
Improved results for a memory allocation problem∗

Leah Epstein† Rob van Stee‡

July 21, 2008

Abstract

We consider a memory allocation problem. This problem can bemodeled as a version of bin
packing where items may be split, but each bin may contain at most two (parts of) items. This
problem was recently introduced by Chung et al. [3]. We give asimple 3

2
-approximation algorithm

for this problem which is in fact an online algorithm. This algorithm also has good performance
for the more general case where each bin may contain at mostk parts of items. We show that this
general case is strongly NP-hard for anyk ≥ 3. Additionally, we design an efficient approximation
algorithm, for which the approximation ratio can be made arbitrarily close to7

5
.

1 Introduction

Parallel processing requires the allocation of available memory to the processors. This needs to be done
in such a way that each processor has access to sufficient memory, and the amount of wasted memory is
as small as possible. If processors have memory requirements that vary wildly over time, any memory
allocation where a single memory can only be accessed by one processor will be inefficient. A solution to
this problem would be to allow memory sharing between processors. However, if there is a single shared
memory for all the processors, there will be much contention, which is also undesirable. It is currently
infeasible to build a large, fast shared memory, and in practice, such memories are time-multiplexed.
Forn processors, this increases the effective memory access time by a factor ofn.

Chung et al. [3] studied this problem and described the drawbacks of the methods stated above.
Moreover, they suggested a new architecture where each memory may be accessed by at mosttwo
processors, avoiding the disadvantages of the two extreme earlier models. They abstract the memory
allocation problem as a bin packing problem, where the bins are the memories and the items to be
packed represent the memory requirements of the processors. This means that the items may be of any
size (in particular, they can be larger than 1, which is the size of a bin), and an item may be split, but
each bin may contain at most two parts of items.

We study approximation algorithms in terms of theabsolute approximation ratioor theabsolute
performance guarantee. LetB(I) (orB, if the inputI is clear from the context), be the cost of algorithm
B on the inputI. An algorithmA is anR-approximation (with respect to the absolute approximation
ratio) if for every inputI, A(I) ≤ R · OPT(I), whereOPT is an optimal algorithm for the problem.
The absolute approximation ratio of an algorithm is the infimum value ofR such that the algorithm is
anR-approximation. Theasymptoticapproximation ratio orasymptoticperformance guarantee of an

∗A preliminary version of this paper appeared in the Proceedings of Tenth Workshop on Algorithms and Data Structures
(WADS 2007), pages 362–373.

†Department of Mathematics, University of Haifa, 31905 Haifa, Israel.lea@math.haifa.ac.il.
‡Max-Planck-Institut für Informatik, Saarbrücken, Germany.vanstee@mpi-inf.mpg.de. Work performed while this

author was at University of Karlsruhe, Germany. Research supported by Alexander von Humboldt Foundation.

1



algorithmA is defined to be

R∞
A = lim sup

N→∞
sup
I

{

A(I)

OPT(I)

∣

∣

∣

∣

∣

OPT(I) = N

}

.

The authors of [3] give a32 -approximation for the memory allocation problem which they study. We
continue the study of this problem and also consider a generalized variant where items can still be split
arbitrarily, but each bin can contain up tok parts of items, for a given value ofk ≥ 2.

Bin packing algorithms are often studied using the asymptotic approximation ratio. The reason for
that is that for most bin packing problems, a simple reduction from thePARTITION problem (see problem
SP12 in [7]) shows that no polynomial-time algorithm has an absolute performance guarantee which is
strictly smaller than3

2 (unless P=NP). However, since in our problem items can be split, but cannot
be packed more than a given number of parts to a bin, this reduction is not valid. In [3], the authors
show that the problem which they study is NP-hard in the strong sense fork = 2. They use a reduction
from the 3-PARTITION problem (see problem [SP15] in [7]). Their result does not seem to imply any
consequences with respect to hardness of approximation.

Independently of our work and simultaneously with it, Mao and Graham [8] analyzed the asymptotic
approximation ratio of several algorithms, giving upper bounds of 1.498 fork = 2, 3

2 for k = 3 and
2 − 2/k for k ≥ 4. They also showed an upper bound of2 − 1/k on the (asymptotic) approximation
ratio of NEXT FIT and a lower bound of1 + (k + 1

k+1)−1 on the approximation ratio of any online
algorithm.

A related problem is known as bin packing with cardinality constraints. In this problem, all items
have a size of at most 1 as in regular bin packing, and the itemscannot be split, however there is an upper
bound ofk on the number of items that can be packed into a single bin. This problem was studied with
respect to the asymptotic approximation ratio. It was introduced and studied in an offline environment
as early as in 1975 by Krause, Shen and Schwetman [11, 12]. They showed that the performance
guarantee of the well known FIRST FIT algorithm is at most2.7 − 12

5k
. Additional results were offline

approximation algorithms of performance guarantee2. These results were later improved in two ways.
Kellerer and Pferschy [10] designed an improved offline approximation algorithm with performance
guarantee32 . Finally an APTAS was designed in [2] (for a more general problem), and an AFPTAS was
designed in [5].

For the same problem, Babel et al. [1] designed a simpleonlinealgorithm with asymptotic approx-
imation ratio2 for any value ofk. They also designed improved algorithms fork = 2, 3 of asymptotic
approximation ratios1 +

√
5

5 ≈ 1.44721 and1.8 respectively. The same paper [1] also proved an almost
matching lower bound of

√
2 ≈ 1.41421 for k = 2 and mentioned that the lower bounds of [16, 15] for

the classic problem hold for cardinality constrained bin packing as well. The lower bound of32 given
by Yao [16] holds for small values ofk > 2 and the lower bound of 1.5401 given by Van Vliet [15]
holds for sufficiently largek. No other lower bounds are known. Finally, Epstein [4] gave an optimal
online bounded space algorithm (i.e., an algorithm which can have a constant number of active bins at
every time) for this problem. Its asymptotic worst-case ratio is an increasing function ofk and tends to
1+h∞ ≈ 2.69103, whereh∞ is the best possible performance guarantee of an online bounded space al-
gorithm for regular bin packing (without cardinality constraints). Additionally, she improved the online
upper bounds for3 ≤ k ≤ 6. In particular, the upper bound fork = 3 was improved to74 .

Another related problem was studied recently by Shachnai, Tamir and Yehezkely [13]. They consid-
ered an offline bin packing problem where items may be split arbitrarily. However, to make the problem
non-trivial, there are some restrictions. In one model, each part of a split item increases by a constant ad-
ditive factor. Another variant gives an upper bound on the number of split items. They showed that both
these problems do not admit an approximation algorithm withan constant additive error, unless P=NP.
They designed a dual PTAS, an APTAS and a dual AFPTAS for each one of the problems. An AFPTAS

2



for each one of the problems was designed in [14]. Their problem is different from our problem since in
their case all items have a size of at most1. In their case it is possible to exploit the existence of simple
structures of optimal solutions, which are more complicated in our case.

Our results In the current paper, we begin by showing that this problem isNP-hard in the strong
sense for any fixed value ofk. This generalizes a result from Chung et al. [3]. We also showthat
the simple NEXT FIT algorithm has an absolute approximationratio of 2 − 1/k. Note that Mao and
Graham [8] prove only anasymptoticupper bound of2−1/k for NEXT FIT. Finally, we give an efficient
approximation algorithm fork = 2. The approximation ratio of this algorithm can be made arbitrarily
close to7/5.

2 NP-hardness of the problem (in the strong sense)

Theorem 1 Packing splittable items with a cardinality constraint ofk parts of items per bin is NP-hard
in the strong sense for any fixedk ≥ 3.

Proof Given a fixed value ofk, we show a reduction from the 3-Partition problem defined as fol-
lows (see problem [SP15] in [7]). We are given a set of3m positive integerss1, s2, . . . , s3m such that
∑3m

j=1 sj = mB and eachsi satisfiesB
4 < si < B

2 . The goal is to find out whether there exists a
partition of the numbers intom sets, where each set contains three items, and the sum of elements of
each set is exactlyB. The 3-Partition problem is known to be NP-hard in the strongsense.

Given such an instance of the 3-Partition problem, we define an instance of the splittable item pack-
ing with cardinality constraints as follows. A first set of items containsm(k − 3) identical items of
size 3k−1

3k(k−3) (for k = 3, no items are defined at this point). These items are called padding items. In

addition, there are3m items, where itemj has size sj

3kB
(for k = 3 we define the size to besj

B
). These

items are called adapted items. The goal is to find a packing with exactlym bins. Since there aremk
items, clearly a solution which splits items must use at least m+1 bins. Therefore, any algorithm which
finds an optimal packing for this instance does not in fact split any items. Moreover, a solution inm
bins contains exactlyk items per bin. Since the sum of items is exactlym, all bins in such a solution are
completely occupied with respect to size.

If there exists a partition of the numbers intom sets of sumB each, then there is a partition of the
adapted items intoM sets of sum1

3k
each (the sum is1 for k = 3). Each bin is packed withk − 3

padding items and one such triple, givingm sets ofk items, each set of sum exactly1.
If there is a packing into exactlym bins, as noted above, no items are split and each bin must contain

exactlyk items. If k = 3, this implies the existence of a partition. Consider the case k ≥ 4. We first
prove that each bin contains exactlyk − 3 padding items.

If a bin contains at leastk − 2 padding items, their total size is at least(3k−1)(k−2)
3k(k−3) = 3k2−7k+2

3k2−9k
=

1 + 2k+2
3k(k−3) . For k ≥ 4 this is strictly larger than1 and cannot fit into a bin. If there are at most

k − ℓ ≤ k − 4 padding items, then there areℓ additional items of size at most16k
(ℓ ≥ 4). The total size

is therefore at most(3k−1)(k−ℓ)
3k(k−3) + ℓ

6k
= 6k2−2k−5ℓk−ℓ

6k(k−3) . This value is maximized for the smallest value

of ℓ which isℓ = 4. We get a size of at most6k2−22k−4
6k(k−3) = 1 − 4(k+1)

6k(k−3) . Fork ≥ 4 this is strictly less
than1, which as noted above does not admit a packing intom bins.

Since each bin contains exactlyk − 3 padding items, it contains exactly three adapted items, with
total size exactly1

3k
. The original sum of such three items isB, and we get that a solution inm bins

implies a partition. �

3



3 Definitions and properties

Let n denote the number of input items. We denote the size of itemi by si ≥ 0. If si ≤ 1/2, the item is
called small. Ifsi > 1, it is large, else it is called medium.

Basic weights.We define the basic weight of itemi to bewi = ⌈si⌉/k. Note that in any packing, there
are at least⌈si⌉ parts of itemi. Since there can be at mostk parts in a bin, this means

OPT ≥ 1

k

n
∑

i=1

⌈si⌉ =

n
∑

i=1

⌈si⌉
k

=

n
∑

i=1

wi . (1)

This explains our definition of the weights and generalizes the weight definition from Chung et al. [3].
We use these weights as well as other types of weights throughout the paper.

Compact representations of packings.Since an item may have an arbitrarily large size, even if this
is the only item in the input, an explicit list of the bins it ispacked into may result in an output of
exponential size in the input size. Thus, to avoid very largerunning times, we assume that when a large
item is split into parts, some of which are of size 1, the bins which contain such parts of size 1 are not
given explicitly in the output, but only the number of such bins is stated.

The optimal packing Before we begin our analysis, we make some observations regarding the packing
of OPT. Any packing can be represented by a graph where the items arenodes and edges correspond
(one-to-one) to bins. If there is a bin which contains (partsof) two items, there is an edge between these
items. A bin with only one item corresponds to a loop on that item. One item may have multiple loops.
The paper [3] showed that for any given packing, it is possible to modify the packing such that there are
no cycles in the associated graph, apart from the loops. Thisresults in the following lemma.

Lemma 3.1 There exists an optimal packing for which the above graph representation consists of a
forest, together with loops. The number of edges in each treeis exactly the number of bins in which the
items are packed.

Clearly, if a large item if a leaf, it must have some loops. Just one part of this item is combined with
a part of another item in a bin. Without loss of generality, wecan assume that for such an item of size
g > 1, ⌊g⌋ parts of size 1 each are packed in bins, and the remainder of sizeg − ⌊g⌋ ≥ 0 is combined
with the other part of item.

4 The NEXT FIT Algorithm

We can define NEXT FIT for the current problem as follows. Thisis a straightforward generalization of
the standard NEXT FIT algorithm [9]. An item is placed (partially) in the current bin if the bin is not
full and the bin contains less thank item parts so far. If the items fits into the bin, then it is placed there
completely. If the item does not fit entirely in the current bin, the bin is filled, closed, and as many new
bins are opened as necessary to contain the item.

NEXT FIT performs a constant number of operations on every bin which contains two parts of items.
Since every such bin contains the first part of some item, the number of such bins is no larger thann.
Except for the very last bin, every bin which contains just one part of item, contains a part of size 1 of
some item. Since only the number of such bins is specified for each item, an upper bound on the number

of such bins is
n
∑

i=1
⌊si⌋, and the size of output is therefore at mostn + 1 +

n
∑

i=1
log⌊si⌋. The length of the

input is at leastmax{n,
n
∑

i=1
log⌊si⌋}. Therefore, the running time is linear in the input size.

4



Note that this is an online algorithm. The absolute approximation ratio of NEXT FIT for the classical
bin packing problem is2, as Johnson [9] showed. Surprisingly, its approximation ratio for our problem
tends to this value for largek. The two problems are different, and the two results seem to be unrelated.

We show that the approximation ratio of NEXT FIT is exactly2− 1/k. Thus, this simple algorithm
performs as well as the algorithm from [3] fork = 2.

Theorem 2 The approximation ratio of NEXT FIT is2 − 1/k.

Proof We first show a lower bound. The instance contains an item of size Mk − 1 followed by
M(k − 1)k items of sizeε, whereM is large andε = 1/(Mk(k − 1)). Then the first item occupies
Mk − 1 bins, and the rest of the items are packedk per bin, inM(k − 1) bins. OPT hasMk bins in
total. This proves a lower bound of(M(2k − 1)− 1)/(Mk) on the approximation ratio, which tends to
2 − 1/k for M → ∞.

Now we show a matching upper bound. We define ablock as a maximal set of bins which were
consecutively filled by NEXT FIT (NF) in which each pair of consecutive bins contains parts of the
same item. A block may contain only one bin. Denote the numberof blocks bym. We assumem ≥ 1,
since the casem = 0 is trivial. Let u1, u2, . . . , um be the numbers of bins in the blocks1, . . . ,m of NF.
In each block, all bins are full except perhaps the last one, which containsk parts of items (except for
block m, perhaps). This immediately impliesOPT > NF − m and thus

OPT ≥ NF − m + 1. (2)

Consider the last bin from a blockj < m. SinceNF started a new bin after this bin, it containsk
parts of items. Thus it contains at leastk − 1 items of weight1/k (the lastk − 1 items are not split by
the algorithm). Ifuj = 1, there arek such items. Ifuj > 1, consider all items excluding thek − 1
last items packed into the last bin. Lets denote the total size of these items and letw denote their
total weight, wherew ≥ s

k
. Note thats > uj − 1, thusw >

uj−1
k

. The valuekw is an integer, thus
kw ≥ uj . This implies the total weight of all items which are packed in a block ofuj bins is at least
uj/k + (k − 1)/k = (uj + k − 1)/k.

Now consider blockm. If um = 1, then the weight is at least1/k since there is at least one item.
Else, as above the weight is at leastum/k, since the last bin of this block has at least one item or a part
of an item.

We haveNF =
∑m

j=1 uj. Therefore

OPT ≥
∑

i

wi ≥
∑m

j=1(uj + k − 1) − (k − 1)

k
=

NF + (m − 1)(k − 1)

k
. (3)

Multiply inequality (2) by(k − 1)/k and add it (3) to get

2k − 1

k
· OPT ≥ NF

(

1

k
+

k − 1

k

)

+ (m − 1)
k − 1

k
− (m − 1)

k − 1

k
= NF.

We concludeNF ≤ (2 − 1/k)OPT. �

5 A (7/5 + ε)-approximation for k = 2

Our algorithmALG works as explained in Figure 1. It is easy to see that the running time of this algorithm
is dominated by the sorting in step 1. In the other steps, we use only constant time per item, if its size is
at most2 and a time ofO(log⌊s⌋) for an item of sizes > 2. Thus the running time isO(S + n log n),
whereS =

∑

i : si>1 log⌊si⌋. Note that the size of the input isΘ(S + n).

5



1. Partition the items into small, medium and large items. Sort each one of the sets of items
by non-increasing size. In the cases where it is not specifiedwhich item of a given set is
considered, this is the largest such available item.

2. Pack the medium items one by one, as follows, until runningout of medium or small items.

(a) If the current item fits with the smallest unpacked small item, pack them into a bin.

(b) Else, if at least two small items are left, pack the current medium item together with the
two largestsmall items intwobins.

3. If no small items remain unpacked, or a single small item isunpacked, pack all remaining
items using NEXT FIT and halt. The items are considered in thefollowing order. First the
small item, if exists, then the medium items (sorted by non-increasing size), and then the large
items.

4. Otherwise, no medium items remain. Pack all remaining small items, each in a separate bin.
Pack the large items one by one into these bins using NEXT FIT (starting with the largest large
item and smallest small item).

5. If any bins that have only one small item remain from the previous step, repack these small
items (expect for at most one item, if the number of remainingsmall items is odd).

6. Pack remaining large items using NEXT FIT, starting from alarge item which was packed
partially in step 4, if such an item exists.

Figure 1: The approximation algorithm fork = 2

We begin by giving an example which shows that this algorithmis not an absolute75 -approximation.
For some integerN , consider the input which consists of4N + 1 small items of size1/(6N + 4), 2N
medium items of size1− 1/(12N + 8), one medium item of size12 + 1/(12N + 8), and one large item
of size3N + 1 + 1/(12N + 8).

ALG packs the items of size1 − 1/(12N + 8) in 4N bins, together with4N small items. The
additional small item is combined with the medium item of size 1

2 + 1/(12N + 8). The large item
consumes3N + 2 bins, giving a total of7N + 3.

OPT places3N + 1 small items together with parts of size1 − 1/(6N + 4) of the large item. The
residual part of the large item has a size of3N +1+1/(12N +8)−(3N +1)(1−1/(6N +4)) = 6N+3

12N+8 .

This part can be combined with the item of size1
2 + 1/(12N + 8) = 6N+5

12N+8 . Every additional small
item is split into two identical parts, each of which is combined with an item of size1 − 1/(12N + 8).
This gives a total of5N + 2 bins. The approximation ratio is7N+3

5N+2 > 7
5 .

We give another example which shows that an approximation ratio of 7
5 can result from different

steps on the algorithm. For some integerN , consider the input which consists of4N small items of size
2/N , 2N medium items of size1 − 1/N , and3N medium items of size1 − 2/N .

ALG packs the items of size1 − 1/N in 4N bins, together with4N small items. It needs3N(1 −
2/N) = 3N − 6 bins for the remaining medium items. Thus it needs7N − 6 bins in total.

OPT places3N small items in separate bins (one per bin), andN small items are split into two equal
parts. This gives5N bins in which there is exactly enough room to place all the medium items.

Theorem 3 The algorithm achieves an asymptotic approximation ratio of 7/5.

6



Proof overview The analysis has two cases, depending on the step in which thealgorithm halts. The
easier case is the case where the algorithm halts in step 5, orearlier, at step 2 or step 4. This case is
treated in Section 5.1, using the basic weights. For the remaining cases, items which are difficult to
handle are the medium items which are packed in Step 2(b) (critical items). We define adapted weights
ωi, while taking a special care of these items. We prove that theadapted weight of a bin, packed by a
specific optimal solution which we consider, is at most 7. On the other hand, we prove that the average
adapted weight of a bin packed by the algorithm is at least 5, except for a constant number of bins which
may have a smaller adapted weight. We letc be a constant such that

∑n
i=1 ωi ≥ 5ALG − c. Since

∑n
i=1 ωi ≤ 7OPT, we getALG ≤ 7

5 OPT+ c
5 .

We prove that the constantc = 4 satisfies the above. For our analysis, we will assume there isa
counterexample and consider a smallest counterexampleI (in terms of smallest number of items). We
begin by proving the following lemma.

Lemma 5.1 In I, if step 3 is performed, there is at most one block which contains large items, and this
block consists of one large item with no other items. If step 6is performed, all bins resulting from steps
4 and 6, which contain no small items form a single block, which consists of one large item with no other
items.

Proof Once the algorithm moves to the phase where all additional bins that will be packed are empty,
and will be filled using NEXT FIT on large items, all future bins will be in the same block. Consider
this block of large items. Combine all items in this block into a single item. The action of the algorithm
remains unchanged, whereas the optimal cost can only decrease: the previous optimal assignment is still
a valid assignment for the new instance. Since we consider anminimal counterexample, it is possible to
assume the claimed property. �

5.1 A simple case: the algorithm halts in step 2, step 4 or step5

By our weight definition in Section 3, small and medium items have a basic weight of1/2. Therefore,
we have the following bounds on total weight of bins packed inthe different steps.

A pair of items packed in step 2(a) or step 5 has a total weight of 1. A triple of items packed in step
2(b) has a total weight of32 , thus every packed bin has a weight of3

4 . If the algorithm halts in step 5,
every part of a large item is packed with a complete small item. Consider a large item which is packed in
g bins, that is, together with a total ofg small items. Its size is strictly larger thang−1

2 and thus its weight
is at leastg/4. Each small item has a weight of1/2, so we pack a weight of at least3g/4 in theseg bins.
Note that there may be one bin packed in step 5 which has only a weight of 1

2 . UsingOPT ≥ ∑n
i=1 wi

and
∑n

i=1 wi ≥ 3
4 ALG − 1

4 , we getALG ≤ 4
3 OPT+ 1

3 .
This is at most75 OPT as long asOPT ≥ 3, sinceALG is integer. For the cases where there are at most

four items and the total size of all the items is at most 2, it iseasy to verify whether a packing into two
bins exists. If it does, we use that packing instead.

5.2 Critical items

Definition 1 A critical item is a medium item that the algorithm packs in Step 2(b).

From now on, for the analysis we use a fixed optimal packing, denoted byOPT. We assume that out
of optimal solutions, we consider one which has the following property. A maximum number of bins
containing two complete items, one of which is medium (and the other one is small), are packed with
exactly the same contents as such bins which are packed by thealgorithm.

Lemma 5.2 In the optimal solution, a critical item is not packed as a complete item which is combined
with another complete item in one bin.

7



Item i Adapted weight (ωi)
Complete item Residual item

Critical item 4si + 2 3si + 2
Regular medium item 3si + 2 3si + 2
Small item 3si + 2 4si + 1
Large item 3si + ⌈2si⌉ 3si + ⌈2si⌉

Table 1: Adapted weights for complete and residual items. Inthe second column,si indicates the current
(residual) size of the item. Amounts in the second column areupper bounds.

Proof Assume by contradiction thatOPT combines a critical itemx with a completesmall itemy.
Since our algorithm starts by considering the smallest small items, and itemy was apparently no longer
available whenx was packed,y must have been packed earlier by our algorithm, i.e. with a medium
item x′ which appears beforex in the sorted list (x′ is not critical, because for critical items we use the
largestavailable small items).

We can modifyOPT so thatx′ is packed together withy, andx takes the place ofx′ in OPT, that is,
x is split exactly in the same proportion asx′ was, an its parts take the place of the parts ofx′. Since
x is no larger thanx′, this packing is valid. However, as a result,OPT has one additional bin with a
complete medium item and a complete small item, packed exactly as in the algorithm, which contradicts
the choice of the optimal solution. �

We define adapted weights for the items in the first column of Table 1. We are going to prove by
induction that every bin in the optimal packing has a total adapted weight of at most 7. In order to
build the induction, we will repeatedly remove parts of items from a tree in the optimal packing starting
from a leaf, and pack them into separate bins. The parts that remain (which we will call residual items)
will have adapted weights as stated in the second column of Table 1. Regarding small items, note that
4s + 1 < 3s + 2 for any0 < s < 1.

Each time that we pack a bin in this process, we will pack as much as possible from the items under
consideration there. This may lead to a different packing from the optimal packing that we started with.
Consider for instance an input that contains two items of size 0.7 and one item of size0.2. It can be
packed in a chain of length 2, where one item of size 0.7 is split over two bins. When we start by packing
the item of size0.2, we will put an entire item of size0.7 in the bin with it, thus splitting the chain in
two pieces. We first prove the following technical lemma.

Lemma 5.3 Consider a tree in an optimal packing. Suppose we pack this tree into bins, starting from
the leaves and each time packing as much as possible into the bins that we use. Then the tree may split
into pieces, but the amount of bins needed does not change as aresult.

Proof We can prove this by induction. For trees with one edge, thereis nothing to show. Suppose we
have a larger tree, of sizex, and we pack more (possibly all) of a leaf in a bin than what happens in the
optimal solution that we started with, or that we pack more (or all) of the item that the leaf is connected
to in that bin. Note that these are the only two cases which canoccur.

In both cases, the remaining input (that may contain a partial item) is now smaller compared to what
the optimal solution packed into the remainingx − 1 bins, in the sense that eactly one of the items is
smaller than it was before, or there is one item less. It is clear that this input can be packed into at most
x − 1 bins. Moreover, given that we are in fact considering an optimal packing, it must be the case that
the residual input still needs the same number of bins as before, i.e. exactlyx − 1 bins. �

Lemma 5.4 Every bin in the optimal packing has a total adapted weight ofat most 7.

Proof As stated, we use a proof by induction. Thus, we consider a setof bins which corresponds to a
tree in the forest. We assume that some bins may have been removed from this packing, in a way that

8



the packing is still a tree. The sizes of items, for which parts of them were packed in the removed bins,
have been reduced accordingly. We prove by induction on the number of edges in the tree, that is, on the
number of bins in the packing, that every bin resulting from this tree has an adapted weight of at most
7. Without loss of generality, we assume that whenever the total size of the two items, or the single item
which are to be packed into a bin is large enough, the total size packed into the bin has a size of 1.

Base case Consider a given tree with a single edge. This edge could be a loop on a single node, or
an edge between two nodes. Consider first a tree in the forest which consists of a single node. Since
there is exactly one loop, the size of this items satisfiess ≤ 1. The weight of the item is no larger than
4s + 2 ≤ 6.

Next, consider a tree which consists of an edge between two items which are packed in one bin,i
andi′. At least one item must be small. If the items are both small, or one of the two items is medium,
but not a complete critical item, then their total adapted weight is at most3si + 3si′ + 4 ≤ 7. If one of
the items, say itemi, is a complete critical item, then by Lemma 5.2, the other item (of sizesi′ < 1/2)
is not complete. Thus, the total adapted weight is at most4si + 2 + 4si′ + 1 ≤ 7.

Induction step We next show that in a tree which contains at least two edges, removing a bin of a leaf
results in a bin for which the total adapted weight is at most 7, and the adapted weight of the remaining
(parts of) items are as in Table 1, second column.

If the leaf is an item of sizes with a loop, we remove a part of sizemin{s, 1} of the item and pack
it in a bin. If the item is large (s > 1), we partition its adapted weight, which is3s + ⌈2s⌉ as follows.
The part of size 1 which is packed into the bin gets a weight of 7. The remaining part of sizes − 1 has
a weight of3s + ⌈2s⌉ − 7 = 3(s − 1) + ⌈2(s − 1)⌉ − 2. If s − 1 > 1, then the residual item is large,
and its adapted weight is defined properly. Otherwise, we have ⌈2(s − 1)⌉ − 2 ≤ 0, so the new weight
is at most3(s − 1), which is small enough for a residual item of size at most 1.

If s ≤ 1, the packed part of sizes is assigned the entire weight of the item, which is at most6, and
the remainder, which has size 0, has an adapted weight of zero.

If the leaf has no loops, it must be either small or medium. Theother endpoint of its edge can be
small, medium or large. Denote the size of the leaf bys and the other endpoint bys′.

If the two items are packed completely in one bin, as shown above, their total adapted weight is at
most 7, and the residue of the item of sizes′ has both a size and an adapted weight of 0. We therefore
assumes + s′ > 1, and a part of size1 − s of the item of sizes′ is combined with the item of sizes.

If s ≤ 1
2 , then we assign a weight of3(1− s) + 2 to the packed part of size1− s. The total adapted

weight of the packed bin is at most3(1−s)+2+3s+2 = 7. The residue has a size ofs+s′−1. If s′ ≤ 1,
thens′+s−1 ≤ 1

2 , and the weight of the residual item is at most4s′+2−3(1−s)−2 = 4s′+3s−3 =
3(s+s′−1)+s′ ≤ 3(s+s′−1)+1, which is less than the requirement in Table 1. Ifs′ > 1, the weight of
the residual item is at most3s′+⌈2s′⌉+3s−5 = 3(s+s′−1)+⌈2(s′−1)⌉ ≤ 3(s+s′−1)+⌈2(s+s′−1)⌉.
If s + s′ − 1 > 1, we are done by Table 1. Otherwise, if1

2 < s + s′ − 1 ≤ 1, then2(s′ − 1) ≤ 2, and
the adapted weight is at most3(s + s′ − 1) + 2. If s + s′ − 1 ≤ 1

2 , then2(s′ − 1) ≤ 1, and the adapted
weight is at most3(s + s′ − 1) + 1, which is less than the bound in Table 1 for residual small items.

If 1
2 < s ≤ 1, we assign a weight of4(1 − s) + 1 to the packed part of size1− s. The total adapted

weight of the packed bin is at most4(1−s)+1+3s+2 = 7−s. If s′ ≤ 1, then the weight of the residual
item of is at most4s′+2−4(1−s)−1 = 4s′+4s−3 = 4(s+s′−1)+1, which satisfies the bounds from
Table 1 for residual items of size at most 1. Ifs′ > 1, thens + s′ − 1 > 1

2 . The weight of the residual
item is at most3s′+⌈2s′⌉+4s−5 ≤ 3(s′+s−1)+⌈2(s′− 1

2 )⌉+s−1 ≤ 3(s+s′−1)+⌈2(s+s′−1)⌉,
using that12 ≤ s ≤ 1. If s+ s′− 1 > 1, we are done. Otherwise, we have1

2 < s+ s′− 1 ≤ 1, sos′ ≤ 3
2

and2(s′ − 1
2) ≤ 2, and the adapted weight is at most3(s + s′ − 1) + 2. �

Lemma 5.5 Our algorithm packs a weight of at least5ALG − 4 into the bins that it uses.

9



Proof A bin which was created in step 2(a) contains a pair of itemsi andi′, wherei is small andi′ is
medium, but not critical. Their total adapted weight is(3si + 2) + (3si′ + 2) ≥ 3

2 + 4 > 5. A pair of
bins which was created in step 2(b) contains three itemsi, i′ andi′′, wherei andi′ are small andi′′ is a
critical medium item. Note thatsi′′ + si > 1 andsi′′ + si′ > 1. In the two bins, we get a total adapted
weight of3si + 3si′ + 4si′′ + 6 > 6(1 − si′′) + 4si′′ + 6 = 12 − 2si′′ . Sincesi′′ ≤ 1, this gives a total
weight of at least10, which implies an average of at least 5 per bin.

Algorithm halts in step 3 Each block created in this step, except for possibly the firstand last blocks
(see Lemma 5.1) contains some number of medium items, which are not critical. If the block containst
bins, then the number of items in it ist + 1. The last bin of the block must contain a complete medium
item. This is true also in the case of the first block, but the first item in it may be small. Still, this small
item cannot be packed in a bin with the largest medium item, soa part of the medium item is packed in
the next bin. If there is no block which consists of one large item, then the last block of medium items
satisfies the same properties, expect for the fact that the last bin of the block does not necessarily contain
a complete medium item.

Therefore, a block witht bins, which is not last, has a total size of items of at leastt − 1 + 1
2 .

Therefore, the total adapted weight in all bins of this blockis at least3(t− 1
2)+ 2(t + 1) = 5t + 1

2 . This
gives an average of at least 5 per bin.

Consider now the last block. If it contains medium items, thetotal adapted weight is at least3(t −
1) + 2(t + 1) = 5t − 1. Otherwise, a large itemi of sizesi > t − 1 is packed in those bins. This gives
an adapted weight of at least3si + ⌈2si⌉ ≥ 3(t − 1) + 2t − 1 = 5t − 4.

Algorithm halts in step 6 Each block created in this step, except for last block (see Lemma 5.1)
contains one large item packed in some number of bins,t, where each bin contains in addition to the part
of the large item, a complete small item. Again, if the block containst bins, then the number of items in
it is t + 1. The last block contains one large item with no small items.

Therefore, a block witht bins, which is not last, has a total size of items of at leastt − 1. Note that
the adapted weight of a large item of sizes is at least3s + 3. Therefore, the total adapted weight in all
bins of this block is at least3(t − 1) + 2t + 3 = 5t. This gives an average of at least 5 per bin.

Consider now the last block. We have shown in the previous case that the adapted weight of such a
block with t bins is at least5t − 4. �

Thus, if the algorithm halts in step 3 or step 6, we getALG ≤ 7
5 OPT + 4

5 . This concludes the proof
of Theorem 3.

The presented algorithm is very simple and elegant. However, the approximation ratio of75 holds
only asymptotically. To design an approximation algorithmof absolute approximation ratio75 + ε we
can act as follows. If the number of input items is at least2

ε
, thenOPT ≥ 1

ε
and we get75 OPT + 4

5 <
(1 + ε)OPT. Otherwise, using the techniques from [6], only constant time is required for enumerating
all packings, so an optimal solution can be found. In particular, to achieve an absolute approximation
ratio of 10

7 it is sufficient to find an optimal packing for the case of at most 54 items that have total size
at most 27. IfOPT > 27, thenALG ≤ 10

7 OPT becauseALG is integer.

6 Conclusions

In this paper, we gave the first absolute upper bounds fork ≥ 3 for this problem. Furthermore we
provided an efficient algorithm fork = 2.

An interesting question is whether it is possible to give an efficient algorithm with a better ap-
proximation ratio fork = 2 or for largerk. In a companion paper [6] we present polynomial time
approximation schemes (PTAS) for these problems. Note thatusing an approximation scheme as a

10



(1 + δ)-approximation for moderate values ofδ leads to large running times. The PTAS applies round-
ing on the items, and them enumerates packing of rounded items using patterns. Using the fact (shown
in [3]), that an optimal packing can be represented by a forest with loops, a pattern is defined as a tree
with at most 1

δ2 nodes. Each node in the tree can take1
δ2 distinct sizes, which are rounded sizes of items.

Items are not only rounded but also split into sizes of at most1
δ

(before the rounding). For instance, for
δ = 1/2, the PTAS from [6] assumes that there are four rounded sizes of items, all sizes are no larger
than 2, and all trees have at most 4 nodes. A tree is called a pattern, if it is maximal in the sense that
splitting it into two trees would increase the number of bins. Assume that the sizes of items are 1.2501,
1.2502, 1.2503 and 1.2504. We focus on trees which are paths.It can be verified that every path on
nodes of these sizes is a maximal tree. If the total number of items is large enough, then the number
of such paths is 128. If we consider only paths which contain one item of each size, the number of
possible paths is 12. Even if the packing contains only such trees, still a packing must containn4 trees.
Such a packing can be expressed by a vector of length12, where the sum of the components isn

4 , and
each component is a non-negative integer. The number of suchvectors isΩ(n11), which leads to a time
complexity ofΩ(n11), since the PTAS enumerates all possible combinations of patterns. Comparing this
to the running time of our algorithm, which isO(S + n log n), we can see that the PTAS is inefficient.
Another clear advantage of our basic algorithm is its simplicity.

References

[1] Luitpold Babel, Bo Chen, Hans Kellerer, and Vladimir Kotov. Algorithms for on-line bin-packing
problems with cardinality constraints.Discrete Applied Mathematics, 143(1-3):238–251, 2004.

[2] Alberto Caprara, Hans Kellerer, and Ulrich Pferschy. Approximation schemes for ordered vector
packing problems.Naval Research Logistics, 92:58–69, 2003.

[3] Fan Chung, Ronald Graham, Jia Mao, and George Varghese. Parallelism versus memory allocation
in pipelined router forwarding engines.Theory of Computing Systems, 39(6):829–849, 2006.

[4] Leah Epstein. Online bin packing with cardinality constraints. SIAM Journal on Discrete Mathe-
matics, 20(4):1015–1030, 2006.

[5] Leah Epstein and Asaf Levin. AFPTAS results for common variants of bin packing: A new method
to handle the small items. Manuscript, 2007.

[6] Leah Epstein and Rob van Stee. Approximation schemes forpacking splittable items with car-
dinality constraints. InFifth Workshop on Approximation and Online Algorithms (WAOA 2007),
volume 4927 ofLecture Notes in Computer Science, pages 232–245, 2008.

[7] Michael R. Garey and David S. Johnson.Computers and Intractability: A Guide to the theory of
NP-Completeness. W. H. Freeman and Company, New York, 1979.

[8] Jia Mao and Ronald L. Graham. Parallel resource allocation of splittable items with cardinality
constraints. Manuscript.

[9] David S. Johnson. Fast algorithms for bin packing.Journal of Computer and System Sciences,
8(3):272–314, 1974.

[10] Hans Kellerer and Ulrich Pferschy. Cardinality constrained bin-packing problems.Annals of
Operations Research, 92:335–348, 1999.

11



[11] K. L. Krause, V. Y. Shen, and Herbert D. Schwetman. Analysis of several task-scheduling algo-
rithms for a model of multiprogramming computer systems.Journal of the ACM, 22(4):522–550,
1975.

[12] K. L. Krause, V. Y. Shen, and Herbert D. Schwetman. Errata: “Analysis of several task-scheduling
algorithms for a model of multiprogramming computer systems”. Journal of the ACM, 24(3):527,
1977.

[13] Hadas Shachnai, Tami Tamir, and Omer Yehezkely. Approximation schemes for packing with item
fragmentation.Theory of Computing Systems, 43(1):81–98, 2008.

[14] Hadas Shachnai and Omer Yehezkely. Fast asymptotic FPTAS for packing fragmentable items
with costs. InProc. of the 16th International Symposium on Fundamentals of Computation Theory
(FCT2007), pages 482–493, 2007.

[15] André van Vliet. An improved lower bound for online binpacking algorithms.Information Pro-
cessing Letters, 43(5):277–284, 1992.

[16] Andrew C. C. Yao. New algorithms for bin packing.Journal of the ACM, 27:207–227, 1980.

12


