
The price of anarchy on uniformly related machines revisited∗

Leah Epstein† Rob van Stee‡

August 18, 2009

Abstract

Recent interest in Nash equilibria led to a study of theprice of anarchy(POA) and thestrong
price of anarchy(SPOA) for scheduling problems. The two measures express the worst case ratio
between the cost of an equilibrium (a pure Nash equilibrium,and a strong equilibrium, respectively)
to the cost of a social optimum.

The atomic players are the jobs, and the delay of a job is the completion time of the machine
running it, also called the load of this machine. The social goal is to minimize the maximum delay
of any job, while the selfish goal of each job is to minimize itsown delay, that is, the delay of the
machine running it.

We consider scheduling on uniformly related machines. While previous studies either consider
identical speed machines or an arbitrary number of speeds, focusing on the number of machines as
a parameter, we consider the situation in which the number ofdifferent speeds is small. We reveal
a linear dependence between the number of speeds and thePOA. For a set of machine of at mostp
speeds, thePOA turns out to be exactlyp + 1. The growth of thePOA for large numbers of related
machines is therefore a direct result of the large number of potential speeds. We further consider
a well known structure of processors, where all machines areof the same speed except for one
possibly faster machine. We investigate thePOA as a function of both the speed ratio between the
fastest machine and the number of slow machines.

1 Introduction

A Nash equilibrium [22] is a state in non-cooperative games which is stable in the sense that no agent
can gain from unilaterally switching strategies. Many “solution concepts” are used to study the behavior
of selfish agents in non-cooperative games.

A strong equilibrium is a pure Nash equilibrium, in which notonly single players cannot benefit
from changing their strategy (to a different pure strategy), but no non-empty subset of players can form
a coalition, where a coalition means that all of them can change their strategies together, and all gain
from the change (see [2, 1, 6]).

Following recent interest of computer scientists in game theory [23, 16, 17, 26], we study pure Nash
equilibria and strong equilibria for a scheduling problem on uniformly related machines. We next define
the problem and pure equilibria for scheduling problems.

Scheduling on uniformly related machines is a basic assignment problem. In such problems, a set
of jobs J = {j1, j2, . . . , jn} is to be assigned to a set ofm machinesM = {M1, . . . ,Mm}, where
machineMi has a speedsi. The size of jobjk is denoted bywk and it is equal to its running time

∗A preliminary version of this paper appeared in the Proceedings of First Symposium on Algorithmic Game Theory (SAGT
2008), LNCS 4997, pages 46–57. Springer, 2008.

†Department of Mathematics, University of Haifa, 31905 Haifa, Israel.lea@math.haifa.ac.il.
‡Max-Planck-Institut für Informatik, Saarbrücken, Germany. vanstee@mpi-inf.mpg.de. Research supported by

German Research Foundation (DFG).

1

on a unit speed machine. Moreover, the running time of this job on a machine of speeds is wk

s . An
assignment or schedule is a functionA : J → M . The completion time of machineMi, which is also
called thedelayor load of this machine, is

∑

k:A(jk)=Mi

wk

si
. The cost, or thesocial costof a schedule

is the maximum delay of any machine, i.e., the makespan. We see jobs as atomic players, thus we use
terms such as choice and benefit for these players.

A schedule is aNash equilibriumif there exists no job that can decrease its delay by migrating to a
different machine unilaterally. More precisely, consideran assignmentA : J → {M1, . . . ,Mm}. The
class of schedulesC contains all schedulesA′ that differ fromA only in the assignment of a single job.
That is,A′ ∈ C if there exists a jobjk ∈ J such thatA′(jℓ) = A(jℓ) for all Jℓ ∈ J , Jℓ 6= Jk, and
A′(jk) 6= A(jk). We say thatA is a (pure) Nash equilibrium if for any jobjk, the delay ofjk in any
scheduleA′ ∈ C, for whichA′(jk) 6= A(jk), is no smaller than its delay inA. Pure Nash equilibria do
not necessary exist for all games (as opposed to mixed Nash equilibria). It is known that for scheduling
games of this type, a pure Nash equilibrium always exists [12, 8].

A schedule is astrong equilibriumif there exists no (non-empty) subset of jobs, such that if all jobs
in this set migrate to different machines of their choice simultaneously, this results in a smaller delay
for each and every one of them. More precisely, given a schedule A, we can define a class of schedules
C̃ which contains all sets of schedulesCK , whereK ⊆ J , K 6= ∅. For anyA′ ∈ CK , andℓ /∈ K, we
haveA′(jℓ) = A(jℓ) whereas forℓ ∈ K, we haveA′(jℓ) 6= A(jℓ). A is a strong equilibrium if for
any K 6= ∅, and anyA′ ∈ CK , there exists at least of jobjk ∈ K whose delay inCK is no smaller
than its delay inA. A strong equilibrium is always a pure Nash equilibrium (by definition). Strong
equilibria do not necessarily exist. Andelman, Feldman andMansour [1] were the first to study strong
equilibria in the context of scheduling and proved that scheduling games (of a more general form) admit
strong equilibria. More general classes of congestion games which admit strong equilibria were studied
in [14, 28].

In this paper, we study the price of anarchy (POA) and the strong price of anarchy (SPOA) for schedul-
ing on uniformly related machines.

In our scheduling model, thecoordination ratio, or price of anarchy (POA) (see [25]) is the worst
case ratio between the cost of a pure Nash equilibrium and thecost (i.e., maximum delay or makespan)
of an optimal schedule. Such an optimal schedule as well as its cost are denoted byOPT. Thestrong
price of anarchy (SPOA) is defined similarly, but only strong equilibria are considered. Therefore we
refer to the pure price of anarchy byPOA and when we discuss the mixed price of anarchy we call it the
mixedPOA. Note that a pure equilibrium is a special case of mixed equilibria.

It is noted in a series of papers (e.g., [16, 21, 24, 5, 4]) thatthe model which we study is a simpli-
fication of problems arising in real networks, that seems appropriate for describing basic problems in
networks.

A number of papers studied equilibria for scheduling on uniformly related machines [16, 21, 5,
9, 10]. Chumaj and Vöcking [5] showed that thePOA is Θ(log m

log log m) (andΘ(log m
log log log m) for mixed

strategies). Feldmann et al. [9] proved that thePOA for m = 2 andm = 3 is
√

4m−3+1
2 which equals

φ =
√

5+1
2 for two machines and2 for three machines. In [7], the exactPOA andSPOA for two machines

is found as a function of the machine speeds. The two measuresgiven different results for the interval
(1.618, 2.247) of speeds ratios between the two machines, and identical results otherwise. As for the
mixedPOA, it was shown in [16] that it is at least1 + s

s+1 for s ≤ φ. Recently, Fiat et al. [10] showed

that theSPOA for this model isΘ(log m
(log log m)2

).

For m identical machines (i.e., the case where all speed are equal), the POA is 2m
m+1 , which can be

deduced from the results of [11] (the upper bound) and [27] (the lower bound). It was shown in [1] that
theSPOAhas the same value as thePOA for everym. Note, however, that the mixedPOA is non constant
already in this case, and equalsΘ(log m

log log m), where the lower bound was shown by Koutsoupias and
Papadimitriou [16] and the upper bound by Chumaj and Vöcking [5] and independently by Koutsoupias,

2

Mavronicolas and Spirakis [15]. Tight bounds of3
2 on the mixedPOA for two identical machines were

shown by [16].
It can be seen that thePOA andSPOAwere studied mainly as a function of the number of machines.

Another relevant parameter for uniformly related machinesis the number of different speeds. A natural
question is whether thePOA andSPOA grow as the number of machines increases even if the number
of different speeds is constant, or whether it is actually the number of speeds that needs to increase.
Previous results, and in particular, thePOA for identical machines, already hint that the second optionis
the right one. We prove this property formally, specifically, we show that thePOA for inputs with at most
p different speeds is exactlyp + 1. We note that it can be deduced from [10] that theSPOA for inputs
with at mostp different speeds isΩ(p

log p) (andO(p) by our result), therefore theSPOA is quite close
to thePOA and it is it influenced by the number of different speeds as well. We further focus on a well
known architecture of machines, which consists of a single “fast machine” of speeds ≥ 1 together with
m− 1 unit speed machines. Such a structure, where one processor is fast, and all others are identical, is
natural, and was studied in [20, 13, 3, 19, 18].

We give a complete analysis of the exactPOA as a function of the speed of the faster machine,s,
and the number of identical machines,m′ = m − 1. We believe that our comprehensive analysis would
contribute to a deeper understanding of thePOA as a function of several parameters, rather than as a
function of the number of machines as a single parameter. Ourresults imply that the worst casePOA

(the supremumPOA over all values ofs andm) for this special case of two different speeds is already3.
We conclude the paper by showing that the worst caseSPOA for this variant is strictly smaller than the
POA, already in this special case, but it is still strictly larger than theSPOA for m identical machines.

2 A tight bound on the POA for p speeds

In this section, we consider the general case of a machine setwith a fixed number of different speeds,
and show that thePOA is linearly dependent on the number of speeds, namely, it isp + 1 if there are
p different speeds. We use ingredients of the proofs in [5], focusing on the load in different groups of
machines. We assume thatp > 1, sincep = 1 is simply the case of identical machines, for which a tight
bound is known [11, 27, 1].

Lemma 1 The price of anarchy onm related machines that have at mostp different speeds is at most
p + 1.

Proof Consider a job assignment to machines, denoted byA, that satisfies the conditions of a Nash
equilibrium. Letσ1 ≥ · · · ≥ σp be a sorted list of the speeds. We define the speed classℓ as the subset
of machines with speedσℓ. We assume that machines are numbered by1, . . . ,m, and their speeds
s1, . . . , sm are sorted by non-increasing speed (i.e.,s1 ≥ s2 ≥ . . . ≥ sm). Moreover, we assume that
the machines of each speed class are sorted by non-increasing load inA. Let T be the maximum load
over all machines and scale the instance so thatOPT = 1. AssumeT > 1, otherwise we are done. Note
that since some machine has a load that exceeds 1, then there must exist at least one machine whose load
is strictly smaller than 1.

Let C be the load of the least loaded machine of speed class 1, by theorder defined above, that is,
a machiner of speedsr = σ1 such thatsr+1 = σ2. We claim thatC ≥ T − 1. If the maximum load
is achieved on this machine, then we haveC = T and we are done. Otherwise, letk be a machine of
load T . For a given jobj of the instance, an optimal solution (which has makepsan 1) runsj on one
of the machines, which we denote byij . Therefore we have that its size satisfieswj ≤ sij ≤ σ1 and
thus wj

σ1
≤ 1. Since moving a job from machinek to machiner is not beneficial, for such a job we have

T ≤ C +
wj

σ1
≤ C + 1. This proves the claim. IfC ≤ 1 thenT ≤ 2 < p + 1. Therefore we assume

C > 1.

3

We introduce additional notations. LetC ′ = ⌈C⌉ ≥ 2. We defineJ1, . . . , JC′−1 andI1, . . . , IC′−1

which are indices of machines. We letIi be the first machine (in the sorted order above) with a load
which is strictly smaller thanC ′ − i, andJi = Ii − 1. We show that allIi’s are well defined and the
valuesJi are actual indices of machines (i.e.,Ji ≥ 1 for i ≥ 1). Since machiner has loadC and by
definition C ′ < C + 1, we have that machiner has loadC > C ′ − 1. By the ordering of machines,
machines1, . . . , r − 1 have a load of at leastC ′ − 1 as well. By the definition of the indicesIi, we have
I1 ≥ r + 1 and thusJ1 ≥ r ≥ 1. Moreover,Ii ≥ Ii−1 for all 2 ≤ i ≤ C ′ − 1, thusJi ≥ 1 for all i ≥ 1,
as claimed. SinceIC′−1 is the first machine with a load smaller thanC ′ + 1 − C ′ = 1, this last index
must exist, since some machine must have load less than 1. Note thatIC′ is not defined and cannot exist
since this would imply a machine of load less than 0.

By definition, the load of machines1, . . . , Ji is at leastC ′ − i. We now claim that the speed ofIi

is no larger thanσi+1 for i = 1, . . . , C ′ − 1. We prove this by induction. Fori = 1 we showed that
I1 ≥ r + 1, so its speed is at mostσ2. For other values ofi, we prove that the speed ofIi is strictly
smaller than the speed ofIi−1. Let s′ be the speed ofIi−1. All machines up toJi−1 have load of at least
C ′ − (i − 1) = C ′ + 1 − i > 1 sincei ≤ C ′ − 1. Recall thatIi ≥ r + 1 for i ≥ 1. We showed that
in A, machines1, . . . , Ji−1 are loaded by more than 1. Thus in this schedule they must havea job that
OPT schedules on one of the machinesIi−1, . . . ,m. Denote such a job and its size bya. The machine
that runs it inA has load of at leastC ′ + 1− i. Let y be the machine to whicha is assigned inOPT. We
havea ≤ sy ≤ s′ andJi−1 < Ii−1 ≤ Ii. If the speed of machineIi is s′ as well, moving joba to Ii will
result in load of less than(C ′ − i) + 1, which would be a contradiction toA being a Nash equilibrium,
since the load of the machine runninga in A is larger.

From this claim it follows that the speed ofIC′−1 is at mostσC′ , i.e.,C ′ ≤ p (sinceσp is the smallest
speed). We conclude thatT ≤ C + 1 ≤ C ′ + 1 ≤ p + 1. �

Lemma 2 The price of anarchy onm related machines that have at mostp different speeds is at least
p + 1.

Proof Let ε > 0 be such that1/ε is an even integer. We consider a set of machines with speeds in the
set{2p−1, 2p−2, . . . , 1} for some integerp ≥ 2. There areNi machines of speed2i, whereNi will be
determined later. InOPT, each machine of speed2i has a job of size(1 − ε)2i, for i ≥ 1. 4N1 of the
machines of speed 1 have a single job of size1− ε and the rest have sand (throughout the paper, we use
the common term sand to describe arbitrarily small jobs) of total size 1. We will defineN0 to be large
enough to ensureN0 > 4N1. ThereforeOPT = 1.

In the Nash equilibrium that we define, there is one machine ofspeed2p−1 which containsp + 1
jobs of size(1 − ε)2p−1. We letNp−1 = p + 1. Each one of the other machines of speed2p−1 contains
2p jobs of size(1 − ε)2p−2. We letNp−2 = 2p(Np−1 − 1) = 2p2. For1 ≤ i ≤ p − 2, each machine of
speed2i in the Nash equilibrium contains2(i + 1) jobs of size(1 − ε)2i−1. Therefore, for these values
of i (except fori = 1), Ni−1 = 2(i + 1)Ni. We letN0 = 4N1/ε. Thus if in the Nash equilibrium, each
machine of speed 1 has a total of1 − ε of sand, and inOPT, each machine except4N1 machines have a
total of 1 of sand, we get that the amount of sand is constant;4N1/ε − 4N1 = (1 − ε)4N1/ε.

Moreover, the load of a machine of speed2i is (1− ε)(i + 1), except for one machine of speed2p−1

which has a load of(1 − ε)(p + 1).
To show that this is indeed a Nash equilibrium. We do not need to consider cases in which jobs move

to faster machines, since they are more loaded. We first consider the case where a job of size(1−ε)2p−1

moves from the machine of speed2p−1 that contains all jobs of this size, to a machine of some speed2j

(j ≤ p− 1). It increases the load of the target machine by(1− ε)2p−1−j . The load of this machine was
(1− ε)(j + 1), so we need to show(1− ε)(j + 1 + 2p−1−j) ≥ (1 − ε)(p + 1) or 2p−1−j ≥ p− j. It is
enough to show2t−1 ≥ t for t ≥ 1. This is easily shown by induction.

We now consider a job of size(1 − ε)2i moving from a machine of speed2i+1 to a machine of
speed2j , wherej ≤ i. The load of the target machine increases by(1 − ε)2i−j . The load there was

4

x

yM

y

 machines of speed 1m’speeds

t jobs

z

Figure 1: Definitions for Section 3, the structure of the Nashequilibrium which is examined.

(1 − ε)(j + 1) so we need to show2i−j + j + 1 ≥ i + 2 for i − j ≥ 0. Takingt = i − j + 1, we get
2t−1 ≥ t as before. �

The previous two lemmas together imply the following Theorem.

Theorem 1 The price of anarchy onm related machines that have at mostp different speeds is exactly
p + 1.

Note that theSPOA increases rapidly as a function of the number of speeds as well. The lower bound
construction of Fiat et al. [10] uses a parameterℓ, such that theSPOA is Ω(ℓ) and the number of speeds
is Θ(ℓ log ℓ). This implies a lower bound ofΩ(p

log p) on theSPOA for instances with at mostp different
speeds.

3 One fast machine: thePOA

Recall that the configuration of processors that we considerhere consists ofm′ = m − 1 identical slow
machines of speed 1, and one fast machine of speeds, wherem′ ≥ 2. Note that the casem′ = 1 is fully
covered in [7], for which case thePOA is equal to1 + s

s+2 for 1 ≤ s ≤
√

2 ≈ 1.4142, it is equal tos for√
2 ≤ s ≤ 1+

√
5

2 ≈ 1.618 and to1 + 1
s otherwise.

We scale all sizes of jobs in the instances which we consider so that OPT = 1. We can therefore
assume that the sum of jobs sizes is at mosts+m′. Moreover, in an optimal schedule, all slow machines
contain only jobs that are no larger than 1, and the largest job of any instance is no larger thans.

We assume that we are given a specific schedule with is a pure Nash equilibrium and study its
properties. The price of anarchy is determined by the highest possible load of any machine. Obviously,
if there is a machine with load above 1, there must also be a machine with load less than 1. To prove
upper bounds we consider two basic cases; the price of anarchy is either determined by the fast machine,
or by some other machine. In this schedule, denote the load onthe fast machine byx, and the number of
jobs there byt. Additionally, lety be the highest load of any slow machine, letMy be a slow machine
with this load, and letz be the smallest load of any slow machine. See Figure 1.

If x > 1 then the total size of jobs on the fast machine isxs > s and therefore this machine must
contain at least one job that is of size no larger than 1 (whichis assigned to a different machine in an
optimal schedule).

We will give a closed formula for thePOA for all possible combinations ofs andm. We begin with
the case1 ≤ s ≤ 2 in Section 3.1, and in Section 3.2 we derive a condition (Equation (5)) under which
the POA is equal to a global upper bound for it, denoted by GLOBMAX . We show that condition (5)
is satisfied fors large enough, where the threshold value depends onm′. In particular, (5) holds for
s ≥ 4.562 and anym′ (Theorem 5).

Finally, in Section 3.3 we derive formulas for thePOA in the remaining cases (Theorem 7), where
(5) does not hold. Additionally, in Section 3.4, we show thatlimm′→∞ POA = min(s, 2s/(s − 1)) for
s ≤ 4.562.

5

3.1 The exactPOA for 1 ≤ s ≤ 2

We define

FASTMAX =
2m′ + s

m′ + s
= 2 − s

m′ + s

SMALL JOBS(t) =
1 + s

m′

1 + s
m′ − s

t

=
t(m′ + s)

t(m′ + s) − m′s

Recall that there aret jobs on the fast machine. We prove in the following lemma thatFASTMAX is a
general upper bound forx, and that SMALL JOBS(t) is an upper bound forx, in the case wheret ≥ xs
(thus, the jobs have average size of at most 1). In the rest of the section, we answer the question of when
each of these bounds is tight and when these bounds correspond to thePOA. A general upper bound for
x is given in Lemma 5, and upper bounds fory are given in Lemma 6. These bounds are combined in
Theorem 2, which gives a closed formula for thePOA for 1 ≤ s ≤ 2.

Some of the lemmas and observations in this section hold not only for s ≤ 2, and are used in
other sections as well. When this is the case, we state it explicitly (these are Lemma 3, Lemma 6 and
Observation 1) . Otherwise we may assumes ≤ 2.

Lemma 3 If x > 1, thenx ≤ FASTMAX . If in addition t ≥ xs, thenx ≤ SMALL JOBS(t). This holds
for anys ≥ 1.

Proof The average load on the slow machines is at most

s + m′ − xs

m′ = 1 − (x − 1)
s

m′ . (1)

Sincex > 1, and the optimal makespan is 1, there exists a job of size at most 1 on the fast machine.
This job does not reduce its delay by moving to the least loaded slow machine. If it moves, the load on
the machine that it moves to becomes at most2 − (x − 1) s

m′ . Therefore, this value must be at leastx.
This impliesx(1 + s

m′) ≤ 2 + s
m′ , and thereforex ≤ FASTMAX .

Since there aret jobs on the fast machine, the average size of jobs there isxs/t, so among these
jobs there is at least one job of size at mostxs/t. This constraint does not add new information unless
t > xs, we therefore assumet ≥ xs, and thereforet > s. Once again, since this job does not benefit
from moving to the least loaded slow machine, using (1), we find

x ≤ 1 − (x − 1)
s

m′ +
xs

t

which impliesx(1 + s
m′ − s

t) ≤ 1 + s
m′ , and thereforex ≤ SMALL JOBS(t) (since byt > s, we have

t(m′ + s) − m′s > ts > 0). �

Lemma 4 Assume thatt(m′ + s) − m′s > 0. We haveSMALL JOBS(t) ≤ FASTMAX if and only if
s
t FASTMAX ≤ 1.

Proof We have SMALL JOBS(t) = 1 + m′s
t(m′+s)−m′s . If this is at most2 − s

m′+s , then

m′s

t(m′ + s) − m′s
≤ 1 − s

m′ + s
=

m′

m′ + s

and therefore

s ≤ t(m′ + s) − m′s

m′ + s
= t − m′s

m′ + s
,

sos + m′s
m′+s ≤ t and

FASTMAX = 2 − s

m′ + s
= 1 +

m′

m′ + s
≤ t

s
,

which implies s
t FASTMAX ≤ 1. It can be seen that we have in fact an equivalence as long ast(m′ +

s) − m′s > 0 (andm′ > 0, s > 0 hold as well). �

6

Lemma 5 If there aret jobs on the fast machine, then we havex ≤ min(FASTMAX , SMALL JOBS(t)).

Proof We assumex > 1, otherwise the claim holds trivially. The first term is an upper bound by
Lemma 3. If SMALL JOBS(t) ≤ FASTMAX , then we haves

t FASTMAX ≤ 1 by Lemma 4. Since
x ≤ FASTMAX , Lemma 3 implies thatx ≤ SMALL JOBS(t). �

Lemma 6 If there is only one job onMy, theny ≤ s. If there are at least two jobs, theny ≤ 2z and

y ≤ 2(m′ + s)

m′ + 2s
.

This holds for anys ≥ 1.

Proof The first bound follows as there cannot be a job larger thans if the optimal makespan is 1.
Suppose there are at least two jobs andy > 2z. The smallest job onMy has a size of at mosty/2

and (usingm′ ≥ 2) it can reduce its delay by moving to a machine with a load ofz where the load will
be at mostz + y/2 < y as a result. Thus this is not an equilibrium, which leads to a contradiction.

Thereforez ≥ y/2. Since none of the jobs onMy can improve by moving to the fast machine, we
find y ≤ x + y/(2s) or x ≥ 2s−1

2s y. Since the total size of jobs is at mostm′ + s, this implies

(m′ − 1)
y

2
+

2s − 1

2
y + y ≤ m′ + s,

which gives

y(
m′ − 1

2
+

2s − 1

2
+ 1) =

y

2
(m′ − 1 + 2s − 1 + 2)) =

y

2
(m′ + 2s) ≤ m′ + s,

which implies the desired bound. �

Corollary 1 If s < 2, thenPOA < 2.

Proof Follows immediately from Lemma 5 and Lemma 6. In fact,x ≤ FASTMAX < 2 and if y > s,
theny ≤ 2m′+2s

m′+2s < 2. �

Observation 1 2(m′+s)
m′+2s < 2m′+s

m′+s = FASTMAX for all positivem′ ands.

Proof Since the denominators are positive, if it enough to prove2(m′ + s)2 < (2m′ + s)(m′ + 2s),
which is equivalent tosm′ > 0. �

Observation 2 2(m′+s)
m′+2s < 3(m′+s)

3(m′+s)−m′s = SMALL JOBS(3) for 3
2 < s ≤ 2 and allm′.

Proof For s ≤ 2, we have3(m′ + s) > m′s, therefore the denominators are positive. It is enough to
prove6(m′ + s) − 2m′s < 3m′ + 6s, which is equivalent tos > 3

2 . �

Theorem 2 For s ≤ 2 andm′ ≥ 2, we have

POA = max

(

min

(

SMALL JOBS(2), FASTMAX , 1 +
1

s

)

,

min (SMALL JOBS(3), FASTMAX) ,
2(m′ + s)

m′ + 2s
, s

)

.

Proof The four terms represent the following situations in order:two jobs on the fast machine, at least
three jobs on the fast machine, at least two jobs onMy, one job of sizes onMy.

It is easy to see that this covers all the relevant possibilities: if there is only one job on the fast ma-
chine, then the makespan would not be achieved on the fast machine but onMy sincex ≤ 1. Therefore
the upper bound will follow from showing the relevant upper bound ony. We consider the structure of
an example which achieves thePOA and analyze it.

7

In the examples for the lower bound, if thePOA is achieved on the fast machine, all other machines
will contain sand. In such a case, each machine will receive the same amount of sand, which in all cases
would be less than 1. This already ensures that none of these jobs can improve their delay moving to the
fast machine (where the load will be more than 1). Thus we onlyneed to check that the jobs on the fast
machine cannot benefit from moving.

The cases which need to be considered are the following.

1. ThePOA is achieved on the fast machine, where there are two jobs. To prove the upper bound,
we note that the first two terms in the minimum are implied by Lemma 5. The last term follows
because the total size of any two jobs is at mosts + 1 if the optimal makespan is 1. We now show
matching lower bounds using suitable instances for all three terms in the minimum.

(a) If the minimum is SMALL JOBS(2), we use SMALL JOBS(2) ≤ FASTMAX to show that it
is possible to enforcex = SMALL JOBS(2). We haves

2 SMALL JOBS(2) ≤ s
2 FASTMAX ≤

1 by Lemma 4. Therefore, consider the following instance. There are two jobs of size
SMALL JOBS(2) · s

2 ≤ 1 which are running on the fast machine, i.e.,t = 2. The total amount
of sand ism′ + s − s · SMALL JOBS(2) > 0 (sincem′ ≥ 2). Each slow machine has sand,
where the amount of sand on each slow machine is1− s2

2(m′+s)−m′s . The optimal makespan
is 1, by putting each large job on one machine, and adding sandto achieve an equal load on
the machines. This schedule is an equilibrium since by moving a large job to a slow machine
we get a delay of1 − s2

2(m′+s)−m′s + 2(m′+s)
2(m′+s)−m′s · s

2 = 2(m′+s)
2(m′+s)−m′s = x.

(b) If the minimum is FASTMAX , we use FASTMAX ≤ 1 + 1
s to enforcex = FASTMAX .

By Lemma 4,s2FASTMAX ≥ 1. Consider the following instance. There is one job of size
1 on the fast machine and one job of sizesFASTMAX − 1 ≥ 1. Each slow machine has
sand, where the amount of sand on each slow machine is(m′ + s − sFASTMAX)/m′ =

(m′ + s − s(2m′+s)
m′+s)/m′ = m′

m′+s . This is an equilibrium since already moving the smaller

job from the fast machine to a slow machine results in a load of1 + m′

m′+s = FASTMAX . If
sFASTMAX − 1 ≤ s, then the optimal makespan is 1, since the fast machine runs this job,
one slow machine runs the job of size 1, and the sand is distributed so that the machines are
balanced. The condition on the size of the largest job holds since FASTMAX ≤ 1 + 1

s in this
case.

(c) In the last case, where the minimum is1 + 1
s , we show how to enforcex = 1 + 1

s . In
the instance, there is one job of size 1 on the fast machine andone job of sizes. Each
slow machine has an amount of(m′ + s − s − 1)/m′ = 1 − 1/m′ of sand. This is an
equilibrium since using1 + 1/s ≤ FASTMAX in this case, we getm′s ≥ m′ + s and
therefore2 − 1

m′ ≥ 1 + 1
s , which means that already the job of size 1 does not benefit from

moving to a slow machine. In an optimal assignment, the fast machine runs the job of size
s, one slow machine runs the job of size 1, and the sand is spreadevenly between the other
slow machines.

2. There are at least three jobs on the fast machine. First note that SMALL JOBS(t) is decreasing in
t, so the upper bound follows directly from Lemma 5. There are two cases depending on the term
for which the minimum is achieved. In both cases, each slow machine will receive an identical
amount of sand, which is again chosen such that the total sizeof all the jobs ism′ + s.

(a) If the minimum is SMALL JOBS(3), we enforcex = SMALL JOBS(3). There are 3 jobs of
size SMALL JOBS(3) · s

3 on the fast machine. This is an equilibrium (this can be proved
very similarly to the proof of case 1a). By Lemma 4, the jobs have size at most 1 since

8

SMALL JOBS(3) ≤ FASTMAX . Sincem′ ≥ 2, the optimal makespan is 1: these three jobs
can each be assigned to separate machines, which can then be filled up with sand.

(b) If the minimum is FASTMAX , we enforcex = FASTMAX . There are two jobs of size 1
on the fast machine and one job of sizesFASTMAX − 2. The size of the second job is
at least 1 sincexs/3 > 1 by Lemma 4 if we takex = FASTMAX , and at mosts since
FASTMAX ≤ 2 ≤ 1 + 2/s for s ≤ 2. In an optimal schedule, form′ ≥ 2 the jobs of size
1 can be assigned to two slow machines, and the larger job to the fast machine. This is an
equilibrium (the proof of case 1b, including the calculation of the amount of sand on slow
machines, holds here as well).

3. ThePOA is achieved on a slow machine with two jobs. The upper bound follows from Lemma 6.
Comparing this case to the previous one, by Observations 1 and 2, we haves ≤ 3/2. We show
how to enforcey = 2(m′+s)

m′+2s , let y denote this value. Note that this function is monotonically
increasing inm′. To prove the lower bound, we consider a schedule with two jobs of sizey/2 < 1
on one slow machineMy, each other slow machine hasy/2 of sand.

If m′ ≤ 3, the fast machine has one job of size2s−1
2 y. Form′ ≥ 4, the fast machine has two jobs

of size 2s−1
4 y ≤ 1. In both cases, its load is2s−1

2s y ≤ 3
4y ≤ 3

2 .

We show that the optimal makespan of this instance is 1 in all cases. Each job that is not part of
the sand is put on a separate machine. We will show that there is at most one job that is larger
than 1. If there is such a job, it is put on the fast machine. Thesand is added to the machines in a
balanced way. The jobs have a total size ofy

2 (2 + (m′ − 1) + (2s − 1)) = m′ + s. Form′ ≤ 3,

we need to show that2s−1
2 y ≤ s. This holds because2(m

′+s)
m′+2s (s − 1

2) ≤ 6+2s
3+2s(s − 1

2) ≤ s ⇔
(6 + 2s)(s − 1

2) ≤ s(3 + 2s) ⇔ 5s − 3 ≤ 3s ⇔ s ≤ 3
2 .

Form′ ≥ 4, 2s−1
4 y ≤ 1

2y < 1 for s ≤ 3/2.

The assignment is an equilibrium: the job(s) on the fast machine can not improve by moving, since
already for the case where two jobs are assigned to this machine, 2s−1

4 y + y/2 = 2s+1
4 y ≥ 2s−1

2s y
for s > 1. Since2s−1

2s y + y
2s = y, the jobs onMy do not improve by moving to the fast machine.

They also cannot benefit from moving to another slow machine.The sand cannot improve since
the load on the fast machine(2s−1)y

2s ≥ y
2 for s ≥ 1.

4. ThePOA is achieved on a slow machine with one job. The upper bound follows from Lemma 6.
We show how to enforce a load ofy = s on My using the following schedule. There is one job
of sizes on a slow machineMy. Let t = ⌈s(s − 1)⌉. There aret jobs of sizes(s − 1)/t ≤ 1 on

the fast machine, so that the load there iss − 1. The remaining machines have loadm′−s(s−1)
m′−1 =

1 − s(s−1)−1
m′−1 =< 1, which we denote byz′. This load consists entirely of sand.

If z′ > s−1, redistribute the sand among all machines besidesMy (i.e. including the fast machine)
so that the load on these machines is equal. This is done by moving some sand to the fast machine.
It is clear that if this redistribution takes place, we have an equilibrium: we only need to check
whether jobs can benefit by moving to or fromMy. But the job onMy cannot improve since the
load on the fast machine is at leasts− 1, ands− 1 + s/s = s. No job can improve by moving to
My becauseMy has the highest load.

Consider the case wherez′ ≤ s − 1. Then clearly, none of the sand jobs can improve. Suppose
s ≤ φ. Thent = 1. The single job of sizes(s − 1) on the fast machine does not improve if
it moves toMy (load is higher) or to another slow machine (the load would become be at least
s(s − 1) > s − 1).

Supposeφ < s ≤ 2. Thent = 2. We need to check thatz′ + s(s− 1)/2 ≥ s− 1, so that the jobs
on the fast machine do not improve by moving to a slow machine.This holds form′ = 2: we get

9

1 − (s(s − 1) − 1) + s(s − 1)/2 ≥ s − 1 ⇔ −s(s − 1)/2 ≥ s − 3 ⇔ −s2 + s ≥ 2s − 6 ⇔
s2 + s− 6 ≤ 0 ⇔ (s + 3)(s− 2) ≤ 0, which holds fors ≤ 2. Then it clearly also holds for larger
m′, becausez′ is increasing inm′.

This shows that the maximum can indeed be achieved in all fourcases, and thus the bounds are tight.�

Corollary 2 For s = 2, POA = 2 for all m′ ≥ 2.

Proof All the upper bounds in Theorem 2 are at most 2 fors = 2 and anym′ ≥ 2, and the bounds is
equal to 2. �

3.2 The exactPOA for sufficiently large values ofs

In this section and the next one, we will prove that there exist instances which achieve thePOA with
several distinct properties. In each case, as soon as we haveproved such a statement, we will restrict our
attention to instances which have these properties in the remainder of the text.

We first show thatlimm′→∞ POA = s for 2 < s < 3 in Theorem 3. Lemma 7 shows thatPOA =
FASTMAX in case thePOA is achieved on the fast machine ands ≥ 2. The rest of the text then deals
with the case where thePOA is achieved on the slow machine. We first derive structural properties for
equilibria and an upper bound fory, the maximum load on a slow machine, in Lemmas 8 to 11, and then
show that thePOA is upper bounded by

GLOBMAX =
s + 2m′ − 1

s + (m′ − 1)(s − 1)/s
. (2)

for all s ≥ 2 in Lemmas 12 and 13. We then derive bounds for GLOBMAX in Lemmas 14 and 15, and
use these bounds to determine whenPOA = GLOBMAX holds in Theorems 4 and 5.

Theorem 3 For 2 < s < 3 and large enoughm′ , POA = s.

Proof Fix ε ∈ (0, 1]. We will show a lower bound ofs on thePOA for s = 3 − ε and sufficiently large
m′. Consider the following schedule.

There is one job of sizes which is scheduled on a dedicated slow machine. There are sixjobs of
sizes(s − 1)/6 which are on the fast machine, so its load iss − 1. The remainingm′ − 1 machines
have sand, specifically, each machine has an amount of(s − 1) · (1 − s

6) < 1 which is less than 1 for
s < 3. The amount of sand per machine ensures that none of the six jobs on the fast machine improves
by moving to a slow machine: if such a job moves there, it addss(s− 1)/6 to the load, making the total
load exactlys − 1.

We need to make sure that the total size of all the jobs we use isnot more thanm′ + s. This implies

m′ + s ≥ s + s(s − 1) + (m′ − 1)(s − 1)
(

1 − s

6

)

⇔ m′ ≥ 7s2 − 13s + 6

s2 − 7s + 12
=

(7s − 6)(s − 1)

(3 − s)(4 − s)
=

(15 − 7ε)(2 − ε)

ε(1 + ε)
.

For anyε > 0, this value is bounded from above. Sincex < 2 by Lemma 3 andy ≤ s by Lemma 6 (the
second bound there is at most2 ≤ s), this proves the theorem. �

Lemma 7 For s ≥ 2, if the POA is achieved on the fast machine thenPOA = FASTMAX .

Proof If the POA is achieved on the fast machine then we havePOA ≤ FASTMAX by Lemma 3. For the
lower bound we present an instance where the fast machine hasa load of FASTMAX . We place a total
size of jobs ofw = sFASTMAX on the fast machine. We do this by assigning⌈s(1− s/(m′ + s))⌉ ≥ 1
jobs of size 1 to this machine, as well as a job of sizeq = w − ⌈s(1 − s/(m′ + s))⌉ (whereq = s(2 −
s/(m′+s))−⌈s(1−s/(m′+s))⌉ ≤ s andq ≥ s(2−s/(m′+s))−(s(1−s/(m′+s))+1) = s−1 ≥ 1

10

by the assumptions ≥ 2). We getx = FASTMAX , and a total size of sand jobs ofs + m′ − xs, thus
each slow machine receives1− (x − 1)s/m′ of sand. This situation is similar to the one in the proof of
Theorem 2 (Case 1b), since the loads of machines are similar,and the smallest job on the fast machine
is of size 1, and we already saw that this is an equilibrium.

To show that the optimal makespan is 1, we need to show that⌈s(1 − s/(m′ + s))⌉ ≤ m′ (i.e.,
we can assign all jobs on the fast machine but one to slow machines) andq ≤ s (which we already
showed). The first inequality holds becauses(1 − s/(m′ + s)) = sm′/(m′ + s) = m′ · s

m′+s < m′, so
⌈s(1 − s/(m′ + s))⌉ ≤ m′. �

The question now becomeswhenthePOA is achieved on the fast machine. To answer this question,
we begin by deriving upper bounds on the load on any slow machine, and structural properties for
worst-case equilibria in the following four lemmas. Eventually, we will find that thePOA is in fact
always achieved on a slow machine fors ≥ 2.

Lemma 8 For s ≥ 2, consider an instance in which thePOA is achieved, and it is achieved on a slow
machine, i.e.,POA = y. In this case, there is one job onMy. Moreover, all additional slow machines
contain sand.

Proof If there are at least two jobs onMy, then by Lemma 6 and Observation 1,y < FASTMAX . But
theny < POA by Lemma 7.

Let ∆ be the total size of jobs assigned to slow machines, excluding My. Replace these jobs by sand
and distribute it evenly. The same process is applied on the jobs in the optimal solution. The only case
which the resulting schedule is not an equilibrium is the case where the fast machine has a smaller load
than the resulting load of the slow machines, in this case, the jobs on it are replaced by sand as well, and
the sand is redistributed so that all machines, except forMy, have equal load. �

Lemma 9 For any equilibrium instance, there exists an instance which is an equilibrium with the same
loads on all machines, such that the fast machine has at most one job which is on the fast machine in the
optimal solution. Specifically, it has at most one job largerthan 1.

Proof If there are multiple such jobs, we can merge them into one jobwith size the total size of these
jobs. This does not affect the optimal makespan, or the makespan of the schedule. Larger jobs can
only benefit less from moving, thus the schedule is still an equilibrium if it was before. Regarding the
second statement, clearly all jobs larger than 1 must be on the fast machine in an optimal solution with
makespan 1. �

Lemma 10 Any schedule which is in equilibrium satisfies

y ≤ xs

s − 1
. (3)

Moreover, ifMy has a single job, this is a sufficient condition for this job not to benefit from moving.

Proof ConsiderMy. This machine has a job of size at mosty, which does not benefit from moving to
the fast machine. Thereforey ≤ x + y

s , which implies the upper bound (3). If there is a single job of
sizey, then this is not only a necessary condition but also a sufficient condition. �

Lemma 11 For s ≥ 2 andm′ ≥ 2, if there exists an an equilibrium schedule where thePOA is achieved,
and it is achieved on a slow machine, then thePOA is achieved in an instance witht ≥ 2.

Note: this holds even after possibly merging some jobs as in the proof of Lemma 9.
Proof Suppose there is at most one job on the fast machine. The totalsize of the jobs on the fast
machine andMy (together) is then at mosts + 1. This means thatxs + y ≤ s + 1, or xs ≤ s + 1 − y.
But then Lemma 10 impliesy ≤ s+1−y

s−1 , and thereforey(1 + 1
s−1) ≤ s+1

s−1 , or y ≤ s+1
s . But this value

is smaller than2 − s/(m′ + s) for s ≥ 2 andm′ ≥ 2. To prove this we note that2 − s/(m′ + s) is
increasing inm′. Form′ = 2, it is equal to2 − s/(2 + s) = 1 + 2

2+s . However 2
2+s ≥ 1

s for s ≥ 2. �

The next lemma relates FASTMAX to GLOBMAX , allowing us to prove a general upper bound for
thePOA in Lemma 13.

11

Lemma 12 We haveFASTMAX < GLOBMAX for all s ≥ 1, m′ ≥ 2.

Proof We have FASTMAX = 2m′+s
m′+s . Working out the desired inequality gives

(2m′ + s)s

sm′ + s2
<

(2m′ + s − 1)s

s2 + (m′ − 1)(s − 1)

which holds if and only if

(2m′ + s)(s2 + m′s − m′ − s + 1) < (sm′ + s2)(2m′ + s − 1).

Working this out gives

2m′s2+2m′2s−2m′2−2sm′+2m′+s3+m′s2−m′s−s2+s < 2m′2s+m′s2−m′s+2m′s2+s3−s2

This holds if2m′ + s < 2sm′ + 2m′2, which is true becauses < 2sm′ and2m′ ≤ 2m′2. �

Lemma 13 For s ≥ 2, POA ≤ GLOBMAX .

Proof By Lemma 12 and Lemma 7, the claim holds if thePOA is achieved on the fast machine.
Therefore, suppose it is achieved on a slow machineMy in some schedule. Denote the load there by
y > 1. Then by Lemma 10, the load on the fast machine is at leastx = y · s−1

s , so the work there
is y(s − 1). By Lemma 9, the fast machine has at most one job larger than 1.By Lemma 11, the fast
machine has at least two jobs, such that at least one of them isscheduled on a slow machine in an optimal
schedule. Therefore, there is at least one job of size at most1 on the fast machine. If this instance is an
equilibrium, the load on each slow machine must then be at least x − 1. Finally, the total size of all the
jobs must be at mostm′ + s. This implies

y

(

1 + (s − 1) + (m′ − 1)
s − 1

s

)

− (m′ − 1) ≤ s + m′ (4)

which holds if and only ify ≤ s+2m′−1
s+(m′−1)(s−1)/s = GLOBMAX . This proves the lemma. �

We wish to find out whenPOA = GLOBMAX holds exactly. To give a condition for this, we first
study the value GLOBMAX further in Lemmas 14 and 15.

Lemma 14 We haveGLOBMAX ≤ (s + m′)/s for all m′ ≥ 1 ands ≥ 2.

Proof We need to show that
s + 2m′ − 1

s + (m′ − 1)(s − 1)/s
− m′

s
≤ 1

or
s3 + 2m′s2 − s2 − m′(s2 + (m′ − 1)(s − 1))

s3 + s(m′ − 1)(s − 1)
≤ 1

which holds if
m′s2 − s2 − m′(m′ − 1)(s − 1) ≤ s(m′ − 1)(s − 1)

or (by dividing bym′ − 1 ≥ 1 for m′ ≥ 2)

s2 − m′(s − 1) ≤ s(s − 1) = s2 − s.

Thus it is sufficient ifm′(s− 1) ≥ s, or (s− 1)/s = 1− 1/s ≥ 1/m′, or s ≥ m′

m′−1 . However, we have

s ≥ 2 ≥ m′

m′−1 by our assumption and becausem′ ≥ 2, and therefore the claim holds. �

Lemma 15 We haves−1
s GLOBMAX > 1 for all m′ ≥ 2 ands > 2.

12

Proof We can write the desired inequality as1/GLOBMAX + 1/s < 1. Thus we need to show that

s2 + (m′ − 1)(s − 1)

s2 + 2m′s − s
+

1

s
=

s2 + (m′ − 1)(s − 1) + (s + 2m′ − 1)

s2 + 2m′s − s
< 1.

This holds if and only if

(m′ − 1)(s − 1) + s + 2m′ − 1 = m′s + m′ < 2m′s − s.

But m′ < s(m′ − 1) holds fors > m′

m′−1 and then certainly fors > 2 (usingm′ ≥ 2). �

Theorem 4 Letm′ ≥ 2 ands > 2. Then

(s − 1)GLOBMAX − ⌈s(GLOBMAX − 1)⌉ ≥ 1 (5)

implies thatPOA = GLOBMAX .

Proof First note that by the condition (5),s(GLOBMAX − 1) ≤ ⌈s(GLOBMAX − 1)⌉ ≤ (s −
1)GLOBMAX − 1 and so GLOBMAX ≤ s − 1.

We present a class of instances, wherePOA = GLOBMAX , as long as (5) holds. Note thatPOA >
GLOBMAX is impossible by Lemma 13. Place one job of sizey = GLOBMAX on a slow machine. Set
x = s−1

s · y. Place
k = ⌈s(GLOBMAX − 1)⌉

jobs of size 1 on the fast machine, together with a job of size

q = (s − 1)GLOBMAX − k

≤ (s − 1)GLOBMAX − s(GLOBMAX − 1) = s − GLOBMAX . (6)

Then the total work assigned to the fast machine is(s − 1)GLOBMAX = xs, as desired.
On each empty slow machine, placex− 1 of sand. This is more than 0 by Lemma 15. We now have

constructed an equilibrium, which can be verified as follows. Note that sincey > x > x − 1, we only
need to check that no job can improve by moving away fromMy or from the fast machine to a slow
machine with loadx−1. The first part follows from Lemma 10 and the fact that there isonly one job on
My (so that job cannot improve by moving to another slow machine), and the second part holds as long
as all the jobs on the fast machine (in particular, the job of size q) have size at least 1. This is exactly the
condition (5).

We still need to verify that the optimal makespan of this instance is 1. First of all, the total size of
all the jobs must be at mostm′ + s. This follows because (4) holds fory = GLOBMAX , and our loads
are exactly the loads described in Lemma 13. Furthermore, weneed to show thatk ≤ m′. This holds as
long ass(GLOBMAX − 1) ≤ m′, or GLOBMAX ≤ 1 + m′/s. This is true by Lemma 14. Since finally
q ≤ s − GLOBMAX by (6), an optimal schedule with makespan 1 exists, since thejobs of sizeq and
GLOBMAX can be placed together on the fast machine. �

Theorem 5 For s ≥ 5+
√

17
2 ≈ 4.562, we havePOA = GLOBMAX .

Proof We give a condition which ensures that (5) holds. We know that(s − 1)GLOBMAX −
⌈s(GLOBMAX − 1)⌉ ≥ (s − 1)GLOBMAX − s(GLOBMAX − 1) − 1 = s − GLOBMAX − 1. Thus, it
suffices to haves − GLOBMAX − 1 ≥ 1, or

GLOBMAX ≤ s − 2,

in order to ensure (5). GLOBMAX is monotonically increasing inm′ (we have∂GLOBMAX/∂m′ =
s(s2+1)/(s2+(m′−1)(s−1))2 > 0) and tends to2s/(s−1) for m′ → ∞. We have2s/(s−1) ≤ s−2
for s ≥ 4.562. The result now follows from Theorem 4. �

13

In the following table, for several values ofm′ the minimum value ofs is given such that we can be
certain thatPOA = GLOBMAX for all speeds of at leasts, rounded to three decimal places.

m′ 2 3 4 5 6 7 8

s 2.774 3.246 3.775 3.563 3.409 3.293 3.887
(7)

In all of these cases, (5) holds. Indeed, we noted in the proofof Theorem 5 that asm′ grows large relative
to s, GLOBMAX tends to2/((s−1)/s) = 2s/(s−1). Thens(GLOBMAX−1) = s(2s−s+1)/(s−1) =
s(s + 1)/(s − 1) and(s − 1)GLOBMAX = 2s. For these values, inequality (5) holds fors ≥ 4, so for
largem′, the bound fors above whichPOA = GLOBMAX tends to 4.

Using a computer program, it can be found that in factPOA = GLOBMAX for s ≥ 4.365 for all m′,
and that the value ofm′ for which the bound ons is maximized is 31. There are also several values of
m′ for which POA = GLOBMAX in non-contiguous intervals. The smallest value ofm′ for which this
happens ism′ = 14.

3.3 ThePOA for intermediate values ofs

Theorem 4 gives us a condition under whichPOA = GLOBMAX . What happens if this condition is not
satisfied? We certainly still have the upper bound from Lemma7 for the case where thePOA is achieved
on the fast machine. In this section, we therefore focus on the case that thePOA is achieved onMy (and
thusy > 1). We assume that the modification of Lemma 9 was already applied on the schedule. We
first show an additional structural property of worst-case equilibria in Lemma 16. We then give an upper
bound fory which depends on the number of jobst on the fast machine in Lemma 17. This raises the
question of which value oft should be selected to get the highest possiblePOA. We first define a crucial
valuet∗ in Definition 2, and examine this value in the remainder of Section 3.3.1. Section 3.3.2 then
answers the question of how to selectt based ont∗. The results are summarized in Theorem 7.

Lemma 16 For s ≥ 2, consider an instance where thePOA is achieved onMy. In this case, there exists
an instance which achieves thePOA, where no two jobs on the fast machine have a total size of at most
1.

Proof We first show thatt ≤ m′ + 1. Suppose this does not hold. By Lemma 9, there are at least
t − 1 ≥ m′ + 1 jobs on the fast machine which are on slow machines in the optimal solution, so there
are at least two jobs from the same slow machine. Now these twojobs can be merged without affecting
the equilibrium or the optimal makespan.

For the second statement, if there do exist two such jobs, we merge them into one larger job. Since
t ≤ m′ + 1, this leaves at mostm′ jobs on the fast machine, all of which have size at most 1. Thuswe
can assign each such job to its own slow machine, and the otherjobs as in the previous case. �

3.3.1 The bound MAX SMALL (t) and the valuet∗

Definition 1 Let

MAX SMALL (t) =
s + m′

s + (m′ − 1)(s − 1)(1 − s/t)/s
.

We prove in the following lemma that MAX SMALL (t) is an upper bound for the load onMy in case
there aret jobs on the fast machine, andt ≥ s.

Lemma 17 If y > 1, and there aret ≥ s jobs on the fast machine, theny ≤ MAX SMALL (t).

Proof For an equilibrium, we requirex ≥ s−1
s · y by Lemma 10. The load on any slow machine must

be at leastx − xs/t = x(1 − s/t), sincexs/t is an upper bound on the size of the smallest job on the
fast machine if there aret jobs on that machine. This implies

y

(

s + (m′ − 1)
s − 1

s

(

1 − s

t

)

)

≤ s + m′ (8)

14

which together witht ≥ s proves the upper bound. �

Observation 3 Let s ≥ 2, m′ ≥ 2. If MAX SMALL (t′) > 0 for somet′ ∈ R
+, then for all realt > t′

we have that0 < MAX SMALL (t) < MAX SMALL (t′) and thatMAX SMALL (t) is continuous.

This observation holds because the condition MAX SMALL (t′) > 0 is equivalent to the condition
that its denominator be positive. But the denominator is strictly increasing int for all t > 0, and hence
there can be no discontinuity fort > t′.

Given Observation 3, we would like to chooset as small as possible in order to get a highPOA.
However, if it is too small, we find that one of the conditionst < s or t < xs will start to hold, in which
case Lemma 17 does not give us a useful bound (in the proof, we usexs/t as an upper bound for the
size of the smallest job on the fast machine; ift < xs, we have the stronger bound of1).

We therefore define the following value, which will give us aninitial upper bound for thePOA

(Lemma 21). Later, we will deal with the cases where there arefewer jobs on the fast machine.

Definition 2 Let t∗ be the minimum value oft ∈ N such thatt ≥ (s − 1)MAX SMALL (t) > 0.

We will see in the following that MAX SMALL (t∗) is the highest load on a slow machine that can
be achieved using at leastt∗ jobs on the fast machine, while with fewer jobs on the fast machine, we
get smaller bounds. Before we move on to the proofs of these statements, we first prove some useful
properties of the valuet∗ that we will need later. In view of the condition in Lemma 17, we first derive
a lower bound fort∗.

Solving the equationt = (s − 1)MAX SMALL (t) for t ∈ R gives

t1 =
s2 + 2(m′ − 1)(s − 1) − 1

s2 + (m′ − 1)(s − 1)
· s. (9)

Lemma 18 We havet∗ = ⌈t1⌉ > s for anym′ ≥ 2 ands > 2.

Proof The fraction in the right hand side of (9) is strictly more than 1 for anym′ ≥ 2 ands > 2,
thereforet1 > s. In particular, this impliest1 > 0, and therefore MAX SMALL (t1) = t1/(s − 1) > 0.
Since MAX SMALL (t) is decreasing and continuous as long as it is positive, we concludet∗ = ⌈t1⌉ > s:
for t ≤ ⌈t1⌉ − 1, t ∈ N, we must have either MAX SMALL (t) ≤ 0 or t < (s − 1)MAX SMALL (t). �

This lemma shows that fort ≥ t∗, the second condition in Lemma 17 is always satisfied. We show
two additional bounds involvingt∗, which will restrict the number of cases that we need to consider.

Lemma 19 t∗ − 1 < (s − 1)MAX SMALL (t∗ − 1).

Proof Given the definition oft∗ and Observation 3, it is sufficient to show that MAX SMALL (t∗−1) > 0.
This holds if the denominator is positive. Solvings + (m′ − 1)(s − 1)(1 − s/t)/s = 0 for t ∈ R gives

t2 =
(m′ − 1)(s − 1)

s2 + (m′ − 1)(s − 1)
· s.

For anyt > t2, we have MAX SMALL (t) > 0 and then MAX SMALL (t) is continuous, decreasing int,
and positive by Observation 3. Thus ift∗ > t2 +1, we have MAX SMALL (t∗− 1) > 0 as desired. Given
Lemma 18, it is sufficient to showt1 > t2 + 1. Note that the denominator oft2 is equal to that oft1.
Thus we need to verify

(s2 + 2(m′ − 1)(s − 1) − 1)s > (m′ − 1)(s − 1)s + (s2 + (m′ − 1)(s − 1))

or (s2 + (m′ − 1)(s − 1) − 1)s > s2 + (m′ − 1)(s − 1)

But this last inequality holds fors > 2 andm ≥ 2, because then(s2 + (m′ − 1)(s − 1) − 1)s >
2(s2 + (m′ − 1)(s − 1)− 1) > (s2 + (m′ − 1)(s− 1)− 1) + (s2 + 1− 1) > s2 + (m′ − 1)(s − 1). �

Lemma 20 If (5) does not hold, thent∗ ≤ m′ + 1.

15

Proof We have thatt1 is monotonically strictly increasing ins and inm for s ≥ 2 andm ≥ 2: we can
write it as

t1 = s ·
(

1 − 1

s2 + (m′ − 1)(s − 1)

)

+
1

s
(m′−1)(s−1) + 1

s

,

from which both assertions follow easily. Thereforet∗ = ⌈t1⌉ is monotonically increasing ins andm.
If (5) does not hold, thens ≤ 4.56 by Lemma 13. From (9) it is clear thatt1 < 2s and therefore

t∗ ≤ ⌈2s⌉. Thus the claim holds form′ + 1 ≥ 10, or m′ ≥ 9. For m′ = 2, . . . , 8, we use the values
from Table (7). Thus only the intervals ∈ [2, 3.9] remains to be checked, so we are done form′ = 8
andm′ = 7, becauset∗ ≤ 8 for s ≤ 4. Form′ = 6, we knows < 3.5, so we are done for that value
as well. Form′ = 5 ands = 4, we findt∗ = ⌈39/7⌉ = 6 = m′ + 1, implying that ifm′ = 5, we have
t∗ ≤ 6 for all s for which (5) does not hold (since thens ≤ 4, andt1 andt∗ are increasing ins).

For the remaining values, we have the following results. We only treat the casem′ = 2, the other
two cases can be solved similarly. Form′ = 2, we haves(GLOBMAX − 1) = (2s2 + s)/(s2 + s− 1) <
(2s2 + 2s− 2)/(s2 + s− 1) = 2 for all s > 2, and also clearlys(GLOBMAX − 1) > 1. Thus the values
of s, such thats > 2, for which (5) does not hold, satisfy(s − 1)GLOBMAX − 2 < 1, or

(s − 1)(s2 + 3s)/(s2 + s − 1) < 3. (10)

On the other hand, form′ = 2 we havet1 = s2+2(s−1)−1
s2+(s−1)

s. We know that as long ast1 ≤ 3, we also
havet∗ ≤ 3. We havet1 ≤ 3 if

s2 + 2(s − 1) − 1

s2 + (s − 1)
s = 3. (11)

It is now easy to see that (11) follows from (10). Sincet1 is monotonically increasing ins, this shows
thatt∗ ≤ 3 as long as (5) does not hold. �

3.3.2 On the value oft which maximizes thePOA

This section deals with the question: how should we selectt, i.e. how many jobs should there be on the
fast machine in order to get the highest possiblePOA. Lemma 21 deals with the case where there are
at leastt∗ ≤ m′ jobs on the fast machine, and shows that the worst case (highest POA) is if there are
exactlyt∗ jobs. Lemma 25 deals with the case where there are less thant∗ jobs on the fast machine, and
shows that the worst case is if there are exactlyt∗ − 1 jobs.

Finally, Lemma 28 (in general, the text below (13)) deals with the case wheret∗ = m′ + 1, which
requires separate attention, and gives a new upper bound forthe poa for this case.

Lemma 21 If t∗ ≤ m′, then there is an equilibrium instance witht∗ jobs on the fast machine and
y = min(s, MAX SMALL (t∗)). If y > 1, then we havey ≤ min(s, MAX SMALL (t∗)) for all equilibria
with at leastt∗ jobs on the fast machine.

Proof To show existence, lety = min (s, MAX SMALL (t∗)). Place a job of sizey on a slow machine,
t∗ jobs of sizey(s − 1)/t∗ ≤ 1 on the fast machine andz = y s−1

s (1 − s/t∗) ≥ 0 of sand on the
empty slow machines. The claimed inequalities in the previous line follow from the definition oft∗ and
the fact thatt∗ > s (Lemma 18). Then this is an equilibrium withPOA = y. The job of sizey does
not benefit from moving by Lemma 10, and no job on the fast machine benefits from moving because
z + y(s− 1)/t∗ = y(s − 1)/s. Sincey > y(s − 1)/s > y s−1

s (1− s/t∗), the sand also does not benefit
from moving.

The total size of all the jobs is at mostm′ + s sincey ≤ MAX SMALL (t∗) so thaty satisfies (8).
Since we also havey ≤ s, this shows that the optimal makespan is 1 as long ast∗ ≤ m′, because we can
then assign each job which is on the fast machine to its own slow machine in the optimal solution.

16

With exactly t∗ jobs on the fast machine, the second claim follows from Lemma6 if y = s ≤
MAX SMALL (t∗). Else, we can use Lemma 17. With more thant∗ jobs on the fast machine, we use
additionally that MAX SMALL (t) is decreasing int (Observation 3). �

Lemma 22 If (5) does not hold, there is an equilibrium instance witht∗− 1 equal-sized jobs on the fast
machine andy = min(s, (t∗ − 1)/(s − 1)). Any equilibrium instance with at mostt∗ − 1 jobs on the
fast machine, where all those jobs have size at most 1, hasy ≤ min(s, (t∗ − 1)/(s − 1)).

Proof To prove the first claim, we use an instance analogous to the one from the proof of Lemma
21. There is a job of sizey = min(s, (t∗ − 1)/(s − 1)) on one slow machine, andt∗ − 1 jobs of
sizey(s − 1)/(t∗ − 1) ≤ 1 on the fast machine. Each slow machine has an equal amount of sand
z = max(0, y s−1

s (1 − s/(t∗ − 1)). If x < z, we redistribute the sand among the fast machine and the
slow machines excludingMy so that all loads are equal (without changing the total size of all the jobs).

Then as in the previous proof, this is an equilibrium withPOA = y. (If we redistributed some sand
becausex < z, the proof is even easier.) We still need to show that the optimal makespan is 1. Note that
t∗ − 1 ≤ m′ by Lemma 20, so that in the optimal schedule, we can assign each job which is on the fast
machine to its own slow machine, andy ≤ s to the fast machine as before. It remains to be shown that
the total size of all the jobs is at mostm′ + s. If z > 0, this follows sincey ≤ MAX SMALL (t∗ − 1) by
Lemma 19 so thaty satisfies (8). Ifz = 0, this follows becausey ≤ s and there aret∗ − 1 ≤ m′ jobs of
size at most 1.

For the second claim, note that if all jobs on the fast machinehave size at most 1, the total work
there,xs, is at mostt∗ − 1 in this case. The claim then follows from Lemma 6, Lemma 10 andLemma
19. �

Given Lemmas 21 and 22, the only option that we did not yet consider for t∗ ≤ m′ is to have at most
t∗ − 1 jobs on the fast machine, where one of the jobs is larger than 1. We will consider the case where
t∗ = m′ + 1 separately later.

Lemma 23 If there is a job which is larger than 1 on the fast machine, then y ≤ 1 + t−1
s .

Proof If y ≤ 1, then this is clear. Else, the total size of thet jobs on the fast machine and the single job
(Lemma 8) onMy is at mosts + t− 1, since the job larger than 1 on the fast machine, together with the
job of sizey > 1 onMy have a total size of at mosts, and each other job on the fast machine has size of
at most 1. In other words,xs + y ≤ s + t − 1, implying thatxs ≤ s + t − 1 − y, and with the help of
Lemma 10 we then find thaty ≤ s+t−1−y

s−1 , or y(1 + 1
s−1) ≤ s+t−1

s−1 , and soy ≤ s+t−1
s = 1 + t−1

s . �

Definition 3 Let t3 be the highest value oft ∈ N, t < t∗ such that

t∗ − 1

s − 1
< 1 +

t − 1

s
≤ GLOBMAX .

If there is no such valuet, let t3 = 1.

Lemma 24 If t3 > 1 and (5) does not hold, thent3 = t∗ − 1.

Proof We first note that if the conditiont
∗−1
s−1 < 1+ t−1

s holds for some value oft, then it holds for any
t′ such thatt < t′ < t∗.

Suppose that (5) does not hold and1 < t3 ≤ t∗ − 2. Thus the condition1 + t−1
s ≤ GLOBMAX

does not hold fort = t3 + 1, so 1 + t3
s > GLOBMAX . Let y = 1 + t3/s > GLOBMAX . Then

⌈s(y − 1)⌉ = ⌈t3⌉ = t3. Moreover, from the definition oft3 and the assumptions ont3 we see that
GLOBMAX > t∗−1

s−1 ≥ t3+1
s−1 . Thereforey > t3+1

s−1 , which implies(s − 1)y > t3 + 1 and therefore
(s−1)y−⌈s(y−1)⌉ = (s−1)y− t3 > 1. Now, for anyy ≤ 1+ t3/s, in particular fory = GLOBMAX ,
we clearly have that⌈s(y − 1)⌉ ≤ t3. But since we saw above that GLOBMAX > t3+1

s−1 , we find
(s − 1)GLOBMAX > t3 + 1 and therefore (5) holds. This is a contradiction. �

17

Lemma 25 If y > 1 and t3 > 1, there is an equilibrium instance witht∗ − 1 jobs on the fast machine
where one job is larger than 1 andy = 1 + (t∗ − 2)/s. For any equilibrium instance with at mostt∗− 1
jobs on the fast machine,y ≤ 1 + (t∗ − 2)/s if one of those jobs is larger than 1.

Proof Consider the following instance. We havet3 = t∗ − 1 by Lemma 24. There is a job of size
y = 1 + t∗−2

s on the slow machineMy. On the fast machine, there arek = ⌈s(y − 1)⌉ jobs of size 1 as
well as 1 job of sizeq = (s − 1)y − ⌈s(y − 1)⌉ ≤ s − y. Thusx = (s − 1)y/s. On each empty slow
machine, we placemax(x − 1, 0) of sand. It then immediately follows that this is an equilibrium, since
the condition of Lemma 10 is satisfied, and no job can improve by moving to a slow machine with load
max(x − 1, 0).

We need to show that the optimal makespan is 1. The total size of all the jobs is at mostm′ + s
becausey ≤ GLOBMAX by definition oft3, so that the loads on the fast machine and onMy are at most
those from the example from Theorem 4, where the total size was exactlym′ + s. This holds because
we maintainx = (s − 1)y/s, which is now not larger. Ifx > 1, the loads on the remaining machines
are also smaller in the current example.

Supposex − 1 < 0. Theny < s/(s − 1). For y = s/(s − 1) < GLOBMAX (Lemma 15), we
havex = 1, and the loads on the other machines are zero. It is clear thatfor smallery, if we maintain
x = s−1

s y, the total size of the jobs onMy and the fast machine is smaller. Thus also in the case that
x − 1 < 0 we have that the total size of all the jobs in the current example is not more thanm′ + s.

We also need thatq ≥ 1. Fory = 1 + (t∗ − 2)/s, we have⌈s(y − 1)⌉ = ⌈t∗ − 2⌉ = t∗ − 2. This
means thatq ≥ 1 holds if

(s − 1)(1 + (t∗ − 2)/s) − (t∗ − 2) ≥ 1,

or (s − 1)(1 + (t∗ − 2)/s) ≥ t∗ − 1, which means1 + (t∗ − 2)/s ≥ (t∗ − 1)/(s − 1). But this follows
from the assumption thatt3 > 1.

Note also that this immediately implies thaty ≤ s − q ≤ s − 1. In addition, we actually find that
k = t∗−2 ≤ m′, so each of theset−1 jobs can be placed on their own machine in the optimal solution,
thus the optimal makespan is 1. The second claim follows immediately from Lemma 23. �

We are now ready to give a full characterization of thePOA in the case thatt∗ ≤ m′ and (5) does not
hold.

Theorem 6 If t∗ ≤ m′ and (5) does not hold, and thePOA is achieved on a slow machine, it is given by

min

(

s,max

(

MAX SMALL (t∗), 1 +
t∗ − 2

s
,
t∗ − 1

s − 1

))

.

Proof The first upper bound follows from Lemma 6. There are three cases, depending on where the
maximum is achieved. The case numbers indicate the term thatachieves the maximum.

Case 1. We use Lemma 21 to get an instance withy = min(s, MAX SMALL (t∗)). The lemma
(combined with Lemma 6) states that no higher load can be achieved on a slow machine using at least
t∗ jobs on the fast machine. If there are less thant∗ jobs on the fast machine, we have the bounds from
Lemma 22 and Lemma 25 which are not larger in this case.

Case 2. We use Lemma 22 to get an instance withy = min(s, (t∗ − 1)/(s − 1)) with t∗ − 1 jobs of
size at most 1 on the fast machine. Similar to in Case 1, it can be seen that other possibilities for jobs on
the fast machine do not give higher values fory.

Case 3. We use Lemma 25 to get an instance withy = 1 + (t∗ − 2)/s. The proof of Lemma 25
shows that if1 + (t∗ − 2)/s ≥ t∗−1

s−1 , then1 + (t∗ − 2)/s ≤ s − 1. �

3.3.3 The caset∗ = m′ + 1

Suppose thatt∗ = m′ + 1. This case requires special attention, because if we havem′ + 1 jobs on the
fast machine, we get an additional condition for thePOA-instance: we find that the sum ofy and one of
the jobs on the fast machine must be at mosts.

18

Definition 4 Let

MANY JOBS =
(s + 1)m′

s + (m′ − 1)(2 − 1/s)
.

Lemma 26 For m′ ≥ 2 and s ≥ 2, if MANY JOBS ≤ MAX SMALL (m′ + 1), then MANY JOBS <
1 + m′/s.

Proof First of all, MANY JOBS and1 + m′/s are both continuous fors ≥ 2 andm′ ≥ 2. Furthermore,
MAX SMALL (m′+1) is also continuous fors ≥ 2 andm′ ≥ 2 (we haves2 > (m′−1)(s−1)(s

m′+1 −1)

becauses2 > m′−1
m′+1 · (s − 1)s for s ≥ 2 and m′ ≥ 2). Solving for m′, we have MANY JOBS =

MAX SMALL (m′ + 1) for

m1,2 =
s ±

√
17s2 − 4s3 − 20s + 8

2s − 4

These values are not real if17s2 − 4s3 − 20s + 8 < 0, that is, ifs ≥ 2.65. Taking for instancem = 3
and s = 3, we find MANY JOBS = 1.89 > 1.8 = MAX SMALL (m′ + 1). Thus if MANY JOBS ≤
MAX SMALL (m′ + 1), we know that2 ≤ s < 2.65 since both functions are continuous fors ≥ 2 and
m′ ≥ 2. On the other hand, we have MANY JOBS = 1 + m′/s for m3 = s(s− 1)2/(2s − 1). The value
m3 is continuously increasing for alls ≥ 2: the derivative is(4s3 − 7s2 + 4s − 1)/(2s − 1)2, which
is positive for alls ≥ 2 since the numerator is more than4s3 − 8s2 + 4s − 1 ≥ 4s − 1 > 0, and the
denominator is positive. Furthermore, fors = 2.65, m3 < 1.678 < 2. Thus form′ ≥ 2, we never have
MANY JOBS = 1 + m′/s for 2 < s ≤ 2.65. Since MANY JOBS = 12/7 < 1 + m′/s = 2 for s = 2 and
m = 2, and both functions are continuous fors ≥ 2 andm′ ≥ 2, the lemma is proved. �

Lemma 27 For s ≥ 2 andm′ ≥ 2, MANY JOBS < s.

Proof We have equality fors = 1
2(−m′ + 2 +

√

(m′)2 + 4m′). This is less than 2 for allm′ ≥ 2, and
for s = 2 andm′ = 2 we have MANY JOBS = 6/3.5 < 2 = s. Finally, MANY JOBS is continuous ins
andm for s ≥ 2, m ≥ 2. This proves the lemma. �

Lemma 28 Letm′ ≥ 2 ands ≥ 2. If there arem′ + 1 jobs on the fast machine, andy > 1, then

y ≤ min
(

MAX SMALL (m′ + 1), MANY JOBS
)

. (12)

An instance with thisy exists ift∗ = m′ + 1.

Proof The first upper bound follows from Lemma 17. Denote the size ofthe smallest job on the fast
machine bya. If the optimal makespan is 1, then since we may assume no two jobs on the fast machine
have total size less than 1 by Lemma 16, we must havea ≤ s − y (andy ≤ s − a < s).

We havex ≥ s−1
s y as usual (Lemma 10), and the condition thatz + a ≥ x, because the job of size

a may not benefit from moving to a slow machine. This implies

z ≥ x − a ≥ y(s − 1)/s + y − s = y(2 − 1/s) − s.

Moreover, the total size of all the jobs must be at mostm′ + s, leading to the condition that

y
(

1 + (s − 1) + (m′ − 1)(2 − 1/s)
)

− (m′ − 1)s ≤ m′ + s. (13)

For m′ ≥ 2, s ≥ 2, this is equivalent toy ≤ MANY JOBS. Note that this bound is also valid in case
y(2 − 1/s) − s < 0. (In this case, it would however be better to use the boundz ≥ 0.) In particular, the
denominator of MANY JOBS is positive for alls ≥ 2, m′ ≥ 2.

For the second claim, assumet∗ = m′+1. Note that MAX SMALL (t∗) > 0 by definition, andt∗ > s
by Lemma 18. If MAX SMALL (m′+1) ≤ MANY JOBS, it follows that if we takey = MAX SMALL (m′+

19

1) > 0, inequality (13) is satisfied, whereas (8) holds with equality. We therefore have

y
(

s + (m′ − 1)(2 − 1/s)
)

− (m′ − 1)s ≤ m′ + s = y

(

s + (m′ − 1)

(

1 − 1

s

)(

1 − s

m′ + 1

))

⇒ y(m′ − 1) − (m′ − 1)s ≤ y(m′ − 1)

(

1 − 1

s

) (

− s

m′ + 1

)

⇒ y − s ≤ y

(

− s − 1

m′ + 1

)

This impliesy(s − 1)/(m′ + 1) ≤ s − y. This immediately shows that we can use the instance from
Lemma 21 fort∗ = m′ + 1, and in the optimal solution assign the job of sizey = MAX SMALL (m′ + 1)
to the fast machine together with one job of sizey(s−1)/(m′+1) ≤ s−y. Note that in this case we also
havey ≤ s−y(s−1)/(m′ +1) < s, that is, we do not have to worry about the case MAX SMALL (m′ +
1) > s.

On the other hand, if MANY JOBS < MAX SMALL (m′+1), it follows that if we takey = MANY JOBS,
we finds − y < y(s − 1)/(m′ + 1). Since MANY JOBS < s by Lemma 27, we haves − y > 0 also
in this case. In this case we place one job of sizes − y on the fast machine andm′ jobs of total size
y(s−1)−(s−y) = s(y−1). In order for the optimal makespan to be 1, we must haves(y−1)/m′ ≤ 1.

To prove this, we use thaty = MANY JOBS ≤ 1 + m′/s, which holds by Lemma 26. This implies
thatsy ≤ m′ + s, and theny(s − 1) ≤ m′ + s − y. This last value,m′ + s − y, would be the total size
of the jobs on the fast machine if we placedm′ jobs of size 1 there plus a job of sizes − y. Thus that
last inequality implies that them′ jobs in our instance have size at most 1, since we havexs = y(s− 1).

Finally, since we havem′ + 1 jobs on the fast machine in this instance, one of them of sizes − y <
y(s− 1)/(m′ + 1), and the otherm′ jobs all equal-sized, it follows that thosem′ jobs all have size more
thans−y. Thus the job of sizes−y is indeed the smallest on the fast machine, and sincexs = y(s−1),
this means that (13) is a sufficient condition to have an equilibrium. �

Theorem 7 If (5) does not hold, and thePOA is achieved on a slow machine, there are two cases. If

t∗ ≤ m′, the POA is given bymin
(

s,max
(

MAX SMALL (t∗), 1 + t∗−2
s , t∗−1

s−1

))

. If t∗ = m′ + 1, the

POA is given by

min

(

s,max

(

min
(

MAX SMALL (m′ + 1), MANY JOBS
)

, 1 +
m′ − 1

s
,

m′

s − 1

))

.

Proof Supposet∗ = m′ + 1. If the maximum is achieved in the first term, we use one of the instances
from Lemma 28, depending on where the inner minimum is achieved. Else, the bound follows as in the
proof of Theorem 6. Note that Lemmas 22 and 25 do not requiret∗ ≤ m′. �

It can be verified that thePOA is achieved on a slow machine for allm′ ≥ 2 ands ∈ [2, 4.57] (and
therefore for alls ≥ 2 by Lemma 12 and Theorem 5). For instance, form′ ≥ 10, POA > 2 > FASTMAX

in this interval. See Figures 2 and 3 for graphs of thePOA as a function ofs for several values ofm′.

3.4 The limit of the POA for m
′ → ∞

What happens with thePOA if m′ grows without bound? By Theorem 5,POA = GLOBMAX for s ≥
4.562. To answer this question for smallers, we first need to consider the value MAX SMALL (t). By
Definition 1, we have

lim
m′→∞

MAX SMALL (t) =
1

(s − 1)(1 − s/t)/s
=

1

(s − 1)/s − (s − 1)/t
=

st

(s − 1)(t − s)
.

From this, we can derivelimm′→∞ t∗ using Definition 2. We have

t = (s − 1) · st

(s − 1)(t − s)
=

st

t − s
⇔ s = t − s ⇔ t = 2s.

20

1,9

1,8

s

1,6

3,52,5

2,0

1,7

4,03,0

1,5

2,0

2,1

2,3

2,2

1,8

1,7

s

2,0

3,5

1,9

2,5 4,03,02,0

s

3,52,5 3,0

2,2

2,4

2,0

2,0

4,0

1,8

Figure 2: The price of anarchy form′ = 2, 3, 4 as a function ofs. The top line in each case is
GLOBMAX , a global upper bound on thePOA. The bottom line is the actualPOA for eachs. For
m′ = 4 ands ∈ [3, 3.7], we havePOA = 1 + 3/s < GLOBMAX .

s

2,6

2,4

3,0

2,0

2,5 4,0

2,2

3,52,0 2,5

3,25

2,25

2,5

s

3,5

2,75

4,03,0

3,0

2,0

2,0

3,0

2,5

2,25

s

3,5

3,5

2,75

2,5 4,03,02,0

2,0

3,25

Figure 3: The price of anarchy form′ = 5, 10, 20 as a function ofs. The top line in each case is
GLOBMAX , a global upper bound on thePOA. The bottom line is the actualPOA for eachs.

21

Hence, fors ≤ 4.562 and large enoughm′, we certainly havet∗ < m′. Moreover, we have

lim
m′→∞

MAX SMALL (2s) =
2s2

(s − 1)s
=

2s

s − 1
= lim

m→∞
GLOBMAX .

SincePOA ≤ GLOBMAX by Lemma 13, we can conclude the following by Lemma 12 and Lemma 21.

Theorem 8 For s ∈ [2, 3], limm′→∞ POA = s. For s ≥ 3, limm′→∞ POA = 2s/(s − 1).

4 One fast machine: theSPOA

In this section we demonstrate the fact that theSPOA is strictly smaller than thePOA. We consider the
overall bounds (i.e., the supremum bounds over all values ofs andm′) and compare them. The overall
bound on thePOA, as implied by the previous sections, is 3.

Theorem 9 TheSPOA is 2 for m′ ≤ 5. For anym′, SPOA ≤ 3+
√

5
2 ≈ 2.618. For m′ ≥ 16, SPOA ≥

1+
√

13
2 ≈ 2.3027756.

Proof We first slow a lower bound of 2 for any value ofm′. Consider from the following instance.
The fast machine has speed 2. There arem′ jobs of size 1, and one job of size 2. An optimal solution is
clearly to assign one unit job to each slow machine, and the larger job to the faster machine. This gives
OPT = 1. In a scheduleS that we consider, two jobs of size 1 are scheduled on the fast machine. One
slow machine is empty, one has a job of size 2, and all remaining slow machines have one job of size 1.
It can be seen that no coalition can improve from trading places. The two jobs on the fast machine can
never obtain smaller load, so they would not move to a slow machine. As long as these two jobs do not
move, no other job can benefit from moving.

We next prove an upper bound. Consider a strong equilibriumS. We use the notationsx, My, y and
z, as before. Letr be the size of the smallest job on the fast machine (slightly abusing the notation, we
user to denote the job as well). Lemma 3 and Lemma 6 both hold for anys ≥ 1 and any schedule that
is a pure equilibrium, thus we can use them in this proof. Ifx ≤ 1 then since any job onMy is of size
at mosts, we get thaty ≤ x + 1 ≤ 2. In this case theSPOA is no larger than 2, and therefore, since by
Lemma 3, we havex < 2, we only need to consider a case where1 < x < 2, and theSPOA is achieved
onMy.

Sincex > 1, there must be a machine with load smaller than 1, and therefore z < 1. If My contains
a job of sized that OPT assigns to a slow machine, we havez + d ≥ y and thereforey ≤ z + 1 < 2.
ThusMy only contains jobs assigned byOPT to the fast machine (andSPOA ≤ s). We therefore have
y ≤ s and we can assume thats > 2, otherwise we would again get aSPOAof at most 2.

Sincex > 1, in the scheduleS, the fast machine must have a job theOPT assigns to a slow machine.
Thusr ≤ 1. Since the job of sizer does not benefit from moving to the least loaded slow machine,we
getz + r ≥ x.

We claim thatxs + y ≥ r + sy and thereforexs ≥ (s − 1)y + r. Recall thatMy contains only
jobs that belong on the fast machine (otherwisey ≤ 2). Consider the coalition consisting of the jobs
scheduled onMy and a job of sizer, scheduled on the fast machine. Upon a deviation of this coalition,
the jobr moves to the slow machineMy and as a result, has a delay ofr ≤ 1. Its previous delay was
x > 1. Since there exists a job of the coalition which does not reduce it load upon deviation, the jobs of
My are those that do not benefit from moving: we find(xs − r + y)/s ≥ y. This proves the claim.

Let W be the total size of all the jobs. We get

m′s + s2 ≥ Ws ≥ xs2 + ys + (m′ − 1)zs ≥ rs + s2y + (m′ − 1)(x − r)s

= rs + s2y + xs(m′ − 1) − rs(m′ − 1)

≥ r(s − sm′ + s) + s2y + ((s − 1)y + r)(m′ − 1)

= r(2s − sm′ + m′ − 1) + y(s2 + sm′ − m′ − s + 1).

22

If 2s−sm′+m′−1 ≤ 0, then we user ≤ 1 to getm′s+s2 ≥ 2s−sm′+m′−1+y(s2+sm′−m′−s+1)
or

y ≤ s2 + 2m′s − 2s − m′ + 1

s2 + sm′ − s − m′ + 1
(14)

(note thats2 + sm′ −m′− s + 1 = s2 + (s− 1)(m′ − 1) > 0). If 2s + m′ − 1− sm′ ≥ 0 we user ≥ 0
to get,

y ≤ m′s + s2

s2 + m′s − s − m′ + 1
= 1 +

s + m′ − 1

s2 + m′s − s − m′ + 1
≤ 2 ,

sinces + m′ − 1 ≤ s2 + m′s − s − m′ + 1 ⇔ s2 + m′s + 2 ≥ 2s + 2m′ which holds for anys ≥ 2
(by (s − 1)2 ≥ 0).

By (14), if m′ ≤ 5 theny ≤ 2 holds if s2 − m′ + 1 ≥ 0. But m′ ≤ s2 + 1 for anym′ ≤ 5 (since
s ≥ 2). For largerm′, we show thaty ≤ 2s−1

s−1 . Since we also knowSPOA≤ s, we getSPOA≤ 2.618.

To provey ≤ 2s−1
s−1 or y− 1 ≤ s

s−1 we need to show m′s−s
s2+sm′−s−m′+1

≤ s
s−1 , i.e.,(m′− 1)(s− 1) ≤

s2 + sm′ − s − m′ + 1 which holds sinces2 > 0.
For the lower bound, consider a fast machine of speedσ = 1+

√
13

2 . In an optimal schedule, the fast
machine has a job of sizeσ, there are 12 slow machines that contain two jobs, of sizes1

4 and 3
4 and the

remaining slow machines have one job of size 1 each. Therefore OPT = 1. In the schedule we consider,
the fast machine has four jobs of size 1, 12 slow machines havejobs of size3

4 , three slow machines have
four jobs of size1

4 each, one slow machine has a job of sizeσ and the remaining slow machines have

jobs of size 1. The load on the fast machine is2(
√

13−1)
3 ≈ 1.736865 and the makespan is achieved on

the slow machine which contains the job of sizeσ ≈ 2.303.
Consider the terms on which each type of job would join a coalition. We first discuss the case where

the job of sizeσ does not join. If no job which is assigned to the fast machine joins, then no job which
is scheduled to a slow machine would want to move to the fast machine, and jobs that are single on
their machine would not join, so no coalition can be created.On the other hand, since the load on the
fast machine is strictly less than1.75, then the jobs on this machine would join a coalition only if they
could move to a slow machine with a resulting load of less than1.74, i.e. due to the structure of the
instance, the load excluding the additional job should be atmost 1

2 . For that, some jobs of size14 , 3
4 or

1 would need to join the coalition. There is clearly no advantage to exchanges between jobs of size 1,
thus we need to consider only smaller jobs. A job of size3

4 benefits from moving to the fast machine
only if the resulting total size there is no larger than 1.74,i.e., at most1.5, but this can happen if all jobs
of size 1 on the fast machine join the coalition. Jobs of size1

4 would move to the fast machine if the
resulting total size there is at most2.25. For that, at least two jobs from the fast machine need to jointhe
coalition. We consider three cases based on the number of jobs migrating from the fast machine. If two
jobs migrate, only a single job of size14 can migrate, so the room created for the migrating jobs of size
1 does not suffice. If three jobs migrate, then five jobs of size1

4 can migrate, and there is room only for
two migrating jobs of size 1. If four large jobs migrate, in order to make room for the migrating jobs of
size 1, six jobs of size14 and one job of size34 must migrate (if there are more jobs of size3

4 migrating,
and less pairs of jobs of size14 , then the load on the fast machine would only be larger). Thiswould
create a total size of2.25 on the fast machine, therefore the job of size3

4 would not join the coalition.
If the job of sizeσ joins the coalition, at least two jobs of size 1 from the fast machine must join the

coalition as well, since3+σ
σ = σ. In order to make it beneficial for these two jobs to migrate, and since

moving both of them to the machine that becomes empty would create a load of 2 there, at least two jobs
of size 1

4 or one job of size34 needs to join the coalition. But then the load on the fast machine is already
larger than 1 due to the job of sizeσ, so no such jobs would join the coalition.

�

23

5 Conclusion

We studied thePOA as a function of the number of different speeds. We found a tight overall bound,
and completely resolved the case where all machines are identical, except for one faster machine. It can
be interesting for find a tighter result for theSPOA as a function of the number of different speeds,p,
and find whether it is strictly smaller thanp + 1, which is thePOA for this case. Another direction is to
study the influence of additional factors on thePOA, such as the ratio of the largest and smallest speeds,
or even as a function of all the machine speeds, possibly as the solution of a mathematical program.

References

[1] N. Andelman, M. Feldman, and Y. Mansour. Strong price of anarchy. Games and Economic
Behavior, 65(2):289–317, 2009.

[2] R. J. Aumann. Acceptable points in general cooperative n-person games. In A. W. Tucker and
R. D. Luce, editors,Contributions to the Theory of Games IV, Annals of Mathematics Study 40,
pages 287–324. Princeton University Press, 1959.

[3] Y. Cho and S. Sahni. Bounds for List Schedules on Uniform Processors.SIAM Journal on Com-
puting, 9(1):91–103, 1980.

[4] A. Czumaj. Selfish routing on the internet. In J. Leung, editor, Handbook of Scheduling: Algo-
rithms, Models, and Performance Analysis, chapter 42. CRC Press, 2004.

[5] A. Czumaj and B. Vöcking. Tight bounds for worst-case equilibria. ACM Transactions on Algo-
rithms, 3(1), 2007.

[6] A. Epstein, M. Feldman, and Y. Mansour. Strong equilibrium in cost-sharing connection games.
In Proc. of the 8th ACM Conference on Electronic Commerce (EC’07), pages 84–92, 2007.

[7] L. Epstein. Equilibria for two parallel links: The strong price of anarchy versus the price of anarchy.
manuscript, 2007.

[8] E. Even-Dar, A. Kesselman, and Y. Mansour. Convergence time to nash equilibria. InProc. of the
30th International Colloquium on Automata, Languages and Programming (ICALP2003), pages
502–513, 2003.

[9] R. Feldmann, M. Gairing, T. Lücking, B. Monien, and M. Rode. Nashification and the coordination
ratio for a selfish routing game. InProc. of the 30th International Colloquium on Automata,
Languages and Programming (ICALP2003), pages 514–526, 2003.

[10] A. Fiat, H. Kaplan, M. Levy, and S. Olonetsky. Strong price of anarchy for machine load balanc-
ing. In Proc. of the 34th International Colloquium on Automata, Languages and Programming
(ICALP2007), pages 583–594, 2007.

[11] G. Finn and E. Horowitz. A linear time approximation algorithm for multiprocessor scheduling.
BIT Numerical Mathematics, 19(3):312–320, 1979.

[12] D. Fotakis, S. C. Kontogiannis, E. Koutsoupias, M. Mavronicolas, and P. G. Spirakis. The structure
and complexity of nash equilibria for a selfish routing game.In Proc. of the 29th International
Colloquium on Automata, Languages and Programming (ICALP2002), pages 123–134, 2002.

[13] T. Gonzalez, O. H. Ibarra, and S. Sahni. Bounds for LPT Schedules on Uniform Processors.SIAM
Journal on Computing, 6(1):155–166, 1977.

24

[14] R. Holzman and N. Law-Yone. Strong equilibrium in congestion games.Games and Economic
Behavior, 21(1-2):85101, 1997.

[15] E. Koutsoupias, M. Mavronicolas, and P. G. Spirakis. Approximate equilibria and ball fusion.
Theory of Computing Systems, 36(6):683–693, 2003.

[16] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In Proc. of the 16th Annual
Symposium on Theoretical Aspects of Computer Science (STACS’99), pages 404–413, 1999.

[17] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. Computer Science Review, 3:65–
69, 2009.

[18] A. Kovács. Tighter approximation bounds for lpt scheduling in two special cases. InProc. of the
6th Italian Conference on Algorithms and Complexity (CIAC2006), pages 187–198, 2006.

[19] R. Li and L. Shi. An on-line algorithm for some uniform processor scheduling.SIAM Journal on
Computing, 27(2):414–422, 1998.

[20] J. W. S. Liu and C. L. Liu. Bounds on scheduling algorithms for heterogeneous computing sys-
tems. In Jack L. Rosenfeld, editor,Proceedings of IFIP Congress 74, volume 74 ofInformation
Processing, pages 349–353, 1974.

[21] M. Mavronicolas and P. G. Spirakis. The price of selfish routing. InProc. of the 33rd Annual ACM
Symposium on Theory of Computing (STOC2001), pages 510–519, 2001.

[22] J. Nash. Non-cooperative games.Annals of Mathematics, 54(2):286–295, 1951.

[23] N. Nisan and A. Ronen. Algorithmic mechanism design.Games and Economic Behavior, 35:166–
196, 2001.

[24] C. H. Papadimitriou. Algorithms, games, and the internet. In Proc. of the 33rd Annual ACM
Symposium on Theory of Computing (STOC2001), pages 749–753, 2001.

[25] T. Roughgarden.Selfish routing and the price of anarchy. MIT Press, 2005.

[26] T. Roughgarden and́E. Tardos. How bad is selfish routing?Journal of the ACM, 49(2):236–259,
2002.

[27] P. Schuurman and T. Vredeveld. Performance guaranteesof local search for multiprocessor
scheduling.Informs Journal on Computing, 19(1):52–63, 2007.

[28] M. Tennenholtz and O. Rozenfeld. Strong and correlatedstrong equilibria in monotone conges-
tion games. InProc. of the 2nd International Workshop on Internet and Network Economics
(WINE2006), page 7486, 2006.

25

