Improved results for a memory allocation problem

Leah Epsteih Rob van Stee
July 21, 2008

Abstract

We consider a memory allocation problem. This problem cambdeled as a version of bin
packing where items may be split, but each bin may containat wo (parts of) items. This
problem was recently introduced by Chung et al. [3]. We gi\‘aﬁmle%-approximation algorithm
for this problem which is in fact an online algorithm. Thigiatithm also has good performance
for the more general case where each bin may contain at inoetts of items. We show that this
general case is strongly NP-hard for @y 3. Additionally, we design an efficient approximation
algorithm, for which the approximation ratio can be madeteably close tog.

1 Introduction

Parallel processing requires the allocation of availabdéenory to the processors. This needs to be done
in such a way that each processor has access to sufficientnyyeand the amount of wasted memory is
as small as possible. If processors have memory requirentigait vary wildly over time, any memory
allocation where a single memory can only be accessed byrooegsor will be inefficient. A solution to
this problem would be to allow memory sharing between pramess However, if there is a single shared
memory for all the processors, there will be much contentranich is also undesirable. It is currently
infeasible to build a large, fast shared memory, and in fm@csuch memories are time-multiplexed.
Forn processors, this increases the effective memory accessima factor ofn.

Chung et al. [3] studied this problem and described the daakd of the methods stated above.
Moreover, they suggested a new architecture where each memay be accessed by at madsto
processors, avoiding the disadvantages of the two extremieremodels. They abstract the memory
allocation problem as a bin packing problem, where the bimestl®e memories and the items to be
packed represent the memory requirements of the procesdussmeans that the items may be of any
size (in particular, they can be larger than 1, which is tze sif a bin), and an item may be split, but
each bin may contain at most two parts of items.

We study approximation algorithms in terms of thiesolute approximation ratier the absolute
performance guaranted.et 3(Z) (or B, if the inputZ is clear from the context), be the cost of algorithm
B on the inputZ. An algorithm A is anR-approximation (with respect to the absolute approxinmatio
ratio) if for every inputZ, A(Z) < R - oPT(I), whereoPT is an optimal algorithm for the problem.
The absolute approximation ratio of an algorithm is the infimvalue ofR such that the algorithm is
an R-approximation. Thesymptoticapproximation ratio oasymptoticperformance guarantee of an

*A preliminary version of this paper appeared in the Procegsiof Tenth Workshop on Algorithms and Data Structures
(WADS 2007), pages 362—-373.

TDepartment of Mathematics, University of Haifa, 31905 ldalérael.l ea@rat h. hai fa.ac.il.

fMax-Planck-Institut fir Informatik, Saarbriicken, Gemy.vanst ee@rpi - i nf . npg. de. Work performed while this
author was at University of Karlsruhe, Germany. Researppatied by Alexander von Humboldt Foundation.

algorithm A4 is defined to be

. A(T)
0o __ 1
R = lnsupsup { oPT(T)

oPT(Z) = N} .

The authors of [3] give %-approximation for the memory allocation problem whichytludy. We
continue the study of this problem and also consider a gépedavariant where items can still be split
arbitrarily, but each bin can contain up#@arts of items, for a given value &f> 2.

Bin packing algorithms are often studied using the asynp#giproximation ratio. The reason for
that is that for most bin packing problems, a simple redudtiom thePARTITION problem (see problem
SP12 in [7]) shows that no polynomial-time algorithm has bhsodute performance guarantee which is
strictly smaller than% (unless P=NP). However, since in our problem items can kg $pkt cannot
be packed more than a given number of parts to a bin, this tieduis not valid. In [3], the authors
show that the problem which they study is NP-hard in the gtisense fok = 2. They use a reduction
from the 3-RRTITION problem (see problem [SP15] in [7]). Their result does nets¢o imply any
consequences with respect to hardness of approximation.

Independently of our work and simultaneously with it, Mad &raham [8] analyzed the asymptotic
approximation ratio of several algorithms, giving uppeuibds of 1.498 fok = 2, % for kK = 3 and
2 — 2/k for k > 4. They also showed an upper bound2of 1/k on the (asymptotic) approximation
ratio of NEXT FIT and a lower bound of + (k + %H)—l on the approximation ratio of any online
algorithm.

A related problem is known as bin packing with cardinalitystraints. In this problem, all items
have a size of at most 1 as in regular bin packing, and the iteamsot be split, however there is an upper
bound ofk on the number of items that can be packed into a single birs fifublem was studied with
respect to the asymptotic approximation ratio. It was ohticed and studied in an offline environment
as early as in 1975 by Krause, Shen and Schwetman [11, 12]y Simved that the performance
guarantee of the well known FIRST FIT algorithm is at m23§t— 51)—,% Additional results were offline
approximation algorithms of performance guararite@hese results were later improved in two ways.
Kellerer and Pferschy [10] designed an improved offline apipnation algorithm with performance
guarante%. Finally an APTAS was designed in [2] (for a more general fgot), and an AFPTAS was
designed in [5].

For the same problem, Babel et al. [1] designed a siraplime algorithm with asymptotic approx-
imation ratio2 for any value ofk. They also designed improved algorithms ko 2, 3 of asymptotic
approximation ratiog + % ~ 1.44721 and1.8 respectively. The same paper [1] also proved an almost
matching lower bound of/2 ~ 1.41421 for k¥ = 2 and mentioned that the lower bounds of [16, 15] for
the classic problem hold for cardinality constrained bickiag as well. The lower bound cg given
by Yao [16] holds for small values df > 2 and the lower bound of 1.5401 given by Van Vliet [15]
holds for sufficiently large:. No other lower bounds are known. Finally, Epstein [4] ganeoptimal
online bounded space algorithm (i.e., an algorithm whiah ltave a constant number of active bins at
every time) for this problem. Its asymptotic worst-caséor& an increasing function df and tends to
14+ heo = 2.69103, whereh is the best possible performance guarantee of an onlinedeouspace al-
gorithm for regular bin packing (without cardinality corants). Additionally, she improved the online
upper bounds fo3 < k£ < 6. In particular, the upper bound fér= 3 was improved toZI.

Another related problem was studied recently by Shachmaniifand Yehezkely [13]. They consid-
ered an offline bin packing problem where items may be sgitrarrily. However, to make the problem
non-trivial, there are some restrictions. In one modelhgzt of a split item increases by a constant ad-
ditive factor. Another variant gives an upper bound on thalber of split items. They showed that both
these problems do not admit an approximation algorithm wastlttonstant additive error, unless P=NP.
They designed a dual PTAS, an APTAS and a dual AFPTAS for eaelobthe problems. An AFPTAS

for each one of the problems was designed in [14]. Their probt different from our problem since in
their case all items have a size of at mbstn their case it is possible to exploit the existence of $mp
structures of optimal solutions, which are more complidateour case.

Our results In the current paper, we begin by showing that this problemNRshard in the strong
sense for any fixed value @&f. This generalizes a result from Chung et al. [3]. We also stiwat
the simple NEXT FIT algorithm has an absolute approximatatio of 2 — 1/k. Note that Mao and
Graham [8] prove only aasymptotiaupper bound o2 — 1/ for NEXT FIT. Finally, we give an efficient
approximation algorithm fok = 2. The approximation ratio of this algorithm can be made eakly
close to7/5.

2 NP-hardness of the problem (in the strong sense)

Theorem 1 Packing splittable items with a cardinality constraint/oparts of items per bin is NP-hard
in the strong sense for any fixéd> 3.

Proof Given a fixed value of, we show a reduction from the 3-Partition problem definedoks f
lows (see problem [SP15] in [7]). We are given a seBwf positive integers, ss, .. ., S3,, sSuch that
Z?Zl s; = mB and eachs; satisfies? < s; < £. The goal is to find out whether there exists a
partition of the numbers inten sets, where each set contains three items, and the sum dfreleif
each set is exactlyg. The 3-Partition problem is known to be NP-hard in the stresigse.

Given such an instance of the 3-Partition problem, we definestance of the splittable item pack-
ing with cardinality constraints as follows. A first set oérits containsn(k — 3) identical items of

size 3,5’(’2 13 (for £ = 3, no items are defined at th|s point). These items are callddipg items. In

addition, there ar8m items, where iteny has size;;%= %B (for £ = 3 we define the size to b%) These
items are called adapted items. The goal is to find a packitiy exiactlym bins. Since there arak
items, clearly a solution which splits items must use attleas 1 bins. Therefore, any algorithm which
finds an optimal packing for this instance does not in fadt sply items. Moreover, a solution im
bins contains exactly items per bin. Since the sum of items is exaetlyall bins in such a solution are
completely occupied with respect to size.

If there exists a partition of the numbers imosets of sumB each, then there is a partition of the
adapted items intd/ sets of sum;—k each (the sum is for £ = 3). Each bin is packed witkk — 3
padding items and one such triple, givingsets ofk items, each set of sum exacily

If there is a packing into exactly: bins, as noted above, no items are split and each bin mustinont
exactlyk items. Ifk = 3, this implies the existence of a partition. Consider theedas 4. We first
prove that each bin contains exactly- 3 padding items.

If a bin contains at least — 2 padding items, their total size is at Ieéi‘,’g;(llz(_’“?);z) — ST oThdd

1+ % For k > 4 this is strictly larger tharl and cannot fit into a bin. If there are at most

k — ¢ < k — 4 padding items, then there afedditional items of size at mog% (¢ > 4). The total size
is therefore at mosgr—D¢:—0 | == 6k2—2k—5tk—t ' This value is maximized for the smallest value

3R (k—3) ok (k—3)
of £ which is¢ = 4. We get a size of at mo% 6k(’“k+1?3) Fork > 4 this is strictly less

than1, which as noted above does not admit a packmg mmlbms

Since each bin contains exacty— 3 padding items, it contains exactly three adapted itemg) wit
total size exactly?}—k. The original sum of such three itemsiis and we get that a solution im bins
implies a partition. O

3 Definitions and properties
Let n denote the number of input items. We denote the size ofitbyns; > 0. If s; < 1/2, the item is
called small. Ifs; > 1, itis large, else it is called medium.

Basic weights.We define the basic weight of itefrto bew; = [s;]/k. Note that in any packing, there
are at leasfs; | parts of itemi. Since there can be at mdsparts in a bin, this means

OPTZ%;(SJZZLZW :;wi- @)

i=1

This explains our definition of the weights and generaliresvteight definition from Chung et al. [3].
We use these weights as well as other types of weights thoutghe paper.

Compact representations of packings.Since an item may have an arbitrarily large size, even if this
is the only item in the input, an explicit list of the bins it pgcked into may result in an output of
exponential size in the input size. Thus, to avoid very latgaing times, we assume that when a large
item is split into parts, some of which are of size 1, the bitmgclv contain such parts of size 1 are not
given explicitly in the output, but only the number of suchsis stated.

The optimal packing Before we begin our analysis, we make some observationsdiagahe packing

of OPT. Any packing can be represented by a graph where the itemsodes and edges correspond
(one-to-one) to bins. If there is a bin which contains (pafiswo items, there is an edge between these
items. A bin with only one item corresponds to a loop on therhit One item may have multiple loops.
The paper [3] showed that for any given packing, it is possibimodify the packing such that there are
no cycles in the associated graph, apart from the loops.r&hisgts in the following lemma.

Lemma 3.1 There exists an optimal packing for which the above graphesgntation consists of a
forest, together with loops. The number of edges in eachgreractly the number of bins in which the
items are packed.

Clearly, if a large item if a leaf, it must have some loops.t duee part of this item is combined with
a part of another item in a bin. Without loss of generality, saa assume that for such an item of size
g > 1, |g] parts of size 1 each are packed in bins, and the remaindezef st |¢g] > 0 is combined
with the other part of item.

4 The NEXT FIT Algorithm

We can define NEXT FIT for the current problem as follows. Tikia straightforward generalization of
the standard NEXT FIT algorithm [9]. An item is placed (palt}i) in the current bin if the bin is not
full andthe bin contains less thanitem parts so far. If the items fits into the bin, then it is gld¢here
completely. If the item does not fit entirely in the curren,ithe bin is filled, closed, and as many new
bins are opened as necessary to contain the item.

NEXT FIT performs a constant number of operations on evarylbiich contains two parts of items.
Since every such bin contains the first part of some item, timeber of such bins is no larger than
Except for the very last bin, every bin which contains just @art of item, contains a part of size 1 of
some item. Since only the number of such bins is specifieddicin @em, an upper bound on the number

of such bins isy_ | s; |, and the size of output is therefore at most 1 + > log|s; |. The length of the
i=1 i=1

n
input is at leasinax{n, > log|s;|}. Therefore, the running time is linear in the input size.
=1

Note that this is an online algorithm. The absolute appratiom ratio of NEXT FIT for the classical
bin packing problem i&, as Johnson [9] showed. Surprisingly, its approximatidio far our problem
tends to this value for large. The two problems are different, and the two results seene tanbelated.

We show that the approximation ratio of NEXT FIT is exa@ly 1/k. Thus, this simple algorithm
performs as well as the algorithm from [3] for= 2.

Theorem 2 The approximation ratio of NEXT FIT B— 1/k.

Proof We first show a lower bound. The instance contains an itemzef &k — 1 followed by
M (k — 1)k items of sizes, where)M is large ande = 1/(ME(k — 1)). Then the first item occupies
MFE — 1 bins, and the rest of the items are packepler bin, inA (k — 1) bins. oPT hasMk bins in
total. This proves a lower bound 68 (2k — 1) — 1) /(M k) on the approximation ratio, which tends to
2 —1/kfor M — .

Now we show a matching upper bound. We definglack as a maximal set of bins which were
consecutively filled by NEXT FIT NF) in which each pair of consecutive bins contains parts of the
same item. A block may contain only one bin. Denote the nurobbtocks bym. We assumen > 1,
since the case:r = 0 is trivial. Letuq,us, ..., u,, be the numbers of bins in the blocks. .., m of NF.

In each block, all bins are full except perhaps the last org¢hvcontains: parts of items (except for
block m, perhaps). This immediately impliePT > NF — m and thus

OPT> NF—m + 1. 2)

Consider the last bin from a blogk < m. SinceNF started a new bin after this bin, it contaihs
parts of items. Thus it contains at ledst- 1 items of weightl /£ (the lastk — 1 items are not split by
the algorithm). Ifu; = 1, there arék such items. Ifu; > 1, consider all items excluding the— 1
last items packed into the last bin. Letdenote the total size of these items anddetlenote their
total weight, wherev > 7. Note thats > u; — 1, thusw > “"k_l. The valuekw is an integer, thus
kw > u;. This implies the total weight of all items which are packadaiblock ofu; bins is at least
uj/k+(k—1)/k = (u; +k—1)/k.

Now consider blockn. If u,,, = 1, then the weight is at leadt/k since there is at least one item.
Else, as above the weight is at least/k, since the last bin of this block has at least one item or a part
of an item.

We havenF = >, u;. Therefore

Do (uj+k—=1)—(k—=1) NF+(m—1)(k—1)
oPT > Zi:wi > - = p : 3)
Multiply inequality (2) by(k — 1)/k and add it (3) to get
2k — 1 1 k-1 k—1 k—1
. > — [— _— — _— = .
OPT > NF (k: + k: > + (m—1) k: (m—1) ’ NF
We concludenF < (2 — 1/k)OPT. O

5 A (7/5+ ¢)-approximation for k = 2

Our algorithmaLG works as explained in Figure 1. Itis easy to see that the ngninine of this algorithm
is dominated by the sorting in step 1. In the other steps, waenk/ constant time per item, if its size is
at most2 and a time ofO(log|s|) for an item of sizes > 2. Thus the running time i©(S + nlogn),

whereS =3, log[si]|. Note that the size of the input (S + n).

1. Partition the items into small, medium and large itemsrt 8ach one of the sets of items
by non-increasing size. In the cases where it is not specifigidh item of a given set is
considered, this is the largest such available item.

2. Pack the medium items one by one, as follows, until runoimgof medium or small items.

(a) If the current item fits with the smallest unpacked smathi, pack them into a bin.

(b) Else, if at least two small items are left, pack the curraadium item together with th
two largestsmall items intwo bins.

1%

3. If no small items remain unpacked, or a single small iteraripacked, pack all remaining
items using NEXT FIT and halt. The items are considered infoflewing order. First the
small item, if exists, then the medium items (sorted by mmréasing size), and then the large
items.

4. Otherwise, no medium items remain. Pack all remainingllsteens, each in a separate bin.
Pack the large items one by one into these bins using NEXT $tért(ng with the largest larg
item and smallest small item).

D

5. If any bins that have only one small item remain from theviongs step, repack these small

items (expect for at most one item, if the number of remairsimgll items is odd).

6. Pack remaining large items using NEXT FIT, starting frofamme item which was packed
partially in step 4, if such an item exists.

Figure 1: The approximation algorithm fér= 2

We begin by giving an example which shows that this algorithmot an absoluté-approximation.
For some integeN, consider the input which consists 4V + 1 small items of sizd /(6N + 4), 2N
medium items of sizé — 1/(12N + 8), one medium item of siz¢ + 1/(12N + 8), and one large item
of size3N + 1+ 1/(12N +38).

ALG packs the items of sizé — 1/(12N + 8) in 4N bins, together withd N small items. The
additional small item is combined with the medium item of%%er 1/(12N + 8). The large item
consumesN + 2 bins, giving a total off NV + 3.

OPT places3N + 1 small items together with parts of size- 1/(6N + 4) of the large item. The
residual part of the large item has a siz&@af+1+1/(12N +8)— (3N +1)(1—1/(6N +4)) = SXA2.
This part can be combined with the item of si;e% 1/(12N +8) = 162%158. Every additional small
item is split into two identical parts, each of which is comdyd with an item of sizé — 1/(12N + 8).
This gives a total 06V + 2 bins. The approximation ratio -3 > 1.

We give another example which shows that an approximatita (rﬁ% can result from different
steps on the algorithm. For some inte@érconsider the input which consists&V small items of size
2/N, 2N medium items of sizé — 1/N, and3N medium items of sizé — 2/N.

ALG packs the items of size— 1/N in 4N bins, together witht N small items. It need8N (1 —
2/N) = 3N — 6 bins for the remaining medium items. Thus it ne&d5 — 6 bins in total.

OPT places3N small items in separate bins (one per bin), ahdmall items are split into two equal
parts. This give$ NV bins in which there is exactly enough room to place all theiomadtems.

Theorem 3 The algorithm achieves an asymptotic approximation rafid/G.

Proof overview The analysis has two cases, depending on the step in whiaigbethm halts. The
easier case is the case where the algorithm halts in stepearier, at step 2 or step 4. This case is
treated in Section 5.1, using the basic weights. For the irentacases, items which are difficult to
handle are the medium items which are packed in Step 2(iical itemsg. We define adapted weights
w;, while taking a special care of these items. We prove thaatlamted weight of a bin, packed by a
specific optimal solution which we consider, is at most 7. @ndther hand, we prove that the average
adapted weight of a bin packed by the algorithm is at leastdem for a constant number of bins which
may have a smaller adapted weight. Weddie a constant such that ; w; > 5ALG — c¢. Since
S7 w; < 7TOPT, we getALG < LoPT+ £.

We prove that the constant= 4 satisfies the above. For our analysis, we will assume thege is
counterexample and consider a smallest counterexaimfiteterms of smallest number of items). We
begin by proving the following lemma.

Lemma 5.1 In [, if step 3 is performed, there is at most one block which dostiarge items, and this
block consists of one large item with no other items. If stepp@&rformed, all bins resulting from steps
4 and 6, which contain no small items form a single block, Wiimnsists of one large item with no other
items.

Proof Once the algorithm moves to the phase where all additiomel thiat will be packed are empty,
and will be filled using NEXT FIT on large items, all future bimill be in the same block. Consider
this block of large items. Combine all items in this blockoiat single item. The action of the algorithm
remains unchanged, whereas the optimal cost can only cecréee previous optimal assignment is still
a valid assignment for the new instance. Since we considarigimal counterexample, it is possible to
assume the claimed property. O

5.1 A simple case: the algorithm halts in step 2, step 4 or step

By our weight definition in Section 3, small and medium iteragéna basic weight of /2. Therefore,
we have the following bounds on total weight of bins packethandifferent steps.

A pair of items packed in step 2(a) or step 5 has a total weifyht 8 triple of items packed in step
2(b) has a total weight o% thus every packed bin has a Weight%f If the algorithm halts in step 5,
every part of a large item is packed with a complete small.it€onsider a large item which is packed in
g bins, that is, together with a total gfsmall items. Its size is strictly larger thégi and thus its weight
is at leasyy/4. Each small item has a weight bf2, so we pack a weight of at lea&j/4 in thesey bins.
Note that there may be one bin packed in step 5 which has onlyigmvof%. UsingoPT > > | w;
and} ", w; > 2ALG — 1, we getALG < 3OPT+ 1.

This is at mos%opT as long a®PT > 3, sinceALG is integer. For the cases where there are at most
four items and the total size of all the items is at most 2, &dsy to verify whether a packing into two
bins exists. If it does, we use that packing instead.

5.2 Critical items
Definition 1 A critical item is a medium item that the algorithm packs in Step 2(b).

From now on, for the analysis we use a fixed optimal packingotésl byoPT. We assume that out
of optimal solutions, we consider one which has the follayyimoperty. A maximum number of bins
containing two complete items, one of which is medium (areddther one is small), are packed with
exactly the same contents as such bins which are packed hjgibvéthm.

Lemma 5.2 In the optimal solution, a critical item is not packed as a gbete item which is combined
with another complete item in one bin.

ltemy Adapted weightd;)
Complete item Residual item
Critical item 4s; + 2 3s; + 2
Regular medium iten 3s; + 2 3s; + 2
Small item 3s; + 2 4s; +1
Large item 3si + [2si] 3s; + [2s4]

Table 1: Adapted weights for complete and residual itemghdrsecond columrs; indicates the current
(residual) size of the item. Amounts in the second columrugper bounds.

Proof Assume by contradiction thaiPT combines a critical itenx with a completesmall itemy.
Since our algorithm starts by considering the smallestlgteats, and itermy was apparently no longer
available whenr was packedy must have been packed earlier by our algorithm, i.e. with dinme
item 2’ which appears before in the sorted list{’ is not critical, because for critical items we use the
largestavailable small items).

We can modifyoPT so thatz’ is packed together with, andz takes the place of’ in OPT, that is,

x is split exactly in the same proportion aswas, an its parts take the place of the parts’ofSince
x is no larger thany’, this packing is valid. However, as a resudt?T has one additional bin with a
complete medium item and a complete small item, packed lgxaxtn the algorithm, which contradicts
the choice of the optimal solution. a

We define adapted weights for the items in the first column bi€rd. We are going to prove by
induction that every bin in the optimal packing has a totadpdd weight of at most 7. In order to
build the induction, we will repeatedly remove parts of itefrom a tree in the optimal packing starting
from a leaf, and pack them into separate bins. The partséhadin (which we will call residual items)
will have adapted weights as stated in the second columnldéTa Regarding small items, note that
4s+1 < 3s+2forany0 < s < 1.

Each time that we pack a bin in this process, we will pack asmasgossible from the items under
consideration there. This may lead to a different packingfthe optimal packing that we started with.
Consider for instance an input that contains two items of 8iZ and one item of siz@.2. It can be
packed in a chain of length 2, where one item of size 0.7 is @pdir two bins. When we start by packing
the item of size).2, we will put an entire item of siz8.7 in the bin with it, thus splitting the chain in
two pieces. We first prove the following technical lemma.

Lemma 5.3 Consider a tree in an optimal packing. Suppose we pack taesitrto bins, starting from
the leaves and each time packing as much as possible intarthehat we use. Then the tree may split
into pieces, but the amount of bins needed does not changesasla

Proof We can prove this by induction. For trees with one edge, tisenething to show. Suppose we
have a larger tree, of size and we pack more (possibly all) of a leaf in a bin than whapleag in the
optimal solution that we started with, or that we pack morea{t) of the item that the leaf is connected
to in that bin. Note that these are the only two cases whiclocaur.

In both cases, the remaining input (that may contain a pasia) is now smaller compared to what
the optimal solution packed into the remaining- 1 bins, in the sense that eactly one of the items is
smaller than it was before, or there is one item less. It isrdleat this input can be packed into at most
x — 1 bins. Moreover, given that we are in fact considering anmatipacking, it must be the case that
the residual input still needs the same number of bins asddfe. exactlyr — 1 bins. O

Lemma 5.4 Every bin in the optimal packing has a total adapted weigtdtafhost 7.

Proof As stated, we use a proof by induction. Thus, we consider af$#hs which corresponds to a
tree in the forest. We assume that some bins may have beenedrfrom this packing, in a way that

the packing is still a tree. The sizes of items, for which gaftthem were packed in the removed bins,
have been reduced accordingly. We prove by induction ontihaber of edges in the tree, that is, on the
number of bins in the packing, that every bin resulting frdms tree has an adapted weight of at most
7. Without loss of generality, we assume that whenever ttad sze of the two items, or the single item
which are to be packed into a bin is large enough, the totalazked into the bin has a size of 1.

Base case Consider a given tree with a single edge. This edge could bemdn a single node, or
an edge between two nodes. Consider first a tree in the fot@shwonsists of a single node. Since
there is exactly one loop, the size of this itereatisfiess < 1. The weight of the item is no larger than
4s + 2 < 6.

Next, consider a tree which consists of an edge between emusitvhich are packed in one bin,
andi’. At least one item must be small. If the items are both smalbne of the two items is medium,
but not a complete critical item, then their total adaptedgiveis at mosBs; + 3s; + 4 < 7. If one of
the items, say item, is a complete critical item, then by Lemma 5.2, the othenitef sizes; < 1/2)
is not complete. Thus, the total adapted weight is at mgst- 2 + 4s, + 1 < 7.

Induction step We next show that in a tree which contains at least two edgasving a bin of a leaf
results in a bin for which the total adapted weight is at mosind the adapted weight of the remaining
(parts of) items are as in Table 1, second column.

If the leaf is an item of size with a loop, we remove a part of sizein{s, 1} of the item and pack
it in a bin. If the item is large{ > 1), we partition its adapted weight, whichds + [2s]| as follows.
The part of size 1 which is packed into the bin gets a weight dfhe remaining part of size— 1 has
aweight of3s + [2s] =7 =3(s — 1) + [2(s — 1)] — 2. If s — 1 > 1, then the residual item is large,
and its adapted weight is defined properly. Otherwise, we hads — 1)] — 2 < 0, so the new weight
is at mosB(s — 1), which is small enough for a residual item of size at most 1.

If s < 1, the packed part of sizeis assigned the entire weight of the item, which is at nGostnd
the remainder, which has size 0, has an adapted weight af zero

If the leaf has no loops, it must be either small or medium. dther endpoint of its edge can be
small, medium or large. Denote the size of the lealand the other endpoint by.

If the two items are packed completely in one bin, as showweibeir total adapted weight is at
most 7, and the residue of the item of siZéhas both a size and an adapted weight of 0. We therefore
assumes + s’ > 1, and a part of sizé — s of the item of sizes’ is combined with the item of size

If s < % then we assign a weight 8{1 — s) + 2 to the packed part of size— s. The total adapted
weight of the packed bin is at mo3tl —s)+2+3s+2 = 7. The residue has asizeofs'—1. If s’ <1,
thens’+s—1 < 1, and the weight of the residual item is at mast+2—3(1—s)—2 = 45’ +35—3 =
3(s+s'—1)+s" < 3(s+s'—1)+1, which is less than the requirement in Table 15'If 1, the weight of
the residual item is at mo8%'+ [2s"|+3s—5 = 3(s+s'—1)+[2(s'—1)] < 3(s+s'—1)+[2(s+s'—1)].

If s+ s’ —1 > 1, we are done by Table 1. Otherwise,%if< s+s —1<1,then2(s’—1) <2,and
the adapted weight is at madts + s’ — 1) + 2. If s +s' — 1 < 3, then2(s’ — 1) < 1, and the adapted
weight is at mos8(s + s’ — 1) + 1, which is less than the bound in Table 1 for residual smathste

If % < s < 1, we assign a weight af(1 — s) + 1 to the packed part of size— s. The total adapted
weight of the packed bin is at mostl —s)+1+3s+2 = 7—s. If s’ < 1, then the weight of the residual
item of is at mostts’ +2—4(1—s)—1 = 4s'+4s—3 = 4(s+s'— 1)+ 1, which satisfies the bounds from
Table 1 for residual items of size at most 1s1f> 1, thens + s’ — 1 > 1. The weight of the residual
item is at mosBs’ + [2s']+4s—5 < 3(s'+s—1)+[2(s' = 1) +s—1 < 3(s+5' —1)+[2(s+ ' —1)],
using that} < s < 1. If s4+s'—1 > 1, we are done. Otherwise, we haye< s+ —1 < 1, sos’ < 3
and2(s’ — 1) < 2, and the adapted weight is at mags + s’ — 1) + 2. O

Lemma 5.5 Our algorithm packs a weight of at leaStLG — 4 into the bins that it uses.

Proof A bin which was created in step 2(a) contains a pair of itémsd:’, wherei is small and’ is
medium, but not critical. Their total adapted weight3s; + 2) + (3s; +2) > 3 + 4 > 5. A pair of
bins which was created in step 2(b) contains three iterisand:”, wherei and:’ are small and” is a
critical medium item. Note that;» + s; > 1 ands;» + s;; > 1. In the two bins, we get a total adapted
weight of3s; + 3sy + 4s;n +6 > 6(1 — s;7) + 4s;r + 6 = 12 — 2s;#. Sinces;» < 1, this gives a total
weight of at least 0, which implies an average of at least 5 per bin.

Algorithm halts in step 3 Each block created in this step, except for possibly thedinstlast blocks
(see Lemma 5.1) contains some number of medium items, whichat critical. If the block contains
bins, then the number of items in itdst- 1. The last bin of the block must contain a complete medium
item. This is true also in the case of the first block, but thet fitem in it may be small. Still, this small
item cannot be packed in a bin with the largest medium itena, jsart of the medium item is packed in
the next bin. If there is no block which consists of one latgei then the last block of medium items
satisfies the same properties, expect for the fact that shéilaof the block does not necessarily contain
a complete medium item.

Therefore, a block wittt bins, which is not last, has a total size of items of at least1 + 3.
Therefore, the total adapted weight in all bins of this blcht leasB(t — §) + 2(t + 1) = 5t + 3. This
gives an average of at least 5 per bin.

Consider now the last block. If it contains medium items, tdtal adapted weight is at lea®tt —
1)+ 2(t + 1) = 5t — 1. Otherwise, a large itemof sizes; > ¢ — 1 is packed in those bins. This gives
an adapted weight of at lea®t; + [2s;] > 3(t — 1) + 2t — 1 = 5t — 4.

Algorithm halts in step 6 Each block created in this step, except for last block (semrha 5.1)
contains one large item packed in some number of bjnghere each bin contains in addition to the part
of the large item, a complete small item. Again, if the bloockiainst bins, then the number of items in
itis ¢t + 1. The last block contains one large item with no small items.

Therefore, a block with bins, which is not last, has a total size of items of at leéastl. Note that
the adapted weight of a large item of sizés at least3s + 3. Therefore, the total adapted weight in all
bins of this block is at least(t — 1) + 2t + 3 = 5¢. This gives an average of at least 5 per bin.

Consider now the last block. We have shown in the previous ttest the adapted weight of such a
block with¢ bins is at leasbt — 4. g

Thus, if the algorithm halts in step 3 or step 6, we g6 < ZoPT+ 7. This concludes the proof
of Theorem 3.

The presented algorithm is very simple and elegant. Howdlrerapproximation ratio og holds
only asymptotically. To design an approximation algoritbfrabsolute approximation ratié + ¢ we
can act as follows. If the number of input items is at Ie?,sthenOPT > % and we get%OPT—i— % <
(1 4+ e)opT. Otherwise, using the techniques from [6], only constanetis required for enumerating
all packings, so an optimal solution can be found. In paldicuo achieve an absolute approximation
ratio of 1—70 it is sufficient to find an optimal packing for the case of at tigsitems that have total size
at most 27. IfopT > 27, thenaLG < %OPT becausa\LG is integer.

6 Conclusions

In this paper, we gave the first absolute upper bounds:for 3 for this problem. Furthermore we
provided an efficient algorithm fdr = 2.

An interesting question is whether it is possible to give #itient algorithm with a better ap-
proximation ratio fork = 2 or for largerk. In a companion paper [6] we present polynomial time
approximation schemes (PTAS) for these problems. Noteukiaig an approximation scheme as a

10

(1 4 o)-approximation for moderate values dfeads to large running times. The PTAS applies round-
ing on the items, and them enumerates packing of rounded itesing patterns. Using the fact (shown
in [3]), that an optimal packing can be represented by a fovéh loops, a pattern is defined as a tree
with at mostéi2 nodes. Each node in the tree can t%k@listinct sizes, which are rounded sizes of items.
Items are not only rounded but also split into sizes of at néqﬁefore the rounding). For instance, for
d = 1/2, the PTAS from [6] assumes that there are four rounded siziésnos, all sizes are no larger
than 2, and all trees have at most 4 nodes. A tree is calledterpaif it is maximal in the sense that
splitting it into two trees would increase the number of biAssume that the sizes of items are 1.2501,
1.2502, 1.2503 and 1.2504. We focus on trees which are p#tlean be verified that every path on
nodes of these sizes is a maximal tree. If the total numbeteofs is large enough, then the number
of such paths is 128. If we consider only paths which contaie ibtem of each size, the number of
possible paths is 12. Even if the packing contains only stesst still a packing must contalhtrees.
Such a packing can be expressed by a vector of letijtvhere the sum of the componentsjisand
each component is a non-negative integer. The number of\@atbrs is2(n!!), which leads to a time
complexity ofQ2(n!!), since the PTAS enumerates all possible combinations t#fpat Comparing this
to the running time of our algorithm, which @(S + nlogn), we can see that the PTAS is inefficient.
Another clear advantage of our basic algorithm is its siaifyli

References

[1] Luitpold Babel, Bo Chen, Hans Kellerer, and Vladimir ikt Algorithms for on-line bin-packing
problems with cardinality constraintBiscrete Applied Mathematic§43(1-3):238-251, 2004.

[2] Alberto Caprara, Hans Kellerer, and Ulrich Pferschy.pfgximation schemes for ordered vector
packing problemsNaval Research Logistic892:58—-69, 2003.

[3] Fan Chung, Ronald Graham, Jia Mao, and George Varghesallétism versus memory allocation
in pipelined router forwarding engine$heory of Computing Systen89(6):829-849, 2006.

[4] Leah Epstein. Online bin packing with cardinality caastts. SIAM Journal on Discrete Mathe-
matics 20(4):1015-1030, 2006.

[5] Leah Epstein and Asaf Levin. AFPTAS results for commonargs of bin packing: A new method
to handle the small items. Manuscript, 2007.

[6] Leah Epstein and Rob van Stee. Approximation schemepdoking splittable items with car-
dinality constraints. IrFifth Workshop on Approximation and Online Algorithms (VBAZDO7)
volume 4927 ol ecture Notes in Computer Sciengages 232—-245, 2008.

[7] Michael R. Garey and David S. Johnso@omputers and Intractability: A Guide to the theory of
NP-CompletenessV. H. Freeman and Company, New York, 1979.

[8] Jia Mao and Ronald L. Graham. Parallel resource allooatif splittable items with cardinality
constraints. Manuscript.

[9] David S. Johnson. Fast algorithms for bin packinpurnal of Computer and System Sciences
8(3):272-314, 1974.

[10] Hans Kellerer and Ulrich Pferschy. Cardinality coasted bin-packing problemsAnnals of
Operations Resear¢l92:335-348, 1999.

11

[11] K. L. Krause, V. Y. Shen, and Herbert D. Schwetman. Agseof several task-scheduling algo-
rithms for a model of multiprogramming computer systerdmurnal of the ACM22(4):522-550,
1975.

[12] K. L. Krause, V. Y. Shen, and Herbert D. Schwetman. Erréfnalysis of several task-scheduling
algorithms for a model of multiprogramming computer sysgéndournal of the ACM24(3):527,
1977.

[13] Hadas Shachnai, Tami Tamir, and Omer Yehezkely. Apgpraiion schemes for packing with item
fragmentation.Theory of Computing Systey3(1):81-98, 2008.

[14] Hadas Shachnai and Omer Yehezkely. Fast asymptotidBRar packing fragmentable items
with costs. InProc. of the 16th International Symposium on Fundamenta@omputation Theory
(FCT2007) pages 482—-493, 2007.

[15] André van Vliet. Animproved lower bound for online biracking algorithmsInformation Pro-
cessing LettersA3(5):277-284, 1992.

[16] Andrew C. C. Yao. New algorithms for bin packingournal of the ACM27:207-227, 1980.

12

