
Speed Scaling of Tasks with Precedence

Constraints

Kirk Pruhs1,⋆, Rob van Stee2, and Patchrawat “Patch” Uthaisombut1

1 Computer Science Department, University of Pittsburgh,
Pittsburgh PA 15260 USA.
{kirk,utp}@cs.pitt.edu

2 Fakultät für Informatik, Universität Karlsruhe, D-76128 Karlsruhe, Germany.
vanstee@ira.uka.de.

Abstract. We consider the problem of speed scaling to conserve en-
ergy in a multiprocessor setting where there are precedence constraints
between tasks, and where the performance measure is the makespan.
That is, we consider an energy bounded version of the classic problem
Pm | prec | Cmax. We show that, without loss of generality, one need
only consider constant power schedules. We then show how to reduce
this problem to the problem Qm | prec | Cmax to obtain a poly-log(m)-
approximation algorithm.

1 Introduction

1.1 Motivation

Power is now widely recognized as a first-class design constraint for modern com-
puting devices. This is particularly critical for mobile devices, such as laptops,
that rely on batteries for energy. While the power-consumption of devices has
been growing exponentially, battery capacities have been growing at a (modest)
linear rate. One common technique for managing power is speed/voltage/power
scaling. For example, current microprocessors from AMD, Intel and Transmeta
allow the speed of the microprocessor to be set dynamically. The motivation
for speed scaling as an energy saving technique is that, as the speed to power
function P (s) in all devices is strictly convex, less aggregate energy is used if a
task is run at a slower speed. The application of speed scaling requires a pol-
icy/algorithm to determine the speed of the processor at each point in time. The
processor speed should be adjusted so that the energy/power used is in some
sense justifiable by the improvement in performance attained by running at this
speed.

In this paper, we consider the problem of speed scaling to conserve energy in
a multiprocessor setting where there are precedence constraints between tasks,
and where the performance measure is the makespan, the time when the last

⋆ Supported in part by NSF grants CCR-0098752, ANI-0123705, CNS-0325353, CCF-
0448196, and CCF-0514058.

2 Pruhs, van Stee, and Uthaisombut

task finishes. We will denote this problem by Sm | prec | Cmax. Without speed
scaling, this problem is denoted by Pm | prec | Cmax in the standard three field
scheduling notation [9]. Here m is the number of processors. This is a classic
scheduling problem considered by Graham in his seminal paper [8] where he
showed that list scheduling produces a (2 − 1

m)-approximate solution. In our
speed scaling version, we make a standard assumption that there is a continuous
function P (s), such that if a processor is run at speed s, then its power, the
amount of energy consumed per unit time, is P (s) = sα, for some α > 1. For
example, the well known cube-root rule for CMOS-based devices states that the
speed s is roughly proportional to the cube-root of the power P , or equivalently,
P (s) = s3 (the power is proportional to the speed cubed) [16, 4]. Our second ob-
jective is to minimize the total energy consumed. Energy is power integrated over
time. Thus we consider a bicriteria problem, in that we want to optimize both
makespan and total energy consumption. Bicriteria problems can be formalized
in multiple ways depending on how one values one objective in relationship to
the other. We say that a schedule S is a O(a)-energy O(b)-approximate if the
makespan for S is at most bM and the energy used is at most aE where M is the
makespan of an optimal schedule which uses E units of energy. The most obvious
approach is to bound one of the objective functions and optimize the other. In
our setting, where the energy of the battery may reasonably be assumed to be
fixed and known, it seems perhaps most natural to bound the energy used, and
to optimize makespan.

Power management for tasks with precedence constraints has received some
attention in computer systems literature, see for example [10, 14, 20, 15] and the
references therein. These papers describe experimental results for various heuris-
tics.

In the last few years, interest in power management has seeped over from
the computer systems communities to the algorithmic community. For a survey
of recent literature in the algorithmic community related to power management,
see [11]. Research on algorithmic issues in power management is still at an early
stage of development. Researchers are developing and analyzing algorithms to
problems that appear particularly natural and/or that arise in some particu-
lar application. The eventual goal, after developing algorithms and analyses for
many problems, is to develop a toolkit of widely applicable algorithmic methods
for power management problems. While the algorithms and analyses that we
present here are not extremely deep, we believe that our insights and techniques
are quite natural, and have significant potential for future application in related
problems.

1.2 Summary of our results

For simplicity, we state our results when we have a single objective of minimizing
makespan, subject to a fixed energy constraint, although our results are a bit
more general.

We begin by noting that several special cases of Sm | prec | Cmax are rel-
atively easy. If there is only one processor (S1 | prec | Cmax), then it is clear

Speed Scaling of Tasks with Precedence Constraints 3

from the convexity of P (s) that the optimal speed scaling policy is to run the
processor at a constant speed; if there were times where the speeds were differ-
ent, then by averaging the speeds one would not disturb the makespan, but the
energy would be reduced. If there are no precedence constraints (Sm || Cmax),
then the problem reduces to finding a partition of the jobs that minimizes the
ℓα norm of the load. A PTAS for this problem is known [1]. One can also get an
O(1)-approximate constant-speed schedule using Graham’s list scheduling algo-
rithm. So for these problems, speed scaling doesn’t buy you more than an O(1)
factor in terms of energy savings.

We now turn to Sm | prec | Cmax. We start by showing that there are in-
stances where every schedule in which all machines have the same fixed speed
has a makespan that is a factor of ω(1) more than the optimal makespan. The
intuition is that if there are several jobs, on different processors, that are waiting
for a particular job j, then j should be run with higher speed than if it were
the case that no jobs were waiting on j. In contrast, we show that what should
remain constant is the aggregate powers of the processors. That is, we show that
in any locally optimal schedule, the sum of the powers at which the machines run
is constant over time. Or equivalently, if the cube-root rule holds (power equals
speed cubed), the sum of cubes of the machines speeds should be constant over
time. Schedules with this property are called constant power schedules. We then
show how to reduce our energy minimization problem to the problem of schedul-
ing on machines of different speeds (without energy considerations). In the three
field scheduling notation, this problem is denoted by Q | prec | Cmax. Using the
O(log m)-approximate algorithms from [5, 7], we can then obtain a O(log2 m)-
energy O(log m)-approximate algorithm for makespan. We then show a trade-off
between energy and makespan. That is, an O(a)-energy O(b)-approximate sched-
ule for makespan can be converted into O(b · a1/α)-approximate schedule. Thus

we can then get an O(log1+2/α m)-approximate algorithm for makespan.
We believe that the most interesting insight from these investigations is the

observation that one can restrict one’s attention to constant power schedules.
This fact will also hold for several related problems.

1.3 Related results

We will be brief here, and refer the reader to the recent survey [11] for more
details. Theoretical investigations of speed scaling algorithms were initiated by
Yao, Demers, and Shankar [18]. They considered the problem of minimizing en-
ergy usage when each task has to be finished on one machine by a predetermined
deadline. Most of the results in the literature to date focus on deadline feasibility
as the measure for the quality of the schedule. Yao, Demers, and Shankar [18]
give an optimal offline greedy algorithm. The running time of this algorithm
can be improved if the jobs form a tree structure [13]. Bansal, Kimbrel, and
Pruhs [2] and Bansal and Pruhs [3] extend the results in [18] on online algo-
rithms and introduce the problem of speed scaling to manage temperature. For
jobs with a fixed priority, Yun and Kim [19] show that it is NP-hard to compute
a minimum energy schedule. They also give an FPTAS for the problem. Kwon

4 Pruhs, van Stee, and Uthaisombut

and Kim [12] give a polynomial-time algorithm for the case of a processor with
discrete speeds. Chen, Kuo and Lu [6] give a PTAS for some special cases of this
problem. Pruhs, Uthaisombut, and Woeginger [17] give some results on the flow
time objective function.

2 Formal problem description

The setting for our problems consists of m variable-speed machines. If a machine
is run at speed s, its power is P (s) = sα, α > 1. The energy used by each machine
is power integrated over time.

An instance consists of n jobs and an energy bound E. All jobs arrive at time
0. Each job i has an associated weight (or size) wi. If this job is run consistently
at speed s, it finishes in wi/s units of time. There are precedence constraints
among the jobs. If i ≺ j, then job j cannot start before job i completes.

Each job must be run non-preemptively on some machine. The machines can
change speed continuously over time. Although it is easy to see by the convexity
of P (s) that it is best to run each job at a constant speed.

A schedule specifies, for each time and each machine, which job to run and
at what speed. A schedule is feasible at energy level E if it completes all jobs
and the total amount of energy used is at most E. Suppose S is a schedule for
an input instance I. We define a number of concepts which depend on S. The
completion time of job i is denoted CS

i . The makespan of S, denoted CS
max, is

the maximum completion time of any job. A schedule is optimal for energy level
E if it has the smallest makespan among all feasible schedules at energy level E.
The goal of the problem is to find an optimal schedule for energy level E. We
denote the problem as Sm | prec | Cmax.

We use sS
i to denote the speed of job i. The execution time of i is denoted

by xS
i . Note that xS

i = wi/sS
i . The power of job i is denoted by pS

i . Note that
pS

i = (sS
i)α. We use ES

i to denote the energy used by job i. Note that ES
i = pS

i xS
i .

The total energy used in schedule S is denoted ES . Note that ES =
∑n

i=1 ES
i .

We drop the superscript S if the schedule is clear from the context.

3 No precedence constraints

As a warm-up, we consider the scheduling of tasks without precedence con-
straints. In this case we know that each machine will run at a fixed speed, since
otherwise the energy use could be decreased without affecting the makespan by
averaging the speed. We also know that each machine will finish at the same
time, since otherwise some energy from a machine which finishes early could be
transferred to machines which finish late, decreasing the makespan. Furthermore
there will be no gaps in the schedule.

For any schedule, denote the makespan by M , and denote the load on machine
j, which is the sum of the weights of the jobs on machine j, by Lj. Since each
machine runs at a fixed speed, in this section we denote by sj the speed of

Speed Scaling of Tasks with Precedence Constraints 5

machine j, by pj its power, and by Ej its energy used. By our observations so
far we have sj = Lj/M .

The energy used by machine j is

Ej = pjM = sα
j M =

Lα
j

Mα−1
.

We can sum this over all the machines and rewrite it as

Mα−1 =
1

E

∑

j

Lα
j . (1)

It turns out that minimizing the makespan is equivalent to minimizing the ℓα

norm of the loads. For this we can use the PTAS for identical machines given by
Azar et al. [1]. Denote the optimal loads by opt1, . . . ,optm. Similarly to (1),
we have

opt
α−1 =

1

E

∑

j

opt
α
j , (2)

where opt is the optimal makespan. For any ε > 0, we can find loads L1, . . . , Lm

in polynomial time such that
∑

j Lα
j ≤ (1 + ε)

∑

j opt
α
j . For the corresponding

makespan M it now follows from (1) and (2) that

Mα−1 =
1

E

∑

j

Lα
j ≤ (1 + ε) ·

1

E

∑

j

opt
α
j = (1 + ε)opt

α−1

or
M ≤ (1 + ε)1/(α−1)

opt.

Thus this gives us a PTAS for the problem Sm || Cmax. For α > 2, it even gives a
better approximation for any fixed running time compared to the original PTAS.

4 Main results

4.1 One speed for all machines

Suppose all machines run at a fixed speed s. We show that under this constraint,
it is not possible to get a good approximation of the optimal makespan. For
simplicity, we only consider the special case α = 3.

Consider the following input: one job of size m1/3 and m jobs of size 1, which
can only start after the first job has finished. Suppose the total energy available
is E = 2m. It is possible to run the large job at a speed of s1 = m1/3 and all
others at a speed of 1. The makespan of this schedule is 2, and the total amount
of energy required is s3

1 + m = 2m.
Now consider an approximation algorithm with a fixed speed s. The total

time for which this speed is required is the total size of all the jobs divided by
s. Thus s must satisfy s3(m1/3 + m)/s ≤ E = 2m, or s2 ≤ 2m/(m1/3 + m).
This clearly implies s ≤ 2, but then the makespan is at least m1/3/2. Thus the
approximation ratio is Ω(m1/3).

In contrast, we will use machines that have different speeds, but where the
total power used by the machines is constant over time.

6 Pruhs, van Stee, and Uthaisombut

4.2 The power equality

Given a schedule S of an input instance I, we define the schedule-based constraint
≺S among jobs in I as follows. For any jobs i and j, i ≺S j if and only if i ≺ j
in I, or i runs before j on the same machine in S. Suppose S is a schedule where
each job is run at a constant speed. The power relation graph of a schedule S of
an instance I is a vertex-weighted directed graph created as follows:

– For each job i, create vertices ui and vi, each with weight pi where pi is the
power at which job i is run.

– In S, if i ≺S j and job j starts as soon as job i finishes (maybe on different
machines), then create a directed edge (vi, uj).

Basically, the power relation graph G tells us which pairs of jobs on the same
machine run back to back, and which pairs of jobs with precedence constraint
≺ between them run back to back. For an example, see Figure 1.

1 2 3

8

7

4

6
5

3

4

7

8

1 2

5 6

Fig. 1. An example of a schedule and the corresponding power relation graph. Note
that the precedence constraint between jobs 1 and 6 is not represented in the graph,
but on the other hand there is an edge between. e.g., jobs 2 and 5 since they run back to
back on the same machine. In this example, the graph has four connected components.

In this paper, a connected component of a directed graph G refers to a
subgraph of G that corresponds to a connected component of the underlying
undirected graph of G. Suppose C is a connected component of a power relation
graph G. Define H(C) = {u | (v, u) ∈ C} and T (C) = {v | (v, u) ∈ C}. Note
that H(C) and T (C) is the set of vertices at the heads and tails, respectively, of
directed edges in C. If C contains only one vertex, then H(C) = T (C) = ∅. The
completion of jobs in T (C) and the start of jobs in H(C) all occur at the same
time. If time t is when this occurs, we say that C occurs at time t. We say that
a connected component C satisfies the power equality if

∑

i:ui∈H(C)

pi =
∑

i:vi∈T (C)

pi

Speed Scaling of Tasks with Precedence Constraints 7

Note that pi is the power at which job i is run, and is also the weight of vertices
ui and vi. We say that a power relation graph G satisfies the power equality if
all connected components of G satisfy the power equality.

Lemma 1. If a schedule S is optimal, then each job is run at a constant speed.

Proof (Proof sketch). Suppose S is an optimal schedule such that some job i
does not run at a constant speed. By averaging the speeds in the interval that i
runs, the execution time of i would not change, but the energy would be reduced,
since the power is a convex function of the speed. A contradiction. �

Lemma 2. If S is an optimal schedule for some energy level E, then the power
relation graph G of S satisfies the power equality.

Proof. The idea of the proof is to consider an arbitrary component C of the
power relation graph G of an optimal schedule S. Then create a new schedule
S′ from S by slightly stretching and compressing jobs in C. Since S is optimal,
S′ cannot use a smaller amount of energy. By creating an equality to represent
this relationship and solving it, we have that C must satisfy the power equality
relation.

Now we give the detail. Consider any connected component C of G. If C
contains only one vertex, then it immediately follows that C satisfies the power
equality because T (C) = H(C) = ∅. Therefore, suppose C contains two or more
vertices. Let ε 6= 0 be a small number such that xi + ε > 0 for any job i in T (C),
and xi − ε > 0 for any job i in H(C). Note that we allow ε to be either positive
or negative. For simplicity on the first reading, it is easy to think of ε as a small
positive number. We create a new schedule S′ from schedule S by increasing the
execution time of every job in T (C) by ε, and decreasing the execution time of
every job in H(C) by ε. Note the following:
(1) The execution time of job i in T (C) in S′ is positive because xi + ε > 0.
(2) The execution time of job i in H(C) in S′ is positive because xi − ε > 0.
(3) For |ε| small enough, S′ has the same power relation graph as S.
Therefore, S′ is a feasible schedule having the same power relation graph as S.
Observe that the makespan of S′ remains the same as that of S. The change in
the energy used, ∆E(ε), is

∆E(ε) = ES′

− ES

=
∑

i:vi∈T (C)

(

ES′

i − ES
i

)

+
∑

i:ui∈H(C)

(

ES′

i − ES
i

)

=
∑

i:vi∈T (C)

(

wα
i

(xi + ε)α−1
−

wα
i

xα−1
i

)

+
∑

i:ui∈H(C)

(

wα
i

(xi − ε)α−1
−

wα
i

xα−1
i

)

.

Since S is optimal, ∆E(ε) must be non-negative. Otherwise, we could reinvest
the energy saved by this change to obtain a schedule with a better makespan.
Since the derivative ∆E′(ε) is continuous for |ε| small enough, we must have

8 Pruhs, van Stee, and Uthaisombut

∆E′(0) = 0. We have

∆E′(ε) =
∑

i:vi∈T (C)

(1 − α)wα
i

(xi + ε)α
+

∑

i:ui∈H(C)

(α − 1)wα
i

(xi − ε)α

Substitute ε = 0 and solve for ∆E′(0) = 0.

∆E′(0) = 0
∑

i:vi∈T (C)

(1 − α)wα
i

xα
i

−
∑

i:ui∈H(C)

(1 − α)wα
i

xα
i

= 0

∑

i:vi∈T (C)

(1 − α)wα
i

xα
i

=
∑

i:ui∈H(C)

(1 − α)wα
i

xα
i

∑

i:vi∈T (C)

sα
i =

∑

i:ui∈H(C)

sα
i

∑

i:vi∈T (C)

pi =
∑

i:ui∈H(C)

pi

Thus, this connected component C satisfies the power equality. Since C is an
arbitrarily chosen connected component in G, then G satisfies the power equality,
and the result follows. �

Let p(k, t) be the power at which machine k runs at time t. By convention, if
machine k is idle at time t, then p(k, t) = 0. Also, by convention if job i starts at
time t1 and completes at time t2, we say that it runs in the open-close interval
(t1, t2]. Therefore, p(k, t) is well-defined at a time t when a job has just finished
and another has just started; the value of p(k, t) is equal to the power of the
finishing job.

Lemma 3. If S is an optimal schedule for some energy level E, there exists a
constant p such that at any time t,

∑m
k=1 p(k, t) = p, i.e. the sum of the powers

of all machines at time t is p.

Proof. Suppose S is an optimal schedule. Consider any time t where 0 < t ≤
CS

max. Let t′ be any time after t such that no jobs start or complete in the
interval (t, t′]. Note that this does not exclude the possibility that some jobs
start or complete at time t. We will show that

∑m
k=1 p(k, t) =

∑m
k=1 p(k, t′). If

this is the case, then the result follows.
On the one hand, if no jobs start or complete at time t, then the same

set of jobs are running at time t and t′. From Lemma 1, each job runs at a
constant speed at all time. This also means that each job runs at a constant
power at all time. Since the same set of jobs are running at time t and t′, then
∑m

k=1 p(k, t) =
∑m

k=1 p(k, t′).
On the other hand, if some jobs start or complete at time t, then consider

the power relation graph G of S. The jobs which start or complete at time t
correspond to vertices in components occurring at time t. Note that if some

Speed Scaling of Tasks with Precedence Constraints 9

component contains only one vertex, then S is not optimal, because the corre-
sponding job could be run at a slower speed and start earlier (if it starts at time
t) or finish later without violating any precedence constraints. This would reduce
the total amount of energy used, which could be reinvested elsewhere to get a
better schedule. Thus all components contain at least one edge. From Lemma 2,
the sum of powers of jobs that complete at time t is equal to the sum of powers
of jobs that start at time t. And since no jobs start or complete in the interval
(t, t′], then again

∑m
k=1 p(k, t) =

∑m
k=1 p(k, t′). �

4.3 Algorithm

Lemma 3 implies that the total power at which all the machines run is constant
over time (only the distribution of the power over the machines may vary). We
will describe a scheme to use this lemma to relate Sm | prec | Cmax to the
problem Q | prec | Cmax. Then, we can use an approximation algorithm for the
latter problem by Chekuri and Bender [5] to obtain an approximate schedule.
The schedule is then scaled so that the total amount of energy used is within
the energy bound E.

Let p̄ be the sum of powers at which the machines run in the optimal schedule
opt(I, E). Since energy is power times makespan, we have p̄ = E/opt(I, E).
However, an approximation algorithm does not know the value of opt(I, E), so
it cannot immediately compute p̄. Nevertheless, we will assume that we know the
value of p̄. The value of p̄ can be approximated using binary search, and this will
be discussed later. Given p̄, define the set M(p̄) to consist of the following fixed
speed machines: 1 machine running at power p̄, 2 machines running at power
p̄/2, and in general 2i−1 machines running at power p̄/i for i = 1, 2, ..., ⌊logm⌋.
Denoting the total number of machines so far by m′, there are an additional
m−m′ machines running at power p̄/(1 + ⌊log m⌋). Thus there are m machines
in the set M(p̄), but the total power is at most p̄(1 + log m). We show in the
following lemma that if the optimal algorithm is given the choice between m
variable speed machines with total energy E and the set M(p̄) of machines just
described, it will always take the latter, since the makespan will be smaller.

Lemma 4. We have

optM(p̄)(I) ≤ opt(I, E),

where optM(p̄)(I) is the makespan of the optimal schedule using fixed speed ma-
chines in the set M(p̄), and opt(I, E) is the makespan of the optimal schedule
using m variable-speed machines with energy bound E.

Proof. Consider the schedule of opt with variable speed machines and energy
bound E at some time t. Denote this opt by opt1 and the opt which uses
the prescribed set of machines by opt2. Denote the power of machine i of opt1

at this time by pi (note that this is a different notation from the one we use
elsewhere in the paper) and sort the machines by decreasing pi. Now we simply
assign the job on machine 1 to the machine of power p̄ of opt2, and for i ≥ 1

10 Pruhs, van Stee, and Uthaisombut

we assign the jobs on machines 2i, . . . , 2i+1 − 1 to the machines of power p̄/2i of
opt2.

Clearly, p1 ≤ p̄, since no machine can use more than p̄ power at any time. In
general, we have that pj ≤ p̄/j for j = 1, . . . , m. If we can show that the first
machine in any power group has at least as much power as the corresponding
machine of opt1, this holds for all the machines. But since machine 2i of opt2

has power exactly p̄/2i, this follows immediately.

It follows that opt2 allocates each individual job at least as much power as
opt1 at time t. We can apply this transformation for any time t, where we only
need to take into account that opt2 might finish some jobs earlier than opt1. So
the schedule for opt2 might contain unnecessary gaps, but it is a valid schedule,
which proves the lemma. �

To construct an approximate schedule, we assume the value of p̄ is known,
and the set of fixed speed machines in M(p̄) will be used. The schedule is created
using the algorithm by Chekuri and Bender [5]. The schedule created may use
too much energy. To fix this, the speeds of all jobs are decreased so that the
total energy used is within E at the expense of having a longer makespan. The
steps are given in subroutine FindSchedule in Figure 2.

FindSchedule(I, p)

1. Find a schedule for instance I and machines in the set M(p) using Chekuri and
Bender’s algorithm [5].

2. Reduce the speed of all machines by a factor of log2/α m

3. Return the resulting schedule.

alg(I, E)

1. Set p∗ =
`

E
mW

´ α

α−1 where W is the total weight of all jobs divided by m.
2. Using binary search on [0, p∗] with p as the search variable, find the largest value

for p such that this 2-step process returns true. Binary search terminates when
the binary search interval is shorter than 1.
(a) Call FindSchedule(I, p).
(b) If for the schedule obtained we have

Pn
i=1

sα−1

i wi ≤ E, return true

Fig. 2. Our speed scaling algorithm. The input consists a set of jobs I and an energy
bound E.

4.4 Analysis

Lemma 5. Suppose p = E/OPT (I, E). Subroutine FindSchedule(I, p) creates

a schedule which has makespan O(log1+2/α m)opt(I, E) and uses energy O(1)E.

Speed Scaling of Tasks with Precedence Constraints 11

Proof. Let S1 and S2 denote the schedules obtained in steps 1 and 2 of the
subroutine FindSchedule(I, p), respectively. In an abuse of notation, we will
also use S1 and S2 to refer to the makespans of these schedules. Schedule S2

is the one returned by FindSchedule. First we analyze the makespan. From
Chekuri and Bender [5], S1 = O(log m)optM(p)(I). In step 2, the speed of every

job decreases by a factor of log2/α m. Thus, the makespan increases by a factor
of log2/α m. From Lemma 4, optM(p)(I) ≤ opt(I, e). Therefore, taken together,
we have

S2 = (log2/α m)S1 = (log2/α m)O(log m)optM(p)(I)

= O(log1+2/α m)opt(I, E).

Next we analyze the energy. The machines in the schedule opt(I, E) run for
opt(I, E) time units at the total power of p = E/opt(I, E) consuming a total
energy of E. Recall that if all machines in M(p) are busy, the total power is at
most p(1 + log m).

Schedule S1 runs the machines for O(log m)optM(p)(I) time units at the
total power at most p(1 + log m). Thus, it uses energy at most

p(1 + log m)O(log m)optM(p)(I) ≤ O(log2 m) popt(I, A) = O(log2 m)A (3)

where the inequality follows from Lemma 4. The speeds at which the machines
in S2 run are log2/α m slower than those in M(p), which S1 uses. Thus, the total
power at which the machines in S2 run is log2 m times smaller than that of S1.
By (3), this is O(1)A. �

Note that when we decrease the speed in S2 by some constant factor, the
makespan increases by that factor and the energy decreases by a larger constant
factor. To find the value of p̄, we use binary search in the interval [0, p∗] where p∗

is an initial upper bound to be computed shortly. We continue until the length
of the interval is at most 1. We then use the left endpoint of this interval as our
power. Now we compute the initial upper bound p∗. For a given schedule, the
total energy used is

n
∑

i=1

pixi =

n
∑

i=1

sα
i wi/si =

n
∑

i=1

sα−1
i wi.

The best scenario that could happen for the optimal algorithm is when the
work is evenly distributed on all the machines and all the machines run at the
same speed at all time. Let W be the total weight of all the jobs divided by m.
Completing W units of work at a speed of s requires sα−1W units of energy. If
each of the m machines processes W units of work, then it takes a total mWsα−1

units of energy. This must be less than E. For the speed we find sα−1 ≤ E/mW

and thus p
α−1

α ≤ E/mW . This gives us an initial upper bound for p for the
binary search:

p ≤ p∗ =

(

E

mW

)
α

α−1

.

12 Pruhs, van Stee, and Uthaisombut

opt does not use a higher power than this, because then it would run out of
energy before all jobs complete.

From Lemma 5 and our analysis above, the following theorem holds.

Theorem 1. alg is an O(log1+2/α m)-approximation algorithm for the problem
Sm | prec | Cmax where the power is equal to the speed raised to the power of α
and α > 1.

5 Conclusions

Speed scaling to manage power is an important area of application that is worthy
of further academic investigation. For a survey, including proposed avenues for
further investigations, we recommend the survey paper [11].

References

1. Noga Alon, Yossi Azar, Gerhard Woeginger, and Tal Yadid. Approximation
schemes for scheduling. In ACM-SIAM Symposium on Discrete Algorithms, pages
493–500, 1997.

2. Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Dynamic speed scaling to manage
energy and temperature. In IEEE Syposium on Foundations of Computer Science,
pages 520 – 529, 2004.

3. Nikhil Bansal and Kirk Pruhs. Speed scaling to manage temperature. In Sympo-
sium on Theoretical Aspects of Computer Science, pages 460–471, 2005.

4. David M. Brooks, Pradip Bose, Stanley E. Schuster, Hans Jacobson, Prabhakar N.
Kudva, Alper Buyuktosunoglu, John-David Wellman, Victor Zyuban, Manish
Gupta, and Peter W. Cook. Power-aware microarchitecture: Design and mod-
eling challenges for next-generation microprocessors. IEEE Micro, 20(6):26–44,
2000.

5. Chandra Chekuri and Michael A. Bender. An efficient approximation algorithm
for minimizing makespan on uniformly related machines. Journal of Algorithms,
41:212–224, 2001.

6. Jian-Jia Chen, Tei-Wei Kuo, and Hsueh-I Lu. Power-saving scheduling for weakly
dynamic voltage scaling devices. In Workshop on Algorithms and Data Structures,
2005. To appear.

7. Fabián A. Chudak and David B. Shmoys. Approximation algorithms for prece-
dence-constrained scheduling problems on parallel machines that run at different
speeds. In ACM-SIAM Symposium on Discrete Algorithms, pages 581–590, 1997.

8. Ronald L. Graham. Bounds for certain multiprocessor anomalies. Bell System
Techical Journal, 45:1563–1581, 1966.

9. Ronald L. Graham, Eugene Lawler, Jan Karel Lenstra, and Alexander H. G. Rin-
nooy Kan. Optimization and approximation in deterministic scheduling: A survey.
Annals of Discrete Mathematics, 5:287–326, 1979.

10. Flavius Gruian and Krzysztof Kuchcinski. Lenes: Task-scheduling for low-energy
systems using variable voltage processors. In Asia South Pacific - Design Automa-
tion Conference, pages 449–455, 2001.

11. Sandy Irani and Kirk Pruhs. Algorithmic problems in power management.
SIGACT News, 2005.

Speed Scaling of Tasks with Precedence Constraints 13

12. Woo-Cheol Kwon and Taewhan Kim. Optimal voltage allocation techniques for dy-
namically variable voltage processors. ACM Transactions on Embedded Computing
Systems (TECS), 4(1):211–230, 2005.

13. Minming Li, Becky Jie Liu, and Frances F. Yao. Min-energy voltage allocation
for tree-structured tasks. In 11th International Computing and Combinatorics
Conference (COCOON 2005), 2005. To appear.

14. Jiong Luo and Niraj K. Jha. Power-conscious joint scheduling of periodic task
graphs and aperiodic task graphs in distributed real-time embedded systems. In
International Conference on Computer Aided Design, pages 357–364, 2000.

15. Ramesh Mishra, Namrata Rastogi, Dakai Zhu, Daniel Moss, and Rami G. Melhem.
Energy aware scheduling for distributed real-time systems. In International Parallel
and Distributed Processing Symposium, page 21, 2003.

16. Trevor Mudge. Power: A first-class architectural design constraint. Computer,
34(4):52–58, 2001.

17. Kirk Pruhs, Patchrawat Uthaisombut, and Gerhard Woeginger. Getting the best
response for your erg. In Scandanavian Workshop on Algorithms and Theory, pages
14–25, 2004.

18. F. Frances Yao, Alan J. Demers, and Scott Shenker. A scheduling model for reduced
cpu energy. In IEEE Syposium on Foundations of Computer Science (FOCS 1995),
pages 374–382, 1995.

19. Han-Saem Yun and Jihong Kim. On energy-optimal voltage scheduling for fixed
priority hard real-time systems. ACM Transactions on Embedded Computing Sys-
tems, 2(3):393–430, 2003.

20. Yumin Zhang, Xiaobo Hu, and Danny Z. Chen. Task scheduling and voltage
selection for energy minimization. In Design Automation Conference, pages 183–
188, 2002.

