The price of anarchy on uniformly related machines reuikite

Leah Epsteih Rob van Stee
August 18, 2009

Abstract

Recent interest in Nash equilibria led to a study of piniee of anarchy(PoA) and thestrong
price of anarchy(spoA) for scheduling problems. The two measures express thet wass ratio
between the cost of an equilibrium (a pure Nash equilibriaing, a strong equilibrium, respectively)
to the cost of a social optimum.

The atomic players are the jobs, and the delay of a job is theptation time of the machine
running it, also called the load of this machine. The socilgs to minimize the maximum delay
of any job, while the selfish goal of each job is to minimizeaten delay, that is, the delay of the
machine running it.

We consider scheduling on uniformly related machines. @/pikvious studies either consider
identical speed machines or an arbitrary number of speedssiing on the number of machines as
a parameter, we consider the situation in which the numbdifigrent speeds is small. We reveal
a linear dependence between the number of speeds ardthd-or a set of machine of at most
speeds, theoA turns out to be exactly + 1. The growth of thepoA for large numbers of related
machines is therefore a direct result of the large numbelwotdndial speeds. We further consider
a well known structure of processors, where all machinesoatbe same speed except for one
possibly faster machine. We investigate thea as a function of both the speed ratio between the
fastest machine and the number of slow machines.

1 Introduction

A Nash equilibrium [22] is a state in non-cooperative gamégtvis stable in the sense that no agent
can gain from unilaterally switching strategies. Many tgmn concepts” are used to study the behavior
of selfish agents in non-cooperative games.

A strong equilibrium is a pure Nash equilibrium, in which rastly single players cannot benefit
from changing their strategy (to a different pure strateu} no non-empty subset of players can form
a coalition, where a coalition means that all of them can ghaheir strategies together, and all gain
from the change (see [2, 1, 6]).

Following recent interest of computer scientists in gane®ii [23, 16, 17, 26], we study pure Nash
equilibria and strong equilibria for a scheduling problemumiformly related machines. We next define
the problem and pure equilibria for scheduling problems.

Scheduling on uniformly related machines is a basic assgproblem. In such problems, a set
of jobs J = {j1,Jo,...,Jjn} is to be assigned to a set of machinesM = {My,..., M,,}, where
machine)M; has a speed;. The size of jobj; is denoted byw, and it is equal to its running time

*A preliminary version of this paper appeared in the Progegsiof First Symposium on Algorithmic Game Theory (SAGT
2008), LNCS 4997, pages 46-57. Springer, 2008.

TDepartment of Mathematics, University of Haifa, 31905 ldaléraell ea@rat h. hai fa. ac.il .

fMax-Planck-Institut fir Informatik, Saarbriicken, Gemy. vanst ee@mi - i nf . npg. de. Research supported by
German Research Foundation (DFG).

on a unit speed machine. Moreover, the running time of thisgie a machine of speedis =*. An
assignment or schedule is a functign: J — M. The completion time of machin&/;, which is also
called thedelayor load of this machine, i ;. 4.;,)=u;, 5= The cost, or theocial costof a schedule

is the maximum delay of any machine, i.e., the makespan. \&/gobs as atomic players, thus we use
terms such as choice and benefit for these players.

A schedule is @&ash equilibriumif there exists no job that can decrease its delay by migyatra
different machine unilaterally. More precisely, considerassignment : J — {M;,..., M,,}. The
class of schedules contains all scheduled’ that differ from.A only in the assignment of a single job.
That is, A’ € C if there exists a joby, € J such that4d’(j,) = A(j) for all J, € J, J; # Ji, and
A'(jr) # A(jx). We say thatd is a (pure) Nash equilibrium if for any jof., the delay ofj; in any
scheduled’ € C, for which A'(ji) # A(jk), is no smaller than its delay id. Pure Nash equilibria do
not necessary exist for all games (as opposed to mixed Naslibeiq). It is known that for scheduling
games of this type, a pure Nash equilibrium always exists§1.2

A schedule is atrong equilibriumif there exists no (non-empty) subset of jobs, such that jbak
in this set migrate to different machines of their choicewdtameously, this results in a smaller delay
for each and every one of them. More precisely, given a s¢beduwe can define a class of schedules
C which contains all sets of schedulég, whereK C J, K # (). Forany A’ € Ck, and/ ¢ K, we
have A'(j,) = A(js) whereas for € K, we haveA’(j,) # A(j¢). Ais a strong equilibrium if for
any K # (0, and anyA’ € Cg, there exists at least of jofp, € K whose delay irCx is no smaller
than its delay in4. A strong equilibrium is always a pure Nash equilibrium (l®fidition). Strong
equilibria do not necessarily exist. Andelman, Feldman liatisour [1] were the first to study strong
equilibria in the context of scheduling and proved that dcifing games (of a more general form) admit
strong equilibria. More general classes of congestion gamiiech admit strong equilibria were studied
in [14, 28].

In this paper, we study the price of anarchpf) and the strong price of anarchyroA) for schedul-
ing on uniformly related machines.

In our scheduling model, theoordination ratiq or price of anarchy ¥0A) (see [25]) is the worst
case ratio between the cost of a pure Nash equilibrium anda$ig(i.e., maximum delay or makespan)
of an optimal schedule. Such an optimal schedule as welsa®gt are denoted kyPT. Thestrong
price of anarchy $PoA) is defined similarly, but only strong equilibria are consate Therefore we
refer to the pure price of anarchy bpA and when we discuss the mixed price of anarchy we call it the
mixed POA. Note that a pure equilibrium is a special case of mixed dayial

It is noted in a series of papers (e.g., [16, 21, 24, 5, 4]) theatmodel which we study is a simpli-
fication of problems arising in real networks, that seems@mate for describing basic problems in
networks.

A number of papers studied equilibria for scheduling on amifly related machines [16, 21, 5,

9, 10]. Chumaj and Vocking [5] showed that thea is O (tr-) (and O (15125 for mixed

strategies). Feldmann et al. [9] proved that #wen for m = 2 andm = 3 is ¥*2-* which equals

o= @ for two machines and for three machines. In [7], the exaeba andsPoAfor two machines
is found as a function of the machine speeds. The two meagiwes different results for the interval
(1.618,2.247) of speeds ratios between the two machines, and identiaaltsestherwise. As for the

mixed POA, it was shown in [16] that it is at least+ 3+ for s < ¢. Recently, Fiat et al. [10] showed
that thespoAfor this model is@((bgl"liig";np).

Form identical machines (i.e., the case where all speed are)eduaboA is nf—ﬁ:l which can be

deduced from the results of [11] (the upper bound) and [2¥ [dwer bound). It was shown in [1] that
thespoAhas the same value as thea for everym. Note, however, that the mixetbA is non constant
already in this case, and equ&l&log’ﬁgm), where the lower bound was shown by Koutsoupias and

Papadimitriou [16] and the upper bound by Chumaj and Varkih and independently by Koutsoupias,

Mavronicolas and Spirakis [15]. Tight bounds %)bn the mixedroA for two identical machines were
shown by [16].

It can be seen that theoA andspPoAwere studied mainly as a function of the number of machines.
Another relevant parameter for uniformly related machisgbe number of different speeds. A natural
guestion is whether theoA and sPoOA grow as the number of machines increases even if the number
of different speeds is constant, or whether it is actually timber of speeds that needs to increase.
Previous results, and in particular, theA for identical machines, already hint that the second opson
the right one. We prove this property formally, specificallye show that theoa for inputs with at most
p different speeds is exactly+ 1. We note that it can be deduced from [10] that #®roA for inputs
with at mostp different speeds iﬁ(ﬁ) (andO(p) by our result), therefore thepoAis quite close
to thepoa and it is it influenced by the number of different speeds as$. Wéé further focus on a well
known architecture of machines, which consists of a sinfglst'machine” of speesl > 1 together with
m — 1 unit speed machines. Such a structure, where one procedast,iand all others are identical, is
natural, and was studied in [20, 13, 3, 19, 18].

We give a complete analysis of the exadA as a function of the speed of the faster machine,
and the number of identical machines, = m — 1. We believe that our comprehensive analysis would
contribute to a deeper understanding of g as a function of several parameters, rather than as a
function of the number of machines as a single parameter.r&sutts imply that the worst caseA
(the supremunpoA over all values o andm) for this special case of two different speeds is already
We conclude the paper by showing that the worst asea for this variant is strictly smaller than the
POA, already in this special case, but it is still strictly largiean thespoAfor m identical machines.

2 Atight bound on the POA for p speeds

In this section, we consider the general case of a machingiget fixed number of different speeds,
and show that theoaA is linearly dependent on the number of speeds, namelypittisl if there are

p different speeds. We use ingredients of the proofs in [5ju$ing on the load in different groups of
machines. We assume that> 1, sincep = 1 is simply the case of identical machines, for which a tight
bound is known [11, 27, 1].

Lemma 1 The price of anarchy om: related machines that have at mgstlifferent speeds is at most
p+ 1.

Proof Consider a job assignment to machines, denoted! pthat satisfies the conditions of a Nash
equilibrium. Letoy > --- > 0, be a sorted list of the speeds. We define the speed CEsthe subset
of machines with speed,. We assume that machines are numbered ,by. , m, and their speeds
s1,- .., 8y are sorted by non-increasing speed (isg.>> so > ... > s,,). Moreover, we assume that
the machines of each speed class are sorted by non-ingdaathin A. LetT be the maximum load
over all machines and scale the instance sodirat= 1. Assumel’ > 1, otherwise we are done. Note
that since some machine has a load that exceeds 1, then thsrexist at least one machine whose load
is strictly smaller than 1.

Let C be the load of the least loaded machine of speed class 1, lmyrdke defined above, that is,
a machiner of speeds,, = o such thats,.; = o9. We claim thatC' > 7" — 1. If the maximum load
is achieved on this machine, then we h&ve= T and we are done. Otherwise, febe a machine of
loadT'. For a given jobj of the instance, an optimal solution (which has makepsamrig j on one
of the machines, which we denote by Therefore we have that its size satisfies < si; < 01 and
thusf‘”—f < 1. Since moving a job from machireto machiner is not beneficial, for such a job we have
T<C+ ;"—f < C + 1. This proves the claim. I€* < 1thenT < 2 < p + 1. Therefore we assume
C>1.

We introduce additional notations. LéY = [C] > 2. We defineJy,...,JJor—qy andly, ..., Icr g
which are indices of machines. We IEtbe the first machine (in the sorted order above) with a load
which is strictly smaller thaiw’ — 4, and.J; = I; — 1. We show that all;’s are well defined and the
valuesJ; are actual indices of machines (i.g;,> 1 for i« > 1). Since machine has loadC and by
definition C’ < C + 1, we have that machine has loadC' > C’ — 1. By the ordering of machines,
machinesl, ..., — 1 have aload of at leagt’ — 1 as well. By the definition of the indices, we have
I; > r+1landthus/; > r > 1. Moreover,l; > I,_ forall2 <i < C’ —1, thusJ; > 1forall i > 1,
as claimed. Sincéq_; is the first machine with a load smaller tha@h + 1 — C’ = 1, this last index
must exist, since some machine must have load less than &.tihaf - is not defined and cannot exist
since this would imply a machine of load less than 0.

By definition, the load of machinek ..., J; is at leastC’ — i. We now claim that the speed &f
is no larger tharr; . fori = 1,...,C" — 1. We prove this by induction. For= 1 we showed that
I; > r+ 1, so its speed is at most. For other values of, we prove that the speed &f is strictly
smaller than the speed &f ;. Lets’ be the speed aof;_;. All machines up taJ;_; have load of at least
C'—(i—1)=C"+1—1i>1sincei < C’ — 1. Recall that/; > r + 1 for i > 1. We showed that
in A, machinedl, ..., J;_; are loaded by more than 1. Thus in this schedule they mustdpolethat
oPT schedules on one of the machings, ..., m. Denote such a job and its size by The machine
that runs it in4 has load of at leagt” + 1 — 4. Lety be the machine to whichis assigned iopPT. We
havea < s, < s’ andJ;_; < I,_1 < I,. If the speed of maching is s’ as well, moving jolx to I; will
result in load of less thaC” — i) + 1, which would be a contradiction td being a Nash equilibrium,
since the load of the machine runniagn A is larger.

From this claim it follows that the speed ff_; is at mosv ¢, i.e.,C’ < p (sinceo, is the smallest
speed). We conclude that< C +1 < C'+1<p+ 1. O

Lemma 2 The price of anarchy om related machines that have at mgstlifferent speeds is at least
p+ 1.

Proof Lete > 0 be such that /¢ is an even integer. We consider a set of machines with spadtls i
set{2r—1 27=2 1} for some integep > 2. There arelV; machines of spee?f, whereN; will be
determined later. IOPT, each machine of speéd has a job of sizé1 — ¢)2¢, for i > 1. 4N of the
machines of speed 1 have a single job of dizec and the rest have sand (throughout the paper, we use
the common term sand to describe arbitrarily small jobsptltsize 1. We will definegVy to be large
enough to ensurd’y > 4N;. ThereforeoPT = 1.

In the Nash equilibrium that we define, there is one machingpeed2?—! which containgy + 1
jobs of size(1 — £)2P~1. We letN,_; = p + 1. Each one of the other machines of speed' contains
2p jobs of size(1 — £)2P~2. We letN,_o = 2p(N,_1 — 1) = 2p%. For1 < i < p — 2, each machine of
speed’ in the Nash equilibrium contair®i + 1) jobs of size(1 — £)2¢~1. Therefore, for these values
of ¢ (except fori = 1), N;—1 = 2(i + 1)N;. We let Ny = 4N; /e. Thus if in the Nash equilibrium, each
machine of speed 1 has a totallof- £ of sand, and iroPT, each machine exceptV; machines have a
total of 1 of sand, we get that the amount of sand is consta¥it/s — 4N; = (1 — €)4N; /.

Moreover, the load of a machine of spe¥ds (1 —)(i + 1), except for one machine of spegti !
which has a load ofl —¢)(p + 1).

To show that this is indeed a Nash equilibrium. We do not needmsider cases in which jobs move
to faster machines, since they are more loaded. We firsta@rnisie case where a job of sige—)2r~!
moves from the machine of spee! that contains all jobs of this size, to a machine of some spéed
(j < p—1). Itincreases the load of the target maching by ¢€)2P~1~7. The load of this machine was
(1—¢)(j+1),sowe needtoshoW —&)(j +1+2P 1) > (1 —¢)(p+1)or2P=1=7 > p—j. Itis
enough to show!~! > ¢ for ¢ > 1. This is easily shown by induction.

We now consider a job of sizel — £)2! moving from a machine of speei*! to a machine of
speed?’, wherej < i. The load of the target machine increases(by- ¢)2¢~7. The load there was

t jobs My

speeds m’ machines of speed 1

Figure 1: Definitions for Section 3, the structure of the Neghilibrium which is examined.

(1 —¢)(j+ 1) sowe needtosho® 7 +j+1>i+2fori—j >0. Takingt =i — j + 1, we get
2t=1 > t as before. O
The previous two lemmas together imply the following Theore

Theorem 1 The price of anarchy om related machines that have at mestiifferent speeds is exactly
p+ 1.

Note that thespoAincreases rapidly as a function of the number of speeds s lower bound
construction of Fiat et al. [10] uses a paramétesuch that thespoAis 2(¢) and the number of speeds
is ©(¢log ¢). This implies a lower bound dﬂ(@) on thespoafor instances with at mogt different
speeds.

3 One fast machine: theroA

Recall that the configuration of processors that we considex consists af2’ = m — 1 identical slow
machines of speed 1, and one fast machine of speetierem’ > 2. Note that the case)’ = 1 is fully
covered in [7], for which case theoAis equal tol + ;75 for1 < s < V2 ~ 1.4142, itis equal tos for

V2 <s < 15 ~ 1,618 and tol + 1 otherwise.

We scale all sizes of jobs in the instances which we considé¢hatopT = 1. We can therefore
assume that the sum of jobs sizes is at masin’. Moreover, in an optimal schedule, all slow machines
contain only jobs that are no larger than 1, and the largbsbi@ny instance is no larger than

We assume that we are given a specific schedule with is a pusk dguilibrium and study its
properties. The price of anarchy is determined by the highessible load of any machine. Obviously,
if there is a machine with load above 1, there must also be dimaevith load less than 1. To prove
upper bounds we consider two basic cases; the price of gniarefther determined by the fast machine,
or by some other machine. In this schedule, denote the loditediast machine by, and the number of
jobs there byt. Additionally, lety be the highest load of any slow machine, ¢}, be a slow machine
with this load, and let be the smallest load of any slow machine. See Figure 1.

If z > 1 then the total size of jobs on the fast machine s> s and therefore this machine must
contain at least one job that is of size no larger than 1 (whid@ssigned to a different machine in an
optimal schedule).

We will give a closed formula for theoa for all possible combinations afandm. We begin with
the casd < s < 2in Section 3.1, and in Section 3.2 we derive a condition (Eqog5)) under which
the POA is equal to a global upper bound for it, denoted byoBMAX. We show that condition (5)
is satisfied fors large enough, where the threshold value depends.onin particular, (5) holds for
s > 4.562 and anym’ (Theorem 5).

Finally, in Section 3.3 we derive formulas for theA in the remaining cases (Theorem 7), where
(5) does not hold. Additionally, in Section 3.4, we show that,, .., POA = min(s,2s/(s — 1)) for
s < 4.562.

3.1 The exactroAafor 1 <s<2

We define
/
FASTMAX = 28 _, s
m’ + s m' + s
I+ tm' +5)

SMALL JOBS(t) =

1425 =2 t(m/ +s) —m's

Recall that there argjobs on the fast machine. We prove in the following lemma #regTMAX is a
general upper bound far, and that $1ALL JOBS(¢) is an upper bound fat, in the case where > xs
(thus, the jobs have average size of at most 1). In the rekeafdction, we answer the question of when
each of these bounds is tight and when these bounds coregptimePOA. A general upper bound for
x is given in Lemma 5, and upper bounds fpare given in Lemma 6. These bounds are combined in
Theorem 2, which gives a closed formula for #heafor 1 < s < 2.

Some of the lemmas and observations in this section hold migtfor s < 2, and are used in
other sections as well. When this is the case, we state itc#tkplthese are Lemma 3, Lemma 6 and
Observation 1) . Otherwise we may assusme 2.

Lemma3 If x > 1, thenz < FASTMAX. If in addition¢ > xs, thenx < SMALL JOBS(¢). This holds
foranys > 1.

Proof The average load on the slow machines is at most

s+m' —zxs
!

- :1—(95—1)%. 1)

Sincex > 1, and the optimal makespan is 1, there exists a job of size at inon the fast machine.
This job does not reduce its delay by moving to the least loatt®v machine. If it moves, the load on
the machine that it moves to becomes at n¥ost(z — 1)2;. Therefore, this value must be at least
This impliesz(1 + %) < 2 + %, and thereforec < FASTMAX.

Since there are jobs on the fast machine, the average size of jobs there/is so among these
jobs there is at least one job of size at mostt. This constraint does not add new information unless
t > xs, we therefore assume> xs, and therefore > s. Once again, since this job does not benefit
from moving to the least loaded slow machine, using (1), we fin

IS

s
<l-(z—-1)— 42
r= (@)m’+t

which impliesz(1 + > — 7) < 1 4 %7, and thereforer < SMALL JOBS(t) (since byt > s, we have
t(m' +s) —m's > ts > 0). O
Lemma 4 Assume that(m’ + s) — m’s > 0. We haveSMALL JOBS(t) < FASTMAX if and only if
fFASTMAx < 1.

Proof We have $IALL JOBS(t) = 1 + ity If this is at mose — —*—, then

m/+s) m/+s?
m's) s om
t(m' 4+ s) —m'/s — m +s m +s
and therefore)))
Sgt(m +/s)—ms:t_ m's ’
m' +s m' + s
s0s + 2= < tand
s m/ t
FASTMAX =2 — — =1+— <=,
m + s m + s S
which implies;FASTMAX < 1. It can be seen that we have in fact an equivalence as long@rést-
s) —m's > 0 (andm’ > 0, s > 0 hold as well). O

Lemma 5 If there aret jobs on the fast machine, then we have min(FASTMAX, SMALL JOBS(t)).

Proof We assumer > 1, otherwise the claim holds trivially. The first term is an epfppound by
Lemma 3. If S4ALLJoBS(t) < FASTMAX, then we have]FASTMAX < 1 by Lemma 4. Since
x < FASTMAX, Lemma 3 implies that < SMALL JOBS(?). O

Lemma 6 If there is only one job o/, theny < s. If there are at least two jobs, then< 2z and

2(m’ + s)
m +2s

This holds for any > 1.

Proof The first bound follows as there cannot be a job larger thifithe optimal makespan is 1.
Suppose there are at least two jobs gnd 2z. The smallest job o/, has a size of at mogt/2
and (usingn’ > 2) it can reduce its delay by moving to a machine with a load where the load will
be at most + y/2 < y as a result. Thus this is not an equilibrium, which leads toraradiction.
Thereforez > y/2. Since none of the jobs o/, can improve by moving to the fast machine, we
findy < z 4+ y/(2s) orz > 25-1y. Since the total size of jobs is at most + s, this implies

25 — 1
(m' — DL+ 2ty <m s,
2 2
which gives
-1 2s-—1
y(m2 + 32 +1):%(m'—1+23—1+2)):%(m'+2s)§m'+s,
which implies the desired bound. O

Corollary 1 If s < 2, thenpPoA < 2.

Proof Follows immediately from Lemma 5 and Lemma 6. In factd FASTMAX < 2 and ify > s,

2m/+2s
theny < S0-5= < 2. U

Observation 1 27 +8) - 2m'ts _ FasTMAX for all positiver’ andss.

m/+2s m/+s
Proof Since the denominators are positive, if it enough to pi2ive’ + s)? < (2m’ + s)(m’ + 2s),
which is equivalent tem’ > 0. O

: 2(m/+s) 3(m/+s)
Observation 2 == < S/ +s)—m

Proof Fors < 2, we have3(m’ + s) > m's, therefore the denominators are positive. It is enough to
prove6(m’ + s) — 2m’s < 3m’ + 65, which is equivalent ta > 3. O

~ = SMALL JoBs(3) for 3 < s < 2and allm/.

Theorem 2 For s < 2 andm’ > 2, we have

1
POA = max (min (SMALL JoBS(2), FASTMAX, 1 + ;) ,
2 /
(m' +s) s) '

min (SMALL JOBS(3), FASTMAX), o+ 25

Proof The four terms represent the following situations in ordeo jobs on the fast machine, at least
three jobs on the fast machine, at least two jobg/fy) one job of sizes on M,,.

It is easy to see that this covers all the relevant posséslitif there is only one job on the fast ma-
chine, then the makespan would not be achieved on the fastineglout on)/, sincex < 1. Therefore
the upper bound will follow from showing the relevant uppeubd ony. We consider the structure of
an example which achieves thea and analyze it.

7

In the examples for the lower bound, if theA is achieved on the fast machine, all other machines
will contain sand. In such a case, each machine will recéigessame amount of sand, which in all cases
would be less than 1. This already ensures that none of tbbsean improve their delay moving to the
fast machine (where the load will be more than 1). Thus we nabd to check that the jobs on the fast
machine cannot benefit from moving.

The cases which need to be considered are the following.

1. ThepPoA is achieved on the fast machine, where there are two jobs.roh@fhe upper bound,
we note that the first two terms in the minimum are implied bynbga 5. The last term follows
because the total size of any two jobs is at mostl if the optimal makespan is 1. We now show
matching lower bounds using suitable instances for alktiieems in the minimum.

(@)

(b)

(©

If the minimum is MALL JOBS(2), we use $IALL JOBS(2) < FASTMAX to show that it
is possible to enforce = SMALL JoBS(2). We haveiSMALL JoBS(2) < S§FASTMAX <

1 by Lemma 4. Therefore, consider the following instance. réhee two jobs of size
SMALL JoBs(2) - § < 1 which are running on the fast machine, ite= 2. The total amount
of sand ism’ + s — s - SMALL JOBS(2) > 0 (sincem’ > 2). Each slow machine has sand,
where the amount of sand on each slow machid@szm. The optimal makespan
is 1, by putting each large job on one machine, and adding teaachieve an equal load on
the machines. This schedule is an equilibrium since by ngpaitarge job to a slow machine
we get a delay of — 5 2m'ts) s 2(m’ +s)

’s + 2(m/+s)—m’s 2 2Am/Fs)—-m's Z-

82
m/+s)—m
If the minimum is RSTMAX, we use BSTMAX < 1+ 1 to enforcez = FASTMAX.

By Lemma 4,5FASTMAX > 1. Consider the following instance. There is one job of size
1 on the fast machine and one job of sigeasTMAX — 1 > 1. Each slow machine has
sand, where the amount of sand on each slow machife/ist s — sSFASTMAX)/m’ =

(m' +s— S(ib”fijjj))/m’ = mm+s This is an equilibrium since already moving the smaller
job from the fast machine to a slow machine results in a Ioal:iJefm’,’iS = FASTMAX. If
sFASTMAX — 1 < s, then the optimal makespan is 1, since the fast machine hisigob,
one slow machine runs the job of size 1, and the sand is distdbso that the machines are
balanced. The condition on the size of the largest job hotdeFASTMAX < 1+ % in this
case.

In the last case, where the minimumlis+ 1, we show how to enforce = 1+ 1. In
the instance, there is one job of size 1 on the fast machineoaadob of sizes. Each
slow machine has an amount pf" + s — s — 1)/m’ = 1 — 1/m/ of sand. This is an
equilibrium since usind + 1/s < FASTMAX in this case, we getv’s > m’ + s and
therefore2 — % >1+ % which means that already the job of size 1 does not beneiit fro
moving to a slow machine. In an optimal assignment, the fasthime runs the job of size
s, one slow machine runs the job of size 1, and the sand is spreadly between the other
slow machines.

2. There are at least three jobs on the fast machine. Firstthat $1ALL JOBS(¢) is decreasing in
t, so the upper bound follows directly from Lemma 5. There e@dases depending on the term
for which the minimum is achieved. In both cases, each slowhina will receive an identical
amount of sand, which is again chosen such that the totabsakthe jobs isn’ + s.

(@) If the minimum is MALL JOBS(3), we enforcer = SMALL JOBS(3). There are 3 jobs of

size SMALL JoBS(3) - 5 on the fast machine. This is an equilibrium (this can be puove
very similarly to the proof of case 1a). By Lemma 4, the jobgehsize at most 1 since

SMALL JoBS(3) < FASTMAX. Sincem’ > 2, the optimal makespan is 1: these three jobs
can each be assigned to separate machines, which can théadediwith sand.

(b) If the minimum is ASTMAX, we enforcer = FASTMAX. There are two jobs of size 1
on the fast machine and one job of siggasTMAX — 2. The size of the second job is
at least 1 sincers/3 > 1 by Lemma 4 if we taker = FASTMAX, and at most since
FASTMAX < 2 < 1+ 2/sfor s < 2. In an optimal schedule, for” > 2 the jobs of size
1 can be assigned to two slow machines, and the larger jokettagh machine. This is an
equilibrium (the proof of case 1b, including the calculatiaf the amount of sand on slow
machines, holds here as well).

3. ThepoAis achieved on a slow machine with two jobs. The upper bouhoWe from Lemma 6.
Comparing this case to the previous one, by Observationgl Zawe haves < 3/2. We show

how to enforcey = 27(,?;22), let y denote this value. Note that this function is monotonically

increasing inn/. To prove the lower bound, we consider a schedule with twe @isizey /2 < 1
on one slow maching/,, each other slow machine has2 of sand.

If m’ < 3, the fast machine has one job of siZgly. Form’ > 4, the fast machine has two jobs
of size2=Ly < 1. In both cases, its load &1y < 3y < 3.

We show that the optimal makespan of this instance is 1 inaakts. Each job that is not part of
the sand is put on a separate machine. We will show that teeaemost one job that is larger

than 1. If there is such a job, it is put on the fast machine. Saral is added to the machines in a
balanced way. The jobs have a total sizé&s¢ + (m' — 1) 4 (2s — 1)) = m’ + s. Form’ < 3,

we need to show that;ly < s. This holds becaus8Zits)(s — 1) < &25(5 — 1) < 5 &
(642s)(s—2) <s(3+2s) < 5s—3<3s<s< 3.

Form/ >4, 22y < 1y < 1fors < 3/2.

The assignment is an equilibrium: the job(s) on the fast nme@otan not improve by moving, since
already for the case where two jobs are assigned to this macifty + y/2 = 25ty > 251y

fors > 1. Slncezs 1y + 5= =y, the jobs onl/,, do not improve by moving to the fast machine.
They also cannot beneflt from moving to another slow machiie sand cannot improve since

the load on the fast machifé&-% > ¥ for s > 1.

4. ThepoAais achieved on a slow machine with one job. The upper bourdwslfrom Lemma 6.
We show how to enforce a load gf= s on M, using the following schedule. There is one job
of sizes on a slow machiné/,. Lett = [s(s — 1)]. There ar¢ jobs of sizes(s — 1)/t < 1on

the fast machine, so that the load there is 1. The remaining machines have lo4e s,(_sl‘l) =
1— % =< 1, which we denote by’. This load consists entirely of sand.

If 2/ > s—1, redistribute the sand among all machines besidgéi.e. including the fast machine)
so that the load on these machines is equal. This is done bingieeme sand to the fast machine.
It is clear that if this redistribution takes place, we haweeguilibrium: we only need to check
whether jobs can benefit by moving to or fral,. But the job onAZ, cannot improve since the
load on the fast machine is at least 1, ands — 1 + s/s = s. No job can improve by moving to
M, becausé\/, has the highest load.

Consider the case wheté < s — 1. Then clearly, none of the sand jobs can improve. Suppose
s < ¢. Thent = 1. The single job of size(s — 1) on the fast machine does not improve if

it moves toM, (load is higher) or to another slow machine (the load woulcob®e be at least
s(s—1)>s—1).

Supposep < s < 2. Thent = 2. We need to check that + s(s — 1)/2 > s — 1, so that the jobs

on the fast machine do not improve by moving to a slow machiinés holds form’ = 2: we get

9

I—(s(s—1)—1)+s(s—1)/2>s-1& —s(s—1)/2>s5-3 —s>+5>25s—6 &
s24+5—6 <04 (s+3)(s—2) <0, which holds fors < 2. Then it clearly also holds for larger
m’, because’ is increasing inn/.

This shows that the maximum can indeed be achieved in alldases, and thus the bounds are tight.
Corollary 2 For s = 2, PoA = 2 for all m’ > 2.

Proof All the upper bounds in Theorem 2 are at most 246t 2 and anymn’ > 2, and the bound is
equal to 2. O

3.2 The exactroA for sufficiently large values of s

In this section and the next one, we will prove that theretarstances which achieve thmoA with
several distinct properties. In each case, as soon as wehaxed such a statement, we will restrict our
attention to instances which have these properties in thairgler of the text.

We first show thatim,,,» .., POA = sfor 2 < s < 3 in Theorem 3. Lemma 7 shows thaba =
FASTMAX in case theeoA is achieved on the fast machine and> 2. The rest of the text then deals
with the case where theoa is achieved on the slow machine. We first derive structurapgrties for
equilibria and an upper bound fgr the maximum load on a slow machine, in Lemmas 8 to 11, and then
show that thee0A is upper bounded by

s+2m' —1
GLOBMAX = . 2
s+(m —1)(s—1)/s @

for all s > 2 in Lemmas 12 and 13. We then derive bounds fao8MAX in Lemmas 14 and 15, and
use these bounds to determine wirem = GLOBMAX holds in Theorems 4 and 5.

Theorem 3 For 2 < s < 3 and large enoughn’ , POA = s.

Proof Fix e € (0, 1]. We will show a lower bound of on thepoa for s = 3 — ¢ and sufficiently large
m’. Consider the following schedule.

There is one job of size which is scheduled on a dedicated slow machine. There aljelsixof
sizes(s — 1)/6 which are on the fast machine, so its loadis 1. The remainingn’ — 1 machines
have sand, specifically, each machine has an amoupt-efl) - (1 — §) < 1 which is less than 1 for
s < 3. The amount of sand per machine ensures that none of thebsojothe fast machine improves
by moving to a slow machine: if such a job moves there, it adds- 1) /6 to the load, making the total
load exactlys — 1.

We need to make sure that the total size of all the jobs we usat imore thann’ + s. This implies

m/—|—s23+8(8—1)+(m/—1)(8—1)(1—%)
, T2 —=13s4+6 (7s—6)(s—1) (15—7)(2—¢)
& om= 2—-T7s+12 (3—-s)(4—s) e(l+e) '

For anye > 0, this value is bounded from above. Since: 2 by Lemma 3 and) < s by Lemma 6 (the
second bound there is at m@sK s), this proves the theorem. O

Lemma 7 For s > 2, if the POAis achieved on the fast machine theoA = FASTMAX.

Proof If the POAis achieved on the fast machine then we hewe < FASTMAX by Lemma 3. For the
lower bound we present an instance where the fast machine lloasl of RSTMAX. We place a total
size of jobs ofw = sFASTMAX on the fast machine. We do this by assignjg§l — s/(m’ +s))] > 1
jobs of size 1 to this machine, as well as a job of gize w — [s(1 — s/(m' + s))]| (Whereq = s(2 —
s/(m'+5))—[s(1—s/(m'+s))] < sandq > s(2—s/(m'+s))—(s(1—s/(m' +s))+1)=s5—-1>1

10

by the assumption > 2). We getz = FASTMAX, and a total size of sand jobs eoft m’ — xs, thus
each slow machine receivés- (x — 1)s/m’ of sand. This situation is similar to the one in the proof of
Theorem 2 (Case 1b), since the loads of machines are simuildrihe smallest job on the fast machine
is of size 1, and we already saw that this is an equilibrium.

To show that the optimal makespan is 1, we need to show[#{at— s/(m' + s))] < m/ (i.e.,
we can assign all jobs on the fast machine but one to slow meshiand; < s (which we already
showed). The first inequality holds becausge — s/(m' + s)) = sm'/(m’ +s) = m’ - 7= <m/, s0
[s(1—s/(m +s))] <m. O

The question now becomagenthe POA is achieved on the fast machine. To answer this question,
we begin by deriving upper bounds on the load on any slow machand structural properties for
worst-case equilibria in the following four lemmas. Eveity we will find that thepoA is in fact

always achieved on a slow machine fop 2.

Lemma 8 For s > 2, consider an instance in which tA is achieved, and it is achieved on a slow
machine, i.e.POA = y. In this case, there is one job aW,. Moreover, all additional slow machines
contain sand.

Proof If there are at least two jobs aif,,, then by Lemma 6 and Observationyl< FASTMAX. But
theny < PoAby Lemma 7.

Let A be the total size of jobs assigned to slow machines, exautlin Replace these jobs by sand
and distribute it evenly. The same process is applied onolbein the optimal solution. The only case
which the resulting schedule is not an equilibrium is theecabere the fast machine has a smaller load
than the resulting load of the slow machines, in this casejaibs on it are replaced by sand as well, and
the sand is redistributed so that all machines, exceptfgrhave equal load. O

Lemma 9 For any equilibrium instance, there exists an instance wigcan equilibrium with the same
loads on all machines, such that the fast machine has at nmesjob which is on the fast machine in the
optimal solution. Specifically, it has at most one job laren 1.

Proof If there are multiple such jobs, we can merge them into onenjitih size the total size of these

jobs. This does not affect the optimal makespan, or the npakesf the schedule. Larger jobs can
only benefit less from moving, thus the schedule is still amldgjium if it was before. Regarding the

second statement, clearly all jobs larger than 1 must be@fat machine in an optimal solution with
makespan 1. O

Lemma 10 Any schedule which is in equilibrium satisfies
xrSs
. 3
Py 3)

Moreover, ifM, has a single job, this is a sufficient condition for this jolt tiobenefit from moving.

Proof Consider)M,. This machine has a job of size at mgstvhich does not benefit from moving to
the fast machine. Therefore< z + £, which implies the upper bound (3). If there is a single job of
sizey, then this is not only a necessary condition but also a seffic@ondition. O

y <

Lemma 11 For s > 2andm’ > 2, if there exists an an equilibrium schedule whererbe is achieved,
and it is achieved on a slow machine, then ffoa is achieved in an instance with> 2.

Note: this holds even after possibly merging some jobs asdmptoof of Lemma 9.

Proof Suppose there is at most one job on the fast machine. Thesia&abf the jobs on the fast

machine andV/, (together) is then at most+ 1. This means thats +y < s+ 1,0rzs < s+ 1 —y.

But then Lemma 10 implieg < =%, and thereforey(1 + ;) < 1, ory < =, But this value

is smaller thar2 — s/(m’ + s) for s > 2 andm’ > 2. To prove this we note tha& — s/(m/ + s) is

increasing inm’. Form’ = 2, itis equal to2 — s/(2 + s) = 1 + 5>-. Howeverz®~ > Lfors > 2. O
The next lemma relatesasSTMAX to GLOBMAX, allowing us to prove a general upper bound for

thepoAin Lemma 13.

11

Lemma 12 We haveFASTMAX < GLoBMAX forall s > 1, m’ > 2.

Proof We have RSTMAX = 2;3?:. Working out the desired inequality gives

(2m’ + s)s (2m' +s—1)s
sm/+s2 s+ (m —1)(s—1)

which holds if and only if
(2m/ + s)(s> +m/s —m/ —s+1) < (sm' + s2)(2m' + 5 —1).

Working this out gives

2 2

om's2+2m' s —2m’? —2sm/ +2m/ + 3 +m/s2—m/s—s2+s < 2m/2s+m'sE—m's+2m/s2+ 3 —s

This holds if2m’ + s < 2sm/ + 2m/?, which is true because < 2sm’ and2m’ < 2m’>. O
Lemma 13 For s > 2, POA < GLOBMAX.

Proof By Lemma 12 and Lemma 7, the claim holds if thea is achieved on the fast machine.
Therefore, suppose it is achieved on a slow machifiein some schedule. Denote the load there by
y > 1. Then by Lemma 10, the load on the fast machine is at least y - %1 so the work there
isy(s —1). By Lemma 9, the fast machine has at most one job larger th&8y 1L.emma 11, the fast
machine has at least two jobs, such that at least one of thechésluled on a slow machine in an optimal
schedule. Therefore, there is at least one job of size at inostthe fast machine. If this instance is an
equilibrium, the load on each slow machine must then be at4ea 1. Finally, the total size of all the
jobs must be at most’ + s. This implies

y(l—k(s—l)—i—(m'—l)S;l)—(m'—1)§s+m' 4)
which holds if and only ify < % = GLOBMAX. This proves the lemma. O

We wish to find out whemroA = GLOBMAX holds exactly. To give a condition for this, we first
study the value GoBMAX further in Lemmas 14 and 15.

Lemma 14 We haveGLOBMAX < (s +m/)/sforall m’ > 1 ands > 2.

Proof We need to show that
s+2m’' —1 m/ -

s+(m —1)(s—1)/s s —

or
s3+2m's? — 2 —m/ (s + (m' —1)(s — 1))

s34+ s(m' —1)(s — 1)

<1

which holds if
m's?> — % —m/(m' —1)(s — 1) < s(m' —1)(s — 1)

or (by dividing bym’ —1 > 1 for m’ > 2)
s2—m(s—1)<s(s—1)=s>—s.

Thus itis sufficient ifm/(s — 1) > s,or(s —1)/s=1—1/s > 1/m/, ors > % However, we have
§>2> % by our assumption and becausé > 2, and therefore the claim holds. O

Lemma 15 We have%lGLOBMAx > 1forall m' > 2ands > 2.

12

Proof We can write the desired inequality 88GLOBMAX + 1/s < 1. Thus we need to show that

32—1—(m'—1)(s—1)+1 24 (m' —1)(s—1)+ (s+2m' — 1)

= < 1.
s24+2m's — s s s24+2m's — s
This holds if and only if
(m' —1)(s—1)+s+2m —1=m's+m’ <2m's — s.
Butm’ < s(m’ — 1) holds fors > % and then certainly fos > 2 (usingm’ > 2). O
Theorem 4 Letm’ > 2 ands > 2. Then
(s — 1)GLoBMAX — [s(GLOBMAX —1)] > 1 (5)

implies thatroA = GLOBMAX.

Proof First note that by the condition (5)s(GLOBMAX — 1) < [s(GLOBMAX — 1)] < (s —
1)GLoBMAX — 1 and so GOBMAX < s — 1.

We present a class of instances, wheoas = GLOBMAX, as long as (5) holds. Note thebA >
GLOoBMAX is impossible by Lemma 13. Place one job of sjze GLoBMAX on a slow machine. Set
z=1.y Place

k= [s(GLOBMAX — 1)]

jobs of size 1 on the fast machine, together with a job of size

g = (s—1)GLOBMAX — k
< (s —1)GLoBMAX — s(GLOBMAX — 1) = s — GLOBMAX. (6)

Then the total work assigned to the fast machingis 1)GLOBMAX = zs, as desired.

On each empty slow machine, place- 1 of sand. This is more than 0 by Lemma 15. We now have
constructed an equilibrium, which can be verified as follolNste that sincey > = > = — 1, we only
need to check that no job can improve by moving away frbfp or from the fast machine to a slow
machine with load: — 1. The first part follows from Lemma 10 and the fact that ther@nily one job on
M, (so that job cannot improve by moving to another slow maghimed the second part holds as long
as all the jobs on the fast machine (in particular, the jobizaf @) have size at least 1. This is exactly the
condition (5).

We still need to verify that the optimal makespan of thisanse is 1. First of all, the total size of
all the jobs must be at most’ + s. This follows because (4) holds fgr= GLOBMAX, and our loads
are exactly the loads described in Lemma 13. Furthermoreéesd to show that < m’. This holds as
long ass(GLOBMAX — 1) < m/, or GLOBMAX < 1+ m//s. This is true by Lemma 14. Since finally
qg < s — GLOBMAX by (6), an optimal schedule with makespan 1 exists, sincéothe of sizeq and
GLOBMAX can be placed together on the fast machine. O

Theorem 5 For s > Y17 ~ 4562, we havePoA = GLOBMAX.

Proof We give a condition which ensures that (5) holds. We know tkat 1)GLOBMAX —
[s(GLOBMAX — 1)] > (s — 1)GLOBMAX — s(GLOBMAX — 1) — 1 = s — GLOBMAX — 1. Thus, it
suffices to have — GLoBMAX —1 > 1, or

GLOBMAX < s — 2,

in order to ensure (5). BGBMAX is monotonically increasing im’ (we havedGLOBMAX /dm/
5(s24+1)/(s®>+(m'—1)(s—1))? > 0) and tends t@s /(s — 1) for m’ — co. We have2s/(s—1) < s
for s > 4.562. The result now follows from Theorem 4.

o

O

13

In the following table, for several values of the minimum value of is given such that we can be
certain thaoa = GLoBMAX for all speeds of at least rounded to three decimal places.

m'| 2 3 4 5 6 7 8
s [2774 3.246 3.775 3.563 3.409 3.293 3.887

()

In all of these cases, (5) holds. Indeed, we noted in the mfobfieorem 5 that as:’ grows large relative
to s, GLOBMAX tends t®2/((s—1)/s) = 2s/(s—1). Thens(GLOBMAX —1) = s(2s—s+1)/(s—1) =
s(s+1)/(s—1)and(s — 1)GLOBMAX = 2s. For these values, inequality (5) holds fop 4, so for
largem’, the bound fors above whichPoA = GLOBMAX tends to 4.

Using a computer program, it can be found that in fach = GLOBMAX for s > 4.365 for all m/,
and that the value af:’ for which the bound on is maximized is 31. There are also several values of
m/ for which POA = GLOBMAX in non-contiguous intervals. The smallest value)dffor which this
happens isn’ = 14.

3.3 ThePoA for intermediate values of s

Theorem 4 gives us a condition under whisha = GLoBMAX. What happens if this condition is not
satisfied? We certainly still have the upper bound from Lendrfa the case where thmoA is achieved

on the fast machine. In this section, we therefore focus ercéise that theoA is achieved on/, (and
thusy > 1). We assume that the modification of Lemma 9 was already egppin the schedule. We
first show an additional structural property of worst-cageiléoria in Lemma 16. We then give an upper
bound fory which depends on the number of jobsn the fast machine in Lemma 17. This raises the
guestion of which value af should be selected to get the highest posstiale. We first define a crucial
valuet* in Definition 2, and examine this value in the remainder oft®ac3.3.1. Section 3.3.2 then
answers the question of how to seletlased oni*. The results are summarized in Theorem 7.

Lemma 16 For s > 2, consider an instance where theA is achieved on/,,. In this case, there exists
an instance which achieves thea, where no two jobs on the fast machine have a total size of at mo
1.

Proof We first show that < m’ + 1. Suppose this does not hold. By Lemma 9, there are at least
t —1 > m’ + 1 jobs on the fast machine which are on slow machines in thengpsolution, so there
are at least two jobs from the same slow machine. Now thesgotvgocan be merged without affecting
the equilibrium or the optimal makespan.

For the second statement, if there do exist two such jobs, grgerthem into one larger job. Since
t < m’ + 1, this leaves at most’ jobs on the fast machine, all of which have size at most 1. Tveis
can assign each such job to its own slow machine, and the jottegs in the previous case. O

3.3.1 The bound MAXSMALL (¢) and the valuet*

Definition 1 Let
s+m
s+ (m' —1)(s—1)(1—s/t)/s "
We prove in the following lemma that Mk SMALL (t) is an upper bound for the load dd, in case
there are jobs on the fast machine, ang> s.

Lemma 17 If y > 1, and there are > s jobs on the fast machine, then< MAX SMALL (¢).

MAXSMALL (t) =

Proof For an equilibrium, we require > % -y by Lemma 10. The load on any slow machine must
be at least: — xs/t = x(1 — s/t), sincexs/t is an upper bound on the size of the smallest job on the
fast machine if there argjobs on that machine. This implies

y<s—|—(m/—1)8;1<1—§>>§3—|—m/ (8)

14

which together witht > s proves the upper bound. O

Observation 3 Lets > 2, m’ > 2. If MAXSMALL (') > 0 for somet’ € R, then for all realt > ¢/
we have thad < MAXSMALL (t) < MAXSMALL (¢') and thatMAX SMALL (¢) is continuous.

This observation holds because the conditionX\8MALL (¢') > 0 is equivalent to the condition
that its denominator be positive. But the denominator iststrincreasing int for all ¢ > 0, and hence
there can be no discontinuity for> t'.

Given Observation 3, we would like to choosas small as possible in order to get a higha.
However, if it is too small, we find that one of the conditians s ort < zs will start to hold, in which
case Lemma 17 does not give us a useful bound (in the proofseest as an upper bound for the
size of the smallest job on the fast maching; & xs, we have the stronger bound Dt

We therefore define the following value, which will give us iaitial upper bound for theeoA
(Lemma 21). Later, we will deal with the cases where therdeawer jobs on the fast machine.

Definition 2 Let¢* be the minimum value ofe N such that > (s — 1)MAXSMALL (¢) > 0.

We will see in the following that Mx SMALL (t*) is the highest load on a slow machine that can
be achieved using at least jobs on the fast machine, while with fewer jobs on the fast e we
get smaller bounds. Before we move on to the proofs of thedersents, we first prove some useful
properties of the valug' that we will need later. In view of the condition in Lemma 1% first derive
a lower bound fot*.

Solving the equation = (s — 1)MAXSMALL (t) for t € R gives

s +2(m' —D(s-1) -1

[By et S § Y PR

9)

Lemma 18 We have* = [t;] > s foranym’ > 2 ands > 2.

Proof The fraction in the right hand side of (9) is strictly morerihk for anym’ > 2 ands > 2,
thereforet; > s. In particular, this implieg; > 0, and therefore MXSMALL (t1) = ¢1/(s — 1) > 0.
Since MAX SMALL (t) is decreasing and continuous as long as it is positive, weladat* = [t;] > s:
fort < [t;] —1,t € N, we must have either MXSMALL (¢) <0ort < (s — 1)MAXSMALL (¢). O

This lemma shows that far> t*, the second condition in Lemma 17 is always satisfied. We show
two additional bounds involving*, which will restrict the number of cases that we need to @®grsi

Lemma 19 t* — 1 < (s — 1)MAXSMALL (t* — 1).
Proof Given the definition of* and Observation 3, itis sufficient to show thaaKISMALL (¢*—1) > 0.
This holds if the denominator is positive. Solviag- (m’ — 1)(s — 1)(1 — s/t)/s = 0 for t € R gives

o (m'—1)(s—1) s
2T 2 (m —1)(s—1)

For anyt > t9, we have MaXSMALL (t) > 0 and then M\X SMALL (t) is continuous, decreasing in
and positive by Observation 3. Thugif> ¢+ 1, we have MA\X SMALL (t* —1) > 0 as desired. Given
Lemma 18, it is sufficient to showy > t, + 1. Note that the denominator ¢f is equal to that of;.
Thus we need to verify

(24 2m' —1)(s—1) = 1)s > (m —1)(s—1)s+ (s> + (m' —1)(s — 1))
or (s*+(m —1)(s—1)—1)s > s>+ (m —1)(s—1)

But this last inequality holds fos > 2 andm > 2, because thefs? + (m’ — 1)(s — 1) — 1)s >
2024 (m —D(s—1)=1) > (s2+(m' —1)(s—1) =)+ (s2+1—-1) > s>+ (m' —1)(s —1). O

Lemma 20 If (5) does not hold, theri* < m/ + 1.

15

Proof We have that; is monotonically strictly increasing inand inm for s > 2 andm > 2: we can
write it as

1 1
t1:8.<1— 5 i >+ P 10
24+ (m' —1)(s—1) ey eyl

from which both assertions follow easily. Therefete= [¢;] is monotonically increasing isandm.

If (5) does not hold, ther < 4.56 by Lemma 13. From (9) it is clear that < 2s and therefore
t* < [2s]. Thus the claim holds fom’ + 1 > 10, orm’ > 9. Form’ = 2,...,8, we use the values
from Table (7). Thus only the interval € [2,3.9] remains to be checked, so we are donerfér= 8
andm’ = 7, becauseé* < 8 for s < 4. Form’ = 6, we knows < 3.5, so we are done for that value
as well. Form’ = 5 ands = 4, we find¢t* = [39/7] = 6 = m/ + 1, implying that if m’ = 5, we have
t* < 6 for all s for which (5) does not hold (since then< 4, and¢; andt* are increasing im).

For the remaining values, we have the following results. \Wg @reat the casen’ = 2, the other
two cases can be solved similarly. Faf = 2, we haves(GLOBMAX — 1) = (252 +5)/(s> +s5—1) <
(252425 —2)/(s®>+s—1) = 2forall s > 2, and also clearlg(GLOBMAX — 1) > 1. Thus the values
of s, such thats > 2, for which (5) does not hold, satisfy — 1)GLOBMAX — 2 < 1, or

(s —1)(s* +3s)/(s> +s5—1) < 3. (10)
On the other hand, fan’ = 2 we havet; = 82;‘24{?73__11))_13- We know that as long as < 3, we also

havet* < 3. We havet; < 3 if
s24+2(s—1)—1

=3. 11
2+ (s—1) (11)

It is now easy to see that (11) follows from (10). Sirtg@s monotonically increasing is, this shows
thatt* < 3 as long as (5) does not hold. O

3.3.2 On the value oft which maximizes therpoa

This section deals with the question: how should we seldat. how many jobs should there be on the
fast machine in order to get the highest possiabe. Lemma 21 deals with the case where there are
at leastt* < m/ jobs on the fast machine, and shows that the worst case @tigbe) is if there are
exactlyt* jobs. Lemma 25 deals with the case where there are less’tljalos on the fast machine, and
shows that the worst case is if there are exattly 1 jobs.

Finally, Lemma 28 (in general, the text below (13)) dealswtlite case wher& = m’ + 1, which
requires separate attention, and gives a new upper boutitefpoa for this case.

Lemma 21 If t* < m/, then there is an equilibrium instance with jobs on the fast machine and
y = min(s, MAXSMALL (t¥)). If y > 1, then we havey < min(s, MAXSMALL (¢*)) for all equilibria
with at leastt* jobs on the fast machine.

Proof To show existence, let = min (s, MAXSMALL (¢*)). Place a job of sizg on a slow machine,
t* jobs of sizey(s — 1)/t* < 1 on the fast machine and = y*=!(1 — s/t*) > 0 of sand on the
empty slow machines. The claimed inequalities in the previme follow from the definition of* and
the fact thatt* > s (Lemma 18). Then this is an equilibrium witDA = y. The job of sizey does
not benefit from moving by Lemma 10, and no job on the fast nmechinefits from moving because
z4+y(s—1)/t* =y(s—1)/s. Sincey > y(s —1)/s > y==2(1 — s/t*), the sand also does not benefit
from moving.

The total size of all the jobs is at most’ + s sincey < MAXSMALL (t*) so thaty satisfies (8).
Since we also havg < s, this shows that the optimal makespan is 1 as long asm/, because we can
then assign each job which is on the fast machine to its own iachine in the optimal solution.

16

With exactly t* jobs on the fast machine, the second claim follows from Lengniay = s <

MAXSMALL (t*). Else, we can use Lemma 17. With more tht&rjobs on the fast machine, we use
additionally that Max SMALL (¢) is decreasing im (Observation 3). O

Lemma 22 If (5) does not hold, there is an equilibrium instance with- 1 equal-sized jobs on the fast
machine and; = min(s, (t* — 1)/(s — 1)). Any equilibrium instance with at most — 1 jobs on the
fast machine, where all those jobs have size at most 1y kasnin(s, (t* — 1)/(s — 1)).

Proof To prove the first claim, we use an instance analogous to teefrom the proof of Lemma
21. There is a job of sizg = min(s, (t* — 1)/(s — 1)) on one slow machine, and — 1 jobs of
sizey(s — 1)/(t* — 1) < 1 on the fast machine. Each slow machine has an equal amouandf s
z = max(0,y*=1(1 — s/(t* — 1)). If z < 2, we redistribute the sand among the fast machine and the
slow machines excluding/, so that all loads are equal (without changing the total sizgl the jobs).
Then as in the previous proof, this is an equilibrium watha = y. (If we redistributed some sand
because: < z, the proof is even easier.) We still need to show that theragtmakespan is 1. Note that
t* —1 < m/ by Lemma 20, so that in the optimal schedule, we can assignjeaavhich is on the fast
machine to its own slow machine, apK s to the fast machine as before. It remains to be shown that
the total size of all the jobs is at mast + s. If z > 0, this follows sincey < MAXSMALL (¢t* — 1) by
Lemma 19 so thay satisfies (8). Iz = 0, this follows becausg < s and there ar¢* — 1 < m/ jobs of
size at most 1.
For the second claim, note that if all jobs on the fast machie size at most 1, the total work
there,xs, is at most™ — 1 in this case. The claim then follows from Lemma 6, Lemma 10 lzeamma
19. O
Given Lemmas 21 and 22, the only option that we did not yetidengor t* < m’ is to have at most
t* — 1 jobs on the fast machine, where one of the jobs is larger th&¥elwill consider the case where
t* = m' + 1 separately later.

Lemma 23 If there is a job which is larger than 1 on the fast machinenthe< 1 + %

Proof If y <1, then this is clear. Else, the total size of ttjebs on the fast machine and the single job
(Lemma 8) onM,, is at mosts + ¢ — 1, since the job larger than 1 on the fast machine, togethértvit

job of sizey > 1 on M, have atotal size of at mosf and each other job on the fast machine has size of
at most 1. In other words;s + y < s+t — 1, implying thatzs < s +t — 1 — y, and with the help of

Lemma 10 we then find that < % ory(l+ ;) < szl andsoy < ==l =1+ &=L O

Definition 3 Letts be the highest value ofc N, ¢ < ¢* such that

t*—1 t—1
<14+ — < GLOBMAX.
s—1 s

If there is no such valug lett; = 1.
Lemma 24 If t3 > 1 and (5) does not hold, theg = ¢t* — 1.

Proof We first note that if the conditioh=" < 1+ 2L holds for some value df then it holds for any
' such that <t/ < t*.

Suppose that (5) does not hold ahd< t3 < t* — 2. Thus the conditiornl + % < GLOBMAX
does not hold for = ¢35+ 1, sol + %3 > GLOBMAX. Lety = 1+ t3/s > GLOBMAX. Then
[s(y —1)] = [t3] = t3. Moreover, from the definition of; and the assumptions ap we see that
GLoBMAX > L= > 84l Thereforey > £+l which implies(s — 1)y > ¢; + 1 and therefore
(s—Dy—[s(y—1)] = (s—1)y—ts > 1. Now, for anyy < 1-+t3/s, in particular fory = GLOBMAX,
we clearly have thafs(y — 1)] < t3. But since we saw above thattGBMAX > t;jll, we find
(s —1)GLoBMAX > t3 + 1 and therefore (5) holds. This is a contradiction. O

17

Lemma 25 If y > 1 andts > 1, there is an equilibrium instance witti — 1 jobs on the fast machine
where one job is larger than 1 and= 1+ (¢* — 2)/s. For any equilibrium instance with at most— 1
jobs on the fast maching, < 1 + (¢t* — 2)/s if one of those jobs is larger than 1.

Proof Consider the following instance. We hatge= t* — 1 by Lemma 24. There is a job of size
y=1+ % on the slow machiné/,. On the fast machine, there dre= [s(y — 1)] jobs of size 1 as
well as 1 job of sizey = (s — 1)y — [s(y — 1)] < s —y. Thusz = (s — 1)y/s. On each empty slow
machine, we placenax(z — 1, 0) of sand. It then immediately follows that this is an equiliion, since
the condition of Lemma 10 is satisfied, and no job can imprgvebving to a slow machine with load
max(z — 1,0).

We need to show that the optimal makespan is 1. The total $ia# the jobs is at mostn’ + s
becausey < GLOBMAX by definition ofts, so that the loads on the fast machine andifnare at most
those from the example from Theorem 4, where the total sizeexactlym’ + s. This holds because
we maintainr = (s — 1)y/s, which is now not larger. It > 1, the loads on the remaining machines
are also smaller in the current example.

Supposer — 1 < 0. Theny < s/(s —1). Fory = s/(s — 1) < GLoBMAX (Lemma 15), we
havex = 1, and the loads on the other machines are zero. It is cleafdhamallery, if we maintain
T = %y the total size of the jobs of/, and the fast machine is smaller. Thus also in the case that
x — 1 < 0 we have that the total size of all the jobs in the current exangmot more tham’ + s.

We also need that > 1. Fory = 1+ (t* — 2)/s, we have[s(y — 1)] = [t* — 2] = t* — 2. This
means thay > 1 holds if

(s—=1D(1+(t"—2)/s)—(t"—2) >1,

or(s—1)(1+(t* —2)/s) > t* — 1, which meand + (t* —2)/s > (t* — 1)/(s — 1). But this follows
from the assumption thag > 1.
Note also that this immediately implies that< s — ¢ < s — 1. In addition, we actually find that
k =t*—2 < m/, so each of these— 1 jobs can be placed on their own machine in the optimal salutio
thus the optimal makespan is 1. The second claim follows idiately from Lemma 23. O
We are now ready to give a full characterization of #o in the case that* < m’ and (5) does not
hold.

Theorem 6 If t* < m/ and (5) does not hold, and throA is achieved on a slow machine, it is given by

tr—2 t*—1
min (s,max (I\/IAX SMALL (t*),1+ , . >> .
S S —

Proof The first upper bound follows from Lemma 6. There are threegadepending on where the
maximum is achieved. The case numbers indicate the ternatha&ves the maximum.

Case 1. We use Lemma 21 to get an instance wits min(s, MAXSMALL (¢*)). The lemma
(combined with Lemma 6) states that no higher load can beseetiion a slow machine using at least
t* jobs on the fast machine. If there are less thiajobs on the fast machine, we have the bounds from
Lemma 22 and Lemma 25 which are not larger in this case.

Case 2. We use Lemma 22 to get an instance withmin(s, (t* — 1)/(s — 1)) with t* — 1 jobs of
size at most 1 on the fast machine. Similar to in Case 1, it essekn that other possibilities for jobs on
the fast machine do not give higher valuesor

Case 3. We use Lemma 25 to get an instance with 1 + (¢* — 2)/s. The proof of Lemma 25
shows that ifl + (t* —2)/s > £=L, thenl 4 (t* — 2)/s < s — 1. 0

s—1"

3.3.3 Thecase* =m'+1

Suppose that* = m’ + 1. This case requires special attention, because if we héve 1 jobs on the
fast machine, we get an additional condition for H@-instance: we find that the sum gfand one of
the jobs on the fast machine must be at most

18

Definition 4 Let
(s +1)ym/
s+ (m' —-1)(2-1/s) "
Lemma 26 For m’ > 2 ands > 2, if MANYJOBS < MAXSMALL (m/ + 1), thenMANY JOBS <
1+m//s.

MANY JOBS =

Proof First of all, MANY JoBs and1 + m//s are both continuous for > 2 andm’ > 2. Furthermore,
MAXSMALL (m/+ 1) is also continuous fos > 2 andm’ > 2 (we haves? > (m/ — D=1 -1
becauses® > Zili (s —1)sfor s > 2 andm’ > 2). Solving form’, we have MaNY JOBS =
MAXSMALL (m/ + 1) for

541752 — 483 — 205 + 8
2s — 4

These values are not reallifs> — 45> — 20s 4+ 8 < 0, that is, if s > 2.65. Taking for instancen = 3
ands = 3, we find MANYJOBS = 1.89 > 1.8 = MAXSMALL (m’ 4+ 1). Thus if MANY JOBS <
MAXSMALL (m' + 1), we know tha2 < s < 2.65 since both functions are continuous for> 2 and
m’ > 2. On the other hand, we haveAWy JOBS = 1 + m'/s for m3 = s(s — 1)?/(2s — 1). The value
mg is continuously increasing for a#l > 2: the derivative ig4s® — 7s? + 4s — 1)/(2s — 1)2, which
is positive for alls > 2 since the numerator is more thdas® — 8s> + 4s — 1 > 4s — 1 > 0, and the
denominator is positive. Furthermore, foe= 2.65, m3 < 1.678 < 2. Thus form’ > 2, we never have
MANYJoBS = 1+ m//s for 2 < s < 2.65. Since MaANYJOBS = 12/7 < 1+ m//s = 2 for s = 2 and
m = 2, and both functions are continuous for 2 andm’ > 2, the lemma is proved. O

mio =

Lemma 27 For s > 2 andm’ > 2, MANYJOBS < s.

Proof We have equality fos = 3(—m’ + 2+ /(m’)2 + 4m/). This is less than 2 for ath’ > 2, and
for s = 2 andm’ = 2 we have MaNY JOBS = 6/3.5 < 2 = s. Finally, MANY JOBS is continuous irs
andm for s > 2, m > 2. This proves the lemma. O

Lemma 28 Letm’ > 2 ands > 2. If there arem’ + 1 jobs on the fast machine, and> 1, then
y < min (MAXSMALL (m’ 4 1), MANY JOBS) . (12)

An instance with thig exists ift* = m/ + 1.

Proof The first upper bound follows from Lemma 17. Denote the sizéhefsmallest job on the fast
machine byu. If the optimal makespan is 1, then since we may assume naotvgogn the fast machine
have total size less than 1 by Lemma 16, we must ha¥es — y (andy < s — a < s).

We havexr > %ly as usual (Lemma 10), and the condition that a > =, because the job of size
a may not benefit from moving to a slow machine. This implies

z>r—a>y(ls—1)/s+y—s=y(2—-1/s) —s.
Moreover, the total size of all the jobs must be at mast- s, leading to the condition that
y(1+(s=1)+(m' —1)(2-1/s)) — (m —1)s <m' +s. (13)

Form/ > 2, s > 2, this is equivalent tay < MANY JoBsS. Note that this bound is also valid in case
y(2—1/s) — s < 0. (In this case, it would however be better to use the bound0.) In particular, the
denominator of MANY JOBS s positive for alls > 2, m’ > 2.

For the second claim, assurtfe= m’+ 1. Note that Max SMALL (t*) > 0 by definition, and* > s
by Lemma 18. If MaXx SMALL (m/+1) < MANY JOBS, it follows that if we takey = MAX SMALL (m/+

19

1) > 0, inequality (13) is satisfied, whereas (8) holds with equaliVe therefore have

y(s+(m —1)2-1/s)) = (m' = 1)s < m/+8=y<s—|—(m/—1)<1_l> <1_ s >>

s m' +1

S yln' =) = s <yt 1) (1-2) (-2

s m' +1

=y—s < y(— S_1>
- m' +1
This impliesy(s — 1)/(m’ + 1) < s — y. This immediately shows that we can use the instance from
Lemma 21 fort* = m’ + 1, and in the optimal solution assign the job of sizee MAXSMALL (m/ +1)
to the fast machine together with one job of size—1)/(m/+1) < s—y. Note that in this case we also
havey < s—y(s—1)/(m'+1) < s, thatis, we do not have to worry about the caseX\BMALL (m' +
1) > s.

On the other hand, if MNY JOBS < MAX SMALL (m’+1), it follows that if we takey = MANY JOBS,
we finds —y < y(s — 1)/(m’ + 1). Since MaNY JOBS < s by Lemma 27, we have — y > 0 also
in this case. In this case we place one job of size y on the fast machine and’ jobs of total size
y(s—1)—(s—y) = s(y—1). In order for the optimal makespan to be 1, we must haye-1)/m’ < 1.

To prove this, we use that = MANYJoBS < 1 + m’/s, which holds by Lemma 26. This implies
thatsy < m’ + s, and thery(s — 1) < m’ + s — y. This last valuem’ + s — y, would be the total size
of the jobs on the fast machine if we placed jobs of size 1 there plus a job of size- 3. Thus that
last inequality implies that the:’ jobs in our instance have size at most 1, since we have y(s —1).

Finally, since we haven’ + 1 jobs on the fast machine in this instance, one of them of size) <
y(s—1)/(m’'+ 1), and the othem’ jobs all equal-sized, it follows that those jobs all have size more
thans —y. Thus the job of size — y is indeed the smallest on the fast machine, and since y(s—1),
this means that (13) is a sufficient condition to have an éxitim. O

Theorem 7 If (5) does not hold, and theoA is achieved on a slow machine, there are two cases. If
t* < m/, thePOA is given bymin (s,max (MAXSMALL (t*),1+ 52, t;_‘11>> f = m/ + 1, the
POAIs given by

. . p m -1 m
min | s, max (min (MAXSMALL (m + 1), MANYJOBS) , 1 + , Ik
S S —

Proof Suppose* = m’ + 1. If the maximum is achieved in the first term, we use one of iséainces
from Lemma 28, depending on where the inner minimum is aekieklse, the bound follows as in the
proof of Theorem 6. Note that Lemmas 22 and 25 do not redtire m’. O

It can be verified that theoa is achieved on a slow machine for alf > 2 ands € [2,4.57] (and

therefore for allk > 2 by Lemma 12 and Theorem 5). For instancefor> 10, POA > 2 > FASTMAX
in this interval. See Figures 2 and 3 for graphs offlea as a function of for several values af’.

3.4 The limit of the PoA for m’ — oo

What happens with theoa if m’ grows without bound? By Theorem BpA = GLoBMAX for s >
4.562. To answer this question for smaller we first need to consider the valueAMISMALL (¢). By
Definition 1, we have

lim MAXSMALL (t) = ! = ! = st
m’ o0 S (s—1D(1-s/t))s (s—1)/s—(s—1)/t (s—1)(t—s)"
From this, we can derivBm,,,_ ., t* using Definition 2. We have
t t
t=(s—1)- i =T ss=t-sot=2s

(s=1(t—s) t—s

20

L1

LI B B
20 25 30 35 4,0

Figure 2: The price of anarchy forn’ = 2,3,4 as a function ofs. The top line in each case is
GLoBMAX, a global upper bound on thieoA. The bottom line is the actuaoA for eachs. For
m’ =4 ands € [3,3.7], we havePOA =1 + 3/s < GLOBMAX.

Figure 3: The price of anarchy forn’ = 5,10,20 as a function ofs. The top line in each case is
GLOBMAX, a global upper bound on tlmoA. The bottom line is the actualoa for eachs.

21

Hence, fors < 4.562 and large enough’, we certainly haveé* < m’. Moreover, we have

. 252 2s .
lim MAXSMALL (2s) = = = lim GLOBMAX.
m’ —oo (s—1)s s—1 m—oo

SincePoA < GLOBMAX by Lemma 13, we can conclude the following by Lemma 12 and Larffin
Theorem 8 For s € [2, 3], lim, o, POA = s. FOr s > 3, lim,,;y o, POA = 2s/(s — 1).

4 One fast machine: thespoA

In this section we demonstrate the fact that $ie@A is strictly smaller than theoA. We consider the
overall bounds (i.e., the supremum bounds over all valugsaoid’) and compare them. The overall
bound on theoA, as implied by the previous sections, is 3.

Theorem 9 ThespPoais 2 form’ < 5. For anym’, sPoa < 355 ~ 2.618. Form’ > 16, SPOA >
LvI3 2.3027756.

Proof We first slow a lower bound of 2 for any value of . Consider from the following instance.
The fast machine has speed 2. Thererafgobs of size 1, and one job of size 2. An optimal solution is
clearly to assign one unit job to each slow machine, and tigetgob to the faster machine. This gives
OPT = 1. In a schedulés' that we consider, two jobs of size 1 are scheduled on the fashime. One
slow machine is empty, one has a job of size 2, and all renr@isliw machines have one job of size 1.
It can be seen that no coalition can improve from tradinggdad he two jobs on the fast machine can
never obtain smaller load, so they would not move to a slowhinac As long as these two jobs do not
move, no other job can benefit from moving.

We next prove an upper bound. Consider a strong equilib§ui/e use the notations, M,,, y and
z, as before. Let be the size of the smallest job on the fast machine (slighttlysing the notation, we
user to denote the job as well). Lemma 3 and Lemma 6 both hold forsanyl and any schedule that
is a pure equilibrium, thus we can use them in this proof: ¥ 1 then since any job on/,, is of size
at mosts, we get thaty < = + 1 < 2. In this case thsPOAis no larger than 2, and therefore, since by
Lemma 3, we have < 2, we only need to consider a case where = < 2, and thespoAis achieved
on M,,.

Sincex > 1, there must be a machine with load smaller than 1, and therefe 1. If A/, contains
a job of sized thatopT assigns to a slow machine, we have- d > y and therefore; < z + 1 < 2.
Thus M, only contains jobs assigned lppT to the fast machine (ansiPoA < s). We therefore have
y < s and we can assume that> 2, otherwise we would again getsseoA of at most 2.

Sincex > 1, in the scheduley, the fast machine must have a job theTt assigns to a slow machine.
Thusr < 1. Since the job of size does not benefit from moving to the least loaded slow machwee,
getz +r > .

We claim thatrs + y > r + sy and thereforecs > (s — 1)y + r. Recall that),, contains only
jobs that belong on the fast machine (otherwjseg 2). Consider the coalition consisting of the jobs
scheduled o/, and a job of size’, scheduled on the fast machine. Upon a deviation of thistmnal
the jobr moves to the slow maching/, and as a result, has a delayrokK 1. Its previous delay was
x > 1. Since there exists a job of the coalition which does noteeduload upon deviation, the jobs of
M, are those that do not benefit from moving: we flad — r + y)/s > y. This proves the claim.

Let W be the total size of all the jobs. We get

= rs+s?y+as(m —1) —rs(m’ —1)
r(s —sm' +s)+ sy + ((s — Dy +r)(m —1)
r(2s —sm' +m' — 1) +y(s? +sm' —m' —s+1).

m's+s2 > Ws>as®+ys+(m —1)zs >rs+s2y+ (m' —1)(z —r)s

v

22

If 2s—sm/+m/—1 < 0, thenwe use < 1to getm’s+s? > 2s—sm’+m/—1+y(s>+sm’—m/—s+1)
or

- s24+2m's —2s—m' +1

s2+sm'—s—m'+1

(note thats? + sm’ —m’ —s+1 =52+ (s —1)(m' —1) > 0). If 2s+m’ — 1 —sm’ > 0 we user > 0
to get,

(14)

m's + s° 14 s+m' —1
s24+mls—s—m'+1

<2
s24+m/s—s—m/+1 ="’

y <
sinces+m' —1<s2+m's—s—m'+ 1< s24+m's+ 2> 2s+ 2m’ which holds for anys > 2
(by (s — 1)? > 0).

By (14), if m’ < 5theny < 2 holds if s> —m/ + 1 > 0. Butm’ < s? + 1 for anym’ < 5 (since
s > 2). For largerm/, we show that < % Since we also knowsPOA < s, we getsPOA < 2.618.

To provey < % ory—1< %5 we need toshow% < e,(m'—1)(s—1) <
52 + sm’ — s —m/ + 1 which holds since? > 0.

For the lower bound, consider a fast machine of speed%. In an optimal schedule, the fast
machine has a job of size there are 12 slow machines that contain two jobs, of s}zaad% and the
remaining slow machines have one job of size 1 each. Therefer = 1. In the schedule we consider,
the fast machine has four jobs of size 1, 12 slow machines jobgeof size%, three slow machines have
four jobs of sizel each, one slow machine has a job of sizand the remaining slow machines have

jobs of size 1. The load on the fast machln&(@ ~ 1.736865 and the makespan is achieved on
the slow machine which contains the job of size- 2.303.

Consider the terms on which each type of job would join a tioali We first discuss the case where
the job of sizes does not join. If no job which is assigned to the fast machaiesj then no job which
is scheduled to a slow machine would want to move to the fashine, and jobs that are single on
their machine would not join, so no coalition can be created.the other hand, since the load on the
fast machine is strictly less than75, then the jobs on this machine would join a coalition onlyhiéy
could move to a slow machine with a resulting load of less thad, i.e. due to the structure of the
instance, the load excluding the additional job should be@st%. For that, some jobs of sizf, % or
1 would need to join the coalition. There is clearly no advgatto exchanges between jobs of size 1,
thus we need to consider only smaller jobs. A job of s}zlaenefits from moving to the fast machine
only if the resulting total size there is no larger than 1i#l, at mostl.5, but this can happen if all jobs
of size 1 on the fast machine join the coalition. Jobs of gizgould move to the fast machine if the
resulting total size there is at m@sR25. For that, at least two jobs from the fast machine need totjan
coalition. We consider three cases based on the number®fjagrating from the fast machine. If two
jobs migrate, only a single job of siz%pcan migrate, so the room created for the migrating jobs & siz
1 does not suffice. If three jobs migrate, then five jobs of %imn migrate, and there is room only for
two migrating jobs of size 1. If four large jobs migrate, irder to make room for the migrating jobs of
size 1, six jobs of siz¢ and one job of sizé must migrate (if there are more jobs of sizenigrating,
and less pairs of jobs of siz? then the load on the fast machine would only be larger). Wusld
create a total size &f.25 on the fast machine, therefore the job of s%zwould not join the coalition.

If the job of sizes joins the coalition, at least two jobs of size 1 from the fasicinine must join the
coalition as well, sincé% = 0. In order to make it beneficial for these two jobs to migrate since
moving both of them to the machine that becomes empty woelatera load of 2 there, at least two jobs
of size} or one job of size? needs to join the coalition. But then the load on the fast rimacis already
larger than 1 due to the job of size so no such jobs would join the coalition.

O

23

5 Conclusion

We studied the,oA as a function of the number of different speeds. We found & tigerall bound,

and completely resolved the case where all machines argadgmexcept for one faster machine. It can
be interesting for find a tighter result for tls®oA as a function of the number of different speeqds,
and find whether it is strictly smaller thary 1, which is thePoA for this case. Another direction is to
study the influence of additional factors on #@a, such as the ratio of the largest and smallest speeds,
or even as a function of all the machine speeds, possiblyessallation of a mathematical program.

References

[1] N. Andelman, M. Feldman, and Y. Mansour. Strong price oarahy. Games and Economic
Behavior 65(2):289-317, 20009.

[2] R. J. Aumann. Acceptable points in general cooperatiymrson games. In A. W. Tucker and
R. D. Luce, editorsContributions to the Theory of Games IV, Annals of Matheta&atudy 40
pages 287-324. Princeton University Press, 1959.

[3] Y. Cho and S. Sahni. Bounds for List Schedules on UnifomocBssors SIAM Journal on Com-
puting, 9(1):91-103, 1980.

[4] A. Czumaj. Selfish routing on the internet. In J. Leungitad Handbook of Scheduling: Algo-
rithms, Models, and Performance Analysibapter 42. CRC Press, 2004.

[5] A. Czumaj and B. Vocking. Tight bounds for worst-casaiitijria. ACM Transactions on Algo-
rithms 3(1), 2007.

[6] A. Epstein, M. Feldman, and Y. Mansour. Strong equililomi in cost-sharing connection games.
In Proc. of the 8th ACM Conference on Electronic Commerce (Eifages 84—-92, 2007.

[7] L. Epstein. Equilibria for two parallel links: The strgiprice of anarchy versus the price of anarchy.
manuscript, 2007.

[8] E. Even-Dar, A. Kesselman, and Y. Mansour. Convergeime to nash equilibria. liProc. of the
30th International Colloquium on Automata, Languages amagRamming (ICALP2003)pages
502-513, 2003.

[9] R. Feldmann, M. Gairing, T. Lucking, B. Monien, and M. &a Nashification and the coordination
ratio for a selfish routing game. IRroc. of the 30th International Colloquium on Automata,
Languages and Programming (ICALP2008ages 514-526, 2003.

[10] A. Fiat, H. Kaplan, M. Levy, and S. Olonetsky. Stronggariof anarchy for machine load balanc-
ing. In Proc. of the 34th International Colloquium on Automata, feages and Programming
(ICALP2007) pages 583-594, 2007.

[11] G. Finn and E. Horowitz. A linear time approximation atghm for multiprocessor scheduling.
BIT Numerical Mathemati¢sl9(3):312-320, 1979.

[12] D. Fotakis, S. C. Kontogiannis, E. Koutsoupias, M. Manicolas, and P. G. Spirakis. The structure
and complexity of nash equilibria for a selfish routing ganfe.Proc. of the 29th International
Colloquium on Automata, Languages and Programming (ICAI(02} pages 123-134, 2002.

[13] T. Gonzalez, O. H. Ibarra, and S. Sahni. Bounds for LPAe8ales on Uniform ProcessoiSIAM
Journal on Computing6(1):155-166, 1977.

24

[14] R. Holzman and N. Law-Yone. Strong equilibrium in cosgien games.Games and Economic
Behavior 21(1-2):85101, 1997.

[15] E. Koutsoupias, M. Mavronicolas, and P. G. Spirakis. pfgximate equilibria and ball fusion.
Theory of Computing Systen&6(6):683-693, 2003.

[16] E. Koutsoupias and C. H. Papadimitriou. Worst-caseilibgia. In Proc. of the 16th Annual
Symposium on Theoretical Aspects of Computer Science @3B pages 404-413, 1999.

[17] E. Koutsoupias and C. H. Papadimitriou. Worst-caselibgia. Computer Science Revie@/65—
69, 2009.

[18] A. Kovacs. Tighter approximation bounds for Ipt schialg in two special cases. IRroc. of the
6th Italian Conference on Algorithms and Complexity (CIAQ&), pages 187—-198, 2006.

[19] R. Liand L. Shi. An on-line algorithm for some uniformgmessor schedulingsIAM Journal on
Computing 27(2):414-422, 1998.

[20] J. W. S. Liu and C. L. Liu. Bounds on scheduling algorighfor heterogeneous computing sys-
tems. In Jack L. Rosenfeld, editd?yoceedings of IFIP Congress ,/4olume 74 ofinformation
Processingpages 349-353, 1974.

[21] M. Mavronicolas and P. G. Spirakis. The price of selfishting. InProc. of the 33rd Annual ACM
Symposium on Theory of Computing (STOC20pages 510-519, 2001.

[22] J. Nash. Non-cooperative gamésinals of Mathematic$4(2):286—-295, 1951.

[23] N. Nisan and A. Ronen. Algorithmic mechanism desiGames and Economic Behav,i&5:166—
196, 2001.

[24] C. H. Papadimitriou. Algorithms, games, and the ingtrnin Proc. of the 33rd Annual ACM
Symposium on Theory of Computing (STOC20pages 749—-753, 2001.

[25] T. RoughgardenSelfish routing and the price of anarchMIT Press, 2005.

[26] T. Roughgarden anfl. Tardos. How bad is selfish routingddurnal of the ACM49(2):236—259,
2002.

[27] P. Schuurman and T. Vredeveld. Performance guarardkdscal search for multiprocessor
scheduling.Informs Journal on Computind. 9(1):52—-63, 2007.

[28] M. Tennenholtz and O. Rozenfeld. Strong and correlateghg equilibria in monotone conges-
tion games. InProc. of the 2nd International Workshop on Internet and NekwEconomics
(WINE2006) page 7486, 2006.

25

