound.

Next, we consider two extensions of this model: weighted unit-sized jobs and a model where the
weight of a job is determined by a fixed function of its size. This last model includes the important
case of proportional weights. A function f : R+

0 → R+
0 (where R+

0 denotes the non-negative reals)
is C-benevolent if it is convex, f(0) = 0, and f(p) > 0 for all p > 0. This implies in particular
that f is continuous in (0,∞), and monotonically non-decreasing. We consider instances, called
C-benevolent, where the weights of jobs are given by a fixed C-benevolent function f of their sizes.
If f(x) = ax for some a > 0, the weights are proportional. We give a 4-competitive algorithm,
which can be used both for f -benevolent jobs and for weighted unit-sized jobs. This generalizes
the results of Woeginger [14] for these models on a single machine.

Finally, we give a lower bound of m for unit-weight variable-sized jobs and we show that this
bound is tight. A function f is D-benevolent if it is decreasing on (0,∞), f(0) = 0, and f(p) > 0
for all p > 0. This is a generalization of the unit-weight variable-sized jobs case, hence also for
this model we have a lower bound of m. Note that in contrast, C-benevolent functions are not
a generalization of unit weights and variable sizes, because the constraint f(0) = 0 together with
convexity implies that f(cx) ≥ c ·f(x) for all c > 0, x > 0, so the weight is at least a linear function
of the size.

For the most general model where both the weight and the size of a job can be arbitrary, it is
known that no (randomized) algorithm can be competitive, already on one machine [14, 2]. For
completeness, we formally extend this result to related machines (see Appendix A). This result was
also mentioned (for identical machines) by Canetti and Irani [2]. For one machine, it is possible to
give an O(1)-competitive algorithm, and even a 1-competitive algorithm, using constant resource
augmentation on the speed; that is, the machine of the online algorithm is O(1) times faster than

1

size, weight One machine Two related machines m related machines
LB det. UB det. UB rand. LB UB LB UB

1, 1 1 1 [3, 5] 1 [3, 5] 4/3 4/3 3·2m−1−2
2m−1 2

1, variable 4 [14] 4 [14] 2 [7] 2 [8] 4 1.693 [4, 6] 4
variable, 1 1 1 [3, 5] 1 [3, 5] 2 2 m m

variable,D-benevolent 3 [14]1 4 [14] 2 [9] 2 8 m 4m
variable,C-benevolent 4 [14] 4 [14] 2 [9] 1.693 [4, 6] 4 1.693 [4, 6] 4
variable, proportional 4 [14] 4 [14] 2 [9] 1.693 [4, 6] 4 1.693 [4, 6] 4

variable, variable ∞ [14] − − ∞ − ∞ −

Table 1: An overview of old and new results.

the machine of the offline algorithm that it is compared to [10, 11].
We give an overview of our results and the known results in Table 1. In this table, a lower

bound for a class of functions means that there exists at least one function in the class for which
the lower bound holds.

Previous work Faigle and Nawijn [5] and Carlisle and Lloyd [3] considered the version of jobs
with unit weights on m identical machines. They gave a 1-competitive algorithm for this problem.
Woeginger [14] gave optimal 4-competitive algorithms for unit sized jobs with weights, D-benevolent
jobs, and C-benevolent jobs a single machine. He also showed that no online algorithm can be
competitive for the general problem (with arbitrary weights and sizes) on one machine.

For unit sized jobs with weights, Fung et al. [8] gave a 3.59-competitive randomized algorithm
for one and two (identical) machines, as well as a deterministic lower bound of 2 for two identical
machines. The upper bound for one machine was improved to 2 by the same authors [7] and
later generalized to the other nontrivial models [9]. See [4, 13] for additional earlier randomized
algorithms. A randomized lower bound of 1.693 for one machine was given by Epstein and Levin [4];
Fung et al. [6] point out that it also holds for parallel machines.

Fung et al. [6] consideredm identical machines (not shown in the table) and gave a 2-competitive
algorithm for even m and a (2 + 2/(2m − 1))-competitive algorithm for odd m ≥ 3. Krumke et
al. [12] were the first to study these problems for uniformly related machines.

Paper organization We consider the most basic model of unit weights and sizes in Section 2
and we give our constant competitive algorithm for unit jobs with weights and C-benevolent jobs
(which includes proportional jobs) in Section 3. Finally, we give a lower bound of m for unit-weight
jobs in Section 4, and we show that this is tight.

For completeness, we give an unbounded lower bound for the most general case in Appendix A,
which also holds for randomized algorithms. This results motivates the study of special cases.

Notation There aremmachines, M1,M2 . . . ,Mm, in order of non-increasing speed. Their speeds,
all no larger than 1, are denoted s1, s2 . . . , sm respectively. For an instance I and algorithm Alg,

1This lower bound holds for all surjective functions.

2

Alg(I) and Opt(I) denote the number of jobs completed by Alg and an optimal schedule, re-
spectively. The algorithm is R-competitive if Opt(I) ≤ R ·Alg(I) for every instance I.

For a job j, we denote its size by p(j), its release date by r(j), and its weight by w(j) > 0;
in Section 3 and Appendix D jobs are denoted by capital J ’s. Any job that an algorithm runs is
executed in a half-open interval [r, d), where r = r(j) and d is the time at which the job completes
or is preempted. We call such intervals job intervals. If a job (or a part of a job) of size p is run
on machine Mi then d = r + p

si
. A machine is called idle if it is not running any job, otherwise it

is busy.

2 Unit sizes and weights

In this section we consider the case of equal jobs, i.e., all the weights are equal to 1 and also the
size of each job is 1. We first note that it is easy to design a 2-competitive algorithm, and for 2
machines we find an upper bound of 4/3 for a natural greedy algorithm.

The main results of this section are the lower bounds. First we prove that no online algorithm
on m machines can be better than (3 · 2m−1 − 2)/(2m − 1)-competitive. This matches the upper
bound of 4/3 for m = 2 and tends to 1.5 from below for m → ∞. For Greedy on m = 3n machines
we show a larger lower bound of (25 · 2n−2 − 6)/(2n+2 − 3), which tends to 25/16 = 1.5625 from
below. Thus, somewhat surprisingly, Greedy is not 1.5-competitive.

2.1 Greedy algorithms and upper bounds

As noted in the introduction, in this case preemptions are not necessary. We may furthermore
assume that whenever a job arrives and there is an idle machine, the job is assigned to some idle
machine. We call such an algorithm greedy-like.

It can be easily observed that every greedy-like algorithm is 2-competitive: Upon arrival of
a job j that a fixed optimal schedule completes, charge j to itself if Alg also schedules (and
completes) j; otherwise charge j to the job Alg is running on the machine where the optimal
schedule assigns j. Every Alg’s job receives at most one charge of either kind, thus it schedules at
least one half of the number of jobs that the optimum schedules.

We also note that some of these algorithms are indeed no better than 2-competitive: If there
is one machine with speed 1 and the remaining m − 1 have speeds smaller than 1

m , an algorithm
that assigns an incoming job to a slow machine whenever possible has competitive ratio no smaller
than 2− 1

m . To see this consider an instance in which m− 1 successive jobs are released, the i-th
of them at time i − 1, followed by m jobs all released at time m. It is possible to complete them
all by assigning the first m − 1 jobs to the fast machine, and then the remaining m jobs each to
a unique machine. However, the algorithm in question will not complete any of the first m− 1 jobs
before the remaining m are released, so it will complete exactly m jobs.

Algorithm Greedy: Upon arrival of a new job: If some machine is idle, schedule the job on
the fastest idle machine. Otherwise reject it.

While we cannot show that Greedy is better than 2-competitive in general, we think it is a
good candidate for such an algorithm. We support this by showing that it is optimal for m = 2.

Theorem 2.1. Greedy is 4/3-competitive algorithm for interval scheduling of unit size and weight
jobs on 2 related machines.

3

Proof. Consider a schedule of Greedy and split it into independent intervals [Ri, Di) as follows.
Let R1 be the first release time. Given Ri, let Di be the first time after Ri when both machines are
available, i.e., each machine is either idle or just started a new job. Given Di, let Ri+1 be the first
release time larger than or equal to Di. Note that no job is released in the interval [Di, Ri+1). Thus
it is sufficient to show that during each [Ri, Di), the optimal schedule starts at most 4/3 times the
number of jobs that Greedy does.

At any time that a job j arrives in (Ri, Di), both machines are busy in the schedule of Greedy,
as otherwise Greedy could schedule it. An exception could be the case when Greedy indeed
scheduled j and one machine is idle, but then j’s release time would be chosen as Di. Thus any
job that Adv starts in (Ri, Di) can be assigned to the most recent job that Greedy started on
the same machine (possibly to itself). We get a one-to-one assignment between the jobs of Adv
that arrive in (Ri, Di), and the jobs of Greedy that arrive in [Ri, Di). Hence the optimal schedule
completes at most one additional job (the one started at time Ri on the idle machine). This proves
the claim if Greedy starts at least 3 jobs in [Ri, Di).

If Greedy starts only one job in [Ri, Di), then so does the optimal schedule. If Greedy starts
two jobs in [Ri, Di), then the first job is started on M1. No job is released in [Ri, Di) at or after
the completion of the first job on the fast machine, as Greedy would have scheduled it. It follows
that the optimal schedule cannot schedule any two of the released jobs on the same machine and
schedules also only two jobs. This completes the proof.

2.2 Lower bounds

For the first construction, we have m machines with geometrically decreasing speeds. The instance
has two sets of jobs. The first part, Im, is the set of jobs that both the algorithm and the adversary
complete. The other part, Em, consists of jobs that are completed only by the adversary.

Intuitively, the set Im can be described recursively. It contains one leading job jm to be run
on Mm plus two copies of Im−1. One copy is aligned so that it finishes at the same time as jm
on Mm. The other is approximately aligned with the start of the job on Mm; we offset its release
times forward so that m− 1 of its jobs are released before jm. Because of the offsets of the release
times, Greedy runs the leading jobs j1, j2, . . . , jm (where ji is the leading job from the leftmost
Ii appearing in the recursion tree) on M1, M2, . . . , Mm, respectively. The adversary starts by
scheduling the first m released jobs on different machines, cyclically shifted, so that one of them,
namely the one running on M1 finishes later than in Greedy but the remaining m−1 finish earlier.
Upon their completion a job from Em is released and scheduled by the adversary; the times are
arranged so that at the time of release of any job from Em, all the machines are busy in the schedule
of Greedy. This construction for k = 3 is illustrated in Figure 1. Note that later the proofs use a
more convenient decomposition of the binary recursion tree: Ik consists of all the leading jobs and
subinstances I1, I2, . . . , Ik−1.

The same idea works for a general algorithm in place of Greedy, but we need to be more careful.
We describe an adversary strategy that dynamically determines the instance. The algorithm can
use an arbitrary permutation to schedule the leading jobs. We let the adversary cyclically shift the
jobs, so that on m − 1 machines they start a little bit earlier than in the algorithm’s assignment.
However, this slightly disturbs the timing at the end of the subinstances, so that we cannot align
them exactly. To overcome this, we need to change the offsets of the leading jobs, making them
geometrically decreasing in the nested subinstances, and adjust the timing on the subinstances
carefully depending on the actual schedule. The details of the construction are somewhat tedious

4

Greedy
Adv

Greedy
Adv

Greedy
Adv

M1

M2

M3

j1

j2

j3

e2

e3

Figure 1: The instance (I3, E3) and (I ′1, E
′
1) for Greedy. Common jobs in Greedy and Adv

schedule are matched. Jobs that only Adv completes are thicker.

and we postpone the proof of the following theorem to Appendix B.

Theorem 2.2. Let Alg be an online algorithm for interval scheduling of unit size and unit weight
jobs on m related machines. Then the competitive ratio of Alg is at least (3 · 2m−1 − 2)/(2m − 1).

The second lower bound is higher, however it works only for Greedy. We observe that cyclic
shift may not be the best permutation. Instead, we create triplets of machines of the same speeds
and shift the jobs cyclically among the triplets, i.e., the permutation of the leading jobs has three
independent cycles of length m/3. Only for the three fastest machines we use the previous con-
struction as a subinstance.

Theorem 2.3. The competitive ratio of the Greedy algorithm for interval scheduling of unit size
and unit weight jobs on m = 3n related machines is at least (25 · 2n−2 − 6)/(2n+2 − 3).

Proof (part of which is given in Appendix C): Let Adv denote the schedule of the adversary
which we construct along with the instance.

Fix m = 3n, n ≥ 2, the number of machines, and the speeds

si =

{
41−i if i ≤ 3 ,

4−(1+⌈i/3⌉) if i > 3 .
(1)

The set Nk = {M3k−2,M3k−1,M3k} is called the k-th cluster of machines; note that, with the
exception of N1, all machines in a cluster have the same speed. Let Mk = {M1, . . . ,Mk} denote
the set of k fastest machines from M and let Nk = {N1, . . . , Nk} denote the set of k fastest clusters.
Let ε = 1/m. Note that (k − 1)ε < 1 for all k ≤ m.

To prove the bound we are going to inductively construct a sequence of instances (I ′1, E
′
1),

(I ′2, E
′
2), . . . , (I

′
n, E

′
n). These are roughly the instances (Ik, Ek) from the general bound constructed

for Greedy on the cluster level, i.e., Nk corresponds to Mk from the previous construction and
the leading jobs are released in triples, called batches. There will be many occurrences of instances
(I ′k, E

′
k), but we do not distinguish them explicitly by notation. For each occurrence, we also give

two times R(I ′k) and D(I ′k) that describe the interval during which the jobs I ′k are scheduled.
Whenever the construction of an occurrence of (I ′k, E

′
k) is invoked, we are given R(I ′k), D(I ′k)

and partial schedules of both Greedy and Adv for jobs released before R(I ′k) that satisfy the
following preconditions:

(A’) D(I ′k) = R(I ′k) +
1
s3

+ 2ε if k = 1, and D(I ′k) = R(I ′k) +
1
s3k

+ (k − 1)ε if k > 1.

(B’) All clusters Nk are idle at time R(I ′k) in the schedules of both of Greedy and of Adv. All
the remaining clusters are busy in the schedule of Greedy at time R(I ′k); furthermore, every
machine in each such cluster is processing a job that will not complete before D(I ′k).

5

In particular, for k = n, we start the construction by setting R(I ′n) = 0, D(I ′n) = R(I ′k) +
1

s3m
+

(m− 1)ε guaranteeing (A’); (B’) holds trivially.
Now we describe the recursive construction of (I ′k, E

′
k) together with the schedules of both

Greedy and Adv. The construction proceeds inductively for k = 1, . . . , n, in each inductive step
we verify properties (A’) and (B’) for every invoked construction of a subinstance (I ′i, E

′
i) and prove

the following claim summarizing the desired properties of our instance (I ′k, E
′
k).

Claim 2.4. Any occurrence of the instance (I ′k, E
′
k) and times R(I ′k) and D(I ′k) for k > 1 has the

following properties:
(i) The first 3k jobs of I ′k are called its leading jobs and are denoted by j1, j2, . . . , j3k. For each

i, the jobs j3i−2, j3i−1 and j3i are released at time R(I ′k) + (i − 1)ε; together this triplet is
denoted by Ji and called a leading batch.

(ii) The remaining jobs of I ′k are released after time R(E′
k)+1. Both Greedy and Adv complete

all jobs from I ′k on clusters Nk before D(I ′k). The jobs from E′
k are released before D(I ′k) and

Adv completes all of them on clusters Nk; thus they are completed before time D(I ′k) +
1
s3k

.

(iii) The last job j of I ′k scheduled on M1 by Greedy is completed at time D(I ′k). Furthermore,
while j is running, all machines Mm are busy in Greedy’s schedule.

(iv) Every job from E′
k is released at time when all machines Mm are busy in Greedy’s schedule.

(v) I ′k consists of exactly 16 · 2k−2 − 3 jobs. E′
k consists of exactly 9 · 2k−2 − 3 jobs.

For k = 1, we essentially use the instance (I3, E3), but we give it explicitly in the variant
working for Greedy, see also Figure 1. The set I ′1 contains 7 jobs released at times R(I ′1) plus
0, ε, 2ε, 3 + ε, 12 + ε, 12 + 2ε, 15 + 2ε and the set E′

1 contains 3 jobs released at times R(I ′1) plus
4, 16 + ε, 16 + ε. The schedule of Greedy starts the jobs at the following times after R(I ′1):

On M1 at 0, 3 + ε, 12 + ε, 15 + 2ε. On M2 at ε, 12 + 2ε. On M3 at 2ε.
The schedule of Adv starts the jobs at the following times after R(I ′1):

On M1 at 2ε, 3 + ε, 12 + 2ε, 15 + 2ε. On M2 at 0, 4, 12 + ε, 16 + ε. On M3 at ε, 16 + ε.
It is easy to verify that all properties in Claim 2.4 hold.

For k > 1, I ′k is constructed as follows. First, the leading batches J1, J2, . . . , Jk are released as
described in (i). Due to (B), the machines in Nk are idle both for Greedy and Adv at time R(I ′k).
Thus Greedy assigns the leading batch Ji to cluster Ni (since all three jobs in the cluster are
released at the same time, their assignment within the cluster does not matter); note that Greedy
cannot complete any leading job before the release of Jk, as the earliest possible completion time
is R(I ′k) + 1 > R(I ′k) + (k − 1)ε by the choice of ε. Adv schedules Jk on N1 and Ji on Ni+1 for
i = 1, . . . , k−1. For i = 1, . . . , k, denote the time when Greedy (resp. Adv) completes the leading
batch scheduled on Ni by CGreedy(Ni) (resp. CAdv(Ni)). Note that

CGreedy(Ni) = R(I ′k) +
1

s3i
+ (i− 1)ε, (2)

CAdv(N1) = R(I ′k) +
1

s3
+ (k − 1)ε, and CAdv(Ni) = CGreedy(Ni)− ε for i > 1. (3)

For every cluster Ni except for N1 we release a batch of three jobs e3i−2, e3i−1, e3i at time
CAdv(Ni); Adv schedules these jobs on Ni. Let E

′ denote the union of these k−1 batches (i.e., a set
of 3k− 3 jobs). For each i = 1, 2, . . . , k− 1, in increasing order, construct recursively an occurrence
of the instance (I ′i, E

′
i), including Adv schedule, with D(I ′i) = CGreedy(Ni+1) and R(I ′i) chosen so

6

that (A’) is satisfied. Finally, let I ′k = {j1, j2, . . . , j3k}∪I ′1∪· · ·∪I ′k−1 and E′
k = E′∪E′

1∪· · ·∪E′
k−1.

This completes the description of (I ′k, E
′
k).

We need to verify that subinstances do not interfere with each other, namely that the chosen
R(I ′i), D(I ′i) satisfy (B’) and to prove Claim 2.4 for (I ′k, E

′
k). This is fairly straightforward and

postponed to Appendix C.
The construction of (I ′n, E

′
n) proves the theorem. In particular, (iv) implies that Greedy does

not schedule any job from E′
n and (v) implies that the competitive ratio of Greedy is at least

((16 · 2n−2 − 3) + (9 · 2n−2 − 3))/(16 · 2n−2 − 3) = (25 · 2n−2 − 6)/(16 · 2n−2 − 3).

3 A constant competitive algorithm for two classes of inputs

In this section we consider two types of instances. The first type are equal-sized jobs (of size
1, without loss of generality), whose weights can be arbitrary. We also consider input instances
where the weights of jobs are given by a fixed C-benevolent function f of their sizes, that is,
w(J) = f ((p(J)). We call such an instance f -benevolent.

Algorithm Alg: On arrival of a new job J do the following.
1. Use an arbitrary idle machine if such a machine exists.
2. Otherwise, if no idle machines exist, preempt the job of minimum weight among the jobs

running at time r(J) having a weight less than w(J)/2 if such jobs exist.
3. If J was not scheduled in the previous steps, then reject it.

Note that we do not use the speeds in this algorithm in the sense that there is preference of
slower or faster machines in any of the steps. But clearly, the eventual schedule does depend on
the speeds.

Definition 3.1. A chain is a maximal sequence of jobs J1, . . . , Jn, that Alg runs on one machine,
such that Jj is preempted when job Jj+1 arrives (j = 1, . . . , n− 1).

Observation 3.2. For a chain J1, . . . , Jn that Alg runs on machine i, J1 starts running on an
idle machine, and Jn is completed by Alg. Let [rj , dj) be the time interval in which Jj is run
(j = 1, . . . , n). Then it holds that rj = r(Jj), dn − rn = p(Jn)/si, and finally dj − rj < p(Jj)/si,
and dj = rj+1 for j = 1, . . . , n− 1.

The following observation holds due to the preemption rule.

Observation 3.3. For a chain J1, . . . , Jn, 2w(Jj) < w(Jj+1) for 1 ≤ j ≤ n− 1.

Consider a fixed optimal offline solution Opt, which runs all its selected jobs to completion.
We say that a job J which is executed by Opt is associated with a chain J1, . . . , Jn if Alg runs
the chain on the machine where Opt runs J and J is released while this chain is running, i.e.,
r(J) ∈ [r(J1), d(Jn)).

Claim 3.4. Every job J executed by Opt such that J is not the first job of any chain of Alg is
associated with some chain.

Proof. Assume that J is not associated with any chain. The machine i which is used to execute J
in Opt is therefore idle at the time r(J) (before J is assigned). Thus, J is assigned in step 1 (to i
or to another machine), and it is the first job of a chain.

7

Thus, every job run by Opt but not by Alg is associated with a chain. We assume without loss
of generality that every job in the instance either belongs to a chain or is run by Opt (or both),
since other jobs have no effect on Alg and on Opt.

We assign every job that Opt runs to chains of Alg. The weight of a job J is split between J
and the chain that J is associated with, where one of the two parts can be zero. In particular, if
Alg does not run J then the first part must be zero, and if J is not associated with a chain then
the second part must be zero. The assignment is defined as follows. Consider job J with release
date r which Opt runs on machine i.

1. If J is not associated with any chain, assign a weight of w(J) to J .

2. If J is associated with a chain of Alg (on machine i), let J ′ be the job such that r(J) ∈
[r(J ′), d(J ′)). Assign min{w(J), 2 · w(J ′)} part of J to this chain, and assign the remainder
max{2 · w(J ′)− w(J), 0} part to J itself.

Note that for an f -benevolent instance, multiple jobs which are associated with a chain on a
machine of speed s can be released while a given job J ′ of that chain is running, but only the last one
can have weight above w(J ′), since all other such jobs J satisfy r(J)+ p(J)

s ≤ d(J ′) and r(J) ≥ r(J ′),
so p(J) ≤ p(J ′) and by monotonicity w(J) ≤ w(J ′). The weight of all such jobs is assigned to the
chain, while the last job associated with the chain may have some weight assigned to itself, if its
weight is above 2w(J ′); this can happen only if Alg runs this job on another machine. This holds
since if Alg does not run J , Alg does not preempt any of the jobs it is running, including the job
J ′ on the machine that Opt runs J on, then w(J) ≤ 2w(J ′) (and J is fully assigned to the chain
it is associated with). If Alg runs a job J on the same machine as Opt, then J = J ′ must hold,
and J is completely assigned to the chain (and not assigned to itself).

For a job J that has positive weight assignment to a chain of Alg it is associated with (such
that the job J ′ of this chain was running at time r(J)), we define a pseudo-job π(J). This job
has the same release date time as J and its weight is the amount of J assigned to the chain, i.e.,
min{w(J), 2 · w(J ′)}. It is said to be assigned to the same chain of Alg that J is assigned to.
If the input consists of unit jobs, then the size of π(J) is 1. If the instance is an f -benevolent
instance, then the size p (π(J)) of π(J) is such that f (p (π(J))) = 2w(J ′) (since f is continuous
in (0,∞), and since there are values x1,x2 (the sizes of J, J ′) such that f(x1) = w(J ′) < 2w(J ′)
and f(x2) = w(J) > 2w(J ′) then there must exist x1 < x3 < x2 such that f(x3) = 2w(J ′)), and
p (π(J)) ≤ p(J).

For any chain, we can compute the total weight assigned to the specific jobs of the chain
(excluding the weight assignment to the entire chain).

Claim 3.5. For a chain J1, . . . , Jn that Alg runs on machine i, the weight assigned to J1 is at
most w(J1). The weight assigned to Jk for 2 ≤ k ≤ n is at most w(Jk) − 2w(Jk−1). The total
weight assigned to the jobs of the chain is at most w(Jn)−

∑n−1
k=1 w(Jk).

Proof. The property for J1 follows from the fact that the assigned weight never exceeds the weight
of the job. Consider job Jk for k > 1. Then w(Jk) > 2w(Jk−1) by Observation 3.3. If there
is a positive assignment to Jk, then the machine i′ where Opt runs Jk is not i. At the time
r(Jk) all machines are busy (since the scheduling rule prefers idle machines, and Jk preempts
Jk−1). Moreover, the job J ′ running on machine i′ at time r(Jk) satisfies w(J

′) ≥ w(Jk−1). Thus
Jk is assigned w(Jk) − 2 · w(J ′) ≤ w(Jk) − 2w(Jk−1). The total weight assigned to the jobs of

8

the chain is at most w(J1) +
∑n

k=2 (w(Jk)− 2w(Jk−1)) = w(J1) +
∑n

k=2w(Jk) − 2
∑n−1

k=1 w(Jk) =∑n
k=1w(Jk)− 2

∑n−1
k=1 w(Jk) = w(Jn)−

∑n−1
k=1 w(Jk).

Definition 3.6. For a given chain J1, . . . , Jn of Alg running on machine i, an alt-chain is a set

of pseudo-jobs J ′
1, . . . , J

′
n′ such that r(J ′

k) ≥ r(J ′
k−1) +

p(J ′
k−1)

si
for 2 ≤ k ≤ n′, r(J ′

1) ≥ r(J1),
r(J ′

n′) < d(J ′
n), (that is, all jobs of the alt-chain are released during the time that the chain of

Alg is running, and they can all be assigned to run on machine i in this order). Moreover, if
r(J ′

k) ∈ [rℓ, dℓ), then w(J ′
k) ≤ 2 · w(Jℓ).

Lemma 3.7. For unit jobs, a chain J1, . . . , Jn of Alg on machine i and any alt-chain J ′
1, . . . , J

′
n′

satisfy
n′∑
k=1

w(J ′
k) ≤

n∑
ℓ=1

w(Jℓ) + 2w(Jn).

Proof. For every job Jℓ, there can be at most one job of the alt-chain which is released in [rℓ, dℓ),
since the time to process a job on machine i is 1

si
and thus difference between release times of jobs

in the alt-chain is at least 1
si
, while dℓ ≤ rℓ +

1
si
. However, every job of the alt-chain J ′

k must have
a job of the chain running at r(J ′

k). If job J ′
k of the alt-chain has r(J ′

k) ∈ [rℓ, dℓ) then by definition

w(J ′
k) ≤ 2 · w(Jℓ), which shows

∑n′

k=1w(J
′
k) ≤ 2

∑n
ℓ=1w(Jℓ).

Using w(Jk) > 2w(Jk−1) for 2 ≤ k ≤ n we find w(Jk) <
w(Jn)
2n−k for 1 ≤ k ≤ n and

∑n−1
k=1 w(Jk) <

w(Jn). Thus
∑n′

k=1w(J
′
k) ≤

∑n
ℓ=1w(Jℓ) + 2w(Jn).

Lemma 3.8. For C-benevolent instances, a chain J1, . . . , Jn of Alg on machine i and any alt-chain
J ′
1, . . . , J

′
n′ satisfy

n′∑
k=1

w(J ′
k) ≤

n∑
ℓ=1

w(Jℓ) + 2w(Jn).

This lemma can be deduced from a claim in [14] to analyze this algorithm for one machine. For
completeness, we present a detailed proof in Appendix D.

Observation 3.9. For a chain J1, . . . , Jn of Alg, the sorted list of pseudo-jobs (by release date)
assigned to it is an alt-chain, and thus the total weight of pseudo-jobs assigned to it is at most
2
∑n

ℓ=1w(Jℓ).

Proof. By the assignment rule, every job which is assigned to the chain (partially or completely)
is released during the execution of some job of the chain. Consider a pseudo-job J assigned to the
chain, and let J ′ be the job of the chain executed at time r(J).

The pseudo-job π(J) has weight at most min{w(J), 2 · w(J ′)}. Since the set of pseudo-jobs
assigned to the chain results from a set of jobs that Opt runs of machine i, by possibly decreasing
the sizes of some jobs, the list of pseudo-jobs can still be executed on machine i.

Theorem 3.10. The competitive ratio of Alg is at most 4 for unit length jobs, and for C-benevolent
instances.

Proof. The weight allocation partitions the total weight of all jobs between the chains, thus is
it sufficient to compare the total weight a chain was assigned (to the entire chain together with

9

assignment to specific jobs) to the weight of the last job of the chain (the only one which Alg
completes), which is w(Jn).

Consider a chain J1, . . . , Jn of Alg. The total weight assigned to it is at most (w(Jn) −∑n−1
k=1 w(Jk)) + (

∑n
ℓ=1w(Jℓ) + 2w(Jn)) = 4w(Jn).

4 Tight bound of m for unit weights and variable sizes

It is easy to see that the following algorithm is m-competitive. Use only the fastest machine.
Accept any job when this machine is idle, and only interrupt a job for an earlier finishing job. This
algorithm is optimal on one machine [5, 3]. That is, it selects a subset S of the jobs in the input
which maximizes the profit on the fastest machine. In the optimal schedule for m machines, no
set assigned to any machine can be more valuable than S because this set could also have been
processed by the fastest machine, contradicting the definition of S. This proves the competitive
ratio of m. We now give a matching lower bound. Note that Krumke et al. [12] claimed an upper
bound of 2 for this problem, which we show is incorrect.

Fix 0 < ε < 1
2 such that 1

ε is integer. Our goal is to show that no online algorithm can be better
than (1− ε)m-competitive. We define M = (1ε − 1)m and N = m3 +Mm2 +Mm.

Input One machine is fast and has speed 1. The other m − 1 machines have speed 1/N . The
input sequence will consist of at most N jobs, which we identify with their numbers. Job j will
have size p(j) = 2N−j and release time r(j) ≥ j; we let r(1) = 1. The input consists of phases
which in turn consist of subphases. Whenever a (sub)phase ends, no jobs are released for some
time in order to allow the adversary to complete its most recent job(s). Alg will only be able to
complete at most one job per full phase (before the next phase starts). The time during which no
jobs are released is called a break.

Specifically, if Alg assigns job j to a slow machine or rejects it, the adversary assigns it to the
fast machine instead, and we will have r(j + 1) = r(j) + p(j). We call this a short break (of length
p(j)). A short break ends a subphase.

If Alg assigns job j to the fast machine, then in most cases, job j is rejected by the adversary
and we set r(j + 1) = r(j + 1). The only exception occurs when Alg assigns m consecutive jobs
to the fast machine (since at most N jobs will arrive, and p(j) = 2N−j , each of the first m − 1
jobs is rejected by Alg when the next job arrives). In that case, the adversary assigns the first
(i.e., largest) of these m jobs to the fast machine and the others to the slow machines (one job per
machine). After the m-th job is released, no further jobs are released until the adversary completes
all these m jobs. The time during which no jobs are released is called a long break, and it ends a
phase.

The input ends after there have been M long breaks, or if m2 + bm short breaks occur in total
(in all phases together) before b long breaks have occurred. Thus the input always ends with a
break. We show in Appendix E that if there are m2 + bm short breaks in total before the b-th long
break, Alg can complete at most b− 1+m jobs from the input (one per long break plus whatever
jobs it is running when the input ends), whereas Opt earns m2+ bm during the short breaks alone.
This implies a ratio of m and justifies ending the input in this case (after the (m2 + bm)-th short
break). If the M -th long break occurs, the input also stops. Alg has completed at most M jobs
and can complete at most m−1 more. Opt completes at least Mm jobs in total (not counting any
short breaks). The ratio is greater than Mm/(M +m) = (1− ε)m for M = (1ε − 1)m.

10

References

[1] B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén. Competitive non-preemptive call control.
In Proc. of 5th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’94), pages
312–320, 1994.

[2] R. Canetti and S. Irani. Bounding the power of preemption in randomized scheduling. SIAM
Journal on Computing, 27(4):993–1015, 1998.

[3] M. C. Carlisle and E. L. Lloyd. On the k-coloring of intervals. Discrete Appliled Mathematics,
59(3):225–235, 1995.

[4] L. Epstein and A. Levin. Improved randomized results for the interval selection problem.
Theoretical Computer Science, 411(34-36):3129–3135, 2010.

[5] U. Faigle and W. M. Nawijn. Note on scheduling intervals on-line. Discrete Appliled Mathe-
matics, 58(1):13–17, 1995.

[6] S. P. Y. Fung, C. K. Poon, and D. K. W. Yung. On-line scheduling of equal-length intervals
on parallel machines. Information Processing Letters, 112(10):376–379, 2012.

[7] S. P. Y. Fung, C. K. Poon, and F. Zheng. Improved randomized online scheduling of unit length
intervals and jobs. In Proc. 6th Intl. Workshop Approx. Online Algorithms (WAOA2008), pages
53–66, 2008.

[8] S. P. Y. Fung, C. K. Poon, and F. Zheng. Online interval scheduling: randomized and multi-
processor cases. Journal of Combinatorial Optimization, 16(3):248–262, 2008.

[9] S. P. Y. Fung, C. K. Poon, and F. Zheng. Improved randomized online scheduling of intervals
and jobs. CoRR, abs/1202.2933, 2012.

[10] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of the ACM,
47(4):617–643, 2000.

[11] C.-Y. Koo, T. W. Lam, T.-W. Ngan, K. Sadakane, and K.-K. To. On-line scheduling with
tight deadlines. Theoretical Computer Science, 295:251–261, 2003.

[12] S. O. Krumke, C. Thielen, and S. Westphal. Interval scheduling on related machines. Com-
puters & Operations Research, 38(12):1836–1844, 2011.

[13] S. S. Seiden. Randomized online interval scheduling. Operations Research Letters, 22(4-5):171–
177, 1998.

[14] G. J. Woeginger. On-line scheduling of jobs with fixed start and end times. Theoretical
Computer Science, 130(1):5–16, 1994.

11

A Variable weights and sizes

We show that for the most general setting, no competitive algorithm can exist (not even a random-
ized one).

Proposition A.1. The competitive ratio of every randomized algorithm for variable lengths and
variable weights is unbounded.

Proof. Let Algm be an arbitrary randomized preemptive algorithm for m machines. Let C be an
arbitrary constant, and let C ′ = mC. Define the following algorithm Alg for one machine of speed
s1: Alg chooses an integer i in {1, 2, ...,m} uniformly with probability 1/m and acts as Algm acts
on machine i. Since the speed of i is at most s1, this is possible. Note that Alg is randomized
even if Algm is deterministic. For every input J , E(Alg(J)) = 1

m · E(Algm(J)).
Let Optm denote an optimal solution for m machines, and Opt1 on one machine. Clearly

Opt1(J) ≤ Optm(J) for every input J . Let I be an input such that Opt1(I) ≥ C ′ · E(Alg(I))
(its existence is guaranteed, since Alg’s competitive ratio is unbounded [2]). Then

C · E(Algm(I)) = mC · E(Alg(I)) ≤ Opt1(I) ≤ Optm(I).

Thus the competitive ratio of Algm is unbounded.

B General Lower Bound for Unit Weights and Times

In this appendix we prove Theorem 2.2
Following Section 2.1, we may assume that Alg is greedy-like. Let Adv denote the schedule of

the adversary which we construct along with the instance.
Fix m, the number of machines and the speeds sk = 4−k. Thus a job processed on Mk takes time

1
sk

= 4k. Let Mk = {M1, . . . ,Mk} denote the set of k fastest machines from M. For k = 1, . . . ,m,

let εk = mk−m−1. Note that εk < 1 and kεk < mεk = εk+1.
To prove the bound we are going to inductively construct a sequence of instances (I1, E1),

(I2, E2), . . . , (Im, Em). Each instance Ik is run by both Alg and Adv on machines Mk. In
fact, due to the recursive construction, there will be many occurrences of instances (Ik, Ek); we do
not introduce separate notation for each of them as the particular occurrence will be clear from
the context. For each occurrence, we also construct two times R(Ik) and D(Ik) that describe the
interval during which the jobs Ik are scheduled.

Whenever the construction of an occurrence of (Ik, Ek) is invoked, we are given R(Ik), D(Ik)
and partial schedules of both Greedy and Adv for jobs released before R(Ik) that satisfy the
following preconditions:

(A) D(Ik) = R(Ik) +
1
sk

+ (k − 1)εk.

(B) All machines Mk are idle at time R(Ik) in the schedules of both of Alg and of Adv. All
the remaining machines are busy in the schedule of Alg at time R(Ik); furthermore, each of
them is processing a job that will not complete before D(Ik).

In particular, for k = m, we start the construction by settingR(Im) = 0 andD(Im) = 1
sm

+(m−1)εm
guaranteeing (A); (B) holds trivially.

12

Now we describe the recursive construction of Ik and Ek together with the schedule of Adv
and the proof of the following Claim B.1 summarizing the desired properties of our instances. The
construction depends on the actual schedule of Alg before the current time; this is sound, as
during the construction the current time only increases. (Note that this also means that different
occurrences of (Ik, Ek) may look slightly differently.)

Claim B.1. Any occurrence of the instance (Ik, Ek) and times R(Ik) and D(Ik) has the following
properties:
(i) The first k jobs of Ik are called its leading jobs and are denoted by j1, j2, . . . , jk. For each i,

the job ji is released at time R(Ik) + (i− 1)εk.
(ii) The remaining jobs of Ik are released after time R(Ik) + 1. Both Alg and Adv complete all

jobs from Ik on machines Mk before D(Ik). The jobs from Ek are released before D(Ik) and
Adv completes all of them on machines Mk; thus they are completed before time D(Ik)+

1
sk
.

(iii) The last job j of Ik scheduled onM1 byAlg is completed during time interval [D(Ik)− kεk, D(Ik)].
Furthermore, while j is running, all machines Mm are busy in the schedule of Alg.

(iv) Every job from Ek is released at a time when all machines Mm are busy in the schedule of
Alg.

(v) Ik consists of exactly 2k − 1 jobs. Ek consists of exactly 2k−1 − 1 jobs.

For k = 1, we set I1 = {j1} where j1 is a single leading job released at R(I1) and E1 is empty.
This instance trivially satisfies all the properties from Claim B.1; for (iii) note that j1 is the only
and last job, it is completed before D(I1) and by the assumption (B), all the other machines are
running a job during the whole interval [R(I1), D(I1)].

For k > 1, Ik is constructed as follows. First, the leading jobs j1, j2, . . . , jk are released as
described in (i). We let time proceed to the time R(Ik) + 1 and examine the schedule of Alg.
Since later we make sure that (ii) holds, i.e., no more jobs are released before R(Ik) + 1, this is
sound. Since for Alg the machines in Mk are idle at time R(Ik) and all the other machines are
busy, Alg assigns all the leading jobs to machines in Mk in one-to-one correspondence; this uses
the assumption that Alg is greedy-like and also the fact that no leading job can complete before
the release of jk, as the earliest possible completion time is R(Ik) + 1 > R(Ik) + (k − 1)εk by the
choice of εk.

For i = 1, . . . , k−1, Adv schedules ji on the machine where Alg schedules ji+1; Adv schedules
jk on the machine where Alg schedules j1. For i = 1, . . . , k, denote the time when Alg (resp.
Adv) completes the leading job scheduled on Mi by CAlg(Mi) (resp. CAdv(Mi)). Note that

CAlg(Mi), CAdv(Mi) ∈
[
R(Ik) +

1

si
, R(Ik) +

1

si
+ (k − 1)εk

]
, (4)

which means that the completion times on the machines are almost independent of the permutation
of the leading jobs in each schedule and they increase fast with i.

The construction implies that, for all machines Mk with one exception,

CAlg(Mi) = CAdv(Mi) + εk. (5)

(The exception is the machine where Alg schedules j1.) For every machine Mi satisfying (5) we
release a job ei at time CAdv(Mi). Let E denote the set of these k − 1 jobs ei.

For each i = 1, 2, . . . , k − 1, in increasing order, construct recursively an occurrence of the
instance (Ii, Ei), including Adv schedule, with R(Ii) = CAlg(Mi+1)− (i− 1)εi − 1

si
and D(Ii) =

13

CAlg(Mi+1). For the rest of the construction and of the proof of Claim B.1, let (Ii, Ei) denote this
particular occurrence. Finally, let Ik = {j1, j2, . . . , jk}∪I1∪· · ·∪Ik−1 and Ek = E∪E1∪· · ·∪Ek−1.
This completes the description of (Ik, Ek).

We need to verify that subinstances do not interfere with each other, namely that the chosen
R(Ii), D(Ii) and the partial schedules of Alg and Adv satisfy (A) and (B). The property (A)
follows from the choice of R(Ii) and D(Ii). To prove (B), we need to show that each R(Ii) is
sufficiently large compared to D(Ii−1) (or compared to R(Ik) for i = 1). For i = 1, . . . , k − 1,

using (4) and the choice of εi we have D(Ii) = CAlg(Mi+1) ∈
[
R(Ik) +

1
si+1

, R(Ik) +
1

si+1
+ 1

]
and thus R(Ii) ≥ R(Ik) +

1
si+1

− 1
si

− 1 = R(Ik) + 3 1
si

− 1. This implies that before R(Ii), the

leading job on Mi is completed in both Alg and Adv schedules; also the extra job ei (if it exists)
is completed, since it is released before time R(Ik) +

1
si

+ 1 and takes time 1
si
. Furthermore, for

i = 2, . . . , k − 1, this implies that R(Ii) > D(Ii−1) +
1

si−1
, which means that all the jobs from

(Ii−1, Ei−1) are completed, using (ii) for (Ii−1, Ei−1). Thus we conclude that all the jobs started
before R(Ii) on Mi are completed and these machines are idle in both schedules. The machines
Mi+1, . . . , Mk are still processing their leading jobs at R(Ii), as R(Ii) < R(Ik) +

1
si+1

. Finally,

the machines Mk+1, . . . , Mm are processing jobs guaranteed by the assumption (B) for (Ik, Ek),
as R(Ii) ∈ [R(Ik), D(Ik)]. This completes the proof of the assumption (B) for the subinstances
(Ii, Ei).

Finally, we verify the remaining properties from Claim B.1 for (Ik, Ek). Property (i) follows
from the construction.

Property (ii): The fact that non-leading jobs are released only after R(Ik) + 1 follows from the
analysis of R(I1) in the previous paragraph. From (4) it follows that in both schedules, the leading
jobs complete by time R(Ik) +

1
sk

+ (k − 1)εk = D(Ik). Furthermore, each D(Ii) is equal to some
completion time of a leading job, thus it is at most D(Ik) and all the jobs from Ii complete by D(Ii)
by (ii) for (Ii, Ei). The jobs from E are released before D(Ik) by construction, for the remaining
jobs from Ek, i.e., those from some Ei, it follows again by (ii) for (Ii, Ei).

Property (iii): Let j be the last job of Ik scheduled on M1 in Alg and let C be its completion
time. This is the last job of Ik−1, so by (iii) for Ik−1 we have C ∈ [D(Ik−1)− (k − 1)εk−1, D(Ik−1)] ⊆[
CAlg(Mk)− εk, CAlg(Mk)

]
using D(Ik−1) = CAlg(Mk) and the choice of εk > (k − 1)εk−1.

By (4), we have CAlg(Mk) ≥ D(Ik)− (k−1)εk, thus C ≥ CAlg(Mk)−εk ≥ D(Ik)−kεk. Finally,
C ≤ D(Ik) follows from (ii).

Property (iv): First consider job ei, i = 1, . . . , k, released at time CAdv(Mi). Machine Mi

is busy in Alg, as otherwise we do not release ei. Machines Mi+1, . . . ,Mk are busy with their
leading jobs by (4), and machines Mk+1, . . . ,Mm are busy by the assumption (B) for Ik. If i > 1,
then CAdv(Mi) = D(Ii−1) − εk. Since (i − 1)εi−1 < εk < 1, it follows from (iii) for Ii−1 that at
time CAdv(Mi) when ei is released, the last job of Ii−1 on M1 is running in Alg schedule and all
machines Mm are busy. Now consider other jobs from Ek; each such job is in some Ei, thus the
statement follows from (iv) for Ei.

Property (v): We have, using the inductive assumption, |Ik| = k+
∑k−1

i=1 |Ii| = k+
∑k−1

i=1 (2
i−1) =

2k − 1 and |Ek| = k − 1 +
∑k−1

i=1 |Ei| = k − 1 +
∑k−1

i=1 (2
i−1 − 1) = 2k−1 − 1.

The construction of (Im, Em) proves the theorem. In particular, (iv) implies that Alg does
not schedule any job from Em and (v) implies that the competitive ratio of Alg is at least(
(2m − 1) + (2m−1 − 1)

)
/(2m − 1) = (3 · 2m−1 − 2)/(2m − 1).

The construction of Ik is illustrated in Figures 2 and 3.

14

M1

M2

M3

M4

I1 I2 E2 I3 E3

e2

e3

e4

e1

Mm

em

log(t)0

Figure 2: Overview of construction of Ik. In this figure the ϵ-s are ignored, i.e., their values are set
to zero. The time scale is logarithmic and starts roughly at 1, which, with ϵ-s set to zero, equals
CAlg(M1) = CAdv(M1). The release times of the leading jobs are not depicted, since with ϵ-s set
to zero, they equal zero. All potential extra jobs are depicted, though the one for machine where
Alg schedules j1 is not released.

εk

CAdv (Mi+1)

CAlg (Mi+1) = D(Ii)

iεi
1

Ii j of Ii

Ii+1

R(Ii+1)

Mi+1 Alg

Adv

Figure 3: Details of construction of Ik for the time around the completion(s) of the leading job(s)
on Mi+1 by both Alg and Adv. In this figure the scale is roughly linear: while ϵ-s are smaller
than 1, they might be enlarged in the figure.

15

C Lower Bound for Greedy for Unit Weights and Times

Here we complete the proof of Theorem 2.3. Namely, we verify that in the construction of (I ′k, E
′
k),

the subinstances do not interfere with each other, i.e., that the chosen R(I ′i), D(I ′i) satisfy (B’) and
we prove Claim 2.4 for (I ′k, E

′
k).

To prove (B’), we need to show that each R(I ′i) is sufficiently large compared to D(I ′i−1) (or
compared to R(I ′k) for i = 1). For i = 1, . . . , k − 1, using (2) we have D(I ′i) = CGreedy(Ni+1) =
R(I ′k)+

1
s3(i+1)

+iϵ and thus R(I ′i) = R(I ′k)+
1

s3(i+1)
− 1

s3i
+ϵ = R(I ′k)+3 1

s3i
+ϵ. This implies that before

R(I ′i), the leading batch on Ni is completed in both Greedy and Adv schedules; also the extra
jobs e3i−2, e3e−1, e3e (for i > 1) are completed, since it is released before time R(I ′k) +

1
s3i

+ (i− 1)ϵ

and takes time 1
s3i

. Furthermore, for i = 2, . . . , k − 1, this implies that R(I ′i) > D(I ′i−1) +
1

s3(i−1)
,

which means that all the jobs from (I ′i−1, E
′
i−1) are completed, using (ii) for (I ′i−1, E

′
i−1). Thus

we conclude that all the jobs started before R(I ′i) on Ni are completed and these clusters are
idle in both schedules. The clusters Ni+1, . . . , Nk are still processing their leading batches at
R(I ′i), as R(I ′i) < R(I ′k) +

1
s3(i+1)

. Finally, the clusters Nk+1, . . . , Nm are processing batches, by

the assumption (B’) for (I ′k, E
′
k), since R(I ′i) ∈ [R(I ′k), D(I ′k)]. This completes the proof of the

precondition (B’) for the subinstances (I ′i, E
′
i).

Finally, we verify Claim 2.4 for (I ′k, E
′
k). Property (i) follows from the construction.

Property (ii): The fact that non-leading jobs are released only after R(I ′k) + 1 follows from the
analysis of R(I ′1) in the previous paragraph. From (2) and (3) it follows that in both schedules, the
leading jobs complete by time R(I ′k) +

1
s3k

+ (k− 1)ε = D(I ′k). Furthermore, each D(I ′i) is equal to

some completion time of a leading batch, thus it is at most D(I ′k) and all the jobs from I ′i complete
by D(I ′i) by (ii) for (I ′i, E

′
i). The jobs from E′ are released before D(I ′k) by construction, for the

remaining jobs from E′
k, i.e., those from some E′

i, it follows again by (ii) for (I ′i, E
′
i).

Property (iii): Let j be the last job of I ′k scheduled on M1 by Greedy. This is the last job of
I ′k−1, so by (iii) for I ′k−1 Greedy completes it at time D(I ′k−1) = CGreedy(Nk). By (2) and (A’),
we have CGreedy(Nk) = D(I ′k), so Greedy completes j at time D(I ′k).

Property (iv): First consider batch ei, i = 2, . . . , k, released at time CAdv(Ni), when cluster Ni

is busy for Greedy. Clusters Ni+1, . . . , Nk are busy with their leading batches by (2) and clusters
Nk+1, . . . , Nm are busy by the assumption (B’) for I ′k. Recall that CAdv(Ni) = CGreedy(Ni)− ε =
D(I ′i−1) − ε. It follows from (iii) for I ′i−1 that at time CAdv(Ni) when ei is released, Greedy is
still running the last job of I ′i−1 on M1, hence all clusters Nm are busy. Now consider other jobs
from E′

k; each such job is in some E′
i, thus the statement follows from (iv) for E′

i.

Property (v): We have, using the inductive assumption, |I ′k| = 3k+
∑k−1

i=1 |I ′i| = 3k+7+
∑k−1

i=2 (16·
2i−2 − 3) = 16 · 2k−2 − 3 and |E′

k| = 3k − 3 +
∑k−1

i=1 |E′
i| = 3k +

∑k−1
i=2 (9 · 2i−2 − 3) = 9 · 2k−2 − 3.

The construction of I ′k is illustrated in Figures 4 and 5.

D Proof of Lemma 3.8

We use induction. Since we only consider the execution of jobs on a specific machine i, we use
terms such as “contained”, “completion time”, and“a job is released during the execution of another
job”.

Consider a chain J1, J2, . . ., where job Jℓ has weight wℓ and size pℓ (the job interval of Jℓ may
be shorter than pℓ

si
due to a preemption). For a chain with n jobs, every prefix can be seen as a

16

N1

N2

N3

N4

I ′
1

I ′
2
E′

2
I ′
3
E′

3j3

Nn

log(t)0

j2
j1

j6
j5
j4

j9
j8
j7

j12
j11
j10

e6
e5
e4

e9
e8
e7

e12
e11
e10

e3m
e3m −1
e3m −2

Figure 4: Overview of construction of I ′k. In this figure the ϵ is ignored, i.e., its values is set
to zero. The time scale is logarithmic and starts roughly at 1, which, with ϵ set to zero, equals
CGreedy(M1) = CAdv(M1). The release times of the leading batches are not depicted, since with
ϵ-s set to zero, they equal zero. All extra batches are depicted.

ε

CAdv (Mi+1)

CGreedy (Mi+1) = D(I ′
i)

1

I ′i j of I ′i

I ′i+1

R(I ′
i+1)

Ni+1 Alg

Adv

Figure 5: Details of construction of I ′k for the time around the completion(s) of the leading
batches(s) on Ni+1 by both Greedy and Adv. In this figure the scale is roughly linear: while ϵ is
smaller than 1, it might be enlarged in the figure.

17

chain as well, only the last job of the prefix may be preempted in the complete chain, and thus its
job interval can become shorter if the entire chain is considered.

Let Algn =
∑n

j=1w(Jj) be the total profit of jobs that Alg starts during the chain consisting

of n jobs. Let Alt1
n be the maximum possible profit of jobs of an alt-chain that are completely

contained in this chain. Let Altn be the maximum possible total profit of jobs of an alt-chain of
the chain of n jobs.

We prove that the following two properties hold.

1. Alt1
n ≤ Algn

2. Altn ≤ Algn + 2wn.

Property 2 follows immediately from Property 1 and the definition of an alt-chain: any alt-chain
that is not completely contained in the chain becomes contained when we strip if of its last job.
That job has weight at most 2w(Jn) since it contains r(Jn). In what follows we will always prove
the first property.

For the base case, we consider a chain consisting of a single job J1. In an alt-chain for this
chain, several jobs might be released and completed while Alg is running this job, but the total
weight is maximized if the alt-chain contains only one job of length equal to the total length of
all jobs of the alt-chain, due to convexity. This total length is at most p1, so property 1 holds by
monotonicity of the weight function.

We now assume the properties have been proved for chains of length n, and consider a chain
of length n + 1, and an alt-chain completely contained in it. If there is at least one job released
during [rn+1, dn+1) then using convexity we can assume that there is at most one such job.

If such a job does not exist, then removing the last job of the alt-chain we get an alt-chain
contained in the first n jobs since at most one job of the alt-chain can run at the time rn+1. For
the induction we consider the chain with complete job Jn, i.e., ending at time rn + pn

si
rather than

just the job interval ending at dn, which is smaller. The last job of the alt-chain is released while
some job of the chain which precedes Jn+1 is running, so its weight is at most 2wn. We get a total
of Algn + 2wn < Algn + wn+1 = Algn+1.

Otherwise, there is a job of the alt-chain contained in [rn+1, dn+1). Its weight is at most wn+1

due to monotonicity. If the other jobs in the alt-chain complete before rn+1 then we find a total
weight of at most Algn+wn+1 = Algn+1 by induction. We are left with the case that there exists
a job released before rn+1 that completes later than rn+1. If this job is released before rn then
n ≥ 2, and removing the last two jobs of the alt-chain we can use induction for n − 1. We find a
total weight of at most Algn−1 + 2wn−1 + wn+1 < Algn−1 + wn + wn+1 = Algn+1.

Finally, we consider the case that the last two jobs of the alt-chain are such that the last one
starts and completes during [rn+1, dn+1), and the previous one starts during [rn, dn) and completes
in (rn+1, dn+1). Let L be the total size of the two jobs, t1 the release time of the first one, and t2
its completion time, t3 the release time of the second one, and t4 its completion time. By possibly
extending the second job we can assume that t2 = t3 and t4 = dn+1. The first job has size below
pn+1 (since its weight is at most 2wn, while f(pn+1) > 2wn), and the second job has size below pn+1

since it is strictly contained in a job of such a size (its release time is strictly larger than rn+1). By
replacing the two jobs by a job of size pn+1 released at time rn+1 and a job of size L−pn+1 released
at time t1, we get an alt-chain whose weight cannot be smaller than the weight of the original
one by convexity. Furthermore, the last job of the modified alt-chain has weight wn+1 = f(pn+1),

18

whereas its remainder is contained in Alg’s chain without Jn+1. Hence, by inductive assumption,
the total weight of the (modified) alt-chain is at most Algn + wn+1 = Algn+1.

E Details of the lower bound of m

For every long break there is a unique critical job which determines its length; this is the second
largest of the m jobs. Precisely, if the last m jobs released before the long break are j, . . . , j+m−1,
then the break has length Np(j + 1) − (m − 2) = Np(j)/2 −m + 2 = N2N−j−1 −m + 2 (and we
set r(j + m) to be r(j + m − 1) plus this last value). We show that it is indeed possible to
complete all jobs until time r(j + m). The adversary assigns job j to the fast machine, where it
requires time p(j) − (m − 1) starting from the beginning of the break (time r(j +m − 1)). Using
p(j)− (m− 1) < Np(j)/2− (m− 2), we see that this job completes before r(j+m). After this, for
k = 1, . . . ,m− 1, job j+ k is released at time r(j+ k), has size p(j)/2k and after time r(j+m− 1)
it requires time Np(j)/2k − (m− 1− k) ≤ Np(j)/2− (m− 2), where the inequality is easily proved
using N > 4m. Note that we have r(j +m) = r(j) + 1 +Np(j)/2.

The input ends after there have been M long breaks, or if m2 + bm short breaks occur in total
(in all phases together) before b long breaks have occurred. Thus the input always ends with a
break. Moreover, at most N jobs will be released as claimed. This holds because between each long
break and the previous break (short or long), m jobs are released, and between any short break
and the previous break (short or long), at most m jobs are released, out of which the last one is
assigned to a slow machine by Alg, and the previous ones are all assigned to the fast machine.
Since there are at most m2 +Mm short breaks, at most m3 +Mm2 jobs are released before short
breaks, for a total of Mm+m3 +Mm2 = N jobs.

Observation E.1. The length of short breaks and critical jobs are decreasing at least geometrically:
after a short break (critical job) of length x, the next short break (critical job) has length at most
x/2 (x/2m).

For a long break b, let tb be the arrival time of the largest job jb that the adversary completes
during this break. The critical job of this break is then job jb +1. If the adversary does not create
any long breaks, we let t1 be the time at which the last short break (i.e., the input) finishes, and
j1 be the index of the last job that arrived plus one.

Lemma E.2. For b = 1, . . . ,M , the following statements hold.

(i) The input ends before time tb + 2N−jb+1(N − 1).

(ii) No job that is running on a slow machine in the schedule of Alg can complete before the
input ends.

Proof. (i) If there are no long breaks, this holds trivially. Else, the critical job of long break b takes
time 2N−jb−1N to process on a slow machine, so the total time used by the adversary to process
all the critical jobs that are released after time tb is at most 2N−jb−1N(1 + 2−m + 2−2m + . . .) =
2N−jb−1N/(1 − 2−m) by Observation E.1. The total length of all short breaks after time tb is at
most 2N−jb−m(1 + 1/2 + 1/22 + . . .) < 2N−jb−m+1 by Observation E.1 and because the first job
which is released after long break b has size exactly 2N−jb−m. At most N other jobs are released

19

at 1 time unit intervals. The total time that can pass after time tb until the input ends is thus at
most 2N−jb−1N

1−2−m + 2N−jb−m+1 +N. This is less than 2N−jb+1(N − 1) if

N

(
2m

2m − 1
+ 2jb+1−N

)
+ 22−m < 4N − 4

Using jb ≤ N , this holds if N(2 − 2m

2m−1) > 22−m + 4, which is true for N > 4 · 2m+1
2m · 2m−1

2m−2 =

4 · 22m−1
22m−2m+1 . For m ≥ 2, this last expression is at most 8, and we have N > m3 ≥ 8.
(ii) If tb = 1, there is nothing to show: Alg does not run any job of the first phase on a slow

machine. If b > 1 and there are no jobs between long break b− 1 and the jobs that the adversary
completes during long break b, then the claim follows by induction: no new jobs were started by
Alg on slow machines after the previous long break.

In the remaining cases (including the case where there are no long breaks), job jb−1 was placed
on a slow machine by Alg and caused a short break. Thus it was released at time tb − 2N−jb+1

and Alg can complete it at the earliest at time tb − 2N−jb+1 + 2N−jb+1N = tb + 2N−jb+1(N − 1),
by which time the input has ended by (i).

If b > 1, then by induction, no job that was released before the jobs which led to long break
b− 1 can be completed by Alg on a slow machine before the input ends. We will now lower bound
the completion time of the other (more recent) jobs on the slow machines (if they exist), also for
the case b = 1. Each such job caused a short break.

We first consider a simple case, where all these jobs were released consecutively immediately
before the jobs which led to long break b. In this case, the k-th such job (counting backwards
from time tb) was released at time tb − 2N−jb+1(1 + 2 + · · ·+ 2k−1) ≥ tb − k2N−jb+k and does not
complete before time tb + (N − k)2N−jb+k > tb + (N − 1)2N−jb+1, so we are again done using (i).
The inequality holds because N(2k − 2) > k2k − 2 which is true for all k ≥ 2, N ≥ k + 1.

Note that this proves that any job which is released during an arbitrarily long sequence of
consecutive short breaks that immediately precedes a long break can only finish (on a slow machine)
after the input ends. There may also be jobs that Alg assigns to the fast machine in between.
Consider all such jobs starting from the last one before time tb. We can insert these jobs one by
one into the sequence, starting from the end. The effect of each insertion is that the release date
of all preceding jobs is decreased by 1 compared to the calculations above, whereas their sizes are
doubled. Thus after any such job is inserted, we still have that no job which Alg is running at
time tb on a slow machine can complete before the input ends.

Lemma E.3. Alg cannot complete any job on the fast machine except during long breaks.

Proof. First, consider any maximal set of consecutive jobs that Alg assigns to the fast machine.
By construction, these jobs arrive at consecutive integer times, and all except maybe the very last
one of the input has size more than 1. This shows that Alg could only possibly complete the last
job of each such set. If the set has size m, this happens during the long break that follows. This
can be seen as follows. Consider long break b. The adversary completes job jb + 1 which has size
2N−jb−1 on a slow machine during this break. The job that Alg assigned to the fast machine when
break b started is job jb +m− 1, which arrives at time tb +m− 1 and has size 2N−jb−m+1. Since
m− 1 + 2N−jb−m+1 < N2N−jb , Alg completes it during the long break.

For a set of size less than m, at least one short break starts one time unit after the last job
in the set arrives. Say this last job has size 2N−j . Then the short break which follows has size

20

2N−j−1, and by Observation E.1, the total length of all possible later short breaks is at most
2N−j−1(1+1/2+ · · ·+1/2−m2−Mm) < 2N−j . So the job of size 2N−j cannot complete before either
the input ends or another job is assigned by Alg to the fast machine.

It follows from Lemmas E.2and E.3 that after the b-th long break, Alg has completed at most
b jobs (the ones that it was running on the fast machine when each long break started), and none
of the jobs that were released so far and that were assigned to slow machines can complete before
the input ends.

21

	Introduction
	Unit sizes and weights
	Greedy algorithms and upper bounds
	Lower bounds

	A constant competitive algorithm for two classes of inputs
	Tight bound of m for unit weights and variable sizes
	Variable weights and sizes
	General Lower Bound for Unit Weights and Times
	Lower Bound for Greedy for Unit Weights and Times
	Proof of Lemma 3.8
	Details of the lower bound of m

