
An approximation algorithm for square packing

Rob van Stee∗

February 18, 2004

Abstract

We consider the problem of packing squares into bins which are unit squares, where the goal is to
minimize the number of bins used. We present an algorithm for this problem with an absolute worst-case
ratio of 2, which is optimal provided P 6= NP.
Keywords: bin packing, square packing, approximation algorithm, absolute worst-case ratio

1 Introduction

Bin packing is one of the oldest and most well-studied problems in computer science [6, 4]. In this paper, we
study a natural generalization of bin packing, called square packing. In this problem, we receive a sequence
σ of squares p1, p2, . . . , pn. We define the size of a square p, denoted by s(p), as the length of one of its
edges. We have an infinite number of bins, each of which is a unit square. Each item must be assigned
to a bin and a position (x1(p), x2(p)), where 0 ≤ xi(p) and xi(p) + s(p) ≤ 1 for i = 1, 2. Further, the
positions must be assigned in such a way that no two items in the same bin overlap. A bin is empty if no
item is assigned to it, otherwise it is used. The goal is to minimize the number of bins used.

Most of the previous work on bin packing has focused on the asymptotic performance ratio (approxi-
mation ratio), which we now define. For a given input sequence σ, let costA(σ) be the number of bins used
by algorithm A on σ. Let cost(σ) be the minimum possible number of bins used to pack items in σ. The
asymptotic performance ratio for an algorithm A is defined to be

R∞
A = lim sup

n→∞

sup
σ

{

costA(σ)

cost(σ)

∣

∣

∣

∣

∣

cost(σ) = n

}

.

Thus the focus here is on the long-term behavior of algorithms. In contrast, in the current paper we
consider the absolute worst-case ratio [13, 15], which for an algorithm A is defined as follows:

RA = sup
σ

costA(σ)

cost(σ)
.

Attaining a good absolute worst-case ratio is more difficult than attaining a good asymptotic worst-case
ratio, because in the second case an algorithm is allowed to “waste” a constant number of bins, which allows
e.g. the classification of items followed by a packing where each class is packed separately.

∗Centre for Mathematics and Computer Science (CWI), Kruislaan 413, NL-1098 SJ Amsterdam, The Netherlands.
Rob.van.Stee@cwi.nl. Work supported by the Netherlands Organization for Scientific Research (NWO), project number
SION 612-061-000.

1



Previous Results: For a survey on bin packing, see [4]. The most prominent results are as follows: Garey,
Graham and Ullman [9] were the first to study the approximation ratios of both online and offline algorithms.
Fernandez de La Vega and Lueker [7] presented the first approximation scheme for bin packing. Karmarkar
and Karp [10] gave an algorithm which uses at most cost(σ) + log2(cost(σ)) bins.

The problem of rectangle packing, which is a generalization of square packing where the items to be
packed are rectangles, was first introduced by Chung, Garey and Johnson [3]. Caprara [2] presented an
algorithm with approximation ratio Π∞. For square packing, Ferreira, Miyazawa and Wakabayashi give a
1.988-approximation algorithm [8]. Approximation schemes were presented by Bansal and Sviridenko [1]
and Correa and Kenyon [5] independently.

A variation on this problem was considered by Schiermeyer [13] and Steinberg [15]. They studied the
problem of packing rectangles into a strip with unit width and unbounded height so as to minimize the total
height of the packing, and independently gave algorithms with an absolute worst-case ratio of 2.

Leung et al. [11] showed that it is NP-hard to determine whether or not a given set of squares can be
packed in a single bin. This implies that there cannot be a polynomial-time algorithm with an absolute
worst-case ratio less than 2, unless P = NP. Such an algorithm could be used to determine (in polynomial
time) whether a set of squares fits into a single bin: for a given set of items, if that algorithm packs them into
two bins, they cannot be packed in a single bin because the absolute worst-case ratio is strictly less than 2.

Our Result: We present an algorithm for square packing with an absolute worst-case ratio of 2, which is
optimal provided P 6= NP.

2 Subroutines for the algorithm

We classify items according to their size. Huge items have size greater than 2/3. Big items have size in
(1/2, 2/3]. Medium-sized items have size in (1/3, 1/2]. Finally, small items have size at most 1/3.

All the non-small items will be packed using the algorithm FIRST FIT DECREASING SIZE (FFDS). This
algorithm works as follows. First, huge and big items are packed into bins: one item per bin, in order of
increasing size. Each item is placed in a corner of its bin. This gives a list B of bins. Next, the medium-sized
items are sorted in order of decreasing size, giving a list L′.

The algorithm now does the following repeatedly. It checks whether the first three items of L′ can be
packed together with the first bin in B, i.e. the one that contains the smallest big item. If the three items
fit there, they are placed there; otherwise the first four items from L′ are put in a new, empty bin. The
packed items are then removed from L′, the first bin is removed from B if it was used to pack them, and the
algorithm continues in the same way. If B = ∅ at some point, the remaining items in L′ are packed four to
a bin in new bins, until all items are packed.

Ferreira, Miyazawa, and Wakabayashi [8] define FFDS and prove the following.

Lemma 1 (Ferreira, Miyazawa, Wakabayashi [8]) Let L be a list of squares that all have size greater
than 1/3. Then the algorithm FFDS applied to L generates a packing where each bin, except possibly one,
contains

• One big or huge item and no medium-sized items, or

• One big item and three medium-sized items, or

• Four medium-sized items

The remaining bin, if there is one, contains at most three items, including at most one big item. The packing
that FFDS generates is an optimal packing for L.

2



To pack the small items, we will use the algorithm NEXT FIT DECREASING (NFD) as a subroutine.
The version of the algorithm considered here packs squares into a rectangle of size a × b. The idea of this
algorithm is very simple. First we sort the squares into non-increasing order. We pack items into slices. The
width of a slice is b. We use NEXT FIT on the sorted list of items, considering the slices as bins. When
a new slice is allocated, its height is set equal to the height of the first item placed in it. Since the items
are packed in order of non-increasing size, subsequent items fit in the slice. Slices are allocated from the
rectangle going from bottom to top. The algorithm halts either when all items are packed, or when it is
impossible to allocate a slice. In the later case, some items remain unpacked.

Meir and Moser [12] introduce NEXT FIT DECREASING and prove the following Lemma:

Lemma 2 (Meir & Moser [12]) Let L be a list of squares with sides x1 ≥ x2 ≥ . . . Then L can be packed
in a rectangle of height a ≥ x1 and width b ≥ x1 using NEXT FIT DECREASING if one of the following
conditions is satisfied:

• the total area of items in L is at most x2

1
+ (a − x1)(b − x1).

• the total area of items in L is at most ab/2.

3 Algorithm

In this section, we give a detailed description of the algorithm. We start by applying the algorithm FFDS
from [8] to the items of size greater than 1/3. After this, only the small items remain to be packed. These
items are packed in three steps. If at some point during these three steps, all small items are already packed,
the algorithm halts.

1. Bins containing only a big item and no medium-sized items are filled further with small items.

2. A bin containing at most three medium-sized items, or a big item and at most two medium-sized
items, is used if it exists. There can be at most one such bin by Lemma 1.

3. Finally, if there are still small items left, they are packed into bins by themselves.

The details of these three steps are described below.

Step 1 Bins with one big item, but no medium-sized items. The big item is placed into the lower left corner
of the bin. Denote its size by x. The remaining area can be divided into two rectangles, one of dimensions 1
by 1−x at the top of the bin and one of dimensions 1−x by x next to the big item. Use Next Fit Decreasing
to pack the first rectangle. Continue until an item can no longer be placed, place that item in the second
rectangle. Note that this is possible since the big item has size at most 2/3 and small items have size at most
1/3.

Step 2A A bin with only one medium-sized item. Pack items as in Step 1, the medium-sized item in the
lower left corner.

Step 2B A bin with two items, at least one medium-sized. Place the largest item, of size x1, in the lower
left corner of the bin. Place the second largest item next to it, aligned with the bottom of the bin and as far
to the left as possible. There is an unoccupied region of dimensions 1 by 1 − x1 at the top of the bin. Pack
small items into this region using NFD.

3



Step 2C A bin with three items, at least two medium-sized. Place the first two items as in Step 2B. Place
the third item, of size x3, on top of the first one, aligned with the left edge of the bin and as far down as
possible. This leaves an unoccupied region of dimensions 1−x3 by 1−x1 in the top right corner of the bin.
Pack small items into this region using NFD.

Step 3 Bins with only small items. Pack items into new bins using NFD, opening a new bin whenever
items can no longer be placed in the current bin.

4 Worst-case ratio

Lemma 3 If there are any unpacked small items left after Step 2, each bin that is packed so far contains a
total area of at least 4/9.

Proof The lemma clearly holds for any bins with huge items.
Bins that are packed in Step 1 or 2 are packed exactly as in the proof of Lemma 4.3 in [14]. Step 1 and

2A correspond to Case 2 from that proof, Step 2B corresponds to Case 4 and 2C corresponds to Case 5.
It follows immediately from that proof that in all cases, the used area is at least 4/9. �

Lemma 4 Consider a bin that is packed in Step 3. If after packing this bin, there are still unpacked small
items left, it contains a total area of at least 9/16.

Proof We distinguish between cases. Since all items have size at most 1/3, at least nine items can be
packed together in the bin, and NFD allocates at least three slices.

Case 1 The first slice contains at least four items.
Denote the size of the largest item by x, the size of the largest item in the second slice by y and the size

of the first item that can no longer be placed by z. Denote the total area of items starting from the second
slice by f . By Lemma 2, we have f + z2 > y2 + (1− y)(1− x− y). Therefore in the entire bin we pack at
least

x2 + 4y2 + (1 − y)(1 − x − y) − z2 ≥ x2 + 3y2 + (1 − y)(1 − x − y) = g.

We have ∂g
∂x

= 2x + y − 1, which is negative for 0 ≤ x < 1/3 and 0 ≤ y ≤ 1/3. We find that g has a
minimum of 29/48 > 9/16 for {(x, y) ∈ R

2|0 ≤ x ≤ 1/3, 0 ≤ y ≤ 1/3}, which is attained for x = 1/3
and y = 5/24.

In the remaining cases, the four largest items do not fit next to each other in a bin.

Case 2 The first slice contains three items, but the second slice contains at least four items.
Denote the sizes of the first items in the first three slices by x, y and z, respectively. Denote the sizes of

the other items in the first slice by x1, x2. Again using Lemma 2, we pack at least

x2 + x2

1 + x2

2 + y2 + 3z2 + (1 − z)(1 − x − y − z).

We are interested in its minimum under the conditions that 0 < z ≤ y ≤ x2 ≤ x1 ≤ x ≤ 1/3 and
x + x1 + x2 + y ≥ 1. By distinguishing between the cases y ≤ 2/9 and y > 2/9, we find that this function
has a minimum of 743/1296 > 0.5733 > 9/16 which is attained for x = 1/3, x1 = x2 = y = 2/9 and
z = 13/72.

4



Case 3 The first two slices both contain three items.
Denote the size of the largest item by x, the size of the largest item in the second slice by y and the size

of the second largest item in the second slice by z. By Lemma 2, any set of squares with total area at most
(1−x−y)/2 can be packed by NFD starting from the third slice. Thus NFD packs at least (1−x−y)/2−z2

in that region, and in total at least

x2 + 3y2 + z2 + (1 − x − y)/2.

We have x > 1/4, y > 1/4, and z > (1 − y)/3 since there are only three items in the first two slices.
The expression is monotonically increasing in x, y and z on this domain, and we find that it is at least 9/16
(attained for x = y = z = 1/4). �

Theorem 1 The algorithm has an absolute worst-case ratio of 2.

Proof Denote the number of bins with a huge item by h, the number of bins that have a big item (but no
medium-sized items) by b, the number of bins with medium-sized items (and possibly a big item) by m and
the number of bins with (only) small items of total area at least 9/16 by s. Our algorithm may generate
one bin (the last one) that has only small items but with total area less than 9/16. Thus the number of bins
produced by the algorithm is at most

h + b + m + s + 1.

Since FFDS is an optimal algorithm, for the optimal solution OPT we find OPT ≥ h + b + m. Thus as
long as s + 1 ≤ h + b + m, our algorithm uses at most twice as many bins as an optimal solution.

Suppose s ≥ h + b + m. First of all, if h + b + m = 0, then by Lemma 4 we have OPT ≥ 9

16
s. If s = 0,

then OPT = 1 (assuming nonzero input) and the algorithm is optimal. Otherwise, OPT > s/2, and therefore
OPT ≥ (s + 1)/2.

Suppose s ≥ h + b + m ≥ 1. This implies that there are bins packed with only small items. In other
words, we do not run out of items while packing small items in Steps 1 or 2. Lemma 3 guarantees that in
this case, all bins packed so far contain a total area of at least 4/9. Furthermore, all bins with only small
items, except possibly the last one, have total area at least 9/16 by Lemma 4.

Thus in the case that s ≥ h + b + m, each bin except possibly the last one is on average strictly more
than half full, since 4/9 + 9/16 > 1 and s ≥ 1. (Note that if the last bin with only small items does not
contain at least an area of 9/16, it is not counted in s.) This implies that any packing of this input requires
strictly more than (h+ b+m+ s)/2 bins, and therefore at least (h+ b+m+ s+1)/2 bins. This concludes
the proof. �

References

[1] Nikhil Bansal and Maxim Sviridenko. New approximability and inapproximability results for 2-
dimensional packing. In Proceedings of the 15th Annual Symposium on Discrete Algorithms, pages
189–196. ACM/SIAM, 2004.

[2] Alberto Caprara. Packing 2-dimensional bins in harmony. In Proc. 43th IEEE Symp. on Found. of
Comp. Science, pages 490–499, 2002.

[3] Fan R. K. Chung, Michael R. Garey, and David S. Johnson. On packing two-dimensional bins. SIAM
Journal on Algebraic and Discrete Methods, 3:66–76, 1982.

5



[4] Edward G. Coffman, Michael R. Garey, and David S. Johnson. Approximation algorithms for bin
packing: a survey. In D. Hochbaum, editor, Approximation algorithms. PWS Publishing Company,
1997.

[5] Jose Correa and Claire Kenyon. Approximation schemes for multidimensional packing. In Proceed-
ings of the 15th ACM/SIAM Symposium on Discrete Algorithms, pages 179–188. ACM/SIAM, 2004.

[6] János Csirik and Gerhard J. Woeginger. On-line packing and covering problems. In A. Fiat and
G. J. Woeginger, editors, Online Algorithms: The State of the Art, volume 1442 of Lecture Notes in
Computer Science, pages 147–177. Springer-Verlag, 1998.

[7] Wenceslas Fernandez de la Vega and George S. Lueker. Bin packing can be solved within 1 + ε in
linear time. Combinatorica, 1:349–355, 1981.

[8] Carlos E. Ferreira, Flavio K. Miyazawa, and Yoshiko Wakabayashi. Packing squares into squares.
Pesquisa Operacional, 19(2):223–237, 1999.

[9] Michael R. Garey, Ronald L. Graham, and Jeffrey D. Ullman. Worst-case analysis of memory allo-
cation algorithms. In Proceedings of the Fourth Annual ACM Symposium on Theory of Computing,
pages 143–150. ACM, 1972.

[10] Narendra Karmarkar and Richard M. Karp. An efficient approximation scheme for the one-dimensional
bin-packing problem. In Proceedings of the 23rd Annual Symposium on Foundations of Computer
Science, pages 312–320, 1982.

[11] J.Y.T. Leung, T.W. Lam, C.S. Wong, G.H. Young, and F.Y.L. Chin. Packing squares into a square.
Journal on Parallel and Distributed Computing, 10:271–275, 1990.

[12] A. Meir and L. Moser. On packing of squares and cubes. Journal of Combinatorial Theory, 5:126–134,
1968.

[13] Ingo Schiermeyer. Reverse-fit: a 2-optimal algorithm for packing rectangles. In Algorithms - ESA ’94,
Proceedings Second Annual European Symposium, pages 290–299, 1994.

[14] Steve S. Seiden and Rob van Stee. New bounds for multi-dimensional packing. Algorithmica,
36(3):261–293, 2003.

[15] A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM Journal on Com-
puting, 26(2):401–409, April 1997.

6


