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Abstract

In online square packing, squares of different sizes arrive online and need to be packed

into unit squares which are called bins. The goal is to minimize the number of bins used.

Online cube packing is defined analogously. We show an upper bound of 2.2697 and a lower

bound of 1.6406 for online square packing, and an upper bound of 2.9421 and a lower bound

of 1.6680 for online cube packing. The upper bound for squares can be further reduced to

2.24437 using a computer proof. These results improve on the previously known results for

the two problems. We also show improved lower bounds for higher dimensions.

1 Introduction

In this paper, we consider the problems of online square and cube packing. We first define the

simplest problem. In square packing, we receive a sequence σ of squares p1, p2, . . . , pn. Each

square p has a fixed size s(p), which is the length of its sides. We have an infinite number

of bins, each of which is a unit square. Each item must be assigned to a bin and a position

(x(p), y(p)), where 0 ≤ x(p), 0 ≤ y(p), x(p) + s(p) ≤ 1 and y(p) + s(p) ≤ 1. Further, the

positions must be assigned in such a way that no two items in the same bin overlap. A bin is

empty if no item is assigned to it, otherwise it is used. The goal is to minimize the number of

bins used. The items arrive online; each item must be assigned in turn, without knowledge of

the next items. Note that for d = 1, the square packing problem reduces to exactly the classic

online bin packing problem.

The cube packing problem is defined in an analogous fashion. We also consider the problem

of packing hypercubes in more than three dimensions in this paper. The offline version of
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square packing is NP-hard [8]. We believe that this also holds for (hyper-)cube packing, but

this remains an open question.

The standard measure of algorithm quality for bin packing is the asymptotic performance

ratio, which we now define. For a given input sequence σ, let costA(σ) be the number of bins

used by algorithm A on σ. Let cost(σ) be the minimum possible number of bins used to pack

items in σ. The asymptotic performance ratio for an algorithm A is defined to be

R∞
A = lim sup

n→∞
sup

σ

{

costA(σ)

cost(σ)

∣

∣

∣

∣

∣

cost(σ) = n

}

.

Let O be some class of bin packing algorithms (for instance online algorithms). The optimal

asymptotic performance ratio for O is defined to be R∞
O = infA∈O R∞

A . Given O, our goal is

to find an algorithm with asymptotic performance ratio close to R∞
O .

Previous Results: The classic online bin packing problem was first investigated by Ull-

man [14]. He showed that the First Fit algorithm has performance ratio 17
10 . This result was

published in [6]. Johnson [5] showed that the Next Fit algorithm has performance ratio 2.

Yao showed that Revised First Fit has performance ratio 5
3 .

Define u1 = 2, ui+1 = ui(ui − 1) + 1, and h∞ =
∑∞

i=1
1

ui−1 ≈ 1.69103. Lee and Lee showed

that the Harmonic algorithm, which uses bounded space (i.e. can have only a constant

number of active bins at any time), achieves a performance ratio arbitrarily close to h∞ [7].

They further showed that no bounded space online algorithm achieves a performance ratio

less than h∞ [7]. In addition, they developed the Refined Harmonic algorithm, which they

showed to have a performance ratio of 273
228 < 1.63597. The next improvements were Modified

Harmonic and Modified Harmonic 2. Ramanan, Brown, Lee and Lee showed that these

algorithms have performance ratios of 538
333 < 1.61562 and 239091

148304 < 1.61217, respectively [11].

Currently, the best known upper bound is 1.58889 due to Seiden [12]. As for lower bounds,

Yao showed that no online algorithm has performance ratio less than 3
2 [16]. Brown and Liang

independently improved this lower bound to 1.53635 [1, 9]. The lower bound currently stands

at 1.54014, due to van Vliet [15].

Coppersmith and Raghavan [2] showed an upper bound of 43/16 = 2.6875 for online square

packing, and an upper bound of 6.25 for online cube packing. They also show a lower bound

of 4/3 for any dimension d ≥ 2. The upper bound for square packing was improved to

395/162 < 2.43828 by Seiden and van Stee [13]. They also presented a lower bound of 1.6217.

For d = 3, Miyazawa and Wakabayashi [10] showed an upper bound of 3.954. A lower bound

of 1.60185 was given by [13]. The same paper gave lower bounds for higher dimensions as well,

but they all have lower values than the bound for d = 3.
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Epstein and van Stee [4] presented an optimal bounded space algorithm for hypercube

packing for any dimension d ≥ 2. For d = 2, their algorithm has an asymptotic performance

ratio of at most 2.3722 and at least 2.35656, while for d = 3, the asymptotic performance ratio

is in the interval (2.94457, 3.0672].

Our Results: In this paper, we present improved results for online square packing:

• We present a new unbounded space algorithm for online square packing with an asymp-

totic performance ratio of at most 2.2697, which cannot be attained by a bounded space

algorithm. This algorithm is a slight modification of the unbounded space algorithm

in [4], which attained an asymptotic performance ratio of at most 2.2709. Using a com-

puter program, we can show that another modification has the performance ratio of at

most 2.24437.

• We present a new unbounded space algorithm for online cube packing with an asymptotic

performance ratio of at most 2.9421, which again is better than the best possible bounded

space algorithm.

• We give new lower bounds for unbounded space hypercube packing. The lower bound for

d = 2 is 1.6406, while for d = 3 it is 1.6680. A preliminary version of this proof appeared

in [3].

We use the weighting functions technique. As in [3, 4], unlike in [13], we define weighting

functions directly for multidimensional algorithms, without using one-dimensional algorithms

as subroutines.

2 Harmonic type algorithms

In this section we discuss the important one-dimensional Harmonic algorithm [7] and pos-

sible variations on it. In the next sections we adapt these algorithms to the two- and three-

dimensional cases.

The fundamental idea of these algorithms is to first classify items by size, and then pack

an item according to its class (as opposed to letting the exact size influence packing decisions).

For the classification of items, we need to partition the interval (0, 1] into subintervals.

The standard Harmonic algorithm uses n − 1 subintervals of the form (1/(i + 1), 1/i] for

i = 1, . . . , n − 1 and one final subinterval (0, 1/n]. Each bin will contain only items from one

subinterval (type). Items in subinterval i are packed i to a bin for i = 1, . . . , n − 1 and the

items in interval n are packed in bins using Next Fit(i.e. a greedy algorithm that opens a
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new active bin whenever an item does not fit into the current active bin, and never uses the

previous bins).

A disadvantage of Harmonic is that items of type 1, that is, the items larger than 1/2,

are packed one per bin, possibly wasting a lot of space in each single bin. To avoid this large

waste of space, later algorithms used two extra interval endpoints, of the form ∆ ∈ [1/3, 1/2)

and 1 − ∆ > 1/2. Then, some small items can be combined in one bin together with an item

of size ∈ (1/2, 1 − ∆]. Items larger than 1 − ∆ are still packed one per bin as in Harmonic.

These algorithms furthermore use parameters αi (i = 3, . . . , n) which represent the fraction of

bins allocated to type i where the algorithm will reserve space for items ∈ (1/2, 1 − ∆]. The

remaining bins with items of type i still contain i items per bin. Clearly, such adaptations are

no longer bounded space.

The first such modification of Harmonic is Refined Harmonic [7] which only combines

some items in the interval [1/3,∆) with items in [1/2, 1 − ∆). All other intervals are packed

separately. The value of n used in this algorithm was 20.

The algorithm Modified Harmonic (MH) is defined by n = 38 and ∆ = 265/684.

Further, α2 = 1
9 , α3 = 1

12 , α4 = α5 = 0, αi = 37−i
37(i+1) , for 6 ≤ i ≤ 36 and α37 = α38 = 0. The

results of [11] imply that the asymptotic performance ratio of MH is at most 538
333 < 1.61562.

The bounded space algorithms in [4] are extensions of Harmonic to the multidimensional

case. In this paper we extend the Modified Harmonic algorithm to the two- and three-

dimensional cases. We present algorithms that use less intervals. The reason for this is that

the analysis in more than one dimension is substantially harder. The number of relatively

large items that fit in a bin grows with the dimension, and there may be many distinct ways

to pack the same set of squares in a bin.

3 Online square packing

In this section we define a two-dimensional version of Modified Harmonic that we call MH2.

It uses seven item types (intervals in (0, 1]), denoted by 1, 1a, 2, 2a, 3, 4, 5 in order of de-

creasing size. The algorithm uses a variable ∆ ∈ (1/3, 0.385). The upper bound for type i

(i = 1, . . . , 5) is 1/i. The upper bound for type 1a is 1 − ∆, and for 2a it is ∆.

MH2 packs all items of size at most 1/5 (type 5) using the algorithm from [4] for small

items. That is, we divide the items into 5 subtypes, and for each item of subtype i we call the

function AssignSmall(i) (we take M = 5).

Items of type 2a are partially put three to a bin, in such a way that a type 1a item could

be put in the same bin with them, and partially put four to a bin, in the four corners. These

items are colored red and blue, respectively. Similarly, red type 3 items are put five to a bin,
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and blue type 3 items are put nine to a bin. We use a parameter α to denote the fraction of

type 2a items that are colored red, and β denotes the fraction of type 3 items that are colored

red. The values of α, β and ∆ will be chosen in such a way that the asymptotic performance

ratio of MH2 is minimized. We will find α ≈ 0.1752, β = 31/256 ≈ 0.1211 and ∆ ≈ 0.3730.

Items of types 1, 2, 3, and 4 are packed in bins that only contain items of one type. Full

bins contain 1, 4, 9, and 16 items, respectively. By the proof in [4], full bins containing items

of type 5 have occupied area of at least (M d − 1)/(M + 1)d = 24/36 = 2/3.

We define two sets of weights for the items. This is a weighting system, which is a special

case of general weighting systems defined in [12]. The proof of the following theorem follows

directly from that paper.

Theorem 1 Denote by wi the maximum amount of weight that can be packed into a single bin

according to measure Wi (i = 1, 2). Then the asymptotic performance ratio of MH2 is upper

bounded by max(w1, w2).

We give an overview of the types, weights and expansions in Table 1. The first column

states the type of an item, i.e. the name of the interval it belongs to. The second column

states the maximum size of any item in this interval (the lower bound on the size follows from

the maximum size in the next interval). The next two columns are the weights assigned to an

item of each interval. Finally, the last two columns are the expansions. The expansion of an

item is the ratio between its weight and its minimum area. This is useful since in order to use

the theorem we need to compute the maximal ratio of weight to area in a single bin.

We give a short intuitive explanation of the weight functions and Theorem 1. Consider the

final packing created by MH2 on some input σ. In this final packing, let x be the number of

bins containing red items, let y be the number of type 1a items, and let z be the number of bins

containing blue items of type other than 1a. The total number of bins is just max{x, y}+ z =

max{x+z, y +z}. We have chosen our weighting functions so that
∑

p∈σ W1(p) = y+z +O(1)

and
∑

p∈σ W2(p) = x + z + O(1). In both W1 and W2, the weight of a blue item of type other

than 1a is just the fraction of a bin that it occupies. W1 counts type 1a items, but ignores red

items. W2 ignores type 1a items, but counts bins containing red items. For a formal proof, we

refer the reader to [12].

The expansion of type 5 items (small items) is 3/2. To simplify the calculations, we will

assume that it is instead 25/16. This can only make the asymptotic performance ratio worse,

so we will calculate an upper bound for the asymptotic performance ratio. Using this value

enables us to ignore the items of type 4, since they also have expansion 25/16: we will assume

that after taking some items from types 1, 1a, 2, 2a, and 3 we can fill up the rest of the bin

entirely with items of expansion 25/16 (this is the worst case).

To find a bin with maximal weight, we need to try all possible combinations of items of
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Type Max. size W1 W2 E1 E2

1 1 1 1 1 1 1
(1−∆)2

2.5438 1
(1−∆)2

2.5438

1a 1 − ∆ 1 1 0 0 4 4 0 0

2 1/2 1/4 0.25 1/4 0.25 1/(4∆2) 1.7968 1/(4∆2) 1.7968

2a ∆ 1−α
4 0.2062 3+α

12 0.2646 9
4(1 − α) 1.8559 9+3α

4 2.3814

3 1/3 1−β
9 0.0977 5+4β

45 0.1219 16
9 (1 − β) 1.5625 16(5+4β)

45 1.95

4 1/4 1/16 0.0625 1/16 0.0625 25/16 1.5625 25/16 1.5625

5 1/5 3
2x 1.5x 3

2x 1.5x 25/16 1 .5625 25/16 1 .5625

Table 1: Item weights and expansions for MH2. The decimal values are found by taking

α = 25
36 (9∆2 − 1), β = 31

256 and ∆ = −1/3 +
√

404130
900 ≈ 0.3730. The expansion for type 5 is in

reality 3/2, but we use the higher value 31/256 to simplify the calculations. See the text.

types 1, 1a, 2, 2a, and 3 and fill up the rest with “sand” (small items). The weight is maximized

by minimizing the size of all the large items that we use (since the weight they contribute does

not depend on their size, and it maximizes the area available for other large items and for

small items). We take α = 25
36(9∆2 − 1). This choice of α ensures that if we have a bin with

a type 2 item (of minimal size), and we replace it with a type 2a item (of minimal size) and

fill the remaining area with sand, the total weight is unchanged when we use measure W1: we

have 1/4 = 1−α
4 + 25

16 (∆2 − 1/9). Moreover, we take β = 31/256 such that type 3 items are

equivalent to sand under measure W1.

We use the following lemma from [13].

Lemma 1 If a square of size strictly greater than 1/2 is packed in the unit square then at

most 5 squares of size strictly greater than 1/4 can be packed with it.

Theorem 2 MH2 maintains an asymptotic performance ratio of at most 2.26967.

Proof We look for a bin with maximal weight.

Case 1. First of all, suppose that there is no item of type 1 or 1a in the bin. For the

remaining items, W1(p) ≤ W2(p) for all items p. Thus we only need to consider W2. The type

with the highest expansion is type 2a, which fits at most four times in a bin. All other types

have expansion smaller than 2 by our choice of ∆, so the total weight of the bin in this case is

bounded by 4 · 3+α
12 + 2(1 − 4 · 1

9) < 2.17.

Suppose there is an item of type 1 or 1a. By Lemma 1, at most 5 items of type 2, 2a, or

3 can be packed with such an item. As usual we assume that the rest of the bin is filled with

items of expansion 25/16. Since the items of type 2, 2a and 3 have expansion greater than
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25/16, the weight is maximized by taking five of them.

Case 2. Suppose there is an item of type 1. Then there is no item of type 1a; for all other

items, W2(p) ≥ W1(p), so we only need to consider W2(p). In this case items of type 2 do

not fit in the bin. If we place i items of type 2a in the bin, this leaves room for at most 5 − i

items of type 3. We assume that 5 − i such items can always be placed. (This is a worst-case

assumption.) Since the weight of type 2a items is higher than that of type 3 items, and the

total number of type 2a items and type 3 items is assumed to be independent of the number

of type 2a items, we maximize the number of type 2a items. However, at most 4 items of size

strictly greater than 1/3 fit in one bin, so at most 3 items of type 2a can be placed in this bin

together with the item of type 1. This leaves room for two items of type 3.

The total weight is at most 1 + 3 · 3+α
12 + 2 · 5+4β

45 + 25
16 (1 − (1 − ∆)2 − 3 · 1

9 − 2 · 1
16).

Case 3. Now suppose there is an item of type 1a. Then the weight of the bin is maximal

if we use W1 (using W2, the total weight is now lower than in Case 1).

There are at most 5 items of type 2, 2a, or 3. By the remarks above Lemma 1, we do not

need to distinguish between bins that only differ in that one of them has a type 2 item where

the other has a type 2a item and more sand. Moreover, we can ignore items of type 3 since

they are equivalent to sand. We therefore take 3 items of type 2 and fill the rest of the bin

with sand.

The total weight is at most 1 + 3 · 1
4 + 25

16 (1 − 1
4 − 3 · ∆2).

Taking ∆ = −1/3 + 1
900

√
404130 ≈ 0.3730, the weights in Cases 2 and 3 become less than

2.269661. This is an upper bound for the asymptotic performance ratio of MH2. �

Using a computer program, it is possible to enumerate all dominant patterns (that cannot

be augmented by an additional item of one of the types that the bin contains), also when

smaller items are involved. We can take M = 6 and pack items of size in (1/6, 1/5] in separate

bins as well (25 per bin). In this case, the expansion of small items (i.e. the items of size at

most 1/6) becomes only 7/5. We take α = 28
5 (∆2 − 1

9 ) ≈ 0.153297 and β = 154
1000 . In this

way, again a type 2 item is equivalent to a type 2a item plus sand, and moreover a type 3

item is equivalent to a type 4 item plus sand (all under W1). By enumerating all patterns and

calculating the weights (both in measure W1 and W2), we find that by taking ∆ = 0.372137,

this modified algorithm has an asymptotic performance ratio of at most 2.244361.

The source code for this C++ program can be downloaded from the second author’s website,

http://i10www.ira.uka.de/vanstee/program/.
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4 Online cube packing

In this section we define a three-dimensional version of Modified Harmonic that we call MH3.

This algorithm is a three-dimensional version of MH2 that we discussed in the previous section.

It has the same structure and also has M = 5, but it uses different values for α, β and ∆. The

analysis is by weighting systems and according to Theorem 1.

Red items of type 2a are now placed seven to a bin (in seven corners), and red items of

type 3 are placed 19 to a bin. For the red type 3 items, we divide the bin into 27 cubes of size

1/3 and leave a block of 2 by 2 by 2 cubes empty. In this block, an item of type 1a can be

placed. The remaining 19 cubes will all contain one item of type 3.

As before, the values of α, β and ∆ will be chosen in such a way that the asymptotic

performance ratio of MH3 is minimized. We will find α ≈ 0.154880, β = 721/4096 ≈ 0.176025

and ∆ ≈ 0.360753. For the moment we will only use α < 1/4 and ∆ > 0.36. We give an

overview of the types, weights and expansions in Table 2.

Type Max. size W1 W2 E1 E2

1 1 1 1 1 1 1
(1−∆)3

3.8282 1
(1−∆)3

3.8282

1a 1 − ∆ 1 1 0 0 8 8 0 0

2 1/2 1/8 0.125 1/8 0.125 1/(8∆3) 2.6624 1/(8∆3) 2.6624

2a ∆ 1−α
8 0.1056 7+α

56 0.1278 27
8 (1 − α) 2.8523 27(7+α)

56 3.4497

3 1/3 1−β
27 0.0305 19+8β

513 0.0398 64
27 (1 − β) 1.9531 64(19+8β)

513 2.5461

4 1/4 1/64 0.0156 1/64 0.0156 125/64 1.9531 125/64 1.9531

5 1/5 54
31x 1.7419x 54

31x 1.7419x 125/64 1 .9531 125/64 1 .9531

Table 2: Item weights and expansions for MH3

By the proof in [4], full bins containing items of type 5 have occupied area of at least

(Md − 1)/(M + 1)d = 31/54. This explains that the expansion of type 5 items (small items)

is 54/31. To simplify the calculations, similarly to in Section 3 we assume that it is instead

125/64, so that we can again ignore items of type 4. Also analogously to before, we take

α = 125
8 (∆3 − 1/27). (See Section 3 for a motivation.) Moreover, we take β = 1 − 33 · 53/46 ≈

0.176025, so that type 3 items are equivalent to sand under measure W1.

Lemma 2 If a cube of size strictly greater than 1/2 is packed in the unit cube, then at most

19 cubes of size strictly greater than 1/4 can be packed with it.

Proof Note that inside a cube which is strictly greater than 1/2, we can place 8 cubes of size

strictly greater than 1/4 by cutting halfway along all three coordinate axes. Thus, any packing
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of the unit cube that contains a cube which is strictly greater than 1/2 can be replaced by a

packing without that cube and with 8 more cubes that are strictly greater than 1/4.

Since a unit cube cannot contain more than 27 cubes that are strictly larger than 1/4 by

Claim 4 in [4], the lemma follows. �

Theorem 3 MH3 maintains a asymptotic performance ratio of at most 2.9421.

Proof As before, we look for a bin with maximal weight.

Case 1. First of all, suppose that there is no item of type 1 or 1a in the bin. For the

remaining items, W1(p) ≤ W2(p) for all items p. Thus we only need to consider W2. The type

with the highest expansion is type 2a, which fits at most 8 times in a bin. All other types have

expansion at most 2.68 by our choice of ∆ and β, so the total weight of the bin in this case is

at most 8 · 7+α
56 + 2.68 · (1 − 8 · 1

27) < 2.94.

Next, suppose there is an item of type 1 or 1a. By Lemma 2, at most 19 items of type

2, 2a, or 3 can be packed with them. As usual we assume that the rest of the bin is filled with

items of expansion 125/64. Since the items of type 2, 2a and 3 have expansion greater than

125/64, the weight is maximized by taking 19 of them.

Case 2. Suppose there is an item of type 1. Then there is no item of type 1a; for all other

items, W2(p) ≥ W1(p), so we only need to consider W2(p). In this case items of type 2 do not

fit in the bin. If we place i items of type 2a in the bin, this leaves room for at most 19 − i

items of type 3. We assume that 19− i such items can always be placed. (This is a worst-case

assumption.) Since the weight of type 2a items is higher than that of type 3 items, and the

total number of type 2a items and type 3 items is assumed to be independent of the number

of type 2a items, we maximize the number of type 2a items. However, at most 8 items of size

strictly greater than 1/3 fit in one bin, so at most 7 items of type 2a can be placed in this bin

together with the item of type 1. This leaves room for 12 items of type 3.

The total weight is at most 1 + 7 · (7+α)
56 + 12 · 19+8β

513 + 125
64 (1 − (1 − ∆)3 − 7 · 1

27 − 12 · 1
64).

Case 3. Now suppose there is an item of type 1a. Then the weight of the bin is maximal

if we use W1 (using W2, the total weight is now lower than in Case 1).

There are at most 19 items of type 2, 2a, or 3. By the remarks above Lemma 2, we do not

need to distinguish between bins that only differ in that one of them has a type 2 item where

the other has a type 2a item and more sand. Moreover, we can ignore items of types 3 and 4

since they are equivalent to sand. We therefore take seven items of type 2 and fill the rest of

the bin with sand.

The total weight is at most 1 + 7 · 1
8 + 125

64 (1 − 1
8 − 7 · ∆3).

Taking ∆ = 0.360753 and α = 0.15488, the weights in Cases 2 and 3 become less than

2.9421. This is an upper bound for the asymptotic performance ratio of MH3. �
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5 Lower bounds

We construct a sequence of items to prove a general lower bound for hypercube packing in d

dimensions. In this problem, all items to be packed are hypercubes. Take an integer ` > 1.

Let ε > 0 be a number smaller than 1/2`−1/(2` +1). The input sequence is defined as follows.

We use a large integer N . Let

xi = (2`+1−i − 1)d − (2`+1−i − 2)d i = 1, . . . , `

x0 = 2`d − (2` − 1)d

In step 0, we let Nx0 items of size s0 = (1 + ε)/(2` + 1) arrive. In step i = 1, . . . , `, we let

Nxi items of size si = (1 + ε)/2`+1−i arrive. For i = 1, . . . , ` − 1, item size si in this sequence

divides all the item sizes si+1, . . . , s`. Furthermore,
∑`

i=0 si = (1+ε)(1−1/2` +1/(2` +1)) < 1

by our choice of ε.

The online algorithm receives steps 0, . . . , k of this input sequence for some (unknown)

0 ≤ k ≤ `.

A pattern is a multiset of items that fits (in some way) in a unit bin. A pattern is dominant

if when we increase the number of items of the smallest size in that pattern, the resulting

multiset no longer fits in a unit bin. A pattern is greedy if the largest item in it appears as

many times as it can fit in a bin, and this also holds for all smaller items, each time taking

the larger items that are in the pattern into account. Note that not all possible sizes of items

need to be present in the bin.

For a pattern P of items that all have sizes in {s0, . . . , s`}, denote the number of items of

size si by Pi.

Lemma 3 For any pattern P for items with sizes in {s0, . . . , s`},

Pi ≤ (2`+1−i − 1)d −
∑̀

j=i+1

2(j−i)dPj i = 1, . . . , `, P0 ≤ 2`d −
∑̀

j=1

2(j−1)dPj (1)

Proof Suppose (1) does not hold for some i, and consider the smallest i for which it does

not hold. Consider an item of size sj with j > i that appears in P . If there is no such j, we

have a contradiction, since at most (2`+1−i − 1)d items of size si fit in the unit hypercube for

i = 1, . . . , `, or at most 2`d items of size s0. This follows from Claim 4 in [4].

First suppose i > 0. If we replace an item of size sj with 2(j−i)d items of size si, the

resulting pattern is still feasible: all the new size si items can be placed inside the hypercube

that this size sj item has vacated.

We can do this for all items of size sj, j > i that appear in the pattern. This results in

a pattern with only items of size si or smaller. Since every size sj item is replaced by 2(j−i)d

items of size si, the final pattern has more than (2`+1−i − 1)d items of size si, a contradiction.
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Now suppose i = 0. In this case b(2` +1)/2`+1−jc = 2j−1 items of size s0 fit in a hypercube

of size sj, and the proof continues analogously. �

We define a canonical packing for dominant patterns. We create a grid in the bin as follows.

One corner of the bin is designated as the origin O. We assign a coordinate system to the bin,

where each positive axis is along some edge of the bin. The grid points are those points inside

the bin that have all coordinates of the form m1(1 + ε)/2m2 for m1,m2 ∈ N ∪ {0}.
We pack the items in order of decreasing size. Each item of size si (i = 1, . . . , `) is placed

at the available grid point that has all coordinates smaller than 1− si, all coordinates equal to

a multiple of si and is closest to the origin. So the first item is placed in the origin. Each item

of size s0 is placed at the available grid point that has all coordinates equal to a multiple of

s1 (and not s0) and is closest to the origin. Note that for these items we also use grid points

with some coordinates equal to (2` − 1)(1 + ε)/2`, unlike for items of size s1. This is feasible

because (2` − 1)(1 + ε)/2` + (1 + ε)/(2` + 1) = (1 + ε)(1 − 1/2` + 1/(2` + 1)) < 1.

In each step i we can place a number of items which is equal to the upper bound in Lemma

3. For i = 1, . . . , `, this is because a larger item of size sj takes away exactly 2(j−i)d grid points

that are multiples of si, and originally there are (2`+1−i−1)d grid points of this form that have

all coordinates smaller than 1 − si. For i = 0, 2(j−1)d grid points that are multiples of s1 are

taken away by an item of size sj , from an original supply of 2`d. This shows that all patterns

can indeed be packed in canonical form.

Lemma 4 For this set of item sizes, any dominant pattern that is not greedy is a convex

combination of dominant patterns that are greedy.

Proof We use induction to construct a convex combination of greedy patterns for a given

dominant pattern P . The induction hypothesis is as follows: the vector that describes the

numbers of items of the t smallest types which appear in the pattern is a convex combination

of greedy vectors for these types. Call such a pattern t-greedy.

The base case is t = 1. We consider the items of the smallest type that occurs in P . Since

P is dominant, for this type we have that as many items as possible appear in P , given the

larger items. Thus P is 1-greedy.

We now prove the induction step. Suppose that in P , items of type i appear fewer times

than they could, given the larger items. Moreover, P contains items of some smaller type. Let

i′ be the largest smaller type in P . By induction, we only need to consider patterns in which

all the items of type less than i that appear, appear as many times as possible, starting with

items of type i′. (All other patterns are convex combinations of such patterns.)

We define two patterns P ′ and P ′′ such that P is a convex combination of them. First

suppose i′ > 0. P ′ is defined as follows: modify P by removing all items i and adding the

largest smaller item that appears in P , of type i′, 2(i−i′)d times per each item i. When creating
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P ′, we thus add the maximum amount of items of type i′ that can fit for each removed item of

type i. P is greedy with respect to all smaller items, and si′ divides si. Therefore the multiset

P ′ defined in this way is a pattern, and is (t + 1)-greedy.

P ′′ on the other hand is created by adding items of phase i to P and removing items of

type i′. In particular, in the canonical packing for P , at each grid point for type i that is

not removed due to a higher-type item, we place an item of size si and remove all items that

overlap with this item. Since all items smaller than si appear as many times as possible given

the larger items, all the removed items are of the next smaller type i′ that appear in P . This

holds because the items are packed in order of decreasing size, so this area will certainly be

filled with items of type i′ if the item of size i is not there.

In P ′′, the number of items of type i is now maximized given items of higher types. Only

type i′ items are removed, and only enough to make room for type i, so type i′ remains greedy.

Thus P ′′ is (t + 1)-greedy. Each time that we add an item i, we remove exactly 2(i−i′)d items

of type i′. So by adding an item i in creating P ′′, we remove exactly the same number of items

of type i′ as we add when we remove an item i while creating P ′. Therefore, P is a convex

combination of P ′ and P ′′, and we are done.

Now suppose i′ = 0. (This is a special case of the induction step for t + 1 = 2.) In this

case, in P ′ each item of type i is replaced by 2(i−1)d items of type 0. In the canonical packing,

this is exactly the number of type 1 grid points that become available when removing an item

of type i. Thus in P ′, the number of type 0 items is maximal (since it is sufficient to use type

1 grid points for them), and P ′ is 2-greedy.

Similarly, it can be seen that to create P ′′, we need to remove 2(i−1)d items of type 0 in the

canonical packing in order to place each item of type i. Then P ′′ is 2-greedy, and again P is a

convex combination of P ′ and P ′′. �

We can now formulate a linear program to lower bound the asymptotic performance ratio

of any unbounded space online algorithm as in [13]. We will need the offline cost to pack any

prefix of the full sequence. This is calculated as follows.

To pack the items of the largest type k, which have a size of (1 + ε)2k−`−1, we need

Nxk/(2
`+1−k − 1)d bins because there are Nxk such items. These are all packed identically:

using a canonical packing, we pack as many items of smaller types in bins with these items as

possible. (Thus we use a greedy pattern.) Some items of types 1, . . . , k − 1 still remain to be

packed. It is straightforward to calculate the number of items of type k − 1 that still need to

be packed, and how many bins this takes. We continue in the same manner until all items are

packed.

Solving this linear program for ` = 11 and several values of d gives us the following results.
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d 1 2 3 4 5 6 7 8 9 10

old 1.5401 1.6217 1.60185 1.5569 (Bounds here were below 1.5569)

new (1.5) 1.6406 1.6680 1.6775 1.6840 1.6887 1.6920 1.6943 1.6959 1.6973

6 Conclusions

The gaps between the upper and lower bounds remain disappointingly large for these problems.

For square packing, the fundamental problem seems to be that it is (NP-)hard to determine

whether a given set of squares fits into a bin or not. However, in the analysis of our algorithm

MH2, it is noticeable that the first 1.75 of the upper bound is “caused by” items larger than

1/3, which in theory are easy to pack. Obviously 1.75 is already well above the lower bound

of 1.64, yet we see no way to significantly reduce the gap. This is a challenging open problem.
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