
On-line scheduling

and bin packing

On-line scheduling
and bin packing

PROEFSCHRIFT

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus Dr. D.D. Breimer,

hoogleraar in de faculteit der Wiskunde en

Natuurwetenschappen en die der Geneeskunde,

volgens besluit van het College voor Promoties

te verdedigen op woensdag 8 mei 2002

te klokke 14.15 uur

door

Rob van Stee

geboren te Vlissingen

in 1973

Promotiecommissie

Promotores: Prof.dr.ir. J.A. La Poutré (Technische Universiteit Eindhoven / CWI)

Prof.dr. J.N. Kok

Referent: Prof.dr. K. Pruhs (University of Pittsburgh)

Overige leden: Prof.dr. J. van Leeuwen (Universiteit Utrecht)

Prof.dr. G. Rozenberg

Prof.dr. H.A.G. Wijshoff

Prof.dr. G. Woeginger (Universiteit Twente)

The work in this thesis has been carried out under the auspices of the research school IPA

(Institute for Programming research and Algorithmics). IPA dissertation series 2002-09.

Work carried out at Centre for Mathematics and Computer Science (CWI), Amsterdam, and

Leiden University.

Online scheduling and bin packing

Rob van Stee

ISBN 90-77017-60-7

Preface

The research for this thesis was performed at Leiden University from August 1996 until August

1997, and at the Centre for Mathematics and Computer Science (CWI) in Amsterdam from

September 1997 until August 2001. It was supervised by Han La Poutré from the CWI and

Joost Kok from Leiden University.

I am grateful to the many people for the help and support they have offered me during this

time, and I cannot list them all here.

I had a very enjoyable time at the CWI in the group SEN4, and I am grateful to Floortje,

Sander, Enrico, David, Michiel, Pieter-Jan, Dimitri, Koye, Erich, Bill, Jeroen and Simona for

this. Looking back on this time it seems even better to me now than it did then, but maybe it is

often the case that you do not enjoy good things enough while they last. It was great.

My coauthors, Han La Poutré, Leah Epstein, Steve Seiden, Yossi Azar, Eric Bach, Joan

Boyar, Lene Monrad Favrholdt, Tao Jiang, Kim Skak Larsen, and Guo-Hui Lin, helped during

research and in presenting the work.

I am also grateful to my family and friends for their interest and support - even if some of

them did keep asking when I would finally get my Master’s degree! Dit is geen scriptie. . .

I would especially like to thank my parents for all they have done for me and still do. Al-

though I feel that I can never thank them enough, I can certainly try. You always stand behind

me.

Rob van Stee

Freiburg, 2002.

iii

iv

Contents

1 Introduction 1

1.1 On-line algorithms . 1

1.2 Problems considered in this thesis . 3

1.3 Extensions to competitive analysis . 5

1.4 Outline of the thesis . 7

2 Minimizing the total flow time 11

2.1 Introduction . 11

2.2 Algorithm LEVELS . 12

2.3 Lower bounds . 17

2.4 Hard deadlines . 20

2.5 Conclusions . 21

3 Resource augmentation in load balancing 23

3.1 Introduction . 23

3.2 Permanent tasks . 24

3.2.1 Algorithm BUCKETS . 25

3.2.2 Lower bounds . 27

3.3 Temporary tasks . 31

3.4 Conclusions . 37

4 Running a job on partly available machines 39

4.1 Introduction . 39

4.2 The model . 41

4.3 The basic case . 42

4.3.1 The optimal policy . 43

4.3.2 Restarting and availability . 45

4.4 Two jobs . 45

v

vi Contents

4.4.1 Calculations . 46

4.5 � Interrupting jobs . 48

4.6 General Markov chains . 48

4.6.1 Definitions and notations . 49

4.6.2 Nodes should be unblocked exactly once 50

4.6.3 Thresholds . 51

4.6.4 Calculating thresholds . 53

4.6.5 The algorithm . 54

4.6.6 On the use of this strategy . 56

4.7 Conclusions . 56

5 Partial servicing of on-line jobs 57

5.1 Introduction . 57

5.2 Different job sizes . 59

5.2.1 Two machines . 59

5.2.2 ����� machines . 61

5.3 Uniform job sizes . 63

5.3.1 Lower bounds . 63

5.3.2 Algorithm SL . 64

5.4 Analysis of Algorithm SL . 65

5.4.1 One critical interval . 67

5.4.2 Two or more critical intervals . 71

5.4.3 The competitive ratio of SL . 74

5.5 Extensions of this model . 74

5.5.1 Fixed levels . 74

5.5.2 Non-linear rewards . 75

5.6 Conclusions . 75

6 Minimizing the maximum starting time 77

6.1 Introduction . 77

6.2 The greedy algorithm . 80

6.3 Algorithm BALANCE . 82

6.4 Lower bounds . 87

6.5 Related machines . 89

6.6 Resource augmentation . 90

6.7 Conclusions . 91

Contents vii

7 Variable-sized on-line bin-packing 93
7.1 Introduction . 93

7.2 Two algorithms . 95

7.3 Lower bounds . 101

7.4 The lower bound sequences . 105

7.5 Conclusions . 111

Publications 113

Samenvatting 123

Curriculum vitae 125

viii Contents

Chapter 1

Introduction

This thesis is concerned with various (scheduling) problems in which the information about the

problem arrives in parts, and decisions have to be made while the information is still incomplete.

In classical (scheduling) problems it is assumed that all information about the problem is known

in advance. However, this assumption is not always realistic: in many cases, information arrives

incrementally. In such cases, an on-line algorithm is needed, which can make decisions without

knowing the complete input.

A natural and important example of a problem with incomplete information is paging, the

problem of maintaining a small cache of fast memory in a computer system. In this problem, a

controller has to decide which page to eject from the cache when a program requests a page that

is not currently in the cache. If future requests are known, this is solved optimally by ejecting

the page which will be requested the last among all pages in the cache. However, in real-life

applications the sequence of future requests will not be known, and the decision has to be made

in some other way. This problem has received a lot of attention over the years [2, 11, 14, 24, 50,

70].

In section 1.1, we discuss on-line algorithms, and we give an overview of the problems

treated in this thesis in section 1.2. In section 1.3 we discuss two extensions of competitive

analysis: allowing the use of randomization, and giving the on-line algorithm more resources.

Finally, we give the outline of the thesis in section 1.4.

1.1 On-line algorithms

Probabilistic analysis One way to approach on-line problems is to make (probabilistic) as-

sumptions about the unknown information and use those assumptions to define heuristics for

the problem. These heuristics can then be studied using an average-case analysis, which con-

siders the average performance over all possible inputs. However, it can be difficult to make

1

2 Chapter 1. Introduction

good assumptions about the future inputs. Also, heuristics based on average-case analysis could

perform very badly in some extreme cases.

Worst-case analysis Another way to study these problems is to focus on the worst-case be-

haviour of algorithms. Since the cost for a particular instance may be arbitrarily high, the be-

haviour of an algorithm should be compared to other algorithms to get meaningful results. In

particular, it is important to know how much worse an algorithm performs relative to an optimal

algorithm, in other words, how much worse it is than the optimal solution for any given prob-

lem instance. This kind of analysis is known as competitive analysis, which was introduced by

Sleator and Tarjan [70]. It involves comparing the performance of an on-line algorithm to the

performance of an off-line algorithm that knows the entire problem instance in advance. We do

not impose limits on the computational complexity of either the off-line or the on-line algorithm.

Therefore the off-line algorithm can always generate an optimal solution.

This type of analysis can be viewed as a game between two players, an on-line algorithm

and an adversary that both generates the problem instance and serves it as an off-line algorithm.

The adversary tries to maximize its performance relative to the on-line algorithm.

Many problems have been studied using competitive analysis. Apart from the paging prob-

lem, these include a variety of scheduling problems, bin packing, routing and admission control

on a network [35, 13, 4, 41, 3, 36, 6].

We will apply both of the above methods in this thesis, but the main focus will be on worst-

case analysis. We now introduce the competitive ratio.

The competitive ratio We consider both algorithms that seek to minimize a cost and algo-

rithms that seek to maximize a benefit. We denote the cost or benefit of an algorithm
�

on an

input � by
��� ��� . An optimal off-line algorithm is denoted by OPT. (There can be more than one

optimal off-line algorithm for a given problem.)

We compare an on-line algorithm
�

to OPT using the competitive ratio [70], which for

algorithms that try to minimize a certain cost is defined as follows:

� ��� �	��

����
��� ���

OPT
� ���

where the supremum is taken over all possible inputs. For algorithms that try to maximize a

certain benefit, we define the competitive ratio as

� ��� �	��
�����
OPT

� ������ �����
In both cases, the best on-line algorithm for a problem is the one that has the lowest possible

competitive ratio, and this ratio is at least 1.

1.2 Problems considered in this thesis 3

The competitive ratio of a problem is defined as
������� � � � � �

The competitive ratio is clearly a worst-case measure, and by determining the competitive

ratio of a certain problem, one can determine the benefit of knowing the entire problem instance

in advance. An advantage of such a comparison is that if one can prove that an algorithm has

a competitive ratio of
�

, then any other algorithm can do at most a factor of
�

better on any

input.

1.2 Problems considered in this thesis

We will now highlight the problem areas studied in this thesis.

On-line scheduling In this problem, � jobs with different processing requirements are to be

scheduled on � parallel identical machines. Jobs arrive over time and each job has to be assigned

to one of the machines and run there continuously until it is completed. Each machine can only

run one job at a time. The on-line algorithm only becomes aware of a job when it arrives.

We also consider the case where the jobs arrive one by one (in a list) and each job arrives

only after the previous one has been assigned.

The input is a job sequence � ���
	���
 � � �
�	���� . Each job 	�� arrives at its release time ��� and

needs to be run for ��� time on one of the machines (��� is the size or weight of 	��). 	�� is completed

after it has been running for ��� time, and the time at which this happens is its completion time� � . We will also be interested in the flow time ��� of 	�� , which is defined as ��� � � �! "��� : the time

that job 	�� exists in the system (without being completed).

The output of an algorithm is a schedule # that for each job determines when and on which

machine it is run. We denote the starting time of job 	$� in schedule # by %&� � # � , and its flow time

in # by ��� � # �	� � � � #��' (�)� .
We can allow an algorithm to preempt a job, halting its execution and continuing it later, pos-

sibly on a different machine. We also consider the situation where each job must be completed

by a certain deadline (otherwise the algorithm fails). If jobs have deadlines, the deadline of job

	�� is denoted by *$� . Furthermore, we will also consider related machines, where each machine

has a speed which determines how long it takes to complete a job: on a machine with speed + , a

job of size � completes in �-,�+ time.

We will discuss several criteria by which machine scheduling algorithms can be measured.

This is first of all the maximum completion time .0/�1 � � , the time at which the last job completes.

This is also known as the makespan. In the case that jobs arrive in a list in stead of over time, the

problem of minimizing the maximum makespan is equivalent to minimizing the maximum load

over all the machines: load balancing. Here a job size does not represent the time that the job is

4 Chapter 1. Introduction

running, but rather the amount that this job adds to the load of a machine when it is assigned to

it.

We also consider the problem of minimizing the maximum starting time .0/�1 % � of jobs

arriving in a list. Here the jobs are assigned to machines while the list is processed, and then the

jobs are run on the machines in the order in which they were assigned to them.

For problems where jobs arrive over time, we also consider the total completion time
� � �

and the total flow time
� ��� . The last measure is applicable to systems where the load is propor-

tional to the total number of bits (data) that exist in the system over time (both of running jobs

and of waiting jobs).

Finally, we will consider the total earnings criterion. Here a job 	
� has to start immediately

when it arrives, at time ��� , but 	�� does not have to be scheduled completely and the benefit to the

algorithm is the time it schedules a job. The algorithm may also reject a job completely.

Known results Minimizing the makespan for the case that the jobs arrive one by one (load

balancing) was considered in a series of papers [41, 42, 9, 49, 3]. Graham [41] introduced the

algorithm GREEDY. This algorithm schedules each arriving job on the least loaded machine.

The load of a machine is the sum of the loads of the jobs that are assigned to it. Graham showed

that GREEDY has a competitive ratio of � �� , � , which is optimal for � � � and � ��� .
Currently, the best upper bound for general � is ����� � �	��
 � � ��, �
��� ��� ��� due to Fleischer

and Wahl [36] and the best lower bound is � ����� � [40] based on Albers [3].

Chakrabarti, Phillips, Schulz, Shmoys, Stein and Wein [18] gave a 4-competitive algorithm

for minimizing the total completion time on parallel machines when jobs arrive over time, while

Vestjens [72] showed a lower bound of 1.309. For a single machine, Hoogeveen and Vest-

jens [43] gave a 2-competitive on-line algorithm and showed that it is optimal.

For minimizing the total flow time on a single machine, the competitive ratio is � � � � in the

standard version of the problem (no preemptions). When preemptions are allowed, the algorithm

SRPT gives an optimal schedule [56].

For parallel machines, Leonardi and Raz [59] gave a preemptive algorithm with competitive

ratio of � �
���� . ��� � � , �
�� � � which is optimal up to a constant factor, where � is the ratio

between the largest and the smallest possible job size.

Scheduling under availability constraints In this problem, the machines on which jobs are to

be scheduled are not available for use continuously. This has been studied in a number of papers

(see the surveys [57, 64]). Most attention has gone to deterministic availability constraints,

both for the case in which preemptions are allowed and the case in which they are not. Also

the non-resumable case has been studied, in which a job must be restarted (losing all the work

done on that job) if its machine goes down. The job cannot wait for the machine to become

1.3 Extensions to competitive analysis 5

available again. In [23], stochastic scheduling is studied: here the job sizes are stochastic and

the availability periods of the machines are deterministic.

We consider a model that is opposite to stochastic scheduling. We have a collection of

machines. A machine may become unavailable, but the scheduler does not know in advance

when this will happen. A job 	 needs to be scheduled on at most one machine at a time. At the

start, the scheduler must pick one machine to run the job on. If the machine becomes temporarily

unavailable, the scheduler is allowed to move the job and restart it from scratch on a different

machine. The goal is to minimize the expected completion time of the job. This was mentioned

as an open problem in [64].

We study the case where the availability of the machines is captured by a Markov chain.

This has similarities with the modeling in [51], where the paging problem (see section 1.1) was

addressed in a similar way, i. e. by modeling the behaviour of the program that requests the

pages by a Markov chain.

Bin packing This is one of the oldest and most well-studied problems in computer science [25,

28]. In this problem, we receive a sequence � of pieces � ��
 ���
 � � �

� � . Each piece has a fixed

size in
� ��
 ��� . We have an infinite number of bins each with capacity 1. Each piece must be

assigned to a bin. Further, the sum of the sizes of the pieces assigned to any bin may not exceed

its capacity. The goal is to minimize the number of bins used.

Known results The classical on-line bin packing problem, where the pieces arrive on-line (one

by one), was first investigated by Johnson [44, 45]. He showed that the NEXT FIT algorithm

has a competitive ratio of 2. Subsequently, it was shown by Johnson, Demers, Ullman, Garey

and Graham that the FIRST FIT algorithm has a competitive ratio of ������ [46]. Yao presented

REVISED FIRST FIT and showed that it has a competitive ratio of 	
 , and further showed that no

on-line algorithm has a competitive ratio less than

 � [75].

Ramanan, Brown, Lee and Lee [62] designed the algorithm MODIFIED HARMONIC and

showed it has a competitive ratio of approximately 1.616. Currently, the best known algorithm

is due to Seiden [66] and has a competitive ratio of at most 1.58889. Brown and Liang inde-

pendently improved the lower bound to 1.53635 [17, 60]. This was subsequently improved by

Van Vliet to 1.54014 [71]. Chandra [19] shows that the preceding lower bounds also apply to

randomized algorithms.

1.3 Extensions to competitive analysis

A disadvantage of competitive analysis is that it sometimes gives an unrealistically bad impres-

sion of an algorithm, in that algorithms that perform well in practice have a high competitive

6 Chapter 1. Introduction

ratio. Furthermore, it sometimes fails to differentiate between algorithms whose performance is

observed empirically to be very different. An example of both of these shortcomings is given by

the paging algorithms LRU and FIFO. These both have a competitive ratio of
�
, where

�
is the

number of pages in the system, although LRU performs much better than FIFO and much better

than
�

times optimal in practice. A more sophisticated analysis using access graphs was needed

to differentiate between these algorithms [24].

We discuss two extensions to the standard competitive analysis.

Randomization Perhaps the most important and best-known extension is allowing the on-line

algorithm to use random bits in its decision making. In this case we can only consider expec-

tations of costs or benefits. This can improve the competitive ratio markedly. The competitive

ratio for cost minimization problems is defined as

� ��� �	��

� ��
� ����� ��� �
OPT

� ���
and an analogous definition can be given for maximization problems.

In the analysis of randomized algorithms, it is possible to distinguish between three kinds

of adversaries. For a detailed discussion, see e. g. [13]. We will use only the most common

oblivious adversary, which does not know the (subsequent and actual) actions of the on-line

algorithm and constructs the request sequence in advance, knowing only the description of the

on-line algorithm.

Resource augmentation This is a general method to circumvent the shortcomings mentioned

above, introduced in 1995 by Kalyanasundaram and Pruhs [47]. They compare an on-line

scheduling algorithm that has machines of speed + � � to an off-line algorithm that has ma-

chines of speed 1; this means that the on-line algorithm completes each job in ��, + the time that

it takes the off-line algorithm to run it. For certain scheduling problems with unbounded com-

petitive ratio, they show that it is possible to attain a good competitive ratio if + is slightly larger

than 1.

Resource augmentation has been applied to a number of problems. It was already used in

1985, in the paper where the competitive ratio was introduced [70]: here the performance of

some paging algorithms was studied, where the on-line algorithm has more memory than the

optimal off-line algorithm has. Since 1997, in several machine scheduling and load balancing

problems [12, 32, 47, 48, 55, 61] the effect of adding more or faster machines has been studied.

An important case is the case where the on-line algorithm has some constant number � of

machines for every machine that the off-line algorithm has. Such on-line algorithms are also

called � -machine algorithms, since they use � times as many machines as the optimal off-line

1.4 Outline of the thesis 7

algorithm. Similarly, an algorithm that uses the same number of machines as the off-line algo-

rithm, but uses machines which are + � � times faster, is called an + -speed algorithm.

For a job sequence � and an on-line algorithm
�

, denote the total cost of � (using a certain

cost criterion) in the schedule of
�

on
�

machines by
��� � ��� . Denote the optimal total cost

for � on � machines by OPT � � ��� . Then the competitive ratio using resource augmentation is

defined as � ��� � ��� �	��
�����
��� � ���

OPT � � ���

and an analogous definition can be given for maximization problems.

For the problem of minimizing the makespan, Brehob et al [16] showed in 2000 that no mat-

ter how many machines the on-line algorithm has, it can never perform optimally:
� ��� � � � � � �

for all
�
� ��� � . However, one may expect that for reasonable algorithms

� ��� � ��� � would

approach 1 when 	 � � , � increases. In fact, [16] showed that GREEDY has a competitive

ratio which approaches � in a rate depending linearly on � ,
	 .

Phillips, Stein, Torng and Wein [61] study the problem of minimizing the total flow time

using resource augmentation. They give algorithms with augmentation on the number of ma-

chines. These are an � �
 ��� � � -machine algorithm (which has a competitive ratio � ��� � � �) and an

� �
 ��� � � -machine algorithm (which achieves the competitive ratio �), where � is the maximum

ratio between job sizes. Both algorithms are valid for every � .

1.4 Outline of the thesis

Having discussed the topics of this thesis, we now give an outline of the thesis and its main

results.

In chapter 2, we consider the problem of minimizing the total flow time. On a single ma-

chine, the competitive ratio of this problem is � � � � . Examining the effect of resource augmen-

tation for this problem, we give an algorithm with competitive ratio � � � �
��� � for the case that the

off-line algorithm has a single machine and show that no algorithm can do better. Here 	 is the

ratio between the number of on-line and the number of off-line machines.

In Chapter 3, we consider the effect of resource augmentation on the problem of minimizing

the makespan in on-line scheduling when jobs arrive one by one. We show that the competitive

ratio of an on-line algorithm decays at best exponentially in 	 , and we give an algorithm that

achieves such a competitive ratio.

In Chapter 4 we consider scheduling with availability constraints, where the availability

of the machines is modeled using Markov chains. The objective is to minimize the expected

completion time of a job. For several types of Markov chains, we present elegant and optimal

policies.

8 Chapter 1. Introduction

Next, in Chapter 5 we consider the problem of scheduling jobs that do not have to be sched-

uled completely: the scheduler also gains something for jobs that are not completely scheduled.

However, jobs must be executed immediately when they arrive, or not at all. We adjust a known

algorithm for another problem to this problem for the case that jobs can have different sizes, and

present a new algorithm and a lower bound for the case where all jobs have the same size.

In Chapter 6, we consider the problem of minimizing the maximum starting time of jobs

arriving in a list. We show that the greedy algorithm has a competitive ratio which is logarithmic

in the number of machines, and give a constant competitive algorithm. We also give tight bounds

on the amount of resource augmentation (in the form of extra machines) required to obtain a

competitive ratio of 1.

The last part of this thesis, Chapter 7, considers variable-sized bin packing, where the on-line

algorithm has several bin sizes that it can choose from and tries to minimize the total size of the

used bins. We present the first lower bounds for this problem and give algorithms that are better

than VARIABLE HARMONIC [27].

An overview of the most important notations is given in Table 1.1. An overview of where

the chapters in this thesis were previously published is given on page 113.

1.4 Outline of the thesis 9

Table 1.1: An overview of the notation

�
an on-line algorithm

� input sequence for the algorithm, e. g. a job sequence��� � � cost or benefit of algorithm
�

on input �
OPT optimal off-line algorithm� � � � competitive ratio of

�
� number of items in �
� number of machines (or number of off-line machines)

	 ratio between number of on-line and number of off-line machines

� ratio between biggest and smallest possible job size�
number of on-line machines (if not equal to �)

	 � the
�
-th job

� � its release time

��� its size or weight

*�� its deadline

� � its flow time� � its completion time

%!� its starting time

10 Chapter 1. Introduction

Chapter 2

Minimizing the total flow time using
resource augmentation

We consider the problem of minimizing the total flow time using resource augmentation. We

design an algorithm of competitive ratio � � . � � � � �
�
�
 � �
��� ��� if it is compared to an off-line al-

gorithm that has only one machine. Here � is the maximum ratio between two job sizes, � is the

number of jobs in the sequence and 	 is the ratio between the number of on-line and the number

of off-line machines. (Thus in this chapter, 	 is the number of off-line machines.) Furthermore,

we provide a lower bound which shows that the algorithm is optimal up to a constant factor for

any constant 	 . The algorithm works for a hard version of the problem where the sizes of the

smallest and the largest jobs are not known in advance, only � is known. Our results give an

exact trade-off between the resource augmentation and the competitive ratio.

2.1 Introduction

In this chapter, we consider on-line scheduling, where the goal is to minimize the total flow

time. This is a well-known and hard problem, which has been studied widely both in on-line

and in off-line environments [7, 52, 59]. Recall that the flow time � � of a job 	 � is defined as the

difference between its completion time � � and its release time � � , which is the time at which 	 �

arrives. The total flow time is the sum of the flow times of all the jobs in a sequence. Note that

the problem of minimizing the total flow time is equivalent to minimizing the avarage flow time,

since they only differ by a factor of � , the number of jobs in the sequence.

We give an on-line algorithm LEVELS that uses resource augmentation and has a competitive

ratio of
� � � � � LEVELS � � � � . ��� � � �
�
�
 � �
��� ��� , where �
 	 and � are defined as in Table 1.1;

for a definition of
� � � � � � � , where

�
is an on-line algorithm, see Section 1.3. We also show

11

12 Chapter 2. Minimizing the total flow time

that for all on-line algorithms
�

and number � � of off-line machines we have
� � � � � � � � ��������	��
 � �
�
� � � �������
 � � � � � � � Note that this is independent of � � .

This shows that LEVELS is optimal up to a constant factor for any constant 	 against an

adversary on one machine. Furthermore, LEVELS works for a hard version of this problem

where the sizes of the smallest and the largest jobs are not known in advance; only � is known

in advance. The algorithm in [61] for minimizing the total flow time works only if the job size

limits are known in advance.

In [39], a related problem on a network of links is considered. It immediately follows from

our lower bounds, that any constant competitive algorithm has a polylogarithmic number of

machines. More precisely, if
�

has a constant competitive ratio and 	 � machines, while OPT

has � machines, we have 	 � ��� � � ���
���� ��
 � � � ���
� � � ����� ���
���� ��
 � � � ���! . This result can also be deduced from

Theorem 10 in [39]. However, using their proof for the general lower bound would give only

an exponent of �� � . Improving the exponent to be the tight exponent �� is non-trivial. Our results

imply that by choosing the amount of resource augmentation, the competitive ratio is fixed.

We also adapt the lower bound for the case where the on-line algorithm has faster machines

than the off-line algorithm. This results in a lower bound of
� � � �
�
 � �#" � � on the speed of on-line

machines necessary to obtain a constant competitive ratio, if 	 � � and � is the number of

(off-line and on-line) machines.

We also consider the following scheduling problem studied in [31, 61]. Each job 	 � has a

deadline * � . Instead of minimizing the flow time, we require that each job is finished by its

deadline, effectively limiting the flow time of job 	 � to * � � � . The goal is to complete all

jobs on time. For this problem, we give lower bounds on the speed and the number of machines

required for a non-preemptive on-line algorithm to succeed on any sequence.

2.2 Algorithm LEVELS

We begin this section with two preliminary lemmas. We have the following results for the case

where � is not known and the case where OPT has the same number of machines as the on-line

algorithm.

Lemma 2.1 For all on-line algorithms
�

that do not know the number � of jobs in advance, we

have
� � � � � � � � � � � � .

Proof We use a number $ � � � .
One job of size 1 arrives at time 0. When it is started, $ jobs of size ��,%$ arrive with intervals

of � ,%$ during the next 1 time unit. If they are all delayed until time 1, no more jobs arrive and

we are done. The optimal flow time on one machine is 3 and the on-line flow time is � � $ � .

2.2 Algorithm LEVELS 13

On the other hand, if one of those jobs is started while the first job is running, $ jobs of size

��,%$ �
arrive with intervals of � ,%$ �

during the next � ,%$ time. Depending on the decision by the

on-line algorithm, we continue in this way or stop as soon as it delays $ jobs (or reaches the

last machine).

When all machines are in use, the on-line algorithm will have a flow time of � � $ � . �

Lemma 2.2 For all on-line algorithms
�

,
� ��� � ��� �	� � � � , � �

� .

Proof A single unit job arrives at time 0. Let � be the time at which
�

starts this job. Let
� � ��
 ��� � � . For

� � ��
 � � �

��� �� , � jobs of length � are released at time � � � � . It is easy

to see that the optimal total flow time is � � � � whereas the flow time of
�

will be
� � � , � � .

Consequently,
� ��� � � � � � � � � , � �

� �
�

These negative results motivate our study of algorithms that know � and have 	 � � as many

machines as the off-line algorithm. We will now define such an algorithm, called LEVELS.

LEVELS uses a priority queue � � and a variable � � for each machine ��� � � 	 . We initialize

� � �
	 and � � � � (
� � ��
 � � �
).

The idea of LEVELS is to put jobs that are about the same size on the same machine, and

jobs that are (much) smaller on other machines. The reason for this is that it does not matter

very much for the total (or average) flow time if a job has to wait for similar-sized or smaller

jobs to complete, but it is important that jobs should not have to wait too long for jobs that are

larger than they are. This should be avoided as much as possible.

Since LEVELS has 	 machines at its disposal, it tries to put jobs with sizes that are less than

a factor of � � � ���
� apart together on the same machine. Recall that � is the number of jobs.

The variables � � are maintained to determine on which machine a new job should go, based on

its size.

An event is either an arrival of a new job or a completion of a job by a machine.

Algorithm LEVELS

� If a few events occur at the same time, the algorithm first deals with all arrivals before it

deals with job completions.

� On completion of a job on machine
�
, if � ��
��	 , a job of minimum release time among

jobs with minimum processing time in � � is scheduled immediately on machine
�
. (The

job is dequeued from � � .)
� On arrival of job 	 � , let

�
be a minimum index of a machine for which � ������� � . If there

is no such index, take
� � 	 . If machine

�
is idle, 	 � is immediately scheduled on machine

�
, and otherwise, 	 � is enqueued into � � . If � � ��� �
�� � is modified by � ��� � � .

14 Chapter 2. Minimizing the total flow time

time

machine 1

machine 2

machine 3

Figure 2.1: Example of a schedule created by LEVELS

Figure 2.1 shows the schedule that LEVELS creates on 3 machines for an example job se-

quence. We analyze the performance of LEVELS compared to a preemptive off-line algorithm

OPT on a single machine. This also gives us an upper bound of LEVELS against a nonpreemptive

OPT.

Denote the schedule of LEVELS by # . Partition the schedule of each machine into blocks.

A block is a maximal sub-sequence of jobs of non-decreasing sizes, that run on one machine

consecutively, without any idle time. We now introduce some notation.

� Let $ � be the number of blocks in the schedule of LEVELS on machine
�
.

� Let
� � � � be the

�����
block on machine

�
.

� Let � � �
 �
�� � be the index of the � �	� job in block
� � � � .

� Let $ � � � be the number of jobs in
� � � � .

� Let
 � � � be the size of the largest job in blocks
� � � ��
 � � �

� � � � i.e.

 � � � � . / 1��� � �
� .0/�1��� � ������� � ���
 � � � � � �

 � � � � � for all � � � � 	 �

� Let � ��� ���
��� �
� ���
����� � � � � � , i.e. � is the set of all jobs.

Similarly to the proof in [43], we define a pseudo-schedule � on 	 machines, in which job

	 �
 � � � � � � is scheduled on machine
�

at time % �
 � � � � � � � # � �
 � � � � � . Note that � is not necessarily a

valid schedule, since some jobs might be assigned to the same machine at the same time, and

some jobs may start before their arrival times.

2.2 Algorithm LEVELS 15

The amount that jobs are shifted backwards increases with time. Therefore, if there is no

idle time between jobs in # , there is no idle time between them in � either. Note that in � , the

flow time of a job 	 � can be smaller than � � , and even negative.

To analyze the performance of LEVELS, we introduce an extended flow problem. Each job

	 � has two parameters � � and � �� , where � �� � � � . � �� is the pre-release time of job 	 � . Job 	 � may

be assigned to a machine starting from time � �� . The flow time is still defined by the completion

time minus the release time, i.e. � � � � � � � . Changing an input � for the original problem into

an input � � of the extended problem, requires a definition of the values of � �� for all jobs. Clearly,

the optimal total flow time for an input � � of the extended problem is no larger than the optimal

total flow time of � in the original problem.

Let � � be the set of jobs that run on machine
�

in # . We define an instance � �� for the extended

problem. � �� contains the same jobs as ��� . For each 	 ��� � �
 � � remains the same. Define

� �� � . � � � � �
 % �
� � � � . Clearly OPT

� � � � � � ���&� OPT
� � � � � � � ���&� OPT

� � �� � , where OPT
� � � � is the

preemptive optimal off-line cost for the jobs that LEVELS scheduled on machine
�
. We consider

a preemptive optimal off-line schedule � � for � �� on a single machine. In � � , jobs of equal size

are completed in the order of arrival. Ties are broken as in # , the schedule of LEVELS. The

following lemma is similar to [43].

Lemma 2.3 For each job 	 ��� � ��
 � �
� � ��� � � �

� � � .
Proof Since the release times of the jobs are the same in � and � , we only have to show that

in � � , no job starts earlier than it does in � . Assume to the contrary this is not always the case.

Let 	 � be the first job in � � for which % �
� � ���	� % �

� � � . Note that in this case � �� � % �
� � � and

hence � � � % �
� � � . Let � be the end of the last period of idle time before % �

� � � , and let
� � � � be

the block that contains 	 � .

Suppose
 � � � � � � � � . Then all jobs that run on machine
�

from time � until time % �
� � � in

� are either smaller than � � or have the same size, but are released earlier. Moreover, these jobs

do not arrive earlier than time � , hence in �!� they do not run before time � . They do run before

% �
� � � � because they have higher priority, hence % �

� � � � � % �
� � � , a contradiction.

Suppose
 � � � � � � � � . 	 � was available to be run in � during the interval
 � �
 % �
� � � � since

� � � % �
� � � . In # , all jobs running in the interval
 � �
 % �

� # � � are smaller than 	 � (or arrived

before, and have the same size), except for the first one, say 	 ��� . Since in � , all these jobs are

shifted backwards by at least the size of 	 � � , during
 � �
 % �
� � � � only jobs with higher priority

than 	 � are run in � . 	 � is the first job which starts later in � than it does in �&� , so these jobs

occupy the machine until time % �
� � � , hence % �

� � � � % �
� � � � . �

We are now ready to prove the main result of this chapter.

Theorem 2.1
� � � � � LEVELS � � � � � �
��� � .

16 Chapter 2. Minimizing the total flow time

Proof Using Lemma 2.3 we can bound the difference in total flow time between � and # .

Since LEVELS
� 	 �
 � � � � � � �	� � �
 � � � � � � � � � ��
 � � � � �' (� �
 � � � � � � , we have

LEVELS
� � � �

��
���&�

� ��
� �&�

� ��� ��
� �&�

� � �
 � � � � � � � � � �
 � � � � �' "� �
 � � � � � ���
�

�
���
	 ��� ��� ����
��

� � �
 � � � � � � � � � "� �
 � � � � � ��� � �
����	 ��� ��� ����
��

 � � � � �

� OPT
� � � � �

���
	 � � ��� ����
��

 � � � ��� �

Let
 the maximum job size. We show the following properties:

 � � � � � � ��� �
 � � � � � � for each job 	 �
 � � � � � �
 � � � � 	 � (2.1)

 � � � � � �

� � � � for each job 	��
 �
� � � � � (2.2)

Adding both properties together we get

LEVELS
� � � � OPT

� � � � �
� �
	 � � ��� ����������� �

 � � � ��� � �
� �
	 � � ��� ���
��
 � � � � �

� OPT
� � � � � �

� ��	 ��� ��� ���
��
���
 � � � � � � � �

� �
	 � � ��� ���
��

� � � �

� OPT
� � � � � OPT

� � � � ��� OPT
� � �

�
 � � � � �
� � �
� � � � � � OPT

� � �
This holds since OPT

� � � �
 and OPT
� � � is at least the sum of all job sizes, and since � ��� � � .

To prove (2.1) we recall that 	��
 � � � � � � was assigned to machine
�

because it satisfied � � �
��� �
 � � � � � � . If
 � � � ��� � � �
 � � � � � � we are done. Otherwise the job of size
 � � � � � arrived before

	 �
 � � � � � � and hence when 	��
 � � � � � � arrived, � � satisfied � � �
 � � � � � , hence
 � � � � � � � � �
��� �
 � � � � � � .

To prove (2.2) we show by induction that every job 	 � on machine
�

in LEVELS satisfies

� � �
", � � ��� . This is trivial for
� � � . Assume it is true for some machine

� � � , then

at all times � � �
(, � � � � holds. Hence, a job 	 � that was too small for machine
�

satisfied

� � � � � , � �
", � � . This completes the proof.
�

We give a variant of LEVELS with a competitive ratio which depends on � , the ratio between

the size of the largest job and the size of the smallest job.

Algorithm REVISED LEVELS: Run LEVELS with � � � �
�
� .
Theorem 2.2

� � � � � REVISED LEVELS �	� � � � �
��� � .

2.3 Lower bounds 17

Proof The proof is very similar to the proof of Theorem 2.1. The only difference in the proof is

that property (2.1) also holds for machine 	 (this follows from property (2.2) and the definition

of �), hence the competitive ratio is now � � � . �

If we take � � . � � � � �
���
�� �
�
� � in the definition of LEVELS, Theorems 2.1 and 2.2 imply

that it has a competitive ratio of � � . ��� � � ���
�
�� �
�
� � � .

2.3 Lower bounds

We show the following lower bound on the competitive ratio of this problem.

Theorem 2.3 Let
�

be an on-line scheduling algorithm to minimize the total flow time on 	
machines. Then for any � � � � � 	 and sequences consisting of � � � � jobs,

� � � � � � � � �� � � �����
 � � � � � �
�%� .

The idea of the lower bound is to let successively smaller jobs arrive, forcing
�

to start using

a new machine each time, until all its machines are in use. Again, this works because
�

should

try to avoid having jobs wait for jobs that are smaller than them. In fact we show that
�

should

behave very similarly to LEVELS on this job sequence.

We first describe a job sequence � � , that depends on
�

, and then show that it implies the

theorem. Let � be an integer. There will be at most
� � ��� � � � �
� jobs in � � (note

� � ��� � � � ��� �
� � � ��� . We build � � recursively, defining the jobs according to the behavior of the on-line

algorithm
�

.

Definition A job 	 of size � is considered active, if the previous active job of size � is com-

pleted by
�

at least � units of time before 	 is assigned, and 	 finishes no later than the job that

caused its arrival.

Note that this definition depends on
�

. The first job in � � has size � and arrives at time � .
We consider it to be an active job. On an assignment of a job 	 of size � by

�
, do the following:

� If 	 is active, and all other machines are running larger jobs (all machines are consequently

busy for at least � units of time), � jobs of size � arrive immediately. No more jobs will

arrive.

� Otherwise, if 	 is active, then 	 causes the arrival of � �
�
� jobs of size �
 � �� �
�
� . These

jobs arrive starting the time that 	 is assigned, every
�� �
�
� units of time, until they all have

arrived.

� In all other cases (is not active), no jobs arrive till the next job that
�

starts.

18 Chapter 2. Minimizing the total flow time

We give an example of a job sequence for the case that
�

schedules all arriving jobs imme-

diately on 3 machines in Figure 2.2. Only the nonzero jobs are shown.

machine 1

machine 2

time

machine 3

Figure 2.2: An example job sequence for the lower bound

Lemma 2.4 OPT
� � � � � � � , even if OPT only has a single machine.

Proof We show that all jobs can be assigned on a single machine, during an interval of length

� � , so that a job of length � has a flow time of at most ��� . The total flow time then follows.

We show how to assign all jobs of a certain size � so that no active jobs of size � are

running at the same time on on-line machines, i. e. the intervals used by
�

to run active jobs of

size � , and the intervals that are used by OPT to run jobs of size � , are disjoint. Smaller jobs are

assigned by OPT during the intervals in which
�

assigned active jobs of size � . Hence, the time

slots given by the optimal off-line for different jobs are disjoint.

Finally, we show how to define those time slots. A job 	 of size � , that arrives at time � , is

not followed by other jobs of size � until time � � � � . Since an active on-line job starts at least

� units of time after the previous active job of this size
� � � is completed, there is a time slot of

size at least � during the interval
 ��
 � � ��� � where no active job of size � is running on any of

the on-line machines. The optimal off-line algorithm can assign 	 during that time. This is true

also for the first job. Finally, the optimal algorithm can also manage the jobs of size � easily

by running them immediately when they arrive. Hence, the total time that the optimal off-line

machine is not idle is at most � � .
�

Having described the construction of the sequence � � and its optimal total flow time, we

now derive a bound on
��� � � � . We partition jobs into three types, according to the on-line

assignment. A job that arrived during the processing of a job of size � , and has size �
 �� ����� is

either active or passive (if it is not active, but completed before the job of size � is completed).

Otherwise, the job is called late. Let �
� � ��
�� � � � and �

� � � denote the number of passive, active

and late jobs of size � (respectively). Let $ � � �	��� � � � ��� � � � ��� � � � .

2.3 Lower bounds 19

Claim 2.1 �
� � � � � �� � � � � � � � � � � � ��� .

Proof The number of jobs of size � that the on-line algorithm can complete during � � units of

time (until a job can be active again) is at most � 	 .
�

Now we are ready to prove Theorem 2.3.

Proof (Of Theorem 2.3.) According to the definition of the sequence, $ � � � � � �
�
� �
�
� � � � �
�
� � . We distinguish two cases.

Case 1. In all phases �
� � � � �� $ � � � . Hence �

� � � � ���� $ � � � for all � . This is true for

� � � �
 � � � � � �
�
� (the smallest non-zero jobs) and hence there are at least � � � �
�
� � �� � � � � � � �
such jobs. Therefore the zero jobs arrive and are delayed by at least

� �
 � � ��� � �
�
� units of time.

Since their flow time is at least ��� � ���
� � �
 � � � � , and the optimal total flow time is at most
� � , the

competitive ratio follows.

Case 2. There is a phase where �
� � � � �� $ � � � . Consider the phase with largest � in which

this happens. Since for larger sizes � � we have �
� � � � � �� $ � � � � , we can bound the number of

jobs of size � (for � � � �
 � � � � �
� �
� � by $ � � � � � � �
� � �� � � � . The late jobs are delayed by at least�� � � � � �
�
� on average. (This is the delay if for each job of size � � � ���
� the last �� � ���
� jobs of

size � that arrive are the ones that are late; in all other cases, the delay is bigger.)

The total flow time is at least

� � � � � � � �
� � � � �� � � � � �
�
� � �

�
� � �
� � �� 	

� �� � �
�

� � �
� � �$� �
���&�
�
�

� �� � 	 � �
� �
�
� �
�

� ��� � � �	�&�
��� � � �
� � 	

� �
�
� �	�&�
�
�

� �� � � 	 � � ���
� �
�

� � �	�&�
�
� � � � � �
���
� � � 	 � � � � � � � � � �

Since the optimal total flow time is � � � � , the competitive ratio follows.
�

Theorem 2.4 Let
�

be an on-line scheduling algorithm to minimize the total flow time on 	
machines. Then

� � � � � � � � � ��� � �
�
�
 � � � � � � for any � ��� � � 	 if the maximum ratio between job

sizes is � .

Proof We adjust � � by starting with a job of size � and fixing � � � , � � . We assume � � � �
so that � � � � and � ���
� � � , which is needed for the construction of the sequence.

Starting from here, we build a sequence � �� in exactly the same way as � � , except that we do

not let jobs of size 0 arrive. Clearly, OPT � � � �� � � � � . We can follow the proof of Theorem 2.3.

However, in this case we know that all the smallest jobs will be late. If they arrive we are in the

second case of the proof; but if they do not, then for an earlier � we must have �
� � � � �� $ � � � .

So only Case 2 remains of that proof.

20 Chapter 2. Minimizing the total flow time

The total flow is at least

�
� �����
 � � � � � � � �

�
� �
�
�
 � � � � � � (because now

� � 	 instead of
� � 	 �),

giving the desired competitive ratio.
�

A direct consequence of Theorems 2.3 and 2.4 is the following bound on the number of

machines needed to maintain a constant competitive ratio. This corollary can also be proved

using a simple adaptation of Theorem 10 in [39].

Corollary 2.1 Any on-line algorithm for minimizing the total flow time on � machines that

has a constant competitive ratio using resource augmentation, is an
� � � � ���
���� ��
 � � � ���

� � � ����� � �
 ��� �
 � � � ���! -

machine algorithm (on sequences of � � � � jobs).

Next we consider resource augmentation on the speed as well as on the number of machines.

We consider an on-line algorithm which uses machines of speed + ��� . The optimal off-line

algorithm uses machines of speed � .
Theorem 2.5 Let

�
be an on-line scheduling algorithm to minimize the total flow time on 	

machines. Let + � � be the speed of the on-line machines. Then
� � � � � ��� � � � � � ���
�

�
 � � � � " � � �
���

for any �
� � � � 	 and sequences consisting of � � � � jobs. Furthermore,
� � � � � ��� ������ � �
�
�

�
 � � � � " � � � for any � ��� � � 	 .

Proof Again, we use a job sequence similar to � � . The jobs of phase
�

now have size

� , � �$+ � � �
�
� � � . For the � -part of the proof, we fix � � �0, � ��+ � � � . Similar calculations as in

the previous proofs result in the stated lower bounds.
�

Corollary 2.2 Any on-line algorithm for minimizing the total flow time on � machines that has

a constant competitive ratio using resource augmentation on the speed, is an
� � � �
�
 � �#" � � -speed

algorithm (on sequences of � � � � jobs) and an
� � � �
�
 � �#" � � -speed algorithm.

2.4 Hard deadlines

The lower bounding method used in the previous section can also be applied to another prob-

lem. In this section, we consider the problem of non-preemptive scheduling of jobs with hard

deadlines. Each arriving job 	 � has a deadline * � by which it must be completed. The goal is to

produce a schedule, in which all jobs are scheduled such that all of them are completed on time

(i.e. by their deadlines). We give a lower bound on the resource augmentation required so that all

jobs finish on time. We allow the on-line algorithm resource augmentation in both the number

of machines and their speed. We compare an on-line algorithm that schedules on 	 machines of

speed + to an optimal off-line algorithm that uses a single machine of speed � .

2.5 Conclusions 21

Let � denote the ratio between the largest job in the sequence and the smallest job. The

lower bound sequence consists of 	
� � jobs 	 �
 � � �
�	 � where ��� � � , � ��+ � � � � . We define

release times and deadlines recursively; � � � � and * � � � � � ,�+ . Let # be the on-line schedule,

then ��� �&� � %!� � #�� and *�� �&� � � � � #�� . Hence 	 � �&� runs in parallel to all jobs 	 ��
 � � �
�	�� in any

feasible schedule # .

Lemma 2.5 An optimal off-line algorithm on a single machine of speed � can complete all jobs

on time.

Proof For each
� � � , ��� � � , � ��+ ��� � � , hence *��$ �)� � ��� � ��, + � �

� �&�
� � � . This holds also for

	 � , since � � � � and * � � � � �
� �&�

� . All jobs arriving after 	�� have release times and deadlines

in the interval
 %!� � #���
 � � � #�� � . The optimal off-line algorithm can schedule 	�� outside this time

interval, and avoid conflict with future jobs. By induction, previous jobs are scheduled before ���
or after *$� , so there is no conflict with them either. If % � � #�� ��� � ��� , schedule 	�� at time �)� .
Otherwise

� � � #�� � %!� � #�� � � � ,�+ � ��� � ��� � � � ��, + � , hence 	�� is scheduled at time
� � � #�� and

completed at
� � � #�� � � � � �)� � � � � � � � , + � � *�� . �

It is easy to see that the on-line algorithm cannot finish all jobs on time. If the first 	 jobs

finish on time, then all 	 machines are busy during the time interval
 �
��
�* � � and it is impossible

to start 	 � before time * � . We have the following theorem.

Theorem 2.6 The on-line algorithm fails, if � � �
��+ � � � � .

From the lower bound on � , one can derive several necessary conditions for an on-line

algorithm to succeed on any sequence. Given machines of constant speed + , the number of

machines 	 must satisfy 	 � � � � �� ���
 � � �&� � i.e. 	 � � �
 ��� � � . On the other hand, for a constant

number 	 of machines, + has to satisfy ��+ � � � � �
�
� , i.e. + � � � � �
�
� � .
The lower bound on � clearly holds also for the case where the optimal off-line algorithm

is allowed to use � � � � machines. Consider a
�
-machine algorithm that always succeeds

in building a feasible schedule (
� � 	 , � �), then

�
satisfies

� � � �
���� �0, � � for constant + .
Finally, + satisfies + � � � � �
��� � � for constant

�
.

2.5 Conclusions

We have presented an algorithm for minimizing the flow time on 	 identical machines with

competitive ratio � � . ��� � � �
���
 � �
�
� � � against an optimal off-line algorithm on a single machine,

and we have shown a lower bound of
� � ��� ��
 � �
�
� � � �
�
���
 � � � � � � on the competitive ratio of any algo-

rithm, even against an adversary on one machine. For any given constant number of on-line

machines 	 , this gives an exact trade-off between the amount of resource augmentation and the

competitive ratio.

22 Chapter 2. Minimizing the total flow time

An interesting remaining open problem is to find an algorithm which is optimally competi-

tive against an off-line algorithm on a single machine for any 	 .

Chapter 3

Resource augmentation in load balancing

We consider load balancing in the following setting. An on-line algorithm is allowed to use
�

machines, whereas the optimal off-line algorithm is limited to � machines, for some fixed � ��
. We show that while GREEDY (section 1.2) has a competitive ratio which decays linearly in

the inverse of
� , � , the best on-line algorithm has a ratio which decays exponentially in

� , � .

Specifically, we give an on-line algorithm BUCKETS with competitive ratio of � � � � � �
 � ���
 � ��� ,
and we give a lower bound of ��� � � � �
 �	���
 � ��� for randomized on-line scheduling to minimize

the makespan, which can also be applied to our problem.

We also consider load balancing with temporary tasks. Here jobs arrive and depart at arbi-

trary times. We prove that for
� � � � � , GREEDY is optimal. (It is not optimal for permanent

tasks, where jobs only arrive.)

3.1 Introduction

In the load balancing problem, jobs arrive on-line and have to be scheduled on identical parallel

machines. Each job has a size (or weight) that represents the load that that job adds to the

machine that it is assigned to. The goal is to minimize the maximum load over all the machines.

For the permanent tasks model, in which jobs that have arrived do not leave, this is equivalent to

on-line scheduling of jobs in a list, where job sizes represent running times of jobs and the goal

is to minimize the makespan: the maximum completion time over all the jobs. However, we will

also consider the temporary tasks model, where jobs can also leave. This is not equivalent to any

scheduling problem of jobs with running times.

In the setting that we consider, the jobs arrive in a list, one by one (and not over time). The

on-line algorithm has
�

identical machines, and it is compared to an optimal off-line algorithm

which has � � �
identical machines. We write 	 � � , � .

In the permanent tasks model, the load of a machine is the sum of the loads of the jobs that

23

24 Chapter 3. Resource augmentation in load balancing

are assigned to it; the load of an algorithm is the maximum load over all the machines in the

schedule of that algorithm. In particular, the optimal load for a sequence is the maximum load

over all the machines in the schedule of an optimal algorithm OPT for that sequence.

For this problem, GREEDY has a competitive ratio which tends to an inversely linear function

in 	 for 	 � � . In contrast, we design an algorithm of which the competitive ratio approaches

� in a rate depending exponentially on 	 . More specifically, we give an algorithm BUCKETS for

	 � � of competitive ratio �	� � � �
 � � �
 � ��� for 	 � � .

We then show that it is not possible to do substantially better than BUCKETS by giving a

lower bound for minimizing the makespan in on-line scheduling of jobs in a list, where the on-

line algorithm is even allowed to preempt jobs, but the optimal off-line algorithm is not. Here

each job may be assigned by the on-line algorithm to one or more machines and time slots, where

the time slots have to be disjoint. The assignment has to be determined completely at the arrival

of a job. Using similar techniques as in [20, 21, 67] we prove a lower bound of ��, � �� � � � �� �
�
�	�

� � � � �
 �	���
 � ��� on the competitive ratio of any randomized preemptive algorithm. This lower

bound holds a forteriori for deterministic and/or non-preemptive algorithms. Hence it also holds

for our load balancing problem, which implies that no on-line load balancing algorithm can have

a competitive ratio that decreases faster than exponentially in 	 .

In the temporary tasks model, jobs arrive and depart at arbitrary times and the cost of an

algorithm is the maximum load over time and machines. Jobs still arrive one by one but the

arrival of a job can now also be followed by the departure of one or more jobs (one by one).

It was proved in [8] that for
� � � , GREEDY is optimal for this model. It is

�
�0 �� , � � -

competitive. We show that if
�

is just slightly larger than � , i.e.,
� � � � � , then GREEDY

which is
�
� ��, � � � � ��� -competitive is still optimal. We note that the results in [3] imply that

for permanent tasks GREEDY is not optimal anymore for general
�
� � .

3.2 Permanent tasks

In this section, we consider the permanent tasks model, where jobs only arrive. We consider the

behaviour of the competitive ratio of this problem as a function of 	�� � , � . We start with the

competitive ratio of GREEDY. The following lemma is shown in [16] using a similar analysis as

in [41]:

Lemma 3.1 The competitive ratio of GREEDY is � � � ���� .

The above theorem implies a competitive ratio which tends to a linear function in ��,
	 for 	 �

� . Surprisingly, we can give an algorithm called BUCKETS which has a competitive ratio

�	� � � �
 � ���
 � ��� for 	 � � .

3.2 Permanent tasks 25

3.2.1 Algorithm BUCKETS

We define an algorithm BUCKETS for load balancing of permanent tasks using resource aug-

mentation, specifically for large 	 (� �). If 	 � � we can take BUCKETS � GREEDY

(without affecting our asymptotic analysis). The main idea of BUCKETS is to put “large” jobs

on machines by themselves, on machines that have not been assigned “large” jobs earlier. Of

course, whether a job is large or not depends on the other jobs that arrive before and after it,

and ultimately on its size relative to the maximum (optimal) load. For this reason, BUCKETS

maintains an estimate of the optimal maximum load and assigns the arriving jobs based on their

size relative to this estimate. We denote the current estimate of the optimal maximum load by
�

.

Let � ��� � � be some parameter to be determined later. We partition the machines into

buckets: � ��� 	 �$,���� small buckets, each of which contains � machines, and one big bucket

that contains all other machines. Since the small buckets contain � 	 ��,���� � machines, the big

bucket contains at least � � ,�� machines.

Denote by
� � the value of

�
after the arrival of

�
jobs. The algorithm consists of phases,

beginning with phase 0. During a phase � , the algorithm can use only the big bucket and the

small bucket number � mod � . (The small buckets are numbered ��
 � � �
 �� � .) We assign the

first job of the sequence to a machine in small bucket 0 and initialize
� � � � � . We modify

�
only when a new phase starts.

On arrival of a job 	�� (starting from
� � �), we do the following.

� If ��� � � � � ��, � (a small job), assign 	�� greedily to the least loaded machine in the big

bucket.

� If
� � � ��, � � ��� � � � � � (a medium-sized job), and there is a machine in the small bucket

which was not used in the current phase, assign 	$� to this machine.

� Finally, if a medium-sized job arrives when all � machines in the current small bucket

were already used in the current phase, or if � � � � � � � (a large job), then phase � � �
begins: we define

� � � . /�1 ��� � 	� � � � � ��
�� ��� and 	�� is assigned to a machine in the small

bucket of phase � � � .
An example run of BUCKETS is given in Figure 3.1: the last job has just been placed on a

machine in small bucket 0, starting phase 3 (it was too large to go in bucket 2).

Definition OPT � is the optimal load after
�

jobs have arrived, i. e. the maximum load over all

the machines in an optimal schedule for this sequence of
�

jobs.

Lemma 3.2 During the execution of BUCKETS, we have the following two invariants on
�

:

26 Chapter 3. Resource augmentation in load balancing

big bucket phase 0 phase 1 phase 2

small buckets
phase 3

lo
ad

Figure 3.1: A run of the algorithm BUCKETS

� . /�1 � �
��� � � � �
� �
�- � � OPT � � � �

Proof We show that both invariants hold after the arrival of a job (and thus hold throughout

the execution of BUCKETS). After the assignment of the first job,
� � � OPT � ��� � , and both

invariants hold since � � � .
The first invariant always holds: when a job arrives which is larger than

�
,
�

is increased.

To show that the second invariant holds, we show that
�

is increased only when the previous
�

is smaller than the current OPT, and that
�

is not increased too much. If
�

is increased because� � � � � � � , then OPT � � ��� and since
� � � . / 1 ��� �0 � � � � � ��
�� ��� then

� � � �
� � � � � ��

� � � OPT � . If
�

is increased because all the machines in the small bucket were used in the

current phase, then there are at least ��� � jobs of weight more than
� � � ��, � and hence the

optimal off-line schedule has to assign two of them on one machine, yielding OPT � � � � ��� .
Thus

� ��� �
�- � � OPT � . �

Theorem 3.1 The algorithm BUCKETS is
� � � � � �
 � ���
 � ��� � -competitive for an appropriate choice

of � for 	 � � .

Proof Consider first the big bucket. Here BUCKETS uses GREEDY to assign jobs to the

machines. We show that the maximum load in the big bucket never exceeds OPT � at step
�

(after arrival of job 	��). It is easy to see that for any � � � , the maximum load of running

GREEDY on � � machines is at most OPT � , � � . / 1 � �$��� � . Since � � � � � ��� , � for any � � �

3.2 Permanent tasks 27

for which 	 � is assigned to the big bucket, and
� � � � , � � � � � OPT � � � , the load is bounded by� �

� �
� ���� � OPT � � � � � � � � � ���� � OPT � � OPT � .

Next, we bound the maximum load on the machines in small buckets. When a new phase

starts, the value of
�

is multiplied by at least � � . Each machine in a small bucket is used at

most once in each phase.

Consider a job which is assigned to a machine in a small bucket machine at the last time that

machine is used. Denote this job by 	�� � , and let
� � � � � � . Then the previous job assigned to the

same machine is of weight at most
� � , � � � � � , and in general the � -th job before 	�� � that was

assigned to this machine has weight at most at most
� � , � � � � � � . Thus the total weight of all

jobs on this machine, except 	�� � , is at most �
� � , � � � � � . Since OPT � � � , � � � � we get that

the total weight of jobs on this machine is at most

��� � � �
� �

�
�- � � � � ��� � �

�
OPT�
�- � � � �

� �	�
�

�
�- � � � � OPT � � �	�

�
�
� � � � � � ��� � � � OPT �

Choosing an appropriate value of � gives the required competitive ratio. For example � �
� �$, 	 is a suitable value. This follows because

� , � � � �$, 	 � � � � � � �
 ��� � � � �
 � � � ���
 � �
 �
� � � � �� �
�
� �
,
	 � � � � � � � �
 �

� � � �
 � ���
 � ��� � � �� �
�
� �$, 	 � � � � � �� �

�
� �$, 	 � � � � � �
 �
 �

By taking � � � 	 we can see that
� � �� � �$, � � � � �
 ��� �
 � � � � � � � � �
 � � and we have

���� � � � � �� � �$, � � �	��" � � � �
���� � � � �� � �
, � � � � � � �� � �
, � � � � � , � � � �
 ��� � � � � � � � ,
hence

� �� �� � �$, 	 � � � � � ��

 � � � � � ��

 � � � � � �
 � � . This gives the desired result.
�

3.2.2 Lower bounds

We begin by giving a simple exponential lower bound.

Theorem 3.2
� ��� � � � � � � � � � � � � �&� for all deterministic on-line load balancing algorithms�

.

Proof Suppose there is an algorithm
�

that has a competitive ratio less than ��� � � � � �&� . We give

a proof for even � and for integer 	 . It is easy to extend the proof to all cases. The sequence that

we use consists of at most
� � � , � jobs that arrive in at most � 	 � � phases. Phase 1 consists

of � , � unit jobs, and phase
�

for
� � � consists of � , � jobs of weight � � � � . The sequence stops

(i. e. no more jobs arrive) after a phase in which
�

schedules two jobs on one machine. If
�

reaches phase � 	�� � , there are more jobs than on-line machines since
� � � , � � � , therefore�

has two jobs on one machine after some phase
� � � 	 � � .

28 Chapter 3. Resource augmentation in load balancing

The optimal off-line load after every phase is the weight of the jobs that arrived in that phase.

Figure 3.2 (left) shows the optimal schedule after a phase: the jobs from the last phase are on a

machine by themselves, while all the previous jobs are together on the remaining machines.

If
�

has two jobs on one machine, its maximum load is at least � � � where � is the weight

of the last job. Hence the competitive ratio in that case is �	� �
� . The minimum value of �	� �

� is

�	� � � �
� where
� � � 	 � � , hence �	� � � � � �&� is a lower bound on the competitive ratio.

�

machines machines

lo
ad

Figure 3.2: The optimal schedules in Theorems 3.2 (left) and 3.3 (right)

We can give a slightly better lower bound, which holds for deterministic and randomized al-

gorithms. To do this, we will make a small excursion to the problem of minimizing the makespan

in on-line scheduling of jobs in a list. Hence in this lower bound, the job sizes represent run-

ning times instead of loads. We show a lower bound on on-line preemptive algorithms versus a

non-preemptive optimal off-line algorithm. Hence our lower bound holds both for the preemp-

tive and non-preemptive models. This holds because for the preemptive model we consider a

preemptive optimal off-line algorithm which can perform at least as well as a non-preemptive

optimal off-line algorithm, and for the non-preemptive model we consider non-preemptive on-

line algorithms which form a subset of the set of preemptive on-line algorithms. Since the non-

preemptive model is equivalent to our load balancing model, this gives us also a lower bound

for load balancing in the permanent tasks model. The lower bound builds on the lower bounds

given by Sgall [67] and independently by Chen, Van Vliet and Woeginger [20, 21].

The main idea here is to use a large amount of infinitesimally small jobs (’sand’) and then a

sequence of big jobs 	 ��
 � � �
)	
�

of increasing size so that the optimal makespan after job 	$� is

exactly equal to the size of 	 � .
Specifically, the sequence begins by very small jobs of total size � �� followed by the

sequence 	 ��
 � � �
�	
�

. The size of 	�� for � � � � �
is taken as � � � � where � � �� � � . By

defining it in this way, it can be seen that each job 	$� has size equal to the total size of all

3.2 Permanent tasks 29

previous jobs divided by �� � . We define OPT � in this case as the optimal makespan after
�

big

jobs have arrived.

Lemma 3.3 For the above sequence, OPT � � � � � � for � � � � � .

Proof We give an off-line algorithm to assign the jobs, and show that the resulting makespan

is � � � � after
�

big jobs have arrived, which is optimal.

The algorithm assigns jobs to the off-line machines greedily, in non-increasing order (sorted

according to size). This is equivalent to using the LPT (longest processing time) rule. We show

that no big job is assigned in a way that it completes after time � � ��� . Note that the total size of all

small jobs and the first � big jobs is � � � � � � ���� � � � � �" � � � � � �
� ��� � �" � � � �

� � � � �" � �	��
� � � �

� � �
� � � � , since � � � � , � � � � .

Assume that the assignment of job 	 � to a certain machine causes it to complete after time
� � ��� . This means that all other machines will finish their jobs after time � � � � �

� ��� . Hence the

total size of assigned jobs until 	 � is more than
� � � � � �

� ��� � � � � � � � � � � .
The total size of jobs smaller than 	 � is �

� � � � � � � . These jobs still have to be assigned by

the off-line algorithm because of its ordering of the jobs. Hence the total size of all the jobs is

more than � � � � � , which is a contradiction. Therefore the assignment of the small jobs results

in a schedule where each machine finishes its last job at time � � � � , which is optimal.

Note that in the case that the jobs should be assigned to machines in order of their arrival,

this can easily be accomplished by taking the above assignment and inverting the order of the

jobs on each machine.
�

The following lemma, adapted from [67, 33], is the key of lower bounding the competitive

ratio.

Lemma 3.4 For any deterministic or randomized, preemptive or non-preemptive algorithm for

minimizing the makespan of jobs in a list, for the sequence above the following holds:

� �
� �
���&� OPT �

where
�

is the competitive ratio and
 is the total size of all the jobs.

Proof Denote by
��� 	�� � the makespan of the on-line algorithm

�
after the assignment of the

job 	�� . Then � �
���&� � � ��� 	�� � �� �
���&� OPT � �

� �
���&� � � OPT �� �
���&� OPT � � �

�
Hence it is enough to show that

� �
���&� � ����� 	�� � � �
 .

Assume that
�

is deterministic. We sort the machines by non-increasing maximum completion

30 Chapter 3. Resource augmentation in load balancing

time. For � � � � � , let � � be the completion time of the last job on the
�
th machine at the end

of the sequence. Then ��� � � � � � � � � �
�

. Removing any
� � jobs still leaves a machine

with a job that does not complete before time � � . Therefore
��� 	 � � ��� � � � , ��� 	 � � � � � �

and in general
��� 	���� � � � �
� �!� for � � � � � � . Since
 � �

�
���&� �'� we conclude that

�
�
���&�

��� 	�� � �
�
�
���&� �

� �
� �&�	�

as needed. If
�

is randomized, we average over the deterministic algorithms and conclude that
�
�
���!�

� ����� 	 � ��� �
 �
This gives the bound. Note that these arguments hold independent of whether

�
is preemptive

or not.
�

Theorem 3.3 The competitive ratio of any on-line algorithm for minimizing the makespan of

jobs in a list, deterministic or randomized, preemptive or non-preemptive, is at least � , � � � � � �� �
�
�	� �	� � � � �
 � � �
 � ��� .

Proof We use the job sequence defined above and apply Lemma 3.4. We have
 � �
� �
� � �

�
�
���&� OPT � �

�
�
���!�

� � ��� �
�
�
 �

� �
and

� �
�
� �
� � �� �
�
 � �

� � � �	�
�
�

�
�
 � �

�
�� �

�
�
� �
�� � � � �� �

�

as needed.
�

Corollary 3.1 The competitive ratio of any deterministic or randomized on-line load balancing

algorithm is at least � , � �� � � � �� �
�
�	� �	� � � � �
 � � �
 � ��� � �	� � � �
 �	���
 � ��� .

We can improve the bound for the special case 	 � � for deterministic load balancing

(i. e. minimizing the makespan in on-line scheduling without preemptions).

Claim 3.1
� ��� � � ��� � � � ,

�
for all deterministic on-line load balancing algorithms

�
.

Proof Suppose there is an algorithm
�

that maintains a competitive ratio less than � ,
�
. We

use a job sequence consisting of at most four phases:

3.3 Temporary tasks 31

� � jobs of weight 1

� � � � � jobs of weight �
, �
� � �
 � � � jobs of weight 3

� � � �!�
� � � � jobs of weight 4.

The sequence stops after a phase in which
�

schedules two jobs on one machine. Note that the

sequence contains more than � � jobs if it reaches the fourth phase, hence there is such a phase.

This can be seen in the following table.

� mod 6 0 1 2 3 4 5

Amount of jobs �
We show that the optimal load in phase

�
is

�
. This is clear for phases 1 and 2. In phase 3, if

the machines are packed to a maximum load of 3, at most � , � of space can be lost: 2 is lost if a

job of weight 1 has to be assigned to its own machine, and an additional � , � is lost if there is an

odd number of jobs of weight �$, � . The total weight is at most � �
 �� � �
� � � � � � � �� � � ,

which is at most � � � , � for � � � � . This implies that the machines can be packed with a

maximum load of 3 for � � � � . By inspection, the machines can be packed for � � � � � �
too.

In phase 4, the total weight is at most � � �� � � � � �
� � � �
 . In the optimal packing, if the

maximum load is 4, then at most
� , � of space is lost, using the same arguments as in phase 3.

We have
� �� � � �

�

 � �
� � , � which holds for � � ��� . Therefore the optimal algorithm

can maintain a maximum load of 4 in phase 4, if � � ��� . By inspection, the machines can be

packed for � ��� � � � as well.

As an example, we give the optimal schedules for phases 3 and 4 when � � � and � � �
(see Figure 3.3).

Depending on the phase in which
�

puts two jobs on the same machine, we find competitive

ratios of �
 � ,
�
 � , � and � ,

�
, respectively. Hence the competitive ratio is at least � ,

�
�

�

The method in this proof can be adjusted to give slightly worse lower bounds for
� ��� � � � � �

for � � � � �
. The first two phases are the same, and then jobs arrive with sizes as in Table

3.1. The resulting bound is also given.

3.3 Temporary tasks

We now consider load balancing of temporary tasks, where jobs arrive and depart (leave) at

arbitrary times. For
� � � , by [8] GREEDY is

�
� � , � � -competitive for permanent tasks as

32 Chapter 3. Resource augmentation in load balancing

m=8 m=9
phase 3

phase 4 phase 4

phase 3

machines machines

lo
ad

lo
ad

Figure 3.3: The last phases for � � �
 �
� job sizes lower bound

2 3, 7 8/7

3 3, 4, 6 7/6

4 3, 4, 5 6/5

5 3, 3, 4, 5 6/5

6 3, 3, 9/2, 9/2 11/9

7 3, 3, 3, 9/2, 9/2 11/9

Table 3.1: Lower bounds for load balancing: 	�� � , � ��� � �

well as for temporary tasks. GREEDY is not optimal for permanent tasks, but also by [8] it is

optimal for temporary tasks.

Also for
�
� � , it is easy to see that GREEDY has the same competitive ratio for temporary

tasks as for permanent tasks, which is � � �
� � � , � . This holds because we can apply the

analysis for permanent tasks at any time that a job arrives, and taking into consideration only the

jobs that are still present at that time. We can do that because this analysis only uses arguments

concerning the total size of all the jobs that are present and the largest size of those jobs, and

is still valid even if there have been other jobs present in the past. (When jobs leave, the cost

of GREEDY and OPT is unaffected since this cost is the maximum load over machines and over

time.)

However, in contrast to the case
� � � , GREEDY is not optimal for temporary tasks. We

3.3 Temporary tasks 33

can define an algorithm BUCKETS
�
for temporary tasks based on BUCKETS. The only change in

the definition is that if a medium-sized job leaves during a phase, we will use that machine again

if a new medium-sized job arrives. (Note that in each phase, medium-sized jobs are assigned

only to the small bucket of that phase; jobs that were medium-sized in previous phases are now

small.) Hence, a new phase only starts when a large job arrives or when all � machines in the

current small bucket have a medium-sized job (that has not left yet).

With this modification, the same analysis of the competitive ratio of algorithm BUCKETS

for permanent tasks also holds for temporary tasks. The proofs of Lemma 3.2 and Theorem 3.1

only use arguments about the currently present jobs and still hold if some jobs have left before

the current time.

Although GREEDY is thus not optimal in general for
�
� � , we show that if the on-

line algorithm has one more machine than the optimal off-line algorithm, then GREEDY is still

optimal.

Theorem 3.4 Suppose
� � � � � . Then GREEDY is optimal for temporary tasks.

Proof We need to show a lower bound of
� � � � �� �!� on the competitive ratio of any on-line

algorithm
�

. The proof consists of two parts: one for odd � and one for even � . In the proof

we mention the value of the optimal off-line load only when the value increases, i. e. when jobs

arrive that OPT cannot place on the machines without exceeding the previous maximum optimal

load on some machine.

Case A. � is odd. We start the sequence by �
� �
� � � unit-weight jobs. The optimal off-line

load is �
�
� � � . We distinguish between two cases:

Case A1.
�

places at least �
�
� � � unit jobs on one machine, say machine

�
.

Case A2. All machines have load at least � � .
This covers all the cases, since if all machines have load at most �

�
� � � � and there is

also a machine with a load of at most � � , the total load on all the machines is no more than

�
�
�
�
� � � � � � �

� � � � � � �
� � � � � � � �

� � � , a contradiction.

Case A1.
�

places at least �
�
� � � unit jobs on one machine, say machine

�
.

We extend the input sequence as follows. All the jobs leave except �
�
� � � jobs on

�
. We

have the situation in Figure 3.4, left.

Now, a set % � of �
�
� � � jobs of weight � � arrives. The optimal off-line load is still�

�
�
� � � � � � � � � � ��, � � � � � � � .
Suppose � assigns at least � � jobs in % � to

�
. Then the load on

�
is at least �

�
�

� � � �
� � � � � �

� � � � � � � � , and since

 � � � � �
 � � � ��
 � ��� � �

� �� �&� � � � , we are done.

34 Chapter 3. Resource augmentation in load balancing

K K L

m(m+1)

K L

Case A1a (start)Cases A1 and B1

Schedules of the on-line algorithm

m(m-1)

Case A1a (later)

The final optimal schedule in Case A1a

Figure 3.4: Schedules in the lower bound for temporary tasks

Suppose
�

assigns at most � �� jobs in % � to
�

. Then at least �
�
� � � �

� �� � ��
� � � � �
� jobs in % � must be assigned by

�
to the � other machines. There are two sub-cases:

Case A1a. There is a machine � (��
� �
) which has at least � jobs in %'� .

Case A1b. All machines (except machine
�

) have at least one job in %'� .
This covers all the cases, since if all machines besides

�
have at most � � jobs in % � and

there is also a machine (not
�

) without jobs in % � , then the machines besides
�

have only at

most
�
� � � � jobs in % � in total, a contradiction.

Case A1a. There is a machine � (��
� �
) which has at least � jobs in % � .

All jobs in % � leave except � jobs on � . (The �
�
� � � jobs of weight 1 on

�
remain.) See

Figure 3.4, second schedule.

Now, a set % � of � � jobs of weight �
�
� � � arrive. The new optimal off-line load is�

� �
�
� � � � � � � � � � � , � � �

� � � �
� � � � � � � � .

Suppose
�

assigns one of the jobs in % � to
�

or � , or two jobs from % � to the same machine.

Then the load on that machine is � �
�
� � � , and

� �
 � � � �
 � �&� �
 � � � � � � � .
Suppose

�
assigns all the jobs in % � to empty machines. We have the situation shown in

Figure 3.4, third schedule. Now, a job of weight �
�
� � � � arrives. The on-line load becomes

� �
�
. The total weight of all the jobs that have not left is �

� �
� � � � . OPT can schedule these

3.3 Temporary tasks 35

as follows: the job of weight �
�
� � � � has its own machine, the other machines all have

one job of weight �
�
� � � . Among those machines, there are � , � machines with 2 jobs of

weight � � and two jobs of weight 1. The other � , � � machines have � � jobs of weight

1. The off-line load is precisely �
�
����� � on each machine. See Figure 3.4, right. Hence� � � � � � �

� , � � � � � � � �	� � � .

Case A1b. All machines (except machine
�

) have at least one job in % � .
All jobs in % � leave except � jobs, one job from % � remains on each machine except machine

�
(which still has �

�
� � � jobs of weight 1). See Figure 3.5, left.

m(m-1)

Case A1b

K

Case A2

m-1

Figure 3.5: Schedules in the lower bound for temporary tasks

Next, a set %
 of �#" � � � ���� jobs of weight �
�
� � � arrives. The optimal off-line load is still

�
�
� � � since

���
�

� � � � � � � � � � � � � � � ����, � � �
�

� � � � � � ��, � � � � � � � .
Suppose

�
assigns at least � � �� jobs in %
 to machine

�
. Then the load on

�
is at least

�
�
� � � � � �� � � � � � �	� �

� � � � � � � � and

 � � � � �
 � ��� ��
 � � � � �

� � .
Suppose

�
assigns at most � �
� jobs in %
 to machine

�
. There are

� �#" � � � � �� � �
� ��, � �� �
� � �� jobs in %
 on average on the other machines, so there is at least one machine � (��
� �
)

with at least � � �� jobs from %
 and hence a load of at least �
�
� � � . All jobs leave except

the unit jobs on
�

and jobs of total weight precisely �
�
� � � on machine � . The loads are

now the same as in Figure 3.4, second schedule, but the jobs on � have weight �
�
� � � now.

We continue as in Case A1a: the set % � arrives followed by one job of weight �
�
� � � � . The

optimal algorithm can again balance its jobs to a load of �
�
� � � � , which completes this case.

Case A2. All machines have load at least � � .
All jobs leave except � � jobs on each machine. See Figure 3.5, right.

36 Chapter 3. Resource augmentation in load balancing

Now, a set % � of �
� � � jobs of weight � � arrives. The average number of jobs in

% � per machine is
�
�

� � �� ��, � � � � �	� � �	� �� �&� , and hence there is a machine with at

least � � jobs from % � and a load of at least �
�
� � � . We call this machine

�
. All jobs in % �

leave apart from � � jobs on
�

. The loads are now the same as in Figure 3.5, left, but
�

now

has � � unit-weight jobs and �� � jobs of weight �� � , and all other jobs now have � �
unit-weight jobs. Hence there are in total more unit jobs and less larger jobs now. We continue

as in Case A1b with the set %
 . (Since there are now more unit jobs than in Case A1b, but the

total weight of all the jobs is the same, the optimal loads are not higher than in that case.)

Case B. � is even. The structure of this proof is very similar to that of Case A. Only some

numbers change because � is even now.

We start the sequence by �
� �
� � � unit jobs. The optimal off-line load is �

�
� � � . We

distinguish between two cases:

Case B1. One machine, say
�

, has at least �
�
� � � unit jobs.

Case B2. There are at least � unit jobs on each machine.

This covers all the cases, since if all machines have load at most �
�
� � �' � and there is

also a machine with a load of at most � � , the total load on all the machines is no more than

�
�
�
�
� � � � � � �

� � �	� � � �
� � �' � � � � �

� � � , a contradiction.

Case B1. One machine, say
�

, has at least �
�
� � � unit jobs.

All jobs leave except �
�
� � � jobs on

�
. See Figure 3.4, left.

Now a set % 	 of
�
� � � � jobs of weight � arrive. The optimal off-line load is

�
�
�
� � � �

�
�
� � � � ��, � � � � � � � .
Suppose

�
assigns at least � � jobs in % 	 to

�
. Then the load on

�
is at least � �

�
� � � ,

and
� �
 � � � ��
 � � � � � � � � � .

Suppose
�

assigns at most � � jobs in % 	 to
�

. Then
�

must assign at least
�
� � � � �

�(� �	� � � � � � � jobs in % 	 to the empty machines. We distinguish between two sub-cases:

Case B1a. There is a machine � (��
� �
) which has � � jobs in % 	 .

Case B1b. Each machine except
�

has one job in % 	 .
This covers all the cases, since if all machines besides

�
have at most � � jobs in % � and

there is also a machine (not
�

) without jobs in % � , then the machines besides
�

have only at

most
�
� � � � � � �	� � � �� � � � � � � �� � � � jobs in % � in total, a contradiction.

Case B1a. There is a machine � (��
� �
) which has � � jobs in % 	 .

All jobs of weight � leave except � � jobs on � . The loads now are the same as in the

second schedule in Figure 3.4, but the jobs on � now have weight � . We continue as in Case

3.4 Conclusions 37

A1a, with the set % � followed by a job of weight �
�
� � � � , which completes this case.

Case B1b. Each machine except
�

has one job in % 	 .
All jobs of weight � leave except � jobs, one remains on each machine except on machine

�
. The schedule is very similar to Figure 3.5, left, but the jobs on the machines other than

�

now have weight � .

Now, a set % � of � " �
 �� jobs of weight � � arrive.

Suppose
�

assigns � , � jobs from % � to machine
�

. Then the load on
�

is �
� � � � � � � ,

and
�#" � �
 � � � ��
 � � � � ��� � � � .

Suppose
�

assigns at most � �
�� jobs to

�
. Then the average number of jobs of weight � �

on machines besides
�

is
� " �
 � �
 � � � �� � � � � � � �� . Thus, one machine � must have � � �

jobs of weight � � and a load of at least �
�
� � � . All jobs leave except the unit jobs on

�
and

jobs of total weight �
�
� � � on � . The loads are the same as in the second schedule in Figure

3.4, but the jobs on � now have weight � . We continue as in Case A1a with the set % � followed

by the job of weight �
�
��� � � .

Case B2. There are at least � unit jobs on each machine.

All jobs leave except � unit jobs on each machine. Next,
�#"
 � � � � � �� jobs of weight 2 arrive.

The total load of all the jobs is �
� �
� � � and the optimal load is again �

�
� � � .

If there is a machine with load at least �
�
� � � , all other jobs leave and we continue as in

Case B1 with the set % 	 .
Otherwise, each machine has load at least � � , since if all machines have a load of at most

�
�
� � � � and there is also one machine with a load of at most � � � , the total load is at

most �
�
�
�
� � � � � � �

� � � �	� � � �
� � � � , a contradiction.

Now, some jobs of weight 2 leave in such a way that the load on each machine is � � ����� .

Next, �
� � � � jobs of weight � � arrive. On average, each machine will have � � �

�
of these jobs, so one must have � � of them. Therefore, one machine

�
will have a load

of at least �
�
� � � . Jobs of weight � � on that machine leave such that the load becomes

�
�
� � � . All non-unit jobs on the other machines leave. The schedule is identical to the one

in Case B1b just before the set % � arrives, and we continue as in that case.
�

3.4 Conclusions

We have examined the effects of resource augmentation for several load balancing problems. For

the permanent tasks model, which is equivalent to the problem of scheduling jobs on identical

38 Chapter 3. Resource augmentation in load balancing

machines to minimize the makespan, we have shown an algorithm with a competitive ratio which

decreases exponentially in � , � , while GREEDY has a competitive ratio that is linear in � , � .

An open question is whether it is possible to close the gap between the lower bound and

the upper bound on identical machines. Both bounds are decreasing exponentially, and we

conjecture that the true value of the competitive ratio is closer to the lower bound.

Chapter 4

Running a job on a collection of partly
available machines, with on-line restarts

We consider the problem of running a background job on a selected machine of a collection

of machines, e.g. workstations in a network. Each of these machines may become temporarily

unavailable (busy) without warning. If the currently selected machine becomes unavailable, the

scheduler is allowed to restart the job on a different machine. The behaviour of machines is

characterized by a Markov chain, which can be compared to [51]. The objective is to minimize

expected completion time of the job. For several types of Markov chains, we present elegant and

optimal policies.

4.1 Introduction

In networks of workstations, a considerable amount of capacity is unused, since the primary

users are only using the workstations part of the time. Such machines could therefore be used

for large(r) jobs that can be executed in the background or with low priority. This means that

such a job gets the “free time” of the machine, i.e., the time that no higher-priority job is using

it. However, this does not mean that the job does not have any objectives in completion time.

When a workstation is used (for a higher-priority job), there is information available on the

type of job that is executed. This is e.g. available from the process manager (process statuses).

With this information, it could be decided what to do: e.g., to just wait until the workstation is

available again, or to restart the larger job on another machine. In this way, the completion time

of this job could be minimized.

The above situation is not only true for workstations, but for e.g. supercomputers or other

scarce high-performance computers that are available in smaller quantities as well. We therefore

39

40 Chapter 4. Running a job on partly available machines

study the problem of executing a large job as a background job, where the completion time

should be minimized and the job can be executed on one machine at a time.

The problem To be precise, we study the problem of scheduling a job 	 on a machine out of a

collection of machines that are not available continuously, without having full knowledge about

when they are available. At the start, the scheduler must pick one machine to run the job on.

If the machine becomes temporarily unavailable, the scheduler is allowed to move the job and

restart it from scratch on a different machine. The goal is to minimize the expected completion

time. This was mentioned as an open problem in [64].

In [5], a method is discussed for a different but related situation, viz., where a job 	 must be

run in a specific time interval. The assumption made on the availability of the workstations was

that at least one of the workstations would be available for a certain amount of time (significantly

larger than the time required to run the job) during the interval in which the job was to be run.

Using this assumption, a method was shown which had an �� � � ��, � � probability of choosing

a “good” workstation, so that 	 is completed on time, where � is the number of workstations.

However, with this approach it is not possible to minimize the expected running time of 	 . As

it turns out, in order to give bounds for the completion time, it is necessary to use a different

approach.

We study the case where the availability of the workstations is captured by a Markov chain.

We will consider Markov chains that, if the idle state is deleted, become acyclic. In practical

situations, a Markov chain is obtained and approximated from statistical information, and ap-

proximating “infinite cycling behaviour” by just one or a couple of states will fall within the

statistical and practical accuracies. We also refer to [51] for some general comments on Markov

chains.

Note that every behaviour of workstations can indeed be modeled by a Markov chain, de-

pending on the grain of description. E.g, the most simple chain can be obtained by having,

besides a state for “available” (idle), one state for “unavailable”, with the expected unavailabil-

ity time as its cost. Making more elaborate Markov chains based on (on-line) system statistics

and additional information, enables finer-grained description and improved scheduling strate-

gies, yielding lower completion times.

Our results We present elegant and optimal scheduling strategies. The actual job size does not

need to be known (but it does not help to know it either). The computational complexity of our

strategies is � � � � � � , where � is the number of nodes in the Markov chain and � is the number of

edges. This only needs to be computed once for all future large jobs. The strategy only depends

locally on the machine the job is running on. This is in contrast with [5], where global decisions

are needed.

4.2 The model 41

Chapter outline We begin by looking at a Markov chain where only one user-job size can

occur. We then examine more complex Markov chains, where jobs of different sizes can oc-

cur. Finally, we look at the case where the interrupting jobs themselves form a Markov chain

(i. e. more is known about the sequences in which jobs are often started), thus enabling a

fine-grained description of machine behaviour.

4.2 The model

We have a job 	 which takes * units of time to complete. (Although * does not need to be known

in advance, throughout this chapter, we use * as if it were known.) At any time, we can allocate

not more than one machine from a collection of machines to run 	 . If the machine becomes

temporarily unavailable, the scheduler is allowed to restart the job from scratch on a different

machine. The goal is to minimize the expected completion time of 	 .

The behaviour of every machine is characterized by a Markov chain. One state of this chain,

called the idle state, represents the situation that the machine is available for executing a (new)

large job. Any other state represents a local job or a job session, that makes the machine un-

available for the scheduler. Such local jobs or job sessions can have different sizes. Only the

expectation of the size of each such job or job session needs to be known, since we minimize the

expected completion time of 	 . However, for reasons of simplicity, we henceforth consider a

state to correspond to just one job with a fixed size. The conversion to job sessions and expected

size of those is not made explicit any more, but this is trivial since only expected (completion)

times are considered.

The machines are identical, in the sense that they are modeled by the same Markov chain. All

machines behave independently of each other and of the decisions made by the scheduler. The

scheduler may use the information of the Markov chain. We assume that if the scheduler wants

to restart 	 , there is always a machine available. This is realistic, since we will show that in a

network of some non-trivial size, the expected time for the first machine to become available,

starting in a randomly chosen time step, is very small as long as the Markov chain does not yield

extreme occupation in this network. (And if there is extreme occupation, no scheduler can hope

to perform well.)

The Markov chain of a machine, together with the possibility of a restart, induces a Markov

decision process on the job 	 , as follows. We define 	 to be in time state � if it has been worked

on for � time steps since its latest restart, not counting the time that the current machine was

busy. For every time state ��
 � � �
�* � of 	 and every possible interrupting job, we need to

decide what to do in case of an interruption. Do we restart 	 or wait? 	 is completed when it

reaches time state * .

42 Chapter 4. Running a job on partly available machines

4.3 The basic case

In the basic case, all machines behave according to the Markov chain shown on the left in Figure

4.1. A more compact way of picturing this is shown on the right in the same figure, where the

0

1-p

w

p 1
2

1

1

1-p

p

0

w1

Figure 4.1: Markov chain of one machine in two forms

node marked � � costs � � units of time. Note that this is just a simplifying picture and cannot be

used as the basis of calculations. The induced Markov chain on 	 is shown in Figure 4.2. Costs

are in bold type.

w 1 w 1 w 1 w 1

0 1 2 d-1 d

0 1 2 d-1

1-p 1-p

p
p p p

1-p 1-p

0

1 1 1 1

Figure 4.2: Markov chain of our job

In Markov decision theory, this is known as a first-passage problem [30]. Such problems

can be solved using a linear program, but this requires introducing � * variables, one for each

node in the Markov chain. Solving a linear program with � * variables can be done in � � � *

 �

time. This is clearly impractical, as this is far more than the running time of the (large) job itself.

Furthermore, such a linear program would have to be solved for every occurring job size * . We

show an optimal policy with time complexity � � � � , that is independent of, and does not need to

know, * .

Clearly, in the top row of this Markov chain (representing the idle node), it is always optimal

to continue. Only when the process moves to one of the nodes in the lower row, meaning that

the current machine is busy because of a higher priority job, we need to make a choice.

4.3 The basic case 43

4.3.1 The optimal policy

It is known [30] that for any first-passage problem there is an optimal policy that is stationary:

it does not depend on the total time that the job has been running, or the number of times it has

been in the current time state. Also, it is deterministic.

A policy will be denoted by a vector � � �
� �
 � � �

� � � ��� , where � � ��� means the scheduler

will restart 	 if it gets interrupted in time state � , and � � ��� means he will not restart. Define

OPT
� �
� to be the expected minimal costs (running time) to complete 	 , starting in time state � .

These costs satisfy OPT
� * �	� � and

OPT
� ��� � � �� � � � �	� OPT

� � � � ���
� � � . � � � OPT

� � �
�� � � OPT
� � � � � � � � ��
 � � �
 * � � (4.1)

This holds because the probability of going directly to the next time state is the probability of

remaining in the idle node, � � , and the optimal costs in that case are � � OPT
� � � � � . When the

machine becomes busy, the minimal costs are the minimum of the two choices there: restarting

costs OPT
� � � , and waiting costs � � � OPT

� � � � � .
It follows from (4.1) that a restart in time state � is optimal if and only if

OPT
� � � � � � � OPT

� � � � �
 (4.2)

and in that case restarting is optimal in all the previous time states as well, since OPT
� ��� is

monotonically decreasing. Thus � � � � � � �	� � � � �
� � � � .

It follows that an optimal policy is a threshold policy: interruptions cause restarts only up to

a certain point. Therefore an optimal policy is of the form �
� � � :

�
� � �	� � ��
 �� � �
 ��
 ��

� � � �
�
� � �
�� �

� � � ��
 � � �
�* � � �
Here

�
indicates the number of steps for which an interruption causes a restart, e. g.

� � � means
� � � ��
 � � � ��
 � � � � � � �

� � � � � � � We have
� � � since in time state � , restarting is always

cheapest.

We define
� � � � as the expected cost to reach

�
for the first time, using strategy �

� � � .

Theorem 4.1 The optimal policy for the basic case is given by �
� ��� � � � ��
 ���� � �
 ��
 ��

� � � �
���
� � �
 � ��

where
���

is determined by
� � � �
 ��� � � � � � �' � � � �

���� � �� � � � � (4.3)

The expected completion time is at most �-� � � * � � � � �	� � � �' � � � � .

44 Chapter 4. Running a job on partly available machines

Proof. It follows from (4.2) that restarting is optimal as long as OPT
� � � OPT

� � � � � � � � �
Since OPT

� � � OPT
� � � � � is the expected total optimal cost minus the expected optimal cost

starting in � � � , it is equal to
� � � � � , where

���
is the optimal choice of

�
. Thus, we need to

calculate
� � � � for general

�
and we need to find the smallest

�
for which

� � � � � � � .
We first calculate

� � � � . Define
� � as the event that a restart occurs before reaching time

state
�
, then � � � � � � � � � � � � . We write

��� � � � for the cost until a restart, given that this

occurs before
�

is reached. After a restart the costs to reach
�

are again
� � � � . Using that the

expectation of a random variable
��� � � � � � � ��� � � � � � � � �	�
� ��� � �
� � we can see that

� � � �	� � ��� � � � � � � � ��� � �� � �� � � � � � � � �� � � � (4.4)

or � � � �	� ��� � � � ��
� �� � � �� �� � � � � �

� (4.5)

Since
� � � � � �	� � �
�� � � � � � � ��,�� � � �
 we have that

��� � � �	�
�
��
 �
� � � � restart after � steps ��, � �� � �� � � � � �

Using � � restart after � steps �	� � �� � � � , we can derive

� � � �	� �� �
� � �� � �� � � �� �� � � � � �� �

� ��� �� � � �
� � � �
If

� � � � � � � , it is no longer advantageous to restart 	 in time state
�
. Since

� � � � � � � �
implies

� �� � � �
��� � � � ���� � � , we have

� � � �
����
� �	� � � �� � � �
 ��� � �� � � � �

�
 ��� � �	� � � � � � � �

 ��� � �� � � � �

After time state
� �

, the job is not restarted anymore. The expected completion time from then

on is at most
� * � � � � � � � � � � � � � , since * � �

more units of work need to be done on 	 ,

which are each expected to take
� � � � � � � � �-� time. Therefore, the total costs are at most

� � � � * � � � � �	� � � � � � � � . �

If we compare this to [5], where the job was completed with probability � � � � , � � if at

least one machine was available for � *
 ��� � time, we see that we now have a bound that does

not depend on � . Note that on the other hand, the behaviour of the machines is now more

precisely modeled.

Note that � � � � � ,�� � � � � � ����,�� � � � � �' � is the expected number of failed runs (runs that

ended in a restart), and
� � �� � �

� � is the expected number of time steps before a job gets

interrupted. Therefore
� � � �	� � �

length of a failed run � � � ���
failed runs � �

Since
� �

is the largest
�

so that
� � � � � � � , we have

� �� � � � � � � ��� � � ��� � � � � and� � � � � � � �' � if � � � .

4.4 Two jobs 45

4.3.2 Restarting and availability

In the above calculations, it is assumed that whenever the scheduler wants to restart, an idle

machine is immediately available. Of course, this does not always have to be the case, but it is

not difficult to see that we can always expect some machine to be available quickly. The time

until this happens is called the waiting time.

First we need the stationary distribution of the Markov chain on a single machine. This is

fairly straightforward, and it turns out that the stationary probabilities are � � � , � � � � � � � for

node � � and � , � � � � � � � for the idle node.

The probability that all machines are busy when one is needed is

� � � �
� � � � �

� � �
�

On each busy machine the time until it is again available is distributed homogeneously on the

values ��
 ��
 � � �
 � � . The expectation of the minimum of � homogeneously distributed variables

is � ��, � � � � � . Therefore, the expected waiting time is

� � � �
� � � � �

� � � � �
� � � �

Until now we used (4.1) and compared OPT
� � � to � � � OPT

� � ��� � to determine the optimal

policy in state
�
. Now we should compare OPT

� � � plus the waiting time to OPT
� � � � � plus � � ,

so we need to check if

OPT
� � � OPT

� � � � � � � � � � � � � � � �
� � � � �

� � � � �
� � �

instead of (4.2). The calculations do not change, so the only result is that in (4.3), � � must be

replaced by � � � . But the waiting time is much smaller than � � and therefore negligible. The

situation in state � does not change either: although restarts are now no longer free, they still

cost far less than � � . So we still have that in the starting state, restarting is always optimal.

Similar results hold if there are interrupting jobs of different sizes, and for general Markov

chains. However, for general Markov chains, calculating the expected waiting time is more

involved.

4.4 Two jobs

Suppose there are two jobs that can interrupt 	 , of sizes � � and � � , where � � � � � . The

probabilities of interruptions by jobs �-� and � � are � � and ��� , respectively. We assume that

46 Chapter 4. Running a job on partly available machines

these interruptions do not occur simultaneously. Then for the optimal completion costs OPT we

have

OPT
� �
� � � �� � �' ��� � � �	� OPT

� � � � ���
� � � � . ��� � OPT

� � ��
 � � � OPT
� � � � � �

� � � � . ��� � OPT
� � ��
 � � � OPT

� � � � � � �
A policy for this problem has the form

� �
�

� �� � �� � � �
� �� � �

�
�
� �

�
� � � �

�
�
� � ���

where for all � and
�
, � �� � � ��
 ��� . � �� � � means that 	 will be restarted if interruption ��� occurs

in time state � , and � �� � � means 	 will continue. We have again

�
� � � � is optimal � OPT

� � � OPT
� � � � � � � �

� (4.6)

Because OPT
� � � is strictly decreasing, there is a largest � � such that OPT

� � � OPT
� � � � � � � � � .

For states
� ��� � , a restart is no longer optimal when � � interrupts 	 . Since � � � � � , there can

be states
� ��� � where it is still optimal to restart in case of � � . This holds until state, say, � � ��� � .

After that, 	 must never be restarted.

This implies that we can divide the time states of 	 in three consecutive phases (time state

intervals). In the first phase, 	 gets restarted whenever it is interrupted. In the second phase, it

is only restarted when � � (the largest of � � and � �) interrupts it, and in the third phase it is not

restarted at all.

4.4.1 Calculations

Because in the first phase 	 is always restarted when interrupted, we can determine the optimal

length of this phase using the method of the previous section: it ends at the point where a restart

becomes too expensive, that is, more expensive than � � . This follows directly from (4.6), and

these costs do not depend on the second or third phases, so � � can be determined independently.

When we know the optimal � �� , we can derive � � .
The event that a restart occurs in phase

�
is denoted by

� � . We denote the total expected costs

from state 0 to reach phase
� � � for the first time by

� � � ����� . In general, we can only calculate

costs of reaching a certain state for the first time, since it is always possible that a restart occurs

after that state.
� � � ��� � depends on the � � where � � �

, but when we are going to calculate it, all � �

with � � �
will be known, so � � is the only unknown.

4.4 Two jobs 47

We will also need to look at the expected cost from the beginning of a phase until a restart

within that phase, which we will denote by
� � � � � ��� . This cost depends only on the length � � of

phase
�
. Finally, we denote the expected time to go from one state to the next in phase

�
, given

that there is no restart, by � � . We have � � � � � � � � �
 .
First we need to calculate for which states OPT

� � � OPT
� � � � � � �-� , or for which � � the

expected cost of reaching state � � for the first time (while restarting whenever 	 is interrupted)

become larger than �-� . As noted above, this does not depend on � � .
The probability that 	 gets interrupted in phase 1 is � � � ��� � ��� � . Analogously to section

4.3, we find for the optimal length � �� of phase 1� �� � �
 ��� � �	� � � �' � � � ���

 ��� � �� � ��� �

 (4.7)

The cost until � �� is reached is
� � � � � � � � �� ��� � � . We need

� � to calculate � � , since
� � � � � � is

equal to
� � plus the expected cost in case of a restart, plus the expected cost if there is no restart:

� � � � � �	� � � � � � � " � � � � � � � � � � � ��� � � � � � � � � � � � � � � � �
This equation is similar to (4.4), except here there is a contribution of

� � for the first phase, and

the cost of taking one step is now greater than 1.

It follows that

� � � � � � � � � � � �	� � � � ��� " � � � ��� � � � � � � � � � � � � � � � �
As was shown previously,

��� " � � � ��� � � � � �
� " � ��
��� �

� � � � � � � �� � � � �
� � �� � �� � � � � � � � � � � � � � ��� � � �

Therefore � � � � � � � $ �
� � � � � � �

�� � �� � � � � � � �
� � � � � �

� � � � (4.8)

Looking at this equation, we see that the expected cost of reaching � �� � � � for the first time is

equal to (cost in phase 1) � (#times phase 1 is traversed) +
�

(length of a run in phase 2) � �
(#failed

runs in phase 2) � (step size in phase 2).

This cost must be at most
� � . It follows that� �� � �

 ���
� � � � � ��� "� " � �
� � � � ��� "� " � � ���
 ��� � �� � � �	�
 (4.9)

We can now combine everything into the following theorem.

48 Chapter 4. Running a job on partly available machines

Theorem 4.2 The optimal policy for two interrupting jobs is�
� �

� �
� � � � � �

�"� � � � � � ��� � � � � � � �"� � � �
� � � � � � � � � � � � � � � �

where � �� and � �� are determined by (4.7) and (4.9).

4.5 � Interrupting jobs

The calculations are completely analogous to those used in the previous section. First we find� �� � �

� � �	� � � �' � � � �
�

 � � �� � �
� � � � � (4.10)

Define
� � � ����� as the expected cost to reach the

� � � -st phase for the first time, starting in state � ,
where ��� is the length of phase

�
. Define furthermore

� � � � � � � �� � . Thus we find

� � � ��� �	� � � � � � � � � � � ����� � � � � ����� ��� � � � � � ��� �!� � � � � � � �
For every phase, this gives us a formula of the form (4.8). Thus for

� � ��
 � � �

� we find

� �� � �

 ���
� � � � � � � � � �� � �&�
� � � � � � �� � � � � �
 ��� � �� � ��� �
 (4.11)

This leads to the following theorem.

Theorem 4.3 For � interrupting jobs � ��
 � � �
 ��� , the optimal policy for each ��� is given by

� ��
 � �� ����� � � � ��� � �
 ��
���
 � � �
 � ��

where the ��� ’s are given by (4.7) and (4.11).

4.6 General Markov chains

Finally, we consider the situation where � different jobs, connected by a Markov chain � , can

interrupt the scheduler’s job 	 . We assume that � , including the ‘idle’ node, denoted by 0, is

irreducible (all states communicate), and that ����� ��� is acyclic.

Node
�

of � represents a job of size ��� � � � ��
 � � �

� � . For each node

�
, the costs associated

with a restart are � and the cost of continuing (waiting) is ��� . Define ��� � � � � as the set of

nodes � where edge
� �
 � � exists. The probability that a machine moves from node

�
to node � is

denoted by � � � . Recall that this is independent of the scheduler’s decisions.

4.6 General Markov chains 49

4.6.1 Definitions and notations

In the following, we always use the word node to refer to the state of the current machine, and

keep using time state to refer to the state of 	 . When describing policies, we continue to use

subscripts to indicate time states, and we introduce superscripts do indicate nodes (states of the

machine). A policy � for this problem consists of � policies � � , one for each node
�
, and we

write � � � �
� � �
 � � �
 � � �

� � � � � � , where the subscript denotes the time state of 	 . � �� � � means that

	 will be restarted if
�

is visited in time state � , and � �� � � means 	 will continue. The optimal

policy is deterministic and stationary.

A node
�

of � is said to be blocking in time state � if � �� � � , and it is reachable in time

state � if there exists a path in � from 0 to
�

without blocking nodes. We say that an algorithm

unblocks node
�

in time state � when � �� ��� � � and � �� � � .
We introduce two important costs:

� � � � � � is the total cost of reaching time state � , starting in time state � in the idle node, if
�

is blocking before time state � .

� � � � � � is the total cost of reaching time state � � � , starting in time state � in the idle node,

if
�

is unblocked in time state � .

Say � and � are time states and � and � are nodes in the chain. Assume �
� � . We will write

� � � � �� � � is the cost of going directly (without restart) from � �
 � � to � �
 � � (which we call the

goal),

� � � � �� � � is the probability of this happening.

� � � � �� � � is the total cost of this move, including possible restarts and assuming no restarts

take place in � �
 � � .

Note that the optimal decision in � �
 � � does not depend on the number of times this node and

state have been visited.

We write � � � �� � � � � � � and � � � �� � � � � � � to indicate costs and probabilities when it is assumed that

node
�

is not visited in the meanwhile. If � � � , but � � � ��� , then it is assumed that � ��� is not

reached before the goal. We use the notations � � � �� � � and � � � �� � � to indicate the cost and probability

of a restart when starting in � �
 � � . (As an example, � � � �� � � � � � � is the probability of a restart,

starting in time state � and node 0, without visiting node
�

or time state � � � .)
Finally, the cost of node � in time state � is given by

� � � �� �!� � � .

50 Chapter 4. Running a job on partly available machines

4.6.2 Nodes should be unblocked exactly once

Lemma 4.1 From one time state to the next, when using the optimal policy, the cost of a node

in � can never increase more than the cost of a restart in that same node.

Proof. Take a time state � . We use an induction. Note that as � grows, the cost of restarting

grows, because more work is lost by restarting. To simplify the wording, we will now color

non-blocking nodes green and blocking nodes red.

Consider a green node
�

and suppose that the cost of all its successors has not increased more

than that of a restart since time state �' � . In that case, no successor turned red.

We divide ��� � � � � in two sets, � � � � � � and
� � � � � � � , where the “bad” nodes are nodes

where 	 is restarted in time state � . We need to show that the cost of
�

can not increase faster

than the cost of a restart, which is
� � � �� �!� � � . Write

� � � �� �!� � � � ��� � �
�

 ���
 � � � ����� � � � � � ��

where

� � � � � � �	�
� � � � �� �&� � � � � � � � � � �� � � �� �&� � � � � � � � � � � � �

Write the increase in cost starting from
�

as � � � � � �� �&� � � � � � � � �� � � , the increase in the costs of a

successor
�

as � � ��� � � � � � � �� � � ��� for all
� � ��� � � � � and finally the increase in the cost of

a restart (while
�

is green, non-blocking) as � �
	
� � � � � �� �!� � � � � � �� � � .

We need to show � ��� �
	
� . For
� � ��� � � � � we have three cases:

� �
remained green, then � � � � � � �� �&� � � � � � � � �� � � �
� ��	
� because of the induction hypothesis.

� �
remained red. Then � � � � � � �� �&� � � � � � �� � � ��� �
	
� .

� �
turned green: � � � � � � �� �&� � � � � � �� � � � � � � �� �&� � � � � � �� � � ��� �
	
� , otherwise

�
could not be

green now.

In other words, � � ��� �
	
� for all
�
, so � � � �

 ���
 � � � ����� � ��� �
	�� � �

Corollary 4.1 If a node of � is non-blocking, it must remain non-blocking until the job is

completed, unless the job is restarted.

Proof. The previous lemma implies that if a node of � is non-blocking in time state � , it will

not be blocking in � � � , for any � �
�

4.6 General Markov chains 51

4.6.3 Thresholds

We begin by looking at individual nodes, and show locally optimal strategies. Later we will

describe the global policy.

If we write OPT
� ��
 � � for the optimal completion costs, starting in time state � and node

�
, we

have that

OPT
� ��
 � � � . � � � OPT

� ��
 � ��
�� � � �
�

 ���
 � � � ��� OPT

� ��
 � � ��
 (4.12)

similar to the earlier cases. We do not have a simple interpretation for OPT
� ��
�� � OPT

� ��
 � �
anymore. Instead, we use the following lemma.

Lemma 4.2 The optimal policy in time state � and node
�

can be determined by minimizing the

cost from there until time state � � � .

Proof. An optimal policy will minimize the cost to reach � for all � : if it costs the policy more

to reach � � , it will cost more to reach any point beyond � � �
�

Let OPT � �&� � ��
 � � denote the optimal cost of reaching � � � for the first time, starting in
� ��
 � � .

Then OPT � �&� � ��
 � �	� . � � � OPT � �&� � ��
�� ��
 ��� � � �

 ���
 � � � ��� OPT � �&� � ��
 � � � � Since the decision in

time state � and node
�

is the same each time this pair is visited, we can in fact replace this

equality by

OPT � �!� � ��
 � �	� . ��� � � � �&� � � ��
 � � � �� �&� � � � (4.13)

if we calculate these costs for the optimal policy. See Figure 4.3.

Markov
 chain

Markov
 chain

0 1 t+1 dt2

Markov chain

OPT(0,0)

B t+1

B t

R t,i
t+1,0

i

i k ik
w + sum (p OPT(t,k))

Figure 4.3: Markov chain of J in the general case

52 Chapter 4. Running a job on partly available machines

We will now formulate equations for three important costs. All costs naturally depend on the

chosen strategy, but we will not denote this explicitly in every equation.

� � � � �� �&� � � is equal to the cost of node
�
, which is � � , plus the expected cost if there is no

restart, plus finally the expected cost if there is one. We have

� � � �� �&� � � � � � � � � � �� �!� � � � � � �� �!� � � � � � � �� � � � � � � �� � � � � � � � ����
 (4.14)

where � � � �� �&� � � � � � � �� � � � � .
� Similarly, we can derive the following connection between

� � �&� � � � and
� � � � � :

� � �&� � � � � � � � � � � � � � �� �!� � � � � � � � � � �� �&� � � � � � � � � � � �� � � � � � � �� � � � � � �&� � � ���
� � � � �� � � � � � � � � � � �� � � � � � � � � � �&� � � ���

Thus,

� � �&� � � � � � � � � � � � � � � �� �&� � � � � � � � � � �� �&� � � � � � � � � � � �� � � � � � �� � �
� � � � �� � � � � � � � � � �� � � � � � � � , � � � �� �!� � � � � � � � (4.15)

Note that � � � �� �&� � � � � � � � � � � �� � � � � � � �� � � � � � �	� � .
� For � � � � � we find similarly

� � � � � � � � � � � � � � � � �� �!� � � � � � � � � � �� �&� � � � � � � � � � � �� � � � � � � �� � � � � � � �� �&� � � �
� � � � �� � � � � � � � � � �� � � � � � � � , � � � � �� �&� � � � � � � � � � � �� � � � �

Using (4.15), we can write this as

� � � � � � � � � �!� � � � � � �� � � � � � �� �&� � � for some � �
 ��
 � � � (4.16)

According to (4.13), the optimal policy in each node is to unblock it if this is cheaper than

keeping it blocking; in other words, if
� � � �� �&� � � � � � �!� � � � . Note that if � � � , restarting is always

cheaper.

We are therefore especially interested in those values of � , where
� � � �� �&� � � � � � �!� � � � , because

this is a time state where
�

should be unblocked. Using (4.16), this implies
� � � �� �&� � � � � � � � � �� � �!� � � � . Using these equalities in (4.14), we find

� � �&� � � � � ��� � � � � �� �&� � � � � � �� �&� � � � � � � �� � � � � � �� � �
� � � �� �&� � � � (4.17)

4.6 General Markov chains 53

Finally, we have from (4.15) that

� � � � � � � � � �� �!� � � � � � � � � � �&� � � � � � � �� �&� � � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � �� � � �
Combining this with (4.17), we can see that

� � �&� � � � � � � � �� �&� � � is equivalent to
� � � � � � � � � � � � ,

where
�

� � � � �	� � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � �� � �
� � � � �� �&� � � � � � �

� � � � � � � �� �!� � � � � � �� �!� � � � � � � �� � � � � � �� � �
� � � �� �!� � � � � � �� �&� � � � � � � � (4.18)

�
� � � � � is called the threshold of node

�
in time state � . Thresholds determine when nodes should

be unblocked.

Lemma 4.3 From time state � , the optimal policy is that the subset of blocking nodes remains

constant until the first � � � � for which there is a blocked node
�

for which
� ��� � � � � � � ��� � � �

and
� ��� ��� � � � � � � ��� � � � � � � In time state � � , �

is unblocked.

Proof. The threshold � � � � � � depends only on which nodes are blocking in time state � and

which are not. This is because it consists of costs and probabilities of moves in � in time state

� , without including costs after restarts. Therefore, as long as the subset of blocking nodes does

not change, �
� � � � � is a constant. Furthermore,

� � � � � is strictly increasing in � , since it is not

cheaper to reach � than it is to reach � � .
This implies that, as long as the subset of non-blocking nodes does not change over time, for

every node
�

there is one specific time state � � , where for � � � � we have
� � � �� �&� � � � � � �&� � � � and

for ��� � � we have
� � � �� �&� � � � � � �&� � � � . This time state is determined by the threshold for each

node
�
. A node for which the threshold is first reached should be unblocked at that time. Before

then, the optimal subset of blocking nodes does not change, because blocking nodes must never

become non-blocking by Corollary 4.1.
�

4.6.4 Calculating thresholds

We have seen that thresholds play an important part in a policy for this problem. We will now

show how to calculate thresholds. According to (4.18), a threshold depends on no less than five

different costs and five probabilities. But we can see immediately that � � � �� �!� � � � � � � �� � � � � and
� � � �� � � � � � � � � � � �� �!� � � � � � � � � � � �� � � � � . Consider a node

�
which has a set of outgoing edges � � � � � � .

For each state � we divide ��� � � � � in two sets, � � � � � � and
� � � � � � � , where the “bad” edges

lead to nodes where 	 is restarted in state � . The associated end nodes are also called bad.

We call 0 a good node; for the following calculations (equations (4.19)–(4.21)) we put
� � � �� �!� � � � ��
 � � � �� �&� � � � � and � � � � whenever they appear in a right member. The success

54 Chapter 4. Running a job on partly available machines

probability � � � �� �&� � � is the total probability of going to a good node, weighted by the success prob-

abilities of those nodes:
� � � �� �&� � � � �
 � � � �

 ���
 � � � ��� � � � � �� �&� � � � (4.19)

To calculate � � � �� �&� � � , we must assume that 	 is not restarted, and therefore that one of the

“good” outgoing edges is chosen when leaving
�
. If we normalize the transition probabilities on

these “good” edges by putting � �� � � � ����, �
 � � � � �

 ���
 � � � � � � , we get

� � � �� �&� � � � �
 � � � �

 ���
 � � � ���� � � � � � � � �� �!� � � � � (4.20)

For � � � �� � � , a similar equation holds. If � � � �� �&� � � � � , we can put � � � �� � � � � . Otherwise, since we

assume that a restart actually occurs, we must disallow the edge
� �
 � � if it exists and in general

any edge
� �
 � � for which � � � �� �!� � � � � . We then normalize the transition probabilities on the set of

remaining edges, called
��� � � � � � , by putting � ���� � � ����, �
 � � � �
 � 	 � �
 � � � ��� . Note that

��� � � � � �
may contain bad nodes. If the system moves to a bad node, no more costs are incurred, because

the job is then immediately restarted. In a good node
�

however, an extra cost of expected size

� � � � � � �� � � is incurred. Therefore

� � � �� � � � �
 � � � �

 ���
 � ��� � 	 � �
 � � � ���� � � � � � � � �� � � � � (4.21)

Similar relations hold for � � � �� �&� � � � � � � , � � � �� �&� � � � � � � and � � � �� � � � � � � , except that here it needs to

be taken into account that
�

must not be visited. Finally, � � � �� � � and � � � �� � � can also be calculated

using standard techniques. These last five values only change when a node gets allowed that is

reachable from 0.

4.6.5 The algorithm

We are now finally ready to describe a method to determine the global strategy (for the whole

Markov chain). We will eventually tag each node with the time state in which it is unblocked.

We will begin at the “end” of � (which is well defined, since the chain is acyclic), and work

our way back to nodes that can be reached from � , each time calculating which node should be

unblocked next. This way, some nodes will be unblocked before they can even be reached from

� , but this has no adverse effect on the costs of the algorithm.

The method is divided into steps. In each step � we calculate the next time step � � on which a

node
�
� gets unblocked. We do this until all nodes are non-blocking (or the job finishes). Within

each interval
 ��� � ��
 � � ��� the thresholds are constant. We put
� � � � � � � .

4.6 General Markov chains 55

Each step � consists of a number of calculations. There are always a number of relevant

nodes, for which some calculations are necessary, in the correct order. We will define two sets

of nodes: � � and
�
� . Each step consists of the following sub-steps.

� Define � � as the set of non-blocking nodes from which
�
� � � can be reached. For every

node
�

in this set, recalculate � � � �� �!� � � , � � � �� � � and � � � �� �&� � � . Do this in reverse order (walking

backwards through the graph), beginning with the nodes that have no successor in � � .
� Define

�
� as the set of blocking nodes from which 0 or a non-blocking node can be

reached in a single step. Calculate the thresholds of this set in any order, using the new

data from the set � � when necessary.
� Determine the node

�
� � �

� which first reaches its threshold. Calculate � � and unblock
�
�

in time state ��� .

A few notes on this algorithm:

1. For blocking nodes
� ,� �

� we always have that the threshold is not reached yet, since it is

always cheaper to restart immediately than to wait until the next (blocking) node and then

to restart.

2. For nodes
� � �

�
� �

� � � from which
�
� � � can not be reached, the threshold now is the

same as in step � � .
3. It is possible for two or more nodes to have the minimal threshold value. In this case,

unblock the last one in the acyclic ordering.

Theorem 4.4 This algorithm is optimal.

Proof. This follows from Lemma 4.3, the structure of the algorithm and the notes above.
�

Theorem 4.5 This algorithm runs in � � � � � � time, where � is the number of edges in � .

Proof. Consider one step in the algorithm. The calculations for � � take � � number of outgoing

edges from � � � , which is certainly � � � � .
For

�
� , some costs and probabilities starting in � need to be recalculated if

�
� ��� is reachable.

This requires walking backwards through the graph starting in
�
� � � , and doing � � number of

outgoing edges � calculations in each node. Since each edge is used only once, and � is acyclic,

the total costs of this are � � � � as well.

The entire process therefore is � � ��� � � . �

A first-passage problem like this can also be solved using a linear program; however, in this

case for each node in the Markov decision process a variable needs to be introduced. Solving a

56 Chapter 4. Running a job on partly available machines

linear programming problem with � * variables can be done in � � *
 �
 � time. This is clearly far

worse, especially if � is fairly small relative to the size of the job, so that * � � � . Moreover,

this linear program needs to be solved for every occurring job size * . Since the time complexity

is the third power of the job size itself, this is impractical.

4.6.6 On the use of this strategy

All the calculations for this strategy can be done before the job starts, and in fact this is necessary.

When for every node it is known when it should be unblocked, this can be represented internally

by tagging each node with the time state in which it is unblocked. Every time the machine

switches to a different node, the scheduler can check its tag and compare it to the current time

state to see whether the job needs to be restarted. Since the strategy does not depend on the

length of the job, this tagging only needs to happen once and then many jobs could be run.

Finally, more than one scheduler can use this strategy: if all schedulers have different pri-

orities, they can disregard jobs (and schedulers) with lower priorities. They can then construct

their own Markov chain, their own model of the availability of the workstations, and run jobs

(one scheduler must run only one job at a time). As long as there are not too many background

jobs being run, the important assumption that it does not take too long to restart will still hold.

4.7 Conclusions

We have shown optimal policies for scheduling on Markovian machines, for several types of

Markov chains, and an efficient way of calculating them. These policies can be readily extended

to run many jobs simultaneously on one network, or to run jobs with checkpoints [26] (by

considering each part of the job as a separate job). Also, note that our solutions do not depend

on * , neither in their computational complexity, nor as input parameter. This means that it only

needs to be computed once, for all possible occurring jobs. Then the nodes can be tagged with

the time state in which they are unblocked, and any job can be run on the network.

An open question is whether it is possible to do this for a Markov chain that has cycles,

since in our method and proofs we use heavily that it is possible to walk backwards through the

graph. Perhaps in this case one would have to resort to using a linear programming formulation,

using * � variables. This can be solved in � � *
 �
 � time, which is much more than * itself. As

noted, this is substantially worse than in the acyclic case, and requires new computations for

every possible job size * . Hence, this would be an impractical approach.

Recall however, that we can approximate a cyclic Markov chain by our acyclic ones (after

deleting � � �), see Section 4.1.

Chapter 5

Partial servicing of on-line jobs

We consider the problem of scheduling jobs on-line, where jobs may be served partially in

order to optimize the overall use of the machines. Service requests arrive on-line to be executed

immediately. The scheduler must decide how long and if it will run a job (that is, it must fix the

Quality of Service level of the job) at the time of arrival of the job. We assume that preemption

is not allowed.

We give lower bounds on the competitive ratio and present algorithms for jobs with varying

sizes and for jobs with uniform size, and for jobs that can be run for an arbitrary time or only for

some fixed fraction of their full execution time.

Partial execution or computation of jobs has been an important topic of research in sev-

eral papers [10, 22, 29, 34, 54, 68, 69, 76, 77]. Some problems that have been considered are

imprecise computation, anytime algorithms and two-level jobs (see below).

5.1 Introduction

Problem settings As before, we use competitive analysis to measure the quality of the schedul-

ing algorithms. We consider three different settings.

� In section 5.2, we consider jobs with different job sizes. We show that the amount by

which the sizes can differ determines how well an algorithm can do: if all job sizes are

between 1 and
�

, the competitive ratio is
� �
 ��� � � . We adapt the algorithm HARMONIC

from [1] and show a competitive ratio of � �
 ��� � � .
� Subsequently, and most important, we focus on scheduling uniform sized jobs, where each

job can be run for any length of time between 0 and 1. In sections 5.3 and 5.4, we prove a

randomized lower bound of 1.5, and we present a deterministic scheduling algorithm with

a competitive ratio slightly above � � �- � ��� ��� � � .
57

58 Chapter 5. Partial servicing of on-line jobs

� Finally, in section 5.5 we consider the case of uniform sized jobs, where each job can

only be run for either some fixed � � � time or for 1 time. We derive a lower bound of

� � � �
�
.

The performance measure used is the total usage of all the machines (the total amount of time

that machines are busy). For each job, a scheduling algorithm earns the time that it serves that

job. The goal is to use the machines most efficiently, in other words, to serve as many requests

as possible for as long as possible.

Throughout this chapter, � � � is an arbitrarily small constant.

Applications As an example, one could consider the transmission of pictures or other multi-

media data, where the quality of the transmission has to be set in advance (like quality parameters

in JPEG), cannot be changed halfway and transmissions should not be interrupted.

Another example considers the scheduling of excess services. For instance, a (mobile) net-

work guarantees a basic service per request. Excess quality in continuous data streams can

be scheduled instantaneously if and when relevant, and if sufficient resources are available

(e.g. available buffer storage at a network node).

Finally, when searching in multimedia databases, the quality of the search is adjustable. The

decision to possibly use a better resolution quality on parts of the search instances can only be

made on-line and should be serviced instantly if excess capacity is available [15].

Related Work We give a short overview of some related work.

In overloaded real-time systems, a well-known method to ensure graceful degradation is

imprecise computation [34, 54, 68]. On-line scheduling of imprecise computation jobs is studied

in [10, 69], but mainly on task sets that already satisfy the (weak) feasible mandatory constraint:

at no time may a job arrive which makes it infeasible to complete all mandatory subtasks (for

the off-line algorithm). This is quite a strong constraint.

Anytime algorithms are introduced in [29] and studied further in [77]. This is a type of

algorithm that may be interrupted at any point, returning a result with a quality that depends on

the execution time.

In [22], a model similar to the one in this chapter is studied, but on a single machine and

using stochastic processes and analysis instead of competitive analysis. Jobs arrive in a Pois-

son process and can be executed in two ways, full level or reduced level. If they cannot start

immediately, they are put in a queue. The execution of jobs can either be switched from one

level to the other, or it cannot (as is the case in our model). For both cases, a threshold method

is proposed: the approach consists of executing jobs on a particular level depending on whether

the length of the queue is more or less than a parameter $. The performance of this algorithm,

5.2 Different job sizes 59

which depends on the choice of $, is studied in terms of mean task waiting time, the mean task

served computation time, and the fraction of tasks that receive full level computation. The user

can adapt $ to optimize his desired objective function. There are thus no time constraints (or

deadlines) in this model, and the analysis is stochastic. In [76], this model is studied on more

machines, again using probabilistic analysis.

5.2 Different job sizes

We begin with two cases where the ratio between the smallest and the biggest possible job is

very large and show that in these cases it is not possible to get a good competitive ratio.

Then we show that even for limited ratios between job sizes, the competitive ratio of an on-

line algorithm is not improved much by having the option of scheduling jobs partially. The most

important factor is the size of the accepted and rejected jobs, and not how long they run.

The proofs in this section hold both when � is fixed, and when jobs may be run for an

arbitrary length of time between 0 and 1.

Lemma 5.1 If job sizes can vary without bound, no algorithm to schedule jobs on � � �
machines can attain a finite competitive ratio.

Proof. Suppose there is a
�

-competitive on-line algorithm
�

, and the smallest occurring job size

is 1. We consider the job sequence �
	���
 � � �
)	 � �&� � with sizes � � ����
 � � � �
�� ��� � � � � � � �
��
 � � �
 � ��
 � � �&� � � � � ��� � � � �

� � ��� � � Job 	 � arrives at time
� � where � � ��, � � � � � . As

soon as
�

refuses a job, the sequence stops and no more jobs arrive.

Suppose
�

refuses job 	 � , where
� � � . Then

�
earns at most � � � � � � � �

� � � � , while

the adversary earns �	� � � � � � �
� � � � . We have

�	� � � � � � �
� � � �

�	� � � � � � �
� � � � � �	�

� � � � �
�	� � � � � � �

� � � � � �	� � � � �
�

This implies
�

must accept the first � jobs. However, it then earns at most � � � � � �
� � � � .

The adversary serves only the last job and earns �
�

times as much.
�

Note that this lemma holds even when all jobs can only run completely.

5.2.1 Two machines

Lemma 5.2 If for all jobs 	 � we have ��� � � � �
, then for all algorithms

�
on two machines

we have � � � � � � � � � �� � �

60 Chapter 5. Partial servicing of on-line jobs

Proof. Consider any on-line algorithm
�

. The job sequence used is 1,
� � � �!� � ��
 � � � �!� � ��
�
 � , where the jobs arrive � time apart with � � ��, � . The first job must be accepted by

�
to

attain a finite competitive ratio, the second or the third to attain � � � � �� � . (If only the first

job is accepted, the adversary can earn � � � � � � .) The adversary then serves the last two

jobs and earns �
�

, while
�

earns at most
� � � �&�	�&�� (less if some job is not run completely).

�

Algorithm
���

for two machines is defined as follows: if both machines are available, it

accepts any job. Otherwise, it accepts only jobs with size at least � � � � � . All accepted

jobs are run completely.

Since
���

runs all jobs completely, the strongest adversary is one that may serve jobs for

any length of time. This adversary is used in the following lemma.

Lemma 5.3
� ����� � � � � � � � .

Proof. If
���

can accept every job in � , there is nothing to prove, because it runs all jobs

completely. Suppose it refuses some jobs, then we need to show that
���

earns enough from the

jobs it accepted. We can do this by allocating the missed earnings to the accepted jobs, and never

allocating more than
�
� � � � �- � � � of missed earnings to a job of size � . We distinguish

two cases.

Case 1. For intervals in which
� �

serves only one job at a time (it keeps one machine available

during the complete execution of the jobs), we allocate all the jobs that arrive during such a job

to that job. Say
� �

runs a job of size � , then all of the jobs arriving while it runs have sizes less

than � � � �� � .
The worst case is when the adversary runs two jobs of size � for �� � time, and then

two jobs of size � � � � � � , which arrive at time � � �� � , completely. We have
OPT
 � ��
�
 � � � �
 � � � � �&� � � � � �

�
�

� � � � � � for � � � and � � � .

Case 2. If
���

is running a job of size � � , and another job arrives that
� �

serves as well, we

can allocate the missed earnings to this pair of jobs. Consider � � ����
�� � � � � � �� � . The

adversary can serve two jobs of size 1 for � � time, and then two jobs of size
�

. If � �	� � � � � ,
the adversary can earn � � � more while

���
earns � � more than when �-� ��� , so that its relative

performance improves. If � � � � � � �!
� , the adversary earns nothing more. This shows that

our choices of � � and � � represent the worst case. We have OPT
 � ��
�
 � � � � � � � � � �

�
� �&� � � � � � � .

Suppose a job arrives after either the job of size � � or the job of size � � is finished, but

before both are finished. Only if
� �

serves it do the possible missed earnings of
���

increase,

because this creates a new interval in which
� �

cannot serve any jobs. However, in this case

5.2 Different job sizes 61

the new job has size at least �
 � � � � � and the missed earnings increase by at most �
 ,
because the total earnings of the adversary increase by at most ���
 . �

Note that an on-line algorithm can do at best only slightly better than
� �

if it runs some

jobs partially, because Lemma 5.2 implies
� �

is already almost optimal.

5.2.2 � ��� machines

Lemma 5.4 For
�
��� � , we have

� ��� � � � for all algorithms
�

on � machines.

Proof. Let � � � � � � and suppose
�

maintains a competitive ratio of � . If
�
� � � , then

� � � . Consider the following job sizes: � � � ��
 � � � �
� � � � � � � � � � � ��
 � � �
 � � ��
 � � �

�
.

We build a job sequence in steps. In each step
� � � , at most � jobs of size ��� arrive � time

apart with � � � , �

. We move to the next step as soon as

�
accepts a job. The sequence stops

when
�

refuses � jobs of a certain size. This happens in step � at the latest.�
has to accept the first job (with size 1) and one of every size � � (� � � � �). For

instance, if it refuses � jobs of size � � , it earns at most � � �-� � � � � while the adversary

can earn � � � , and then
� ��� � � � � "�	� � � � � � � , a contradiction. Therefore,

�
earns at most

� � � � � � � � � � � � �	�
� � � � � � ��� � � � � � � � � � , and we have

� ��� � � � �
 � � � � � �
� � � � � � �

� � � � �
�

Corollary For
�
� � � , we have

� ��� � � � � � � � � � for all algorithms
�

.

We can also show a bound of
���� � by using a method similar to [1]. This bound holds for

all
�

and � (also if � is large). However, if
�
��� � , the bound above is still the strongest.

Theorem 5.1 For the competitive ratio
�

of this scheduling problem with different job sizes we

have
�
�
 ��� � .

We will first introduce a job sequence, and then show that it implies the theorem. The

adversary generates the job sequence in steps; in each step
�
, � jobs arrive of size

�
. This

process ends when (and if) the on-line algorithm has assigned each machine to a job.

Suppose there is a
�

-competitive on-line algorithm
�

. To maintain a competitive ratio of�
,
�

has to serve at least � , � jobs of the first � jobs. In the second step, it must serve � jobs

so that � � , � � , � � � � � � � . It follows that � � � , � � � � . Note that if
�

serves more jobs in

the first step, it has to use more machines in total in the first two steps. In step
�
,
�

has to serve

� , � �
jobs, earning � , � in each step. This means that

�
will exhaust its supply of machines

in step
�
, where

�
is the smallest solution of �� � �	� �� � � � � �

�� � ��� � It follows that

� � � � �
��
���&�

�
�
 (5.1)

62 Chapter 5. Partial servicing of on-line jobs

and that
�

has then earned
�
� , � . Note that serving some jobs partially only lowers

�
’s profit.

We must have
� � �

for this method to work, otherwise not all machines are busy after the

jobs of size
�

.

On the other hand, if this method works the adversary can serve a job of size
�

on every

machine after
�

has used all its machines. Then we have
� � � �� � � � , implying that

� � �
. We

conclude that
� � �

in this case. We are now ready to prove the theorem.

Proof. Suppose there exists an on-line algorithm
�

with competitive ratio
� � � � � � . Then

the above job sequence will cause
�

to use all its machines in the final step, since (5.1) is

satisfied with
� � �

. Consider step
� � . After this step, � jobs of size

�
arrive, which are

all served by the adversary. We find that

� �
�
��
 � � � �� � � �
� � � � �

�� �
� � � � � � � � �� � � � � � �

This is a contradiction. We conclude
�
�

� � � � �
 ��� � �
�

Compare this result to [1], where a central server had to decide which movies to show on a

limited number of channels. Each movie has a certain value determined by the amount of people

that have requested that movie, and the goal is to use the channels most profitably. The result

there is
� �
������ , where � is the total number of customers divided by the number of channels.

Algorithm ADAPTED HARMONIC [1] divides the machines into
� � sets % ��
 � � �
 %

� ��� .
Each set %!� contains � �� � � �

� � machines. Machines in set %&� serve only jobs of size at least
�
.

They are served completely.

Again we use the strongest possible adversary, that can run jobs for any length of time, in

the following proof. We will show that ADAPTED HARMONIC is only a constant factor away

from the optimal competitive ratio. This implies that an algorithm that serves some jobs partially

could do at most a constant factor better. This is independent of which running times are allowed

for the jobs.

Theorem 5.2
� �

ADAPTED HARMONIC �	� � �
 ��� � � .

Proof. For every amount of sets that are busy in ADAPTED HARMONIC’s schedule # , we will

show that the adversary cannot earn more than � � � � � times what ADAPTED HARMONIC earns

on the busy sets.

Denote the end time of # by � and consider the longest job 	 � that finishes in the interval

 � ��
 � � . We distinguish two cases, depending on whether or not all machines are busy at some

point during the execution of this job.

5.3 Uniform job sizes 63

Case 1 Suppose all machines are in use by ADAPTED HARMONIC. Then it earns at least

�
� � � ��, � � � � , while an adversary can earn at most � �

�
in the worst case, by using all

its machines continuously while these jobs are running and serving an additional � jobs of size�
that arrive just before one of the machines becomes available again. ADAPTED HARMONIC

serves none of these last jobs and we have

OPT
� ���

ADAPTED HARMONIC(�)
� � �

� � � � �
�
� � � � � �

�
� �

� � ��� ��� � � � � � � �
Case 2 If not all machines are in use, ADAPTED HARMONIC will only refuse jobs that are

currently too small for any non-filled set. Suppose all sets %'��
 � � �
 % � are in use. Then ADAPTED

HARMONIC earns at least �
� , � � ��� . The adversary can earn at most �

�
�

� � �� � � , by using

all its machines continuously while these jobs are running and serving � additional jobs of size
� � �� � , which arrive just before ADAPTED HARMONIC’s machines become available again.

We have
OPT

� ���
ADAPTED HARMONIC(�)

� �
�
�

� � � �
�

� , � � � � � �
� � ��� �

We can now remove all jobs that finish after 	 � starts from # and repeat these arguments.
�

5.3 Uniform job sizes

We will now study the case of identical job sizes, which we take to be 1.

5.3.1 Lower bounds

The simplest algorithm is GREEDY, which serves all jobs completely if possible. Clearly,

GREEDY maintains a competitive ratio of 2, because it can miss at most 1 in earnings for every

job that it serves. The following lemma shows that, like in section 5.2, the case of two machines

forms an exception where partial scheduling is not advantageous.

Lemma 5.5 For two machines and jobs of size 1, GREEDY is optimal among algorithms that

are free to choose the execution times of jobs between 0 and 1, and it has a competitive ratio of

2.

Proof. Assume some algorithm
�

has a competitive ratio less than 2, say � � where � � � . The

adversary lets two jobs arrive at time � � � . Say
�

serves them for � � � � � � and � � � � � � �
time respectively. (If � � � � , � earns at most 1 and has a competitive ratio of at least 2.) At

time � � � � � , two jobs arrive. The adversary can now earn �
� � � � � � � , while

�
earns

� � � � � . We have
�
 �	� � � � �

�
� � � � " � � � �� ��	� � � � ���- � for � small enough: a contradiction.

�

64 Chapter 5. Partial servicing of on-line jobs

We give a lower bound for the general case, which even holds for randomized algorithms.

Lemma 5.6 For jobs of size 1 on � � � machines, no (randomized) algorithm that is free to

choose the execution times of jobs between 0 and 1 can have a competitive ratio lower than �$, � .
Proof. We use Yao’s Minimax Principle [74].

We examine the following class of random instances. At time 0, � jobs arrive. At time

� � � � � , � more jobs arrive, where � is uniformly distributed over the interval
� ��
 � � . The

expected optimal earnings are � � , � : the first � jobs are served for such a time that they finish

as the next � jobs arrive, which is expected to happen at time ��, � ; those � jobs are served

completely.

Consider a deterministic algorithm
�

and say
�

earns � on running the first � jobs (par-

tially). If
�

has � � ��� machines available at time � , when the next � jobs arrive, it earns at most

an additional � � ��� . Its expected earnings are at most � � � �� � � � � ��� * �	� � , since
� �� � � � � ��� * � is ex-

actly the earnings that
�

missed by not serving the first � jobs completely: � � � � �� � � � � �
� * � �
Therefore

� � � � � �$, � �
�

5.3.2 Algorithm SL

We now present an algorithm SL which makes use of the possibility of choosing the execution

time. Although SL could run jobs for any time between 0 and 1, it runs all jobs either completely

(long jobs) or for �� � � of the time (short jobs). We denote the number of running jobs of these

types at time � by � � ��� and + � ��� . The arrival time of job 	 � is denoted by � � .

The idea is to make sure that each short job is related to a unique long job which starts earlier

and finishes later. To determine which long jobs to use, marks are used. Short jobs are never

marked. Long jobs get marked to enable the start of a short job, or when they have run for at

least � �� � � time. The latter is because a new short job would always run until past the end of

this long job. In the algorithm, at most + � � � � � � � � � , � � � � � � �
�
�
� � � jobs are run short

simultaneously at any time. We will ignore the rounding and take + � � � � � � � � , �
in the

calculations. The algorithm is defined as follows.

Algorithm SL If a job arrives at time � , refuse it if all machines are busy.

If a machine is available, first mark all long jobs 	 � for which � � � � �- �� � � . Then if

+ � ��� � + � and there exists an unmarked long job 	 � � , run the new job for �� � � time and mark 	 � � .
Otherwise, run it completely.

Theorem 5.3 SL maintains a competitive ratio of

� � � � �- �	� � � �- ���
�

��� ��� � �
� � � � � � �

� �
�

5.4 Analysis of Algorithm SL 65

where � is the number of machines.

Proof. We will give the proof in the next section.

5.4 Analysis of Algorithm SL

A

A

A

A

A

B

A

B

A

A

A

A

A

A

time

m
ac

hi
ne

s

Figure 5.1: A run of SL

Below, we analyze the performance of algorithm SL, which was given in Section 5.3, and

prove Theorem 5.3.

Consider a run of SL as in Figure 5.1. We introduce the following concepts.

� A job is of type � if at some moment during the execution of the job, all machines are

used; otherwise it is of type
�

. (The jobs are marked accordingly in Figure 5.1.)

� Lost earnings are earnings of the adversary that SL misses. (In Figure 5.1, the lost earnings

are marked grey.) Lost earnings are caused because jobs are not run or because they are

run too short.

� A job or a set of jobs compensates for an amount � of lost earnings, if SL earns � on that

job or set of jobs and
�

� � � � , � � �
(or � , � � � ��). I.e., it does not violate the

anticipated competitive ratio
�

.

� A critical interval is an interval of time in which SL is using all its machines, and no jobs

start or finish. (Such an interval is called critical because only in those intervals does SL

refuse jobs, causing lost earnings.)

A job of type
�

can only cause lost earnings when it is run short, because no job is refused

during the time a job of type
�

is running. However, this causes at most � �� � � of lost earnings,

so there is always enough compensation for these lost earnings from this job itself.

66 Chapter 5. Partial servicing of on-line jobs

When jobs of type � are running, the adversary can earn more by running any short jobs

among them longer. But it is also possible that jobs arrive while these jobs are running, so that

they have to be refused, causing even more lost earnings. The worst case is if � jobs arrive

simultaneously just before the earliest job finishes. This explains why the lost earnings in Figure

5.1 after the sets of jobs of type � have a shared endpoint on all the machines. We will show

that SL compensates for these lost earnings as well.

We begin by deriving some general properties of SL. Note first of all that if � jobs ar-

rive simultaneously when all of SL’s machines are empty, it serves + � of them short and earns�� + � � � � �
� + � � � � � � � � � � � , � � � � � � ��� � � � . We denote this amount by � � .

Properties of SL

1. Whenever a short job starts, a (long) job is marked that started earlier and that will finish

later. This implies � � ��� � + � ��� for all � .

2. When all machines are busy at some time � , SL earns at least � � from the jobs running at

time � . (Since + � ��� � + � at all times.)

3. Suppose that two consecutive jobs, 	 � and 	 � , satisfy that � � � � ��� �� � � and that

both jobs are long. Then + � � � � � + � (and therefore + � � � � � + �), because 	 � was run long

although 	 � was not marked yet.

Lemma 5.7 If at some time � all machines are busy, at most � + � jobs running at time � will

still run for �� � � or more time after � .

Proof. Suppose all machines are busy at time � . Consider the set � of (long) jobs that will be

running for more than �� � � time, and suppose it contains
� � � + � � � jobs. We derive a

contradiction.

Denote the jobs in � by 	 ��
 � � �
�	�� , where the jobs are ordered by arrival time. At time � � ,
the other jobs in � must have been running for less than �- �� � � time, otherwise they would

finish before time � � �� � � . This implies that jobs in � can only be marked because short jobs

started.

Also, if at time � � we consider 	�� not to be running yet, we know not all machines are busy

at time � � , or 	�� would not have started. We have

� � + � � � � � � � � � � � + � � � � � � + ��

so + � � � � � + � . Therefore, between times � � and � � , at most + � � � � � + �� � short jobs can have

been started and as a consequence, less than + � jobs in � are marked at time � � . But then there is

an unmarked job in � at time � � , so 	�� is run short. This contradicts 	 � � � .
�

5.4 Analysis of Algorithm SL 67

This lemma implies that the length of a critical interval is at most �� � � .
We denote the jobs that SL runs during a critical interval � by 	 ��
 � � �
�	

�� , where the jobs are

ordered by arrival time. We denote the arrival times of these jobs by � � �
 � � �
 �
�� ; � starts at time

� �� . We will omit the superscript � if this is clear from the context. We denote the lost earnings

that are caused by the jobs in � by
� � .

We say that a job sequence ends with a critical interval, if no more jobs arrive after the end

of the last critical interval that occurs in SL’s schedule. In subsection 5.4.1, we will show that

SL can compensate for the lost earnings
� � if it ends with a critical interval � . In 5.4.2, we

will generalize this result to job sequences that end with a group of critical intervals. Finally we

prove Theorem 5.3 in 5.4.3.

5.4.1 One critical interval

Lemma 5.8 If a job sequence ends with a critical interval � , then SL can compensate for the

lost earnings
� � .

We begin by showing a special case of Lemma 5.8 and then prove the general case.

Lemma 5.9 If a job sequence ends with a critical interval � , and no other jobs besides 	 ��
 � � �
	 �� arrive in the interval
 � � �
 � � �
 �
�� � , then SL can compensate for the lost earnings

� � .

Proof. Note that 	 � is long, because a short job implies the existence of an earlier, long job in

� by Property 1. SL earns at least � � from 	 ��
 � � �
)	 � by Property 2. There are three cases to

consider, depending on the size and timing of 	 � .

��������������������������������������

2/30 t 5/3

critical interval

Figure 5.2: 	 � is short

68 Chapter 5. Partial servicing of on-line jobs

Case 1. 	 � is short. See Figure 5.2, where we have taken � � � � . Note that 	 � must be the job

that is marked when 	 � arrives, because any other existing jobs finish before � starts and hence

before 	 � finishes. Therefore, � � � � � � �� � � , so before time � � the adversary and SL earn

less than � �� � � from job 1. After time � � , the adversary earns at most
� � � �� � � � � from

	 ��
 � � �
�	 � and the jobs that SL refuses during � . We have

� �	� �
�
� � � � � � �� �

�
� � �	� � � � �

so SL compensates for
� � .

Case 2. 	 � is long and � � � � � �� �� � � .
Since no job arrives between 	 � and 	 � , we have by Properties 3 and 1 that + � � ��� ��+ � and� � � �
� � + � . Denote the set of short jobs running at time � � by % � and the set of long jobs that

were marked because of these short jobs by ��� . Then � � contains + � jobs. All jobs in % � � � �
finish before � . (During � , SL does not start or finish any jobs.)

t 1 +1

L 1

0 t 1 t 1 +2

S1

I

Figure 5.3: 	 � is long

Case 2a. There is no critical interval while the jobs in % � and � � are running.

Hence, the jobs in % � and � � are of type
�

. We consider the jobs that are running at time � �
and the later jobs. After time � � the adversary earns at most � � , because � ends at most at time

� � � � . SL earns �� + � � � � + � from % � and � � and at least � � on the rest. For the adversary, we

must consider only the earnings on % � and � � before time � � ; this is clearly less than �� + � � � � + � .
We have

� � � �� + � � � � + �
� � � �� + � � � � + � � �

�
This shows SL compensates for

� � (as well as for the lost earnings caused by % � and � �).

5.4 Analysis of Algorithm SL 69

Case 2b. There exists a critical interval before � which includes a job from % � or � � .
Call the earliest such interval � � . If � � starts after � � , we can calculate as in Case 2a. Other-

wise, we consider the earnings on each machine after the jobs in � � started. Say the first job in

% � starts at time � � . See Figure 5.4.

2
1

2

L

t’

1

L 2

S2 S1

I 2 I

t1
max. 1

Figure 5.4: 	 � is long and there is another critical interval

Denote the end of � � by � � � . Note that until time � � � , SL and OPT earn exactly the same on the

jobs in � � . We assume that the adversary can keep all its machines occupied from the start of � �
until 1 time past the end of ��� . Then it follows that any job that SL runs between � � and ��� and is

not in % � � � � improves the ratio for SL; we may assume there are no such jobs.

There are two cases: � � � � � � and � � � � � � . If � � � � � � , the number of short jobs in � � should

be maximized, because that maximizes the amount of lost earnings between the two critical

intervals. Furthermore, the worst case is if all jobs in ��� are in � � , since for every long job that

is in � � but not in � � , SL and OPT earn 1: the number of these jobs should be minimized. Then

� � � � � � ��+ � . We have � �' � � � � � and � � ends at most 1 after � � . Hence the adversary earns

at most

� � (after � � �) � � � � � � �
�
� � � % � � � � � � �

�
� � � �

whereas SL earns � � � � � % � � � � � � � � � � � ��, � � , and we have OPT
SL � � � �- � � �

.

If � � � � � � , we have similarly that the worst case is if all jobs in ��� and % � are in � � , and

� % � � � + � . We have � �' � � � �� � � so in this case the adversary earns at most

�
� � �
�
� � � � (after � �) � � �� �

�
� � � � � � � � � � � � � � � �

� � �
� � �

whereas SL earns � � � . The ratio is less than
�

.

Case 3. 	 � is long and � � � � � �� �� � � . We consider job 	
 .
� If 	
 is short, then after time � � � � �� �� � � � the adversary earns at most

� � � �� � � � � �
� � � ��� �
 � ��� � �� �� � � � � � � � � � �
� � �� �� � � � � . Before that time, it earns of

70 Chapter 5. Partial servicing of on-line jobs

course
� � �� � � � (only counting the jobs in �). So in total, it earns less than it did in Case

1.

� If 	
 is long, we have two cases. If �
 � � � � �� � � , then again the sets % � and � � are

implied and we are in Case 2. Finally, if �
 �� � � � �� � � we know that � � ��
 � �� �� � � ,
so this reduces to Case 1 or 2 as well.

In all cases, we can conclude that SL compensates for
� � . �

Proof of Lemma 5.8. We can follow the proof of Lemma 5.9. However, it is now possible that

a short job 	 �� starts after 	 � , but finishes before � .

Suppose the first short job in � arrives at time � � � � � � � . If the job sets % � and � � exist, we

can reason as in Case 2 of Lemma 5.9. Otherwise, all long jobs in � that arrive before time � � �
except for maybe one are followed by short jobs not in � . (If there are two such long jobs, they

arrived more than �� �� � � apart, and the adversary earns less than in Case 1 of Lemma 5.9 (cf.

Case 3 of that lemma).)

For each pair of jobs
� 	 �
)	 � � , where 	 � is long and 	 �
� � is short, we have that 	 � will run

for at least �� � � � more time after � � , while 	 � has run for at most � time. One such pair is

shown in Figure 5.5.

�����������������������
�����������������������
�����������������������
�����������������������

�����
�����
���
���

t t 1

x

J

b
J

a

Figure 5.5: Pairs of long and short jobs

We compare the adversary’s earnings now to its earnings in Case 1 of Lemma 5.9. Since

	 �
� � , it earns less on the machine running 	 � and more on the machine running 	 � (because

there it earns something before time � � , which was not taken into account earlier). If � � �� � � ,
the adversary loses more on the machines running these pairs than it gains. On the other hand,

if � � � �� � � , then � is shorter than �� � � : the adversary earns � � � �� � � � less on every

machine.
�

5.4 Analysis of Algorithm SL 71

5.4.2 Two or more critical intervals

It is possible that two or more critical intervals follow one another. In that case, we cannot

simply apply Lemma 5.8 repeatedly, because some jobs may be running during two or more

successive critical intervals. Thus, they would be used twice to compensate for different lost

earnings. We now show that SL compensates for all lost earnings in this case as well. We begin

with the special case of two critical intervals and then prove the general case.

Definition A group of critical intervals is a set � �)� � ����&� of critical intervals, where ��� �!� starts at

most 1 time after ��� finishes
� � � ��
 � � �

� � � .
A job sequence ends with a group of critical intervals � �)� � ����&� , if SL only runs jobs from

� ��� � ����&� after ��� starts.

Note that if there are small jobs that SL starts after one critical interval from a group and

finishes before the next, this can only help SL, because it decreases the amount of lost earnings

between those two intervals.

Lemma 5.10 If a job sequence ends with a group of two critical intervals, SL compensates for

the lost earnings
� � � and

� � " .
Proof. If all jobs from ��� have finished before � � starts, we know

� � � is compensated for by

Lemma 5.8. On � � we can also use Lemma 5.8 to see that
� � " is compensated for as well. Note

that no jobs are used twice to compensate for lost earnings.

In case some jobs from ��� are still running in � � , � � ends within 1 time of the start of ��� . We

denote the set of long jobs that are running in � � but not in � � by � � , the set of long jobs in � � but

not in ��� by � � and the set of long jobs in both by �
 . Define % � , % � and %
 analogously. The

sizes of these sets are denoted by � �
 � �
 �

 + �
 + � and +
 , respectively. Of the + � jobs in % � , + � �
jobs had jobs in ��� marked when they started, and +��
 jobs had jobs in �
 marked.

Case 1. If � � starts within �� � � time after ��� has finished, the jobs that are in � � but not in � �
can compensate for

� � � , since the size of such a job is at least twice the size of the lost earnings

following it on the same machine.

Case 2. Say � � starts after �� � � , but within �� � � time after ��� has finished. Then
� � � ��� � � � +�� � � � �
� � � �� �� � � � + �
 . SL earns � � � � � � + � � � + �
 � , � from the jobs in % � and � � . We

have �� � � � + � � � � ��� � � �� �� � � � +��
� � � �� � � � + � � � +��
 � � � � for all +��
 , � � and + � � �

72 Chapter 5. Partial servicing of on-line jobs

L

L

L

S

S

S

S

1

3

2

11 23

13 22

I I2

Figure 5.6: The jobs in two critical intervals divided into sets

(The worst case is +��
 � � and � � � +�� � , since � � � +�� �). In other words, SL earns enough on % �
and � � to compensate for

� � � . Lemma 5.8 shows that
� � " is compensated for too, again without

using jobs twice to compensate for different things: % � and � � are not in � � .

Case 3. Suppose � � starts more than �� � � time after ��� has finished. We have +
 � � , + � � + �
and � � � � �
 + � .

Case 3a. If �
 � + � , then � � ��� ��+ � � � , � . In a figure like Figure 5.6, we can move jobs

around to aid in the calculations, without affecting profits. Here we move all the jobs in � � and

% � forward, so that they start 1 time after the end of � � . We then see that after that time, SL earns

at least � , � while the adversary earns � , and before that time, we can apply Lemma 5.8.

Case 3b. The last case is �
 � + � and � � starts more than �� � � after � � . Since all jobs in �

start within � �� � � time (because ��� and � � are at least �� � � apart), and �
 � + � , it must be

that + � � + � , because each job in �
 is available to be marked for a short job before � � starts.

But then SL already earns � � � �� + � � � from % � , � � , % � and �
 alone, because it earns at least � �
from the jobs in � � . Starting at the beginning of � � , the adversary earns at most � � . Since

� �
� � � �� + � � � � �

we have that % L compensates for both
� � � and

� � " . �

We now generalize this result in the following lemma.

Lemma 5.11 If a job sequence ends with a group of critical intervals, SL compensates for all

the lost earnings after the first critical interval.

5.4 Analysis of Algorithm SL 73

Proof. We use an induction on the number of critical intervals
�
. We have already proven the

cases
� � � and

� � � . Say
� ��� , and consider the last three critical intervals, � � , � � and �
 .

See Figure 5.7.

L

L

L

S

S

S

S

1

3

2

11 23

13 22

I I 21 3I

Figure 5.7: The last three critical intervals in a group

There are a number of cases to consider. We will abuse notation and use �)� to refer both to

the
�
-th critical interval and the jobs that SL runs during �)� .

Case 1. There are no short jobs in ��� � � � . Denote the number of long jobs in � � � �
 by �
 .
Case 1a. There are no short jobs in � � � �
 .
Case 1a1. �
 � + � . Now the jobs in �
 � � � are worth at least � , � and (using induction) we are

done as in Lemma 5.10.

Case 1a2. �
 � + � . As in Lemma 5.10 we have that + � � + � , where + � is the number of the short

jobs in � � . We find that these jobs together with the jobs in �
 compensate for the lost earnings

after � � , and can use an induction for the rest, because we never need these jobs to compensate

for earlier lost earnings.

Case 1b. There are short jobs in � � � �
 . The adversary earns at most
� � � �� � � � � after � � , while

SL earns at least � � from all jobs after ��� . We are again done using induction.

Case 2. There are short jobs in ��� � � � .
Case 2a. ��� � �
 �
	 � By induction we know that the jobs up to and including those from � � can

compensate for lost earnings until 1 time after the end of ��� . Since � � ends at most �� � � after the

start of ��� , the jobs after ��� have to compensate only for the lost earnings starting from � �� � �
after � � . From then on, the adversary earns at most

� � � �� � � � � while SL earns at least � � from

the jobs in �
 .

74 Chapter 5. Partial servicing of on-line jobs

Case 2b. ��� � �

�
	 . We have that �
 finishes at most 1 after ��� starts and we can treat this as a

special case of two critical intervals, thus reducing this case to
� � critical intervals. Note that

the analysis in Lemma 5.10 does not assume that there are no critical intervals between ��� and

� � . �

5.4.3 The competitive ratio of SL

Having shown Lemma 5.11, we are now ready to prove Theorem 5.3.

Theorem 5.3 SL maintains a competitive ratio of
� � � � �- �	� � � � � � �� .

Proof. If no jobs arrive within 1 time after a critical interval, the machines of both SL and the

adversary are empty. New jobs arriving after that can be treated as a separate job sequence. Thus

we can divide the job sequence into parts. The previous lemmas also hold for such a part of a

job sequence.

Consider (a part of) a job sequence. All the jobs arriving after the last critical interval can be

disregarded, since they are of type
�

: they compensate for themselves. Moreover, they can only

decrease the amount of lost earnings caused by the last critical interval (if they start less than 1

after a critical interval).

If there is no critical interval, we are done. Otherwise, we can apply Lemma 5.11 and remove

the last group of critical intervals from consideration. We can then remove the jobs of type
�

at

the end and continue in this way to show that SL compensates for all lost earnings.
�

5.5 Extensions of this model

5.5.1 Fixed levels

In this section, we study the case where jobs can only be run at two levels [22, 76]. This reduces

the power of the adversary and should lower the competitive ratio. If the jobs can have different

sizes, the proofs from Section 5.2 still hold. For the case of uniform jobs, we have the following

bound.

Theorem 5.4 If jobs can be run at two levels, � � � and 1, then no algorithm can have a better

competitive ratio than �	� � �
�
.

Proof. Note that each job is run either for 0, � or 1 time. Let � jobs arrive at time � � � . Say�
serves � � jobs partially and the rest completely. It earns

� �� � � � � � � . If this is less than

� , � � � � �
�
� we are done. Otherwise, we have � � �� � � � � " . Another � jobs arrive at time

5.6 Conclusions 75

� � � �
�

earns at most
� � � � � � � in total, while the off-line algorithm can earn � � � � . Since

� � �� � � � � " , we have � � � � � �	� ��	� ��� � �	� � �
�
�

�

Note that for � � �� � � , SL yields a competitive ratio for this problem of at most � � � � � (but

possibly much better). Extending these results to more values of � is an open problem.

5.5.2 Non-linear rewards

In many applications, it is reasonable to assume that serving a job partially, say for time � , an

algorithm earns more than � (but strictly less than 1). For instance, if a video is transmitted

using only half of all the pixel data, the perceived quality is much more than ��, � and therefore

the algorithm should earn more, say �
, � .

Consider rewards of the form � � � � , where � � � � � ��
 � � � � � � , � � � � � � and � � � � � � ���
(concave) for all � � � � � . One example is

� � � � � � � �
If � is fixed, the only change that this causes in the lower bound is that all earnings of � are

replaced by � � � � . The timing of the jobs by the adversary does not change, and the structure of

the proof remains unchanged.

In other applications, � � � � � � is possible. Then the above still holds as long as � � � � is

monotonic non-decreasing. Other methods would be required for a non-monotonic � � � � .

5.6 Conclusions

We have studied the problem of scheduling jobs that do not have a fixed execution time on-line.

We have first considered the general case with different job sizes.

Subsequently, we have given a randomized lower bound of 1.5 and a deterministic algorithm

with competitive ratio � � ��� � � for the scheduling of uniform jobs. An open question is by how

much either the lower bound or the algorithm could be improved. Especially using randomiza-

tion it could be possible to find a better algorithm.

An extension of this model is to introduce either deadlines or startup times, limiting either

the time at which a job should finish or the time at which it should start. Finally, algorithms for

fixed level servicing can be investigated.

76 Chapter 5. Partial servicing of on-line jobs

Chapter 6

Minimizing the maximum starting time

In this chapter, we study the scheduling problem of minimizing the maximum starting time on-

line. The goal is to minimize the last time that a job starts. We show that while the greedy

algorithm has a competitive ratio of � �
 ��� � � , we can give a constant competitive algorithm for

this problem. We also show that the greedy algorithm is optimal for resource augmentation in

the sense that it requires � � � machines to have a competitive ratio of 1, whereas no algorithm

can achieve this with � � � machines.

6.1 Introduction

The system that we study consists of three parts. The first part is the set of servers which run the

jobs. There are � independent and identical such servers, without any communications channels

between them. An additional server, called the input server, is used for communication. This

server is in charge of giving input to the identical servers, and is the heart of the system. The

third part is a scheduler. This is a computer which runs a scheduling algorithm to decide where

each new job is going to run. The input server gets this information from the scheduler, and

supplies the servers with all data needed to process the required jobs. The scheduler works in

an on-line paradigm where jobs arrive one by one (each job is assigned to a machine without

knowledge of future jobs). This needs to be done so that on arrival of a request, it is possible to

give an immediate acknowledgement to it and to specify which server is going to run this job.

However, the input server moves the data of each job to the server which is going to run it, just

before the job starts running. The order in which jobs, that were assigned to a certain server, are

given to it is the order of their arrival. See Figure 6.1. After a job has been processed, its output

needs to be collected. An output collector is not a part of the system, and is not synchronized

with it.

Since the input supplier is a communication channel between scheduler and servers, we

77

78 Chapter 6. Minimizing the maximum starting time

Scheduler

Server m

Server 1

Server 2

Server 3
Input
server

Figure 6.1: The system considered in this chapter

would like to free this server as soon as possible. Both in order to make it available for a

different use, and to increase the chances of successful completion of the delivery of all jobs. To

do that, the goal should be to minimize the maximum starting time of any job.

An example of this situation is the following. There is a loading station where trucks are

loaded with goods. These goods need to be delivered to different places, after which the trucks

return to the loading station to pick up a new load. At the end of a work day, the station can

close as soon as the truck carrying the last load has left, and does not need to wait for the trucks

to return. The loading station is the input server in our model, the servers are the trucks, and

the goods are the jobs. The time it takes to deliver the goods in one truck is the size of the job.

(Here we consider a truck load to be “one job”, e. g. each truck contains only one item, or items

for only one destination (client).)

We define the problem in more standard terms of machine scheduling of jobs in a list. We

consider the problem of minimizing the maximum starting time. Jobs arrive on-line to be sched-

uled on � parallel machines. These machines can be either identical or related, in which case

each machine has a speed that determines how long it takes to run one unit of work. We study

the on-line paradigm where jobs arrive one by one. A job 	 � is defined by its size and by its

order in the input sequence. Denote the starting time of job 	 � by % � . We denote the cost of an

algorithm
�

on a job sequence � � �
	 ��
 � � �
�	���� by
��� ��� � . /�1 � % � . An algorithm is required

to run the jobs on each machine in the order of arrival.

In this chapter, we consider both the competitive ratio of algorithms in the standard setting,

and the amount of resource augmentation (in the form of extra machines) required to have a

competitive ratio of 1. To the best of our knowledge, no previous work on the above goal

function exists.

Note that if a sequence � contains at most � jobs, then OPT
� ��� � � . Hence, any algorithm

with finite competitive ratio needs to have zero cost and run all jobs on different machines in

that case.

6.1 Introduction 79

We show the following results for the competitive ratio on identical machines:

� The greedy algorithm, which assigns each job to the least loaded machine, has competitive

ratio � �
���� � � .
� The greedy algorithm has optimal competitive ratios for 2 and 3 machines, which are 2

and � , � respectively.

� There exists a constant competitive algorithm BALANCE which has competitive ratio 12

for any � (hence the greedy algorithm is far from having optimal competitive ratio for

general �).

� For any � ��� , there exists a value � � so that for any � � � � , the competitive ratio of

any on-line algorithm on � machines is at least
� � .

The last item implies that any algorithm that works on an arbitrary number of machines has a

competitive ratio of at least 4.

For two related machines, we give a matching upper and lower bound of � � � for the

competitive ratio, where � is the speed of the fastest machine relative to the slowest.

We show the following results for resource augmentation:

� The greedy algorithm has competitive ratio � if it uses � � � machines (and is compared

to an optimal off-line algorithm with � machines).

� Any on-line algorithm which uses � � �� machines has competitive ratio larger than 1,

and any on-line algorithm which uses � � � machines has competitive ratio of at least 1.

Hence the greedy algorithm is optimal in this measure.

Note that the off-line version of minimizing the maximum starting time is strongly NP-hard.

The off-line problem of minimizing the maximum completion time (minimizing the makespan)

is a special case of our problem. A simple reduction from the makespan problem to our problem

can be given by adding � very large jobs (larger than the sum of all other jobs) in the end of the

sequence. Each machine is forced to have one such job, and the maximum starting time of the

large jobs, is the makespan of the original sequence.

We present results on the greedy algorithm in Section 6.2, the constant competitive algorithm

BALANCE in Section 6.3, lower bounds in Section 6.4, results for related machines in Section

6.5 and results for resource augmentation in Section 6.6.

80 Chapter 6. Minimizing the maximum starting time

6.2 The greedy algorithm

GREEDY always assigns an arriving job on the machine where it can start the earliest (see [41]).

In some upper bound proofs we use the following definition: a final job is a job that starts as the

last job on some machine in OPT’s schedule.

Theorem 6.1 GREEDY has a competitive ratio of � �
 ��� � � on identical machines.

Proof. Let � � OPT
� ��� . Note that all on-line machines are occupied until time GREEDY

� ��� .
We cut the schedule of GREEDY into pieces of time length � � starting from the bottom.

If there are less than � final jobs, there are less than � jobs, hence GREEDY is optimal.

Suppose there are � final jobs.

Claim: At time � � � , at most � , � � final jobs did not start yet.

Proof: By induction. The claim holds for
� � � . Assume it holds for some

� � � .
A final job is called missing if it did not start before time � � �

. Let
�

be the number of

missing jobs. We have
� � � , � � starting at time � � �

or later. The total size of non-final jobs

running at any time after � � �
is at most

� � . This follows because GREEDY schedules the jobs

with monotonically increasing start times, hence if there are
�

missing final jobs, then all the

unstarted jobs must have arrived after the � �
-th final job. That job is started before time � � �

and hence the unstarted jobs must be scheduled by OPT on the machines where it runs the last
�

final jobs. Since OPT completes all these (non-final) jobs no later than at time � , the total size of

these jobs is at most
� � .

At most
� , � machines can be busy with these jobs during the entire time interval
 � � �
 � � � � �

� � � . Hence
� , � or more final jobs start in this interval (one for every machine that is not busy

with non-final jobs during the entire interval and that was also not running a final job already).

At most
� , � final jobs will be missing at time � � � � � � � , and

� , � � � , � � �&� . �

At time � ��
 ��� � � , only one final job is missing, therefore GREEDY
� ����� � ��
 ��� � � ��� ,

hence
� �

GREEDY �	� � �
 ��� � � .
To show that

� �
GREEDY � � � �
 ��� � � , we use a job sequence that consists of a job of size

1 followed by a job of size
�

(a large constant, e.g.
� � �), repeated � times. The optimal

algorithm can assign the jobs so that no job starts later than at time 1, whereas GREEDY starts

the last job at time �	���
 ��� � � � �
�

We now consider the competitive ratio of GREEDY for � � ��
 � . In Section 6.4, we will

show matching lower bounds. Hence, GREEDY is optimal for � � ��
 � .

Lemma 6.1 On identical machines,
� �

GREEDY � � � for � � � , and
� �

GREEDY � � � , � for

� � � .

6.2 The greedy algorithm 81

Proof. We start with the case � � � . We need to show that the competitive ratio of GREEDY

is at most � . Assume by contradiction that GREEDY has competitive ratio of � � � . Define
� � �� � � � � and consider a sequence � for which GREEDY has a ratio of at least � � . Without

loss of generality we assume that OPT
� ��� ��� . We denote the last job in � by 	�� . This is a final

job.

Since 	�� was assigned by GREEDY to the least loaded machine, both of the on-line machines

are busy until time � � . Hence the total size of all jobs but 	�� is at least �
� � � � � �

. The

volume of jobs that OPT runs before time OPT
� ����� � is at most � . OPT can run only two

additional (final) jobs after time � , one on each machine. One of those jobs is 	�� . Hence the

other job, 	 � , must have a size greater than �
� � � � � ��� .

Hence there exists a job 	 � of size greater than 2. The volume of the remaining jobs (apart

from 	��) is at most 2. Hence GREEDY will not schedule 	�� on the same machine as 	 � , because

the other machine must be less loaded. Scheduled on that machine, 	�� starts no later than at time

2, since at most a volume of 2 of jobs is scheduled before it.

For � � � , suppose GREEDY has competitive ratio � � � , � and define � and 	�� as above

(taking � � �� � � � , � �). Assume OPT
� � �	� � . Denote the total size of all jobs but 	�� by � . Note

that the size of 	�� is irrelevant for the competitive ratio; we may assume it has size 0. Denote the

total size of all jobs of size at most 1 by �
�
. Since OPT

� ��� � � , OPT starts all its jobs no later

than at time 1; the jobs that it completes before time 1 have total size at most 3.

We have � � � � � � � � � � , � , since all three of GREEDY’s machines are busy until past

time � � � � , � when 	�� arrives.

� If � contains no jobs larger than 1, consider the optimal off-line schedule. Two final jobs

are of size at most � , and the third (��) is of size � . The rest of the jobs are completed by

time � , and their total size is at most � . Hence � ���
� � � , a contradiction.

� If � contains one job larger than 1, then �
� � �

: one final job has size 0, and one must

have size at most 1 (since only one can be larger than 1). The rest of the jobs are of size

at most � , and have total size at most � . Consider the least loaded machine among the two

machines that do not run the job larger than 1, at the time 	�� arrives. Since �
� � �

, it

cannot have a load more than 2. But then GREEDY starts 	�� no later than at time 2.

� If � contains two jobs larger than 1, then analogously to the previous cases, �
� � � .

Denote the time that GREEDY starts the second large job by � � . Similarly to in the previous

case, we have � � � �$, � � � , � . At most a volume of 1 of jobs starts after � � , since OPT

has to run all these jobs and 	�� on one machine if OPT
� ���	� � : two of OPT’s machines are

already running large jobs and cannot be used anymore.

82 Chapter 6. Minimizing the maximum starting time

– If � � � � , � , then in the worst case GREEDY assigns all the jobs that arrive after � � to

one machine and starts 	�� no later than at time � , � .
– If � � � ��, � , then at the time the second large job arrives GREEDY starts no job later

than at time ��, � . Hence the on-line machine that has no large job has load at most

�
, � at this time, since all jobs on that machine have size at most 1 and GREEDY

always uses the least loaded machine. Since after � � , at most a volume 1 of jobs still

arrives, 	�� starts no later than at time � , � .
�

We now turn to the performance of GREEDY on related machines. We set the speed of the

slowest machine to 1 and denote the speed of the fastest machine by � � � . I.e. on the fastest

machine, it takes � , � time to complete a job of size � .

Lemma 6.2 For two related machines, GREEDY has a competitive ratio of at most � � � .
Proof. Suppose the competitive ratio of GREEDY is � � � � � . We define 	 � and � analogously

to in Lemma 6.1, taking � � �� � � � � � . In the present case, we find that the total size of all

jobs but 	 � must be greater than
� � � � � � , OPT can run at most � � � before time 1 and there

must be a job 	 � of size greater than � � �	� � � . Again GREEDY will not schedule 	�� on the same

machine as 	 � (even if 	 � is run on the fast machine), and hence not start it later than at time� � � (assuming that 	�� is run on the slow machine, otherwise it starts not after time
� � � � � , �).�

6.3 Algorithm BALANCE

We give an algorithm for identical machines of competitive ratio 12. This algorithm works in

phases and uses an estimate on OPT
� ��� which is denoted by � . A job is called large if its size

is more than � , and small otherwise; if � � OPT
� ��� , OPT can only run one such job on each

machine. Also, once OPT has done this, it cannot use that machine anymore for any job.

A phase of BALANCE ends if it is clear from the small jobs that arrived in the phase, and

from the large jobs that exist, that if another job arrives then � � OPT
� ��� . In this case we double

� and start a new phase.

In every phase, BALANCE only uses machines that do not already have large jobs. Each such

machine will receive jobs according to one of the two following possibilities.

1. Only small jobs, of total weight in that phase less than � � .

2. Small jobs of weight less than � � , and one large job on top of them.

6.3 Algorithm BALANCE 83

A machine that received a large job is called large-heavy, a machine that received weight of at

least � � of small jobs in the current phase is called small-heavy. Both small-heavy and large-

heavy machines are considered heavy. A machine that received more than a weight of � of

small jobs in the current phase but at most � � (and no large job) is considered half-heavy. Other

machines are non-heavy. A machine that is not heavy (but possibly half-heavy) is called active.

The algorithm BALANCE also maintains a set � that contains the active machines.

Define � � as the value of � in phase
�
. The algorithm BALANCE starts with phase 0 which is

different from the other phases. In phase 0, � jobs arrive that are assigned to different machines.

We then set � � equal to the size of the smallest job that has arrived. Then the first of the regular

phases starts.

Phases: A new phase starts when � ��	 , i. e. there are no active machines anymore. (Phase 1

starts when phase 0 ends.) At the start of phase
� � � , we set � � � � ��� � � . Then � contains all

machines that do not have a large job. This holds because no machine has yet received any job

in the current phase, so no machine can be small-heavy. Note that such a large job has arrived in

some previous phase, but that the definition of large jobs has changed compared to the previous

phase. I. e. not all the large jobs from previous phases are still large.

At all times, the algorithm only uses active machines. When the phase starts, all active

machines are non-heavy. Each phase consists of two parts. The first part continues as long as

there is at least one non-heavy machine among the active machines. As soon as no machine is

non-heavy, the second part starts.

Part 1 In the first part of the phase, the algorithm works as follows. For small jobs, it uses

the machines in � in a Next Fit-fashion, moving to the next machine as soon as a machine has

received a load of more than � � in the current phase. An arriving large job is assigned to a

machine that already has weight of more than � � . If no such machine exists, it is assigned to the

active machine that BALANCE is currently using or going to use for small jobs (there is a unique

such machine, and all other non-heavy machines did not receive any jobs in the current phase).

A machine that receives a large job becomes large-heavy, and is removed from � .

Part 2 When all machines are either half-heavy or large-heavy we move on to the second part

of the phase. We are ready to use the half-heavy machines once again. We again start using

the machines in � in a Next Fit-fashion, moving to the next machine as soon as the machine

has received a total load at least � ��� in the current phase. A machine that receives weight of at

least � � � of small jobs in total in this phase becomes small-heavy and hence stops being active

(is removed from �). A machine that receives a large job becomes large-heavy and also stops

being active (it is removed from �).

As long as � � � � � , there are active machines. When � �
	 , a new phase starts. An example

84 Chapter 6. Minimizing the maximum starting time

of a run of BALANCE can be seen in Figure 6.2.

We show that as soon as a first job in the new phase arrives, then � � � � � OPT
� ��� . (Note that

it is possible that no jobs arrive in a phase; this happens if � �
	 at the beginning of a phase.)

Lemma 6.3 In each phase
� � � in which jobs arrive, we have OPT

� ��� � � � , � , where � is the

sequence of jobs that arrived until phase
�
, including the first job of phase

�
.

Proof. The lemma holds for phase 1, since there is at least one machine of the optimal off-line

algorithm that has two scheduled jobs after the first job in phase 1 arrives.

Consider a phase
� � � . If phase

�
starts when phase

� � is still in its first part, then no

machines are small-heavy. Hence in total � jobs have arrived that were considered large in

phase
� � (where some may have arrived before phase

� �). After the first job arrives in phase
�
, we have OPT

� ��� � � � � � ��� � , � .
If phase

�
starts while phase

� � is in its second part, let
�

be the set of large jobs that were

assigned to non-heavy machines in phase
� � . (If no such jobs exist,

� �). The jobs in
�

arrived in part 1 of phase
� � , since in part 2 only half-heavy machines are used. In part 1 of a

phase, the active machines that have already been used are half-heavy or large-heavy.

Assume by contradiction that OPT
� ��� �
� � ��� . Suppose

�
��	 . Denote the last job in
�

by

	 � and denote the set of machines that are still active after 	 � has arrived by � � . Write � � � � � � .
There was no half-heavy machines available for 	 � , so all the machines that already received

jobs in phase
� � , including the one that received 	 � , are large-heavy at this point (they cannot

be small-heavy in part 1). If
� � 	 , define � � as the set of active machines at the start of phase

� � . Clearly, all machines not in � � are large-heavy at that point.

From this, we have that there exist � � large jobs after 	 � has arrived (or at the start

of phase
� �): all machines not in � � either were large-heavy when phase

� � started, or

became large-heavy during it. Hence there are � � machines of OPT with a large job, since

OPT cannot put two large jobs on one machine; OPT cannot put any more jobs on those machines

if OPT
� ��� ����� ��� . Consider the set � �OPT of machines of OPT that do not run any of the � �

large jobs that arrived already. We have � � �OPT � � � � � � � � .
We calculate how much weight can be assigned by BALANCE to the machines in � � (or

equivalently, by OPT to the machines in � �OPT) in the remainder of phase
� � . In the schedule

of OPT, the machines in � �OPT have some � jobs running last on them. Apart from that they have

at most an amount of OPT
� ��� ����� � � small jobs.

Let � � � � be the number of large jobs assigned by BALANCE to machines in � � in the

remainder of phase
� � . At the end of phase

� � , each machine in � � is either small-heavy, or

has an amount of at least ��� � � small jobs and a large job. The total weight of small jobs assigned

in phase
� � to the machines of � � by BALANCE is at least

�
� � � �
� ��� .

6.3 Algorithm BALANCE 85

�����������������������������������

������������������������������

�����������������������������������

�������������������������

�����������������������������������

�����������������������������������

��������������������

��������������������

	�	�		�	�		�	�		�	�	

�
�

�
�

�
�

�
�

���������������
���������������

�
�
�

�
�
�

�
�
�

���������������������

���������������������
���������������
���������������������
���������������������

���������������
���������������
���������������������
���������������������

���������������������
���������������
���������������������
���������������������

������������������������

���������������
 � � � � � �

!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!

"�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�"

#�#�##�#�##�#�##�#�##�#�##�#�##�#�##�#�##�#�##�#�#

$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$

%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%

&�&�&&�&�&&�&�&&�&�&&�&�&&�&�&&�&�&&�&�&&�&�&&�&�&

'�'�''�'�'(�(�((�(�(

)*)*)*)*))*)*)*)*))*)*)*)*))*)*)*)*)

+*+*+*+*++*+*+*+*++*+*+*+*++*+*+*+*+,*,*,*,*,,*,*,*,*,-*-*-*-*--*-*-*-*-
.*..*.// 0*00*0
0*00*0

11
11

2*2*23*3*3

4*4*45*5*5

6*6*6*6*6*66*6*6*6*6*66*6*6*6*6*66*6*6*6*6*6

7*7*7*7*77*7*7*7*77*7*7*7*77*7*7*7*78*8*8*8*8*88*8*8*8*8*88*8*8*8*8*8
9*9*9*9*99*9*9*9*99*9*9*9*9:*:*:*:*:*::*:*:*:*:*::*:*:*:*:*::*:*:*:*:*:

;*;*;*;*;;*;*;*;*;;*;*;*;*;;*;*;*;*;

<*<*<*<*<*<<*<*<*<*<*<<*<*<*<*<*<
=*=*=*=*=*==*=*=*=*=*==*=*=*=*=*=>*>*>*>*>*>>*>*>*>*>*>>*>*>*>*>*>>*>*>*>*>*>>*>*>*>*>*>

?*?*?*?*?*??*?*?*?*?*??*?*?*?*?*??*?*?*?*?*??*?*?*?*?*?

@*@*@*@*@@*@*@*@*@@*@*@*@*@@*@*@*@*@@*@*@*@*@@*@*@*@*@

A*A*A*A*AA*A*A*A*AA*A*A*A*AA*A*A*A*AA*A*A*A*AA*A*A*A*AB*B*B*B*BB*B*B*B*BB*B*B*B*B
C*C*C*C*CC*C*C*C*CC*C*C*C*C

D*D*D*D*D*DD*D*D*D*D*DD*D*D*D*D*DD*D*D*D*D*DD*D*D*D*D*DD*D*D*D*D*D

E*E*E*E*E*EE*E*E*E*E*EE*E*E*E*E*EE*E*E*E*E*EE*E*E*E*E*EE*E*E*E*E*EF*F*F*F*F*FF*F*F*F*F*FF*F*F*F*F*FF*F*F*F*F*FF*F*F*F*F*F

G*G*G*G*G*GG*G*G*G*G*GG*G*G*G*G*GG*G*G*G*G*GG*G*G*G*G*G

H*H*H*H*H*HH*H*H*H*H*HH*H*H*H*H*HH*H*H*H*H*HH*H*H*H*H*HH*H*H*H*H*H

I*I*I*I*II*I*I*I*II*I*I*I*II*I*I*I*II*I*I*I*II*I*I*I*I

J*J*J*J*J*JJ*J*J*J*J*JK*K*K*K*K*KK*K*K*K*K*K L*L*L*L*LL*L*L*L*LL*L*L*L*LL*L*L*L*L

M*M*M*M*MM*M*M*M*MM*M*M*M*MM*M*M*M*MN*N*N*N*NN*N*N*N*NN*N*N*N*NN*N*N*N*N

O*O*O*O*OO*O*O*O*OO*O*O*O*OO*O*O*O*O

P*P*P*P*P*PP*P*P*P*P*PP*P*P*P*P*PP*P*P*P*P*PP*P*P*P*P*PP*P*P*P*P*PP*P*P*P*P*P

Q*Q*Q*Q*Q*QQ*Q*Q*Q*Q*QQ*Q*Q*Q*Q*QQ*Q*Q*Q*Q*QQ*Q*Q*Q*Q*QQ*Q*Q*Q*Q*QR*R*R*R*R*RS*S*S*S*S*S

T�T�TT�T�TT�T�TT�T�TT�T�TT�T�TT�T�T

U�U�UU�U�UU�U�UU�U�UU�U�UU�U�UU�U�U

V�V�V�VV�V�V�VV�V�V�VV�V�V�VV�V�V�VV�V�V�V

W�W�WW�W�WW�W�WW�W�WW�W�WW�W�W

X�X�X�XX�X�X�XX�X�X�XX�X�X�XX�X�X�XX�X�X�XX�X�X�XX�X�X�XX�X�X�X

Y�Y�Y�YY�Y�Y�YY�Y�Y�YY�Y�Y�YY�Y�Y�YY�Y�Y�YY�Y�Y�YY�Y�Y�YY�Y�Y�Y

Z�Z�ZZ�Z�ZZ�Z�ZZ�Z�ZZ�Z�ZZ�Z�ZZ�Z�ZZ�Z�ZZ�Z�ZZ�Z�Z

[�[�[[�[�[[�[�[[�[�[[�[�[[�[�[[�[�[[�[�[[�[�[[�[�[

******************************\

]*]*]*]*]*]]*]*]*]*]*]]*]*]*]*]*]]*]*]*]*]*]]*]*]*]*]*]]*]*]*]*]*]

^*^*^*^*^^*^*^*^*^_*_*_*__*_*_*_

`�`�``�`�``�`�``�`�``�`�``�`�``�`�`

a�a�aa�a�aa�a�aa�a�aa�a�aa�a�a b�b�bb�b�bb�b�bb�b�b
c�c�cc�c�cc�c�cc�c�cd�d�dd�d�dd�d�dd�d�dd�d�dd�d�d

e�e�ee�e�ee�e�ee�e�ee�e�ee�e�ef�f�ff�f�ff�f�ff�f�ff�f�ff�f�f
g�g�gg�g�gg�g�gg�g�gg�g�g

h�h�h�hh�h�h�hh�h�h�hi�i�i�ii�i�i�ij�j�j�jj�j�j�jj�j�j�jj�j�j�jj�j�j�jj�j�j�jj�j�j�jj�j�j�jj�j�j�jj�j�j�jj�j�j�j

k�k�k�kk�k�k�kk�k�k�kk�k�k�kk�k�k�kk�k�k�kk�k�k�kk�k�k�kk�k�k�kk�k�k�kk�k�k�k

l�l�l�ll�l�l�ll�l�l�ll�l�l�ll�l�l�ll�l�l�l
m�m�mm�m�mm�m�mm�m�mm�m�mn*n*n*n*n*nn*n*n*n*n*nn*n*n*n*n*nn*n*n*n*n*nn*n*n*n*n*nn*n*n*n*n*nn*n*n*n*n*n

o*o*o*o*oo*o*o*o*oo*o*o*o*oo*o*o*o*oo*o*o*o*oo*o*o*o*oo*o*o*o*o

p*p*p*p*p*pp*p*p*p*p*pp*p*p*p*p*pp*p*p*p*p*pp*p*p*p*p*pp*p*p*p*p*pp*p*p*p*p*pp*p*p*p*p*p

q*q*q*q*qq*q*q*q*qq*q*q*q*qq*q*q*q*qq*q*q*q*qq*q*q*q*qq*q*q*q*qq*q*q*q*q

r�r�rr�r�rs�s�ss�s�s

t�t�tt�t�tt�t�tt�t�t
u�u�uu�u�uu�u�uu�u�u

v*v*v*v*vv*v*v*v*vw*w*w*w*ww*w*w*w*w
jobs from previous phases that are still large

small jobs from first part of this phase

large jobs from first part of this phase

small jobs from second part of this phase

large jobs from second part of this phase

jobs from previous phases that are now small

load

machines

Figure 6.2: A run of BALANCE

86 Chapter 6. Minimizing the maximum starting time

Suppose we remove the � largest jobs assigned in phase
� � to the machines of the set � � in

the assignment of BALANCE. This means that we remove � � large jobs and � � � small jobs. By

definition, each small removed job has size of at most � � � � , so we removed at most an amount of� � � ��� ��� ��� small jobs. Therefore we are left with total weight of at least � �!� ��� on the machines

in � � , counting only weight from jobs that arrived in this phase.

This implies that even if OPT runs the largest � jobs last on the machines in � �OPT, it starts

at least one of them at time � � � � or later, by the total weight of the other jobs. This gives a

contradiction, already without the first job in phase
�
. This proves the lemma.

�

Theorem 6.2 Algorithm BALANCE has a competitive ratio of 12.

Proof. Consider the last phase � � � in which jobs arrived. (If � � � , BALANCE is optimal.) Let
� � � � . We have OPT � � , � by Lemma 6.3. Consider the machines that received jobs in phase

� , and for each such machine, consider the total size of jobs below the last job that is run on that

machine. (For the machines that did not receive jobs in this phase, we have stronger bounds.)

This size consists of three parts:

� The small jobs of phase �
� The small jobs of previous phases

� The large jobs of previous phases

For the computation, for phases � � � � � in which a machine got only small jobs, we

replace an amount of � � � of small jobs from that phase by one (large) job. (Possibly a small

job is broken in two parts to get a total of exactly � � � .) Because we only consider machines

that received jobs in phase � , the maximum starting time is unaffected by this substitution. As a

result, each machine receives at most a weight of � � � of small jobs in phase
�
.

In phase � , each machine receives at most �
�

of small jobs before it receives its last job. The

value of � is doubled between phases, hence the total amount of small jobs from previous phases

on a machine is at most
� �
 � � � � � � �

.

We still need to consider the large jobs from previous phases. We count the large jobs not by

the phases they arrive; instead, each large job is counted in the first phase where it is not large

anymore, and the machine is active again. The large jobs that replace �
�

worth of small jobs

as described above, are always already small in the subsequent phase. For each phase
� � � , a

machine has at most one job that has just become small. This job is of size at most �!� . Hence in

total the size of all these jobs is at most
� ����� � � � � �

. Therefore the total load below the last

jobs on any machine is at most

�
� � � � � � � � � �

�
Since

� � � OPT, we are done.
�

6.4 Lower bounds 87

6.4 Lower bounds

In the following proofs, we take
�

to be a large constant. If we construct a job sequence � that

contains a job of size
�

, then we assume that
�

is larger than
�

times the sum of smaller jobs

in � , where
�

is the competitive ratio that we want to show. This choice of
�

ensures that if a

machine is assigned a job of size
�

, it cannot receive any other job after this without violating

the competitive ratio.

Lemma 6.4 Suppose we have a job sequence � that shows that
� ��� � � �

for all on-line

algorithms on � � machines. Then for any ��� � � , � ��� � � �
for all on-line algorithms on �

machines, as well.

Proof. Construct the sequence � � by adding � � � jobs of size
�

before the first job of � .

The optimal cost for this sequence is the same as for � on � � machines. On the machines that

do not run the first � � � jobs, we have that
�

must have a cost at least
�

times the optimal

cost for � on � � machines, and we are done.
�

Theorem 6.3 Take � � � � � � � ��, � ��� � � � � and
�

a large constant. For all on-line algorithms�
, we have the following lower bounds for the competitive ratio on identical machines.

Number of machines Job sequence
�

� ��
 �
 ��
 � �
� � , �
 ��, ��
 �
 ��
 �
 ��
 � � , �� � ��
 � ��
 �
 �
 ��
 �
 ��
 � � � � � � �

� � �Moreover, as the number of machines tends to infinity, the competitive ratio tends to at least 4.

Proof. For � � �
, we use the job sequences described in the table above. For these sequences,

any on-line algorithm that has a better competitive ratio than in the last column of the table must

assign these jobs in the same way as the greedy algorithm, or violate the competitive ratio. In

all cases, after the last job arrives we have OPT
� ���	� � and

��� ��� � �
.

As an example, for � � �
, the first four jobs must be assigned to four different machines,

the next two jobs to the machines with the jobs of size � � , and the last two to the machine

that does not have a job of size
�

yet. The sequence stops as soon as
�

assigns a job differently

than described here, or after the fourth large job.

For larger � , we use the following job sequence. Assume � ��� �

for some � � � , and

consider a sequence of real numbers � � � � ���� � with properties to be defined later. We will first

define the job sequence and then specify for which value of � it works. The job sequence consists

of � � � steps. For � � � � � , in step
�

first � , � � jobs of size
� � arrive, and then � , � � jobs of

size
�

. In step � � � , one last job of size
�

� arrives, followed by a job of size
�

.

88 Chapter 6. Minimizing the maximum starting time

We denote the optimal maximum starting time after step
�

by OPT � . If
� ��� � � �&� for all

� � � � � � , then for � � � � � , we have OPT � � � � � � (we put
� � � �), which is seen as

follows. We describe the optimal schedule after step
�
. (We note that the optimal schedules after

different steps can be very different.) There are � , � � machines with one job of size
� � , and � , � �

machines with one job of size
�

. These machines do not have any other jobs. The remaining

machines have one job of size
�

� for some + � �
, and after it one job of size

�
. After the last

step we have OPT � �!� � �
� . In this case, all machines have one job of size

�
� for some + � � ,

and after it one job of size
�

.

We will now define the sequence � � � � ���� � in such a way that the on-line algorithm cannot

place two jobs on the same machine in one step. By induction we can see that at the start of step
�

(� � � � �), � � �� ��, � � ��� � jobs of size
�

have already arrived. Thus if the on-line algorithm

places the � , � � � � jobs from step
�

on different machines (that moreover do not have a job of

size
�

yet), then also by induction, after every step
�

(� � � � �), every machine of the on-line

algorithm either has a job of size
�

, or it has one job of each size
�

� , for � � � � �
.

Define + � � � �
� �&� �

� . If the on-line algorithm does put two jobs on the same machine in

some step
� � � , then by the above the last job on that machine starts at time

� �
� �&� �

� and the

implied ratio is
� � �

� �
� �&� �

�

� � � � � +)�� � ��� � (6.1)

If the on-line algorithm never does this, then in the final step � � � it has only � , � � � � machine

left without a job of size
�

, and this machine has one job of each size
�

� for � ��� � �
. The

on-line algorithm has minimal cost if it places the two jobs from step
� � � on this machine, and

the implied competitive ratio is thus
�

� �&� � � � �

� �&� �
� � �

� ��, �
� � � + � � �

� ��, �
� . Using (6.1),

we will define the sequence � � � � ���� � so that
� � � �

is a constant for � � � � � � � . This implies

� � � ��
 � � � ��
 � � � � � � � �'
� � ��

� �&�
�

� � � � � � �' +)� � � for
� � � �

This proves a competitive ratio of
�

if
� � � � � �!� for � � � � � � and

� + � � �
� � , �

� � �
(where this last condition follows from step � � �). We have

� + � � �
� � , �

� � � � � �
� � + � � � �

� � + � �&� using (6.1)
� � �

� � + � �&�' + � � �
� �&�

� � + � �&� � + � � � � � �
� � � � � � � + � �
 � � �

Hence it is sufficient to show that the sequence � + � � ���� � has its first nonpositive term + � �
 for

some � ��� . This value of � determines for which � this job sequence shows a lower bound

of
�

, since � � � �

. Note that if + � �
 is nonpositive, we have to stop the job sequence after

6.5 Related machines 89

step � � � at the latest, because by the above
�

� � � ��� � � � � �
� : the sequence is no longer

non-decreasing. As stated above, we will in fact give one final job of size
�

� in step � � � , and

a job of size
�

, and thus not use any value
� � for

� � � . The sequence � +�� � ���� � satisfies the

recurrence +�� � � � +)� �&� � � +)� � � . For
� � �

, the solution of this recurrence is given by

+�� � �

� � � � � � � � �

� � � � �

where
� �
 � � �

�
� � and
 � � � �

�
��

�
� �

Since
 � � �
� � , then
�
� � , which implies +�� � � for some value of

�
. Furthermore, this value

of
�

tends to � as
�

tends to 4 from below. Direct calculations show that for
� � ��
 ��
 ��
 � ,

+�� � � , hence given such minimal integer
�
, we can define � � � � . From the calculations it

also follows that � � � � ���� � is non-decreasing.

In conclusion, for any value of
� � �

it is possible to find a value � so that any on-line

algorithm has at least a competitive ratio of
�

on � �

machines. By Lemma 6.4, this implies

that for every � � � , there exists a value � � such that for any on-line algorithm
�

on � � � �
machines,

� ��� � � � � .
�

Note that this proof does not hold for
� � �

, because the solution of the recurrence in that

case is not guaranteed to be below 0 for any
�
.

Corollary 6.1 On identical machines, GREEDY is optimal for � � �
�� .
Proof. This follows from Lemma 6.1 and Theorem 6.3.

�

6.5 Related machines

We only study the special case � � � and give a matching lower bound to the upper bound from

Lemma 6.2, showing that Greedy is optimal for this case.

Theorem 6.4 For the problem of minimizing the maximum starting time on two related ma-

chines, the competitive ratio is at least � � � .
Proof. Consider an algorithm

�
for this problem and suppose it has a competitive ratio of less

than � �
� . A job of size 1 arrives. If
�

places it on the slow machine (the machine with speed 1),

then a job of size
�

arrives (which has to go on the other machine;
�

is defined as in Section

6.4), followed by a job of size � and another job of size
�

. The maximum starting time of
�

is

at least � � � , whereas the optimal maximum starting time is 1, by putting the job of size 1 on

90 Chapter 6. Minimizing the maximum starting time

the slow machine, the job of size � on the fast machine, and starting both the large jobs at time

1.

If
�

places the first job on the fast machine, then take $ a large constant. The second

job has size $ � and must be placed on the slow machine. The third job has size $ � , where� � � � � � � $, and must be placed on the fast machine, otherwise a competitive ratio of$ � , � ��, � ��� $ � � is implied. Then a job of size $ �� arrives which must go on the slow

machine; finally another job of size $ � arrives.
�

starts its last job at time $ � � � $ � �
whereas in the optimal schedule, no job starts after time $. By letting $ grow without bound

(maintaining
� � � � � � � $), this proves the ratio.

�

Corollary 6.2 GREEDY is optimal for two related machines.

Proof. This follows from Lemma 6.2 and Theorem 6.4.
�

6.6 Resource augmentation

We now consider on-line algorithms that have more resources than the off-line algorithm. It

turns out that in these changed circumstances, GREEDY is optimal in the sense that it requires

the minimum possible number of machines to have a competitive ratio of 1.

We only consider identical machines in this section.

Lemma 6.5 GREEDY has a competitive ratio of 1 if it has at least � � � machines.

Proof. Let
� � GREEDY

� ��� and
� � � OPT

� � � . Note that the last job 	 � that is assigned at time
�

by GREEDY is a final job for OPT as well, since this is the very last job in the sequence. Let %
be the set of on-line machines of GREEDY that only contain non-final jobs or 	 � . Since there are

at most � final jobs, � % � � � � � �
� � � � � . All of GREEDY’s machines are occupied

from 0 to
�

. The machines in % are occupied during this time by non-final jobs. Let
 be the

total size of non-final jobs. We have
 � � �
. But
 � � �

� . Hence
� � ���

�
�

Note that a similar proof shows that the competitive ratio of GREEDY tends to zero as the

number of on-line machines tends to � .

Lemma 6.6 Any algorithm that has at most � � � machines has a competitive ratio greater

than 1.

Proof. Suppose
�

has a competitive ratio of at most 1. We use a construction in phases, where in

each phase the size of the arriving jobs is equal to the total size of all the jobs from the previous

phases. Let � � denote the number of jobs in phase
�
, and

� � denote the size of the jobs in phase

6.7 Conclusions 91

�
. We determine the number of phases later. We take � � � � and � � ��� � � for

� � � .
Furthermore, we take

� � � � , � �	� � � � � � � and

� � �
� � ��

� � �
� �
�

� �
� � ��

� � �
� �
�

� � � � � � � � � �	� � � � � � �
� � � � � � � �	� � � � � � � for

� � � �
Claim: After

�
phases, at least . ��� � � � � � � � � � �� � ��
 � � � � machines are non-empty.

Proof: We use an induction. All jobs from phase 0 have to be assigned to different machines

to have a finite competitive ratio, so � machines are non-empty after phase 0.

Consider phase
�

for
� � � . During each phase

� � � , the optimal costs are at most
� � :

all the jobs from the previous phases go together on one machine, followed by one job of size� � . All other machines have two jobs of size
� � . In order to have a competitive ratio of 1,�

can assign at most one job of size
� � on each non-empty machine, and at most 2 such jobs

on each empty machine. Let � be the number of non-empty machines at the start of phase
�
.

If � � � � � we are done immediately. Else, we have � � ��� �
� � � � � �� � �

� � by

induction. The number of machines that become non-empty in phase
�

is at least
�
� � �! � � , � ,

so after phase
�
, at least � �� �� � � � machines are non-empty. By induction, we have

� �� � �� � � � �� � �
� � �

� � � � �� �� � �
� � ��, � � � � �

� � � � �� �� � � . �

Taking
� � �
 ��� � � � , we have that after

�
phases, � � � � � � � � �� � � ��� � � � � � � �' �� � ��� � � , hence

�
needs more than � � � machines to maintain a competitive ratio of 1.�

Note that no algorithm
�

which uses � � � machines can have competitive ratio less than

� , due to the sequence ��
 � � �
 � (� � jobs). At least two jobs run on the same on-line machine,

hence
��� ��� � OPT

� � �	� � .

6.7 Conclusions

We showed that the greedy algorithm is far from being optimal in one measure (competitive

ratio), but optimal in a different measure (amount of resource augmentation). This phenomenon

raises many questions. Which of the two measures is more appropriate for this problem? Fur-

thermore, which measure is appropriate for other problems? Is it possible to introduce a different

measure that would solve the question: is GREEDY a good algorithm to use?

92 Chapter 6. Minimizing the maximum starting time

Chapter 7

Variable-sized on-line bin-packing

In the variable-sized on-line bin packing problem, one has to assign items to bins one by one.

The bins are drawn from some fixed set of sizes, and the goal is to minimize the sum of the

sizes of the bins used. We present the first algorithms for this problem that use unbounded

space, i. e. the number of open bins (bins that can still receive items later) is not bounded by any

constant.

We also show the first lower bounds on the asymptotic performance ratio. The case where

an algorithm can choose between bins of two sizes, 1 and � � � ��
 � � , is studied in detail. An

overview of the best upper bounds, using the algorithms in this paper and earlier algorithms, and

our lower bounds is given in Figure 7.6.

7.1 Introduction

The bin packing problem is one of the oldest and most well-studied problems in computer sci-

ence [25, 28]. The influence and importance of this problem are witnessed by the fact that it has

spawned off whole areas of research, including the fields of on-line algorithms and approxima-

tion algorithms. The on-line variable-sized bin packing problem is a natural generalization of

the classical on-line bin packing problem. We show improved upper bounds and the first lower

bounds for this problem.

A warning for the reader: in this chapter we do not discuss scheduling problems and we use

a different notation from the other chapters, giving some symbols other meanings than they have

in other chapters. The reason for this is that we need a lot of symbols in the present chapter and

would otherwise run out of “reasonable” symbols to use.

Problem Definition: In the classical bin packing problem, we receive a sequence � of pieces
� ��
 � �
 � � �

� � . Each piece has a fixed size in
� ��
 ��� . In a slight abuse of notation, we use � � to

93

94 Chapter 7. Variable-sized on-line bin-packing

indicate both the
�
th piece and its size. The usage should be obvious from the context. We have

an infinite number of bins each with capacity 1. Each piece must be assigned to a bin. Further,

the sum of the sizes of the pieces assigned to any bin may not exceed its capacity. A bin is empty

if no piece is assigned to it, otherwise it is used. The goal is to minimize the number of bins

used.

The variable-sized bin packing problem differs from the classical one in that bins do not all

have the same capacity. Instead, we have a set of capacities � � � � � � � � ����� � � � ��� .
There are an infinite number of bins of each capacity. The goal now is to minimize the sum of

the capacities of the bins used.

In the on-line versions of these problems, each piece must be assigned in turn, without

knowledge of the next pieces. Since it is impossible in general to produce the best possible

solution when computation occurs on-line, we consider approximation algorithms. Basically,

we want to find an algorithm which incurs cost which is within a small factor of the minimum

possible cost, no matter what the input is. This factor is known as the asymptotic performance

ratio.

We define the asymptotic performance ratio more precisely. For a given input sequence � ,

let
��� ��� be the sum of the capacities of the bins used by algorithm

�
on � . Let OPT

� ��� be the

minimum possible cost to pack pieces in � . The asymptotic performance ratio for an algorithm�
is defined to be

� �� �
 � .
����� � �

. / 1�
� ��� ���

OPT
� ��������

OPT
� � �	� ��� �

The optimal asymptotic performance ratio is defined to be

� �

OPT �
������ � ��

�
Our goal is to find an algorithm with asymptotic performance ratio close to

� �

OPT.

Previous Results: The on-line bin packing problem was first investigated by Johnson [45, 44].

He showed that the NEXT FIT algorithm has performance ratio 2. Subsequently, it was shown

by Johnson, Demers, Ullman, Garey and Graham that the FIRST FIT algorithm has performance

ratio ������ [46]. Yao showed that REVISED FIRST FIT has performance ratio 	
 , and further showed

that no on-line algorithm has performance ratio less than

 � [75]. Brown and Liang independently

improved this lower bound to 1.53635 [17, 60]. This was subsequently improved by van Vliet

to 1.54014 [71]. Chandra [19] shows that the preceding lower bounds also apply to randomized

algorithms.

Define �
� �!� �

�
� �
�
� � � � ��

�
�	� �

7.2 Two algorithms 95

and
�

� �
��
���!�

��
� � ��� �

�
� � ��� �

Lee and Lee showed that the HARMONIC algorithm, which uses bounded space, achieves a

performance ratio arbitrarily close to
�

� [58]. They further showed that no bounded space on-

line algorithm achieves a performance ratio less than
�

� [58]. A sequence of further results has

brought the upper bound down to 1.58889 [58, 62, 63, 66].

The variable-sized bin packing problem was first investigated by Frieson and Langston [37,

38]. Kinnerly and Langston gave an on-line algorithm with performance ratio �� [53]. Csirik

proposed the VARIABLE HARMONIC algorithm, and showed that it has performance ratio at

most
�

� [27]. This algorithm is based on the HARMONIC algorithm of Lee and Lee [58].

Like HARMONIC, it uses bounded space. Csirik also showed that if the algorithm has two

bin sizes 1 and � � � , and that if it is allowed to pick � , then a performance ratio of �
	 is

possible [27]. Seiden has recently shown that VARIABLE HARMONIC is an optimal bounded-

space algorithm [65]. The related problem of variable-sized bin covering has been solved by

Woeginger and Zhang [73].

Our Results: In this chapter, we present two new algorithms for the variable-sized on-line

bin packing problem for the case that the only possible bin sizes are 1 and � � � . These

algorithms have the best known performance for many choices of � . Hence we can construct a

new algorithm that, given the value of � , chooses whether to use VARIABLE HARMONIC or one

of these two algorithms. This construction gives us the best known algorithm for general � . We

also show the first lower bounds for the problem with two bin sizes. Prior to this work, no lower

bounds were known for the variable-sized bin packing problem.

7.2 Two algorithms

To begin, we present two different unbounded space on-line algorithms for variable-sized bin

packing.

We focus in on the case where there are two bin sizes, � � � � and � � � � , and examine how

the performance ratios of our algorithms change as a function of � � . Since it is understood that

� � � , we abbreviate � � using � . We present two algorithms, both of which are combinations

of the HARMONIC and REFINED HARMONIC algorithms for the classical problem. Both our

algorithms, which we call VRH1
� � � and VRH2

� � � , have a real parameter � � � �

 �� � . The

algorithm VRH1
� � � is defined for all � � � ��
 � � , but VRH2

� � � is only defined for

� � . / 1
� �
�
� �� � �

�
� �

�
� (7.1)

96 Chapter 7. Variable-sized on-line bin-packing

Before we describe the algorithms, we begin by dividing the interval
� ��
 � � into smaller

intervals. We will use these intervals to determine whether a new item would fit better into a bin

of size 1 or a bin of size � . Items of the form �', � � , where � is small compared to � , �
and

�

is some positive integer, fit well into a bin of size � , since we can put
�

of them in a bin of size

� and have only a limited amount of unused space in that bin. On the other hand, items of the

form � , � � would fit better in a bin of size 1.

We make the following definitions. Define � �	� � � ,
� � � � � � � � , � � � , � � and

� �
� �

� ��� � �
� � � � � ��� �

� ��� � �
� � � ��� � � �
 �� � � �

Define � � � � � . Note that it may be that � � � � � � � � � , since � is not a multi-set. Rename

the members of � as � � � � ��� � � �
 � ����� ��� � � � . For convenience, define � � �&� � � . The

interval � � is defined to be
� � � �!��
 � � � for ��� ��
 � � �

� � � . Note that these intervals are disjoint

and that they cover
� ��
 ��� . A piece of size + has type � if + � � � . Define the class of an interval

� � to be � if � � � � , �
for some positive integer

�
, otherwise the class is 1.

We begin by describing VRH1. The basic idea of VRH1 is as follows: When each piece

arrives, we determine the interval � � to which it belongs. If this is a class � interval, we pack the

item in a size 1 bin using a variant of REFINED HARMONIC. If it is a class � interval, we pack

the item in a size � bin using a variant of HARMONIC.

We differentiate between bins which are open and bins which are closed. An open bin is a

non-empty bin into which the algorithm may potentially place one or more other pieces. The

algorithm does not ever put a piece into a bin which is closed.

VRH1 packs bins in groups. All the bins in a group are packed in a similar fashion. The

groups are determined by the set � . We define

� � � � if � � �� � ,

� otherwise.

� �

��� �	 � if �', � � � ,

� if � � � and �', � � � ,�
otherwise.

Note that these functions are defined so that ��
�� � � and � � � � . The groups are named� �
 � ��
 ��
 � � �

� ��
 � � ��
 � � �
 � � �
 � .

Bins in group � � � ��
 �
)
 � � �

� � �-� � � contain only type � pieces.

Bins in group
� �
 � � all have capacity 1. Closed bins contain one type � piece and one type

�

piece.

Bins in group � all have capacity 1 and are packed using the NEXT FIT algorithm. I.e. there

is one open bin in group � . When a type � piece arrives, if the piece fits in the open bin, it is

placed there. If not, the open bin is closed, the piece is placed in a newly allocated open group �

bin.

7.2 Two algorithms 97

VRH1

Initialize � � � and � � � .
For each item � :

��� type of � .

If � � � then pack � using NEXT FIT in a group � bin.

Else, if � � � then PUT
� �
 � �
 � ��� .

Else, if � � �
:

� � � � � .
If � � � � � � :

� � � � � .
PUT

� �
 � �
 � � � .
Else PUT

� �
 � � .
Else PUT

� �
 � � .
PUT

� �
 � �

If there is no open bin in
�

then allocate a new bin � .
Else, let � be an arbitrary open bin in

�
.

Pack � in � .

Figure 7.1: The VRH1
� � � algorithm and the PUT sub-routine.

For group � � � ��
 ��
)
 � � �

� ��� � � � � , the capacity of bins in the group depends on the class

of � � . If � � has class 1, then each bin has capacity one, and each closed bin contains � ��, � � � items

of type � . Note that � � is the reciprocal of an integer for �
� �
and therefore � ��, � � � � � , � � . If � �

has class � , then each bin has capacity � , and each closed bin contains � �', � � � items of type � .

Similar to before, � � , � is the reciprocal of an integer and therefore � �', � � � � �', � � . For each of

these groups, there is at most one open bin.

The algorithm has a real parameter � �
 ��
 ��� , which for now we fix to be �� . Essentially, a

proportion � of the type
�

items are reserved for placement with type � items.

A precise definition of VRH1 appears in Figure 7.1. The algorithm uses the sub-routine

PUT
� �
 � � , where � is an item and

�
is a group.

98 Chapter 7. Variable-sized on-line bin-packing

We analyze VRH1 using the technique of weighting systems introduced in [66]. A weighting

system is a tuple
� � �
 w
 � � , where

� � is a real vector space, w is a weighting function, and � is

a consolidation function. We shall simply describe the weighting system for VRH1, and assure

the reader that our definitions meet the requirements put forth in [66].

For VRH1, we use � ��� , and define a, b and c to be orthogonal unit basis vectors. The

weighting function is:

w
� � �	�

������� �����	
b if � � �
 ;� �� � � a

�
� � c if � � � � ;

a �
�� � if � � ��� ;
a � � otherwise.

The consolidation function is � � � a � � b � � c �	� � � . /�1!� �
 � � . The following lemma allows

us to upper bound the performance of VRH1 using the preceding weighting system:

Lemma 7.1 For all input sequences � ,

����� � � ��� � �
� ��
���&� w

� � � � � � � � � � �
Proof. We count the cost for bins in each group.

Consider first bins in group � . Each of these is packed using NEXT FIT, and contains only

pieces of size at most � . By the definition of NEXT FIT, each closed bin contains items of total

size at least �- � , and there is at most one open bin. Therefore the number of bins used is at

most �
�� � �

� �
����
� � � � � a � �

� �
����
w
� � � � � � � � � �

Now consider group � with �
� � �
 � �
 � �
 � � . There is at most one open bin in this group.

The capacity � of each bin is equal to the class of � � . The number of items in each closed bin is

� � , � � � . Since �
� � �
 � �
 � �
 � � , we have � � , � � � � � , � � . Putting these facts together, the cost

at most �

� �
�� �
�

� � , � � � � � �
�

� �
�� �
� � � � � a � �

� �
�� �
w
� � ��� � � � � � �

Next consider group
�

. Let
�

be number of type
�

items in � . The algorithm clearly maintains

the invariant that � � � � of these items go to group
� �
 � � . The remainder are packed two to a bin

in capacity 1 bins. At most one bin in group
�

is open. The total is at most

� � � � �
�

� � � �

� �
�� �
�� �
�

� � � � �	� a � �

� �
�� �
w
� � ��� � � � � � �

7.2 Two algorithms 99

Finally, consider group
� �
 � � . Let � be the number of type � items in � . The number of bins is

. / 1&� �&
 � � � ��� � . / 1&� �&
 � � � � � � � �	� . / 1
�� 	 b � �

� �
�� � w
� � � ��
 c � �

� �
�� �
w
� � � �

���� � � � � � �
Putting all these results together, the total cost is at most

a � ��
���&� w

� � ��� � . / 1
�

b � ��
���!� w

� � ���
 c � ��
���&� w

� � ����� � � � � �	� � � ��
���&� w

� � � � � � � � � � �
�

From [66], we also have

Lemma 7.2 For any input � on which VRH1 achieves a performance ratio of � , there exists an

input � � where VRH1 achieves a performance ratio of at least � and

1. every bin in an optimal solution is full, and

2. every bin in some optimal solution is packed identically.

Given these two lemmas, the problem of upper bounding the performance ratio of VRH1 is

reduced to that of finding the single packing of an optimal bin with maximal weight/size ratio.

We consider the following integer program: Maximize � � x ��, � subject to

x � w
� � � �

��� ��
� �&�

� � w
� � � ��� (7.2)

� � �
��� ��

� �&�
� � � � �!� (7.3)

� � ��
 (7.4)� � � 	
 for � � � � � � , (7.5)
� � � ��
 � �
� (7.6)

over variables x
 �
 �
 � ��
 � � �
 � � � � . Intuitively, � � is the number of type � pieces in an optimal

bin. � is an upper bound on space available for type � pieces. Note that strict inequality is

required in (7.4) because a type � piece is strictly larger than � � �&� . Call this integer linear

program � . The value of � upper bounds the asymptotic performance ratio of VRH1.

The value of � is easily determined using a branch and bound procedure very similar to

those in [66, 65]. Define

� � � . /�1
� �

a � b � c � � w � � ���
 �
�� � �
 for � � � � � � ; � � � �

�� � �

100 Chapter 7. Variable-sized on-line bin-packing

Intuitively, � � is the maximum contribution to the objective function for a type
�

item relative to

its size. We define # so that

� �
 � � � � �
 � � � ����� � � �
 � � �
The procedure is displayed in Figure 7.2. The heart of the procedure is the sub-routine TRYALL,

which basically finds the maximum weight which can be packed into a bin of size
�

. Using # , we

try first to include items which contribute the most to the objective relative to their size. This is

a heuristic. The variables v and � keep track of the weight and total size of items included so far.

The variable � indicates that the current item type is # � � � . In the for loop at the end of TRYALL,

we try each possible number of type # � � � items, starting with the largest possible number. First

packing as many items as possible is a heuristic which seems to speed up computation. The

current maximum is stored in � . When we enter TRYALL, we first compute an upper bound

given the packing so far, which is stored in � . When � � � , this upper bound is exactly the

objective value. If � � � , we do not have to consider any packing reachable from the current

one, and we drop straight through. In the main routine we simply initialize � , call TRYALL for

the two bins sizes, and return � . We display the upper bound achieved by VRH1
� � � for several

� � � .
TRYALL

� ��
 ��
 ��
 � � .
TRYALL

� ��
 ��
 �
 � � .
Return � .

TRYALL
� �$
 v
 �
 � �

� � � � � v � � � � �
 � � � , � .

If � � � then:

If � � � then:

� � � .
Else:

For
� � � � , � �
 � � �&� � ��
 � � �
�� :
TRYALL

� � � ��
 v � �
w
� � �
 � � ��
 � � � �
 � � �&�
 � � .

Figure 7.2: The algorithm for computing � , along with sub-routine TRYALL.

7.3 Lower bounds 101

values of � in Figure 7.3. By optimizing � for each choice of � and � , it is possible to improve

the algorithm’s performance. However, for simplicity’s sake, we keep � � �� in this chapter.

Now we describe VRH2
� � � . Redefine

� �
� �

� ��� � �
� � � � � � � �

� ��� � �
� � � � � � � � �
 � � �� � � � �

Define � � , � � , � and � as for VRH1. Again, rename the members of � as ��� � � � � � � �
 ������ � � � � � . (7.1) guarantees that � , � � � � � � � � � � � and � , � � � � � �', � � ��, � ,
so we have � ��� and

� � � . The only difference from VRH1 is that
� �
 � � bins have capacity

� . Otherwise, the two algorithms are identical. We therefore omit a detailed description and

analysis of VRH2. We display the performance ratio of VRH2
� � � for several values of � in

Figure 7.3.

7.3 Lower bounds

We now consider the question of lower bounds for the variable-sized bin packing problem. Prior

to this work, no general lower bounds were known.

Our method follows along the lines laid down by Liang, Brown and van Vliet [17, 60, 71].

We give some unknown on-line bin packing algorithm
�

one of
�

possible different inputs.

These inputs are defined as follows: Let � � + �
 + �
 � � �
 + � be a sequence of item sizes such that

� � +���� + � � ����� � + � � � . Let � be a small positive constant. We define � � to be the empty

input. Input � � consists of � � ��� followed by � items of size + � � � . Algorithm
�

is given � � for

some
� � � ��
 � � �

� � .
A pattern with respect to � is a tuple � ��� size

� � ��
 � �
 � � �

� ��� where size

� � � is a positive

real number and � �
 � � � � �
are non-negative integers such that

��
���&�

� � + � � size
� � � �

Intuitively, a pattern describes the contents of some bin of capacity size
� � � . Define � � �
 � � to

be the set of all patterns � with respect to � with size
� � �	� � . Further define� � � �	� ��

���&� � � �
 � � � �
Note that � � � � is necessarily finite. Given an input sequence of items, an algorithm is defined by

the numbers and types of items it places in each of the bins it uses. Specifically, any algorithm

is defined by a function � � � � � ���� �
	 � . The algorithm uses � � � � bins containing items as

described by the pattern � . We define � � � � ��� � � ��, � .

102 Chapter 7. Variable-sized on-line bin-packing

Consider the function � that determines the packing used by on-line algorithm
�

uses for

��� . Since
�

is on-line, the packings it uses for � ��
 � � �
���� � � are completely determined by � .

We assign to each pattern a class, which is defined

class
� � �	� . � � � � � � �
� ��� �

Intuitively, the class tells us the first sequence � � which results in some item being placed into a

bin packed according to this pattern. I.e. if the algorithm packs some bins according to a pattern

which has class
�
, then these bins will contain one or more items after �!� . Define��� � � � � � � � � � � � � class

� � � � � � �
Then if

�
is determined by � , its cost for � � is simply

� �

�
 � �
�� � size
� � � � � � � �

Since the algorithm must pack every item, we have the following constraints

� �

�
 �
�� � �
� � � � � � �
 for � � � � �

.

For a fixed � , define � � � � � to be the optimal off-line cost for packing the items in � � . The

following lemma gives us a method of computing the optimal off-line cost for each sequence:

Lemma 7.3 For � � � � �
, �

� �
 � . � � � � � � � � , � exists and is the value of the linear program:

Minimize �

�
 � �
�� � size
� � � � � � � (7.7)

subject to

� �
�

�
 �
�� � � � � � � �
 for � � � � �
; (7.8)

over variables � � and � � � ��
 � � � � � � .
Proof. Clearly, the LP always has a finite value between

� �
� �&� + � and

�
. For any fixed � , the

optimal off-line solution is determined by some � . It must satisfy the constraints of the LP,

and the objective value is exactly the cost incurred. Therefore the LP lower bounds the optimal

off-line cost. The LP is a relaxation in that it allows a fractional number of bins of any pattern,

whereas a legitimate solution must have an integral number. Rounding the relaxed solution up

to get a legitimate one, the change in the objective value is at most � � � � ��� , � . �

7.3 Lower bounds 103

0 0.2 0.4 0.6 0.8 1
α

1.55

1.6

1.65

1.7

1.75

1.8

0 0.2 0.4 0.6 0.8 1
α

1.4

1.45

1.5

1.55

1.6

1.65

Figure 7.3: Upper bounds for variable sized bin packing. In both figures, VARIABLE HAR-

MONIC is shown in black. In the top figure, we display VRH1
�
�
� � � in red, VRH1

�
�
� � � in blue,

VRH1
�
�
� � � in green, VRH1

�
�
� � � in yellow, VRH1

�
�
�
� � in light blue and VRH1

�
�
� � � in purple. In

the bottom figure, we display VRH2
�
�
� � � in red, VRH2

�
�
� � � in blue and VRH2

�
�
� � � in green.

104 Chapter 7. Variable-sized on-line bin-packing

Given the construction of a sequence, we need to evaluate

� � . ���� . /�1���&� � ��� � � �

� .
����� � �

��� �����
� � � � � �

As � � � , we can replace � � � � ��, � by �
�� . Once we have the values �

� �
 � � �
 �
�� , we can readily

compute a lower bound for our on-line algorithm:

Lemma 7.4 The optimal value of the linear program: Minimize � subject to

� � �
�
��

�

�
 � �
�� � size
� � � � � � �
 for � � � � �

;

� �
�

�
 �
�� � � � � � � �
 for � � � � �
;

(7.9)

over variables � and � � � ��
 � � � � � � , is a lower bound on the asymptotic performance ratio of

any on-line bin packing algorithm.

Proof. For any fixed � , any algorithm
�

has some � which must satisfy the second constraint.

Further, � should assign an integral number of bins to each pattern. However, this integrality

constraint is relaxed, and
�
�
 � �
�� � size

� � � � � � � is ��, � times the cost to
�

for � � as � � � . The

value of � is just the maximum of the performance ratios achieved on � ��
 � � �
���� .
�

Although this is essentially the result we seek, a number of issues are left to be resolved.

The first is that these linear programs have a variable for each possible pattern. The number

of such patterns is potentially quite large, and we would like to reduce it if possible. We show

that this goal is indeed achievable. We say that a pattern � of class
�

is dominant if

+�� �
��

� �&�
� � + � � size

� � � �
Let � be a non-dominant pattern with class

�
. There exists a unique dominant pattern � of class

�
such that � � � � � for all

�
� � . We call � the dominator of � with respect to class
�
.

Lemma 7.5 In computing the values of the linear programs in Lemmas 7.3 and 7.4, it suffices

to consider only dominant patterns.

Proof. We transform an LP solution by applying the following operation to each non-dominant

pattern � of class
�
: Let � � � � � � in the original solution. We set � � � � � � and increment � � � �

by � , where � is the dominator of � with respect to
�
. The new solution remains feasible, and

its objective value has not changed. Further, the value of � � � � is zero for every non-dominant � ,

therefore these variables can be safely deleted.
�

Given a sequence of item sizes � , we can compute a lower bound � � � �
 �'��
 � � �
 � � � ��� using

the following algorithm:

7.4 The lower bound sequences 105

1. Enumerate the dominant patterns.

2. For � � � � �
, compute � � via the LP given in Lemma 7.3.

3. Compute and return the value of the LP given in Lemma 7.4.

Step one is most easily accomplished via a simple recursive function. Our concern in the re-

mainder of this chapter shall be to study the behavior of ��� � �
 �'��
 � � �
 � � � ��� as a function of �
and �'��
 � � �
 � � � � .

7.4 The lower bound sequences

Up to this point, we have assumed that we were given some fixed item sequence � . We consider

now the question of choosing a sequence � on which on-line algorithms must perform poorly.

We again focus in on the case where there are two bin sizes, and examine properties of � � � �
 � ��� .
We abbreviate � � using � and � � using � .

To begin we define the idea of a greedy sequence. Let � denote the empty sequence, and
�

the sequence concatenation operator. The greedy sequence ��� � � � for capacity
�

with cutoff � is

defined by

	 � � �	� �� ���� � � � � � � � � �
� � if

� � � ,
	 � � � � � � � � 	 � � ��� otherwise.

The sequence defines the item sizes which would be used if we packed a bin of capacity
�

using the following procedure: At each step, we determine the remaining capacity in our bin.

We choose as the next item the largest reciprocal of an integer which fits without using the

remaining capacity completely. We stop when the remaining capacity is smaller than � . Note

that for � � � , we get the infinite sequence. We shall use � as a shorthand for � � .
The recurrence

�
� described in Section 1, which is found in connection with bounded-space

bin packing [58], gives rise to the sequence

��
� �

�
�

 ��

�
�
 �� �

�
� � �

�
 � � � �
This turns out to be the infinite greedy sequence � � � � . Somewhat surprisingly, it is also the

sequence used by Brown, Liang and van Vliet in the construction of their lower bounds [17, 60,

71]. In essence, they analytically determine the value of ��� � � � � � ��� . Liang and Brown lower

bound the value, while van Vliet determines it exactly.

This well-known sequence is our first candidate. Actually, we use the first
�

items sizes in

it, and we re-sort them so that the algorithm is confronted with items from smallest to largest. In

106 Chapter 7. Variable-sized on-line bin-packing

general, this re-sorting seems to be a good heuristic to make a given sequence hard (or harder)

for an on-line algorithm, since the algorithm has the most decisions to make about how the

smallest items are packed, but on the other hand has the least information about which further

items will be received. The results are shown in Figure 7.4.

0 0.2 0.4 0.6 0.8 1
α

1

1.1

1.2

1.3

1.4

1.5

Figure 7.4: The evolution of the curves given by the greedy item sequence. In red is ��
 �
 ; green

is ��
 �

 �� ; blue is ��
 �

 ��
 ��
 .

Examining Figure 7.4, one immediately notices that that �
� � � � � ��
 � � exhibits some very

strange behavior. The curve is highly discontinuous. Suppose we have a finite sequence � ,
where each item size is a continuous function of � � � ��
 � � . Tuple � is a potential pattern if

there exists an � � � ��
 � � such that � is a pattern. The set of breakpoints of � with respect to � is

defined to be
� � �
 � �	�

�
� � � ��
 � � ����

��
���&�

� ��+�� � size
� � � � �

Let � �

be the set of all potential patterns. The set of all breakpoints is
� � � �	� �

�
 �
�

� � �
 � � �
Intuitively, at each breakpoint some combinatorial change occurs, and the curve may jump. In

the intervals between breakpoints, the curve behaves nicely as summarized by the following

lemmas:

7.4 The lower bound sequences 107

0 0.2 0.4 0.6 0.8 1
α

1

1.1

1.2

1.3

1.4

1.5

Figure 7.5: A variety of sequences for � � � , � ����� : black is ��
 �

 ��
 ��
 ; red is �
 � � � � � � ;
green is

� �
 � � � �� � � � ; blue is �
 �

 ��
 ��
 ; purple is ��
 ��
 �	

�� � ; yellow is ��
 � �
 ��
 � � � �� � � � � .

Lemma 7.6 Let � be a finite item sequence, with each item size a continuous function of � �
� ��
 � � . In any interval � � �

��
 � � which does not contain a breakpoint, �
� �
 � � is continuous.

Furthermore, for all � � � ,

�
� �
 � � � . ���

�
�	� �

�
�
 � �

� � �
� � � �
 �� � �	� � � � �

This lemma follows as a corollary from:

Lemma 7.7 Let � be a finite item sequence, with each item size a continuous function of � �
� ��
 � � . Let � be any interval which does not contain a breakpoint, and let � be any point in � .

The following two results hold:

1. If � � � is such that � � � � � then

�
� �
 � � � � � � �� �

� � � � � �
 � � �
2. If � � � is such that � � � � then

�
� �
 � � � � � �� �

� � � �
 � � �

108 Chapter 7. Variable-sized on-line bin-packing

Proof. We first prove statement 1. Denote by �
�� � � � the value of �

�� at � � � . For � � � � �
we

have

�
�� � � � � � � � � �

� �
�� � � � �

To see this, note that any feasible � at � is also feasible at � � � , since both points are within �
and (7.8) does not change within this interval. Each term in (7.7) increases by at most

� � � � � , � .

Now consider the linear program of Lemma 7.4. Consider some arbitrary feasible solution � at

� . At � � � this solution is still feasible (except that possibly � must increase). In the sum

� , �
�� � �
 � �
�� � size

� � � � � � � , the factor ��, � �� decreases by at most � , � � � � � and size
� � � cannot

decrease.

Now consider statement 2. The arguments are quite similar. For � � � � �
we have

�
�� � � � � � �

�� � � � �
Again, a feasible solution remains feasible, Further, its objective value (7.7) cannot increase.

Considering the linear program of Lemma 7.4, we find that for each feasible solution, each sum

� , �
�� � �
 � �
�� � size

� � � � � � � decreases by a factor at most
� � � � , � .

�

Considering Figure 7.4 again, there are sharp drops in the lower bound near the points �
 ��
and

�
 . It is not hard to see why the bound drops so sharply at those points. For instance, if �
is just larger than �� � � , then the largest items in � � � � can each be put in their own bin of size

� . If � �
�
 � � � , two items of size �
 � � can be put pairwise in bins of size � . In short, in

such cases the on-line algorithm can pack some of the largest elements in the list with very little

wasted space, hence the low resulting bound.

This observation leads us to try other sequences, in which the last items cannot be packed

well. A first candidate is the sequence �
 � � � � � . As expected, this sequence performs much

better than � � � � in the areas described above.

It is possible to find further improvements for certain values of � . For instance, the sequence

�', �
 � � � � , � � also works well in some places, and we used other sequences as well. These

are shown in Figure 7.5.

As a general guideline for finding sequences, items should not fit too well in either bin size.

If an item has size � , then . � � � �� � �� � �
 � � �

� � ��� should be as large as possible. In areas

where a certain item in a sequence fits very well, that item should be adjusted (e.g. use an item

� , � � � � � instead of using the item � , �) or a completely different sequence should be used. (This

helps to explain why the algorithms have a low competitive ratio for � close to � �
�
: in that area,

this minimum is never very large.)

Furthermore, as in the classical bin packing problem, sequences that are bad for the on-line

algorithm should have very different optimal solutions for each prefix sequence. Finally, the

item sizes should not increase too fast or slow: If items are very small, the smallest items do

7.4 The lower bound sequences 109

not affect the on-line performance much, while if items are close in size, the sequence is easy

because the optimal solutions for the prefixes are alike.

Using Lemma 7.7 we obtain the main theorem of this section:

Theorem 7.1 Any on-line algorithm for the variable sized bin packing problem with � � � has

asymptotic performance ratio at least
�
� � �

� �
� � ��� ���$, �

� � � �
��� ����� ��� � � � ��� �

� � .
Proof. First note that for � � � � ��
 � , � � � , the sequence ��
 �

 ��
 ��
 yields a lower bound of

� � � , � � � � � � � � � ��� as in the classic problem: The bin of size � is of no use.

We use the sequences described in the caption of Figure 7.5. For each sequence � , we

compute a lower bound on
� � , � ��
 � � using the following procedure:

Define � ����, � ������� . We break the interval (0,1) into subintervals using the lattice points
�
 � �
 � � �
 �

� . To simplify the determination of breakpoints, we use a constant sequence

for each sub-interval. This constant sequence is fixed at the upper limit of the interval. I.e.

throughout the interval
 � �
 � � � � � we use the sequence � � � � � � � � . Since the sequence is constant,

a lower bound on the performance ratio of any on-line bin packing algorithm with � �
 � �
 � � � � �
can be determined by the following algorithm:

1. � � � � � � � � � � � .

2. Initialize
� � � � �
 � � � � � .

3. Enumerate all the patterns for � � at � � � � � � .

4. For each pattern:

(a) � � � ����&� � � +)� .
(b) If � � � � �
 � � � � � then

� � � � � ��� .
5. Sort

�
to get ����
 � �
)
 � � �
 � � .

6. Calculate and return the value:

. � ����$�
 � . ���
� � � � � � �&�
� ��� �&�
 � � �

� � � � � �&�
� � � � �
 �� � ��� � � � �&��� � �

We implemented this algorithm in Mathematica, and used it to find lower bounds for each of

the aforementioned sequences. The results are shown in Figures 7.5 and 7.6. The lowest lower

bound is
�
��� �

� �
� � ��� ���$, �

� � � �
��� ����� ��� , in the interval [0.7196,0.7197).

�

110 Chapter 7. Variable-sized on-line bin-packing

0 0.2 0.4 0.6 0.8 1
α

1.3

1.4

1.5

1.6

0.6 0.65 0.7 0.75 0.8
α

1.35

1.4

1.45

1.5

1.55

Figure 7.6: The best upper and lower bounds for variable sized on-line bin packing. The bottom

figure is a closeup of
 �
�
 ��� � . The upper bound is best of the VRH1, VRH2 and VARIABLE

HARMONIC algorithms.

7.5 Conclusions 111

7.5 Conclusions

We have shown new algorithms and lower bounds for variable-sized on-line bin packing with

two bin sizes. The largest gap between the performance of the algorithm and the lower bound

is � � � � � � � , achieved for a second bin of size � � � � � �
� � . The smallest gap is � � �����

� � achieved

for � ��� �
� � � �

. Note that for � � �� , there is not much difference with the classical problem:

having the extra bin size does not help the on-line algorithm much. To be more precise, it helps

about as much as it helps the off-line algorithm.

Our work raises the following questions: is there a value of � where it is possible to design a

better algorithm and show a matching lower bound? Or, can a lower bound be shown anywhere

that matches an existing algorithm? Note that at the moment there is also a small gap between

the competitive ratio of the best algorithm and the lower bound in the classical bin packing

problem.

Another interesting open problem is analyzing variable-sized bin packing with an arbitrary

number of bin sizes.

112 Chapter 7. Variable-sized on-line bin-packing

Publications

In this section we list the papers on which the chapters are based.

Chapter 2 is based on L. Epstein and R. van Stee, “Optimal On-Line Flow Time With Re-

source Augmentation”. In R. Freivalds, editor, Fundamentals of Computation Theory, 13th

International Symposium, FCT 2001, Proceedings, volume 2138 of Lecture Notes in Computer

Science, pp. 472–482. Springer, 2001. This paper was presented at the First Workshop on

Efficient Algorithms (WEA).

Chapter 3 is based on Y. Azar, L. Epstein and R. van Stee, “Resource Augmentation in

Load Balancing”. Journal of Scheduling, 3(5):249–258, 2000. This paper also appeared in

M. M. Halldorsson, editor, Algorithm Theory - SWAT 2000, 7th Scandinavian Workshop on

Algorithm Theory, volume 1851 of Lecture Notes in Computer Science, pp. 189–199. Springer,

2000.

Chapter 4 is based on R. van Stee and H. La Poutré, “Running a Job on a Collection of Partly

Available Machines, with On-Line Restarts”. Acta Informatica, 37(10):727–742, 2001.

Chapter 5 is based on R. van Stee and H. La Poutré, “Partial Servicing of On-line Jobs”.

Journal of Scheduling, 4(6):379–396, 2001. This paper also appeared in K. Jansen, S. Khuller,

editors, Approximation Algorithms for Combinatorial Optimization, Third Internationational

Workshop, APPROX 2000, volume 1913 in Lecture Notes in Computer Science, pp. 250–261.

Springer, 2000.

Chapter 6 is based on L. Epstein and R. van Stee, “Minimizing the Maximum Starting Time

On-line”. Technical Report SEN-R0133. CWI, Amsterdam, 2001.

Chapter 7 is based on L. Epstein, S. Seiden and R. van Stee, “New Bounds for Variable-

Sized and Resource Augmented Online Bin Packing”. To appear in Automata, Languages and

Programming, 29th International Colloquium, ICALP 2002, Proceedings. Springer, 2002.

113

114

Bibliography

[1] S. Aggarwal, J.A. Garay, and A. Herzberg. Adaptive video on demand. In P. Spirakis,

editor, Algorithms - ESA ’95, Proceedings Third Annual European Symposium, volume

979 of Lecture Notes in Computer Science, pages 538–553. Springer, 1995.

[2] S. Albers. On the influence of lookahead in competitive paging algorithms. Algorithmica,

18(3):283–305, Jul 1997.

[3] S. Albers. Better bounds for online scheduling. SIAM Journal on Computing, 29(2):459–

473, 1999.

[4] B. Awerbuch and Y. Azar. Competitive multicast routing. Wireless Networks, 1:107–114,

1995.

[5] B. Awerbuch, Y. Azar, A. Fiat, and F. T. Leighton. Making commitments in the face of

uncertainty: How to pick a winner almost every time. In Proceedings of the 28th Annual

ACM Symposium on Theory of Computing, pages 519–530, 1996.

[6] B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Rosen. On-line competitive algo-

rithms for call admission in optical networks. Algorithmica, 31(1):29–43, 2001. Also in J.

Diaz, M. Serna, editors, Algorithms - ESA ’96, Proceedings Fourth Annual European Sym-

posium, volume 1136 of Lecture Notes in Computer Science, pages 431–444. Springer,

1996.

[7] B. Awerbuch, Y. Azar, S. Leonardi, and O. Regev. Minimizing the flow time without

migration. In Proceedings of the 31st Annual ACM Symposium on Theory of Computing,

pages 198–205. ACM, 1999.

[8] Y. Azar and L. Epstein. On-line load balancing of temporary tasks on identical machines.

In 5th Israeli Symposium on Theory of Computing and Systems, pages 119–125, 1997.

[9] Y. Bartal, A. Fiat, H. J. Karloff, and R. Vohra. New algorithms for an ancient scheduling

problem. Journal of Computer and System Sciences, 51:359–366, 1995.

115

116 Bibliography

[10] S.K. Baruah and M.E. Hickey. Competitive on-line scheduling of imprecise computations.

IEEE Transactions on Computers, 47:1027–1032, 1998.

[11] L.A. Belady. A study of replacement algorithms for virtual storage computers. IBM Sys-

tems Journal, 5:78–101, 1966.

[12] P. Berman and C. Coulston. Speed is more powerful than clairvoyance. Nordic Journal of

Computing, 6:181–193, 1999. Also in S. Arnborg, L. Ivansson, editors, Algorithm Theory

- SWAT’98, 6th Scandinavian Workshop on Algorithm Theory, Proceedings, volume 1432

of Lecture Notes in Computer Science, pages 189–199. Springer, 1999.

[13] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge

University Press, 1998.

[14] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging with locality of

reference. Journal of Computer and System Sciences, 50:244–258, 1995.

[15] H. G. P. Bosch, N. Nes, and M. L. Kersten. Navigating through a forest of quad trees

to spot images in a database. Technical Report INS-R0007, CWI, Amsterdam, February

2000.

[16] M. Brehob, E. Torng, and P. Uthaisombut. Applying extra-resource analysis to load bal-

ancing. Journal of Scheduling, 3(5):273–288, 2000.

[17] D. J. Brown. A lower bound for on-line one-dimensional bin packing algorithms. Technical

Report R-864, Coordinated Sci. Lab., Urbana, Illinois, 1979.

[18] S. Chakrabarti, C.A. Phillips, A.S. Schulz, D.B. Shmoys, C. Stein, and J.Wein. Improved

scheduling algorithms for minsum criteria. In F. Meyer auf der Heide and B. Monien,

editors, Automata, Languages and Programming, 23rd International Colloquium, ICALP

’96, Proceedings, volume 1099 of Lecture Notes in Computer Science, pages 646–657.

Springer, 1996.

[19] B. Chandra. Does randomization help in on-line bin packing? Information Processing

Letters, 43(1):15–19, Aug 1992.

[20] B. Chen, A. van Vliet, and G. J. Woeginger. Lower bounds for randomized online schedul-

ing. Information Processing Letters, 51:219–222, 1994.

[21] B. Chen, A. van Vliet, and G. J. Woeginger. An optimal algorithm for preemptive on-line

scheduling. Operations Research Letters, 18:127–131, 1995.

Bibliography 117

[22] E.K.P. Chong and W. Zhao. Performance evaluation of scheduling algorithms for imprecise

computer systems. Journal of Systems and Software, 15:261–277, 1991.

[23] P. Chrétienne, E. G. Coffman, J. K. Lenstra, and Z. Liu. Scheduling Theory and its Appli-

cations. John Wiley and Sons, 1995.

[24] M. Chrobak and J. Noga. LRU is better than FIFO. Algorithmica, 23:180–185, 1999.

[25] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin pack-

ing: A survey. In D. Hochbaum, editor, Approximation Algorithms for NP-hard Problems,

chapter 2. PWS Publishing Company, 1997.

[26] E. G. Coffman, Jr., L. Flatto, and P. E. Wright. A stochastic checkpoint optimization

problem. SIAM Journal on Computing, 22(3):650–659, June 1993.

[27] J. Csirik. An on-line algorithm for variable-sized bin packing. Acta Informatica,

26(8):697–709, October 1989.

[28] J. Csirik and G. Woeginger. On-line packing and covering problems. In A. Fiat and

G. Woeginger, editors, On-Line Algorithms—The State of the Art, volume 1442 of Lecture

Notes in Computer Science, chapter 7, pages 147–177. Springer-Verlag, 1998.

[29] T. Dean and M. Boddy. An analysis of time-dependent planning. In AAAI 88, The Seventh

National Conference on Artificial Intelligence, pages 49–54. AAAI, 1988.

[30] C. Derman. Finite State Markovian decision processes. Academic Press, New York, 1970.

[31] M. L. Dertouzos and A. K.-L. Mok. Multiprocessor on-line scheduling of hard-real-time

tasks. IEEE Transactions on Software Engineering, 15:1497–1506, 1989.

[32] J. Edmonds. Scheduling in the dark. Theoretical Computer Science, 235:109–141, 2000.

[33] L. Epstein and J. Sgall. A lower bound for on-line scheduling on uniformly related ma-

chines. Operations Research Letters, 26(1):17–22, 2000.

[34] Wu-Chen Feng. Applications and extensions of the imprecise-computation model. Tech-

nical report, University of Illinois at Urbana-Champaign, December 1996.

[35] A. Fiat and G. Woeginger, editors. On-Line Algorithms—The State of the Art. Lecture

Notes in Computer Science. Springer-Verlag, 1998.

118 Bibliography

[36] R. Fleischer and M. Wahl. Online scheduling revisited. Journal of Scheduling, 3(5):343–

353, 2000. Also in M. Paterson, editor, Algorithms - ESA 2000, Proceedings Eighth Annual

European Symposium, volume 1879 in Lecture Notes in Computer Science, pages 202–210.

Springer, 2000.

[37] D. K. Friesen and M. A. Langston. A storage-size selection problem. Information Pro-

cessing Letters, 18:295–296, 1984.

[38] D. K. Friesen and M. A. Langston. Variable sized bin packing. SIAM Journal on Comput-

ing, 15:222–230, 1986.

[39] A. Goel, M. R. Henzinger, S. Plotkin, and E. Tardos. Scheduling data transfers in a network

and the set scheduling problem. In Proceedings of the 31st Annual ACM Symposium on

Theory of Computing, pages 189–197. ACM, 1999.

[40] T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Generating adversaries for request-

answer games. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 564–565. ACM-SIAM, 2000.

[41] R.L. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical Journal,

45:1563–1581, 1966.

[42] R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied

Mathematics, 17:416–429, 1969.

[43] J.A. Hoogeveen and A.P.A. Vestjens. Optimal on-line algorithms for single-machine

scheduling. In W. H. Cunningham, S. T. McCormick, and M. Queyranne, editors, Integer

Programming and Combinatorial Optimization, 5th International IPCO Conference, Pro-

ceedings, volume 1084 of Lecture Notes in Computer Science, pages 404–414. Springer,

1996.

[44] D. S. Johnson. Fast algorithms for bin packing. Journal of Computer and System Sciences,

8:272–314, 1974.

[45] David S. Johnson. Near-optimal bin packing algorithms. PhD thesis, Massachusetts Insti-

tute of Technology, Cambridge, Massachusetts, 1973.

[46] David S. Johnson, A. Demers, J. D. Ullman, Michael R. Garey, and Ronald L. Graham.

Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM

Journal on Computing, 3:256–278, 1974.

Bibliography 119

[47] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of the

ACM, 47:617–643, 2000.

[48] Bala Kalyanasundaram and Kirk Pruhs. Maximizing job completions online. In G. Bilardi,

G.F. Italiano, A. Pietracaprina, and G. Pucci, editors, Algorithms - ESA ’98, Proceedings

Sixth Annual European Symposium, volume 1461 of Lecture Notes in Computer Science,

pages 235–246. Springer, 1998. To appear in Journal of Algorithms.

[49] D. R. Karger, S. J. Phillips, and E. Torng. A better algorithm for an ancient scheduling

problem. Journal of Algorithms, 20:400–430, 1996.

[50] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator. Competitive snoopy caching. Algo-

rithmica, 3(1):79–119, 1988.

[51] A. Karlin, S. Phillips, and P. Raghavan. Markov paging. SIAM Journal on Computing,

30:906–922, 2000.

[52] H. Kellerer, T. Tautenhahn, and G.J. Woeginger. Approximability and nonapproximability

results for minimizing total flow time on a single machine. SIAM Journal on Computing,

28:1155–1166, 1999.

[53] N.G. Kinnersley and M.A. Langston. Online variable-sized bin packing. Discrete Applied

Mathematics, 22(2):143–148, Feb 1989.

[54] K.J.Lin, S. Natarajan, and J.W.S. Liu. Imprecise results: Utilizing partial computations

in real-time systems. In Proceedings of the Eighth IEEE Real-Time Systems Symposium,

pages 210–215, 1987.

[55] T. W. Lam and K. K. To. Trade-offs between speed and processor in hard-deadline schedul-

ing. In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 623–632. ACM-SIAM, 1999.

[56] E.L. Lawler, J.K Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. Sequencing and

scheduling: algorithms and complexity. In Handbooks in operations research and man-

agement science, volume 4, pages 445–522. North Holland, 1993.

[57] C.-Y. Lee, L. Lei, and M. Pinedo. Current trends in deterministic scheduling. Annals of

Operations Research, 70:1–42, 1997.

[58] C.C. Lee and D.T. Lee. A simple on-line bin-packing algorithm. Journal of the ACM,

32(3):562–572, Jul 1985.

120 Bibliography

[59] S. Leonardi and D. Raz. Approximating total flow time on parallel machines. In Pro-

ceedings of the 29th ACM Symposium on the Theory of Computing, pages 110–119. ACM,

1997. To appear in Journal of Computer and System Sciences.

[60] F. M. Liang. A lower bound for online bin packing. Information Processing Letters,

10:76–79, 1980.

[61] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via re-

source augmentation. Algorithmica, 32(2):163–200, 2002.

[62] P. Ramanan, D.J. Brown, C.C. Lee, and D.T. Lee. On-line bin packing in linear time.

Journal of Algorithms, 10(3):305–326, Sep 1989.

[63] M. B. Richey. Improved bounds for harmonic-based bin packing algorithms. Discrete

Applied Mathematics, 34:203–227, 1991.

[64] Eric Sanlaville and Günter Schmidt. Machine scheduling with availability constraints. Acta

Informatica, 35(9):795–811, 1998.

[65] S. S. Seiden. An optimal online algorithm for bounded space variable-sized bin packing.

SIAM Journal on Discrete Mathematics, 14(4):458–470, 2001.

[66] S.S. Seiden. On the online bin packing problem. In Automata, Languages and Program-

ming, 27th International Colloquium, ICALP 2000, Proceedings, volume 1853 of Lecture

Notes in Computer Science, pages 237–248. Springer, 2001.

[67] J. Sgall. A lower bound for randomized on-line multiprocessor scheduling. Information

Processing Letters, 63(1):51–55, 1997.

[68] W.-K. Shih. Scheduling in real-time systems to ensure graceful degradation: the imprecise-

computation and the deferred-deadline approaches. Technical report, University of Illinois

at Urbana-Champaign, December 1992.

[69] W.-K. Shih and J.W.S. Liu. On-line scheduling of imprecise computations to minimize

error. SIAM Journal on Computing, 25:1105–1121, 1996.

[70] D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Commu-

nications of the ACM, 28:202–208, 1985.

[71] A. van Vliet. An improved lower bound for online bin packing algorithms. Information

Processing Letters, 43(5):277–284, Oct 1992.

Bibliography 121

[72] A.P.A. Vestjens. On-line Machine Scheduling. PhD thesis, Technical University Eind-

hoven, The Netherlands, 1997.

[73] G. Woeginger and G. Zhang. Optimal on-line algorithms for variable-sized bin covering.

Technical Report Woe-22, TU Graz, Institut für Mathematik B, Feb 1998.

[74] A. C. C. Yao. Probabilistic computations: Towards a unified measure of complexity. In

Proceedings of the 18th Annual Symposium on Foundations of Computer Science, pages

222–227. IEEE, 1977.

[75] A. C. C. Yao. New algorithms for bin packing. Journal of the ACM, 27:207–227, 1980.

[76] W. Zhao, S. Vrbsky, and J.W.S. Liu. Performance of scheduling algorithms for multi-server

imprecise systems. In Proceedings of the Fifth International Conference on Parallel and

Distributed Computing and Systems (PDCS), 1992.

[77] S. Zilberstein. Constructing utility-driven real-time systems using anytime algorithms.

In Proceedings of the First IEEE Workshop on Imprecise and Approximate Computation,

1992.

122 Bibliography

Samenvatting

On-line algoritmen zijn algoritmen die al een deel van de oplossing van een probleem kunnen

leveren voordat alle gegevens bekend zijn. Zulke algoritmen zijn nodig in omgevingen waar de

gegevens in de loop van de tijd binnenkomen. Een voorbeeld hiervan is een fabriekshal met een

aantal machines die verschillende producten kunnen maken. In de loop van de dag komen orders

binnen, maar het is niet de bedoeling dat de machines stil blijven staan totdat alle orders binnen

zijn. Ze moeten zo snel mogelijk gaan draaien, en hierbij moet rekening gehouden worden met

de nog onbekende orders die later binnen kunnen gaan komen.

Dit proefschrift behandelt met name on-line scheduling, waarbij productieschema’s voor een

of meer machines moeten worden gemaakt aan de hand van bepaalde criteria. Hierbij worden

de resultaten van een on-line algoritme vergeleken met de resultaten van een off-line algoritme

dat wel alle gegevens van te voren weet, en dus een optimale oplossing kan leveren – er worden

geen eisen gesteld aan de complexiteit van de algoritmen, on-line zowel als off-line. Als gevolg

hiervan gaat het hier om een slechtste-gevalanalyse en wordt een algoritme beoordeeld op zijn

prestaties in de slechtst mogelijke omstandigheden. Het doel is om het in verhouding met het

off-line algoritme zo goed mogelijk te doen, er wordt dus gekeken naar de maximale verhouding

tussen de on-line en de off-line kosten. Deze verhouding heet competitive ratio.

We bekijken verschillende varianten en uitbreidingen op deze analyse. De belangrijkste hier-

van is het toestaan van randomisatie, waarbij een on-line algoritme rekening kan houden met ver-

schillende mogelijke toekomstige opdrachten door random bits te gebruiken in zijn beslissingen.

Verder bekijken we de situatie waarin het on-line algoritme meer machines tot zijn beschikking

heeft dan het off-line algoritme. Dit kan in sommige gevallen een helderder beeld geven van hoe

nadelig het is om de toekomst niet te kennen.

De criteria voor scheduling die we in die proefschrift beschouwen zijn de gemiddelde wacht-

tijd over alle opdrachten, de laatste eindtijd (de tijd dat de laatste opdracht klaar is), de laatste

starttijd en tenslotte het gemiddelde machinegebruik. In dit laatste geval gaat het om opdrachten

die niet volledig uitgevoerd hoeven te worden en is het de bedoeling om de machines zo efficiënt

mogelijk te gebruiken. Een voorbeeld van dit soort opdrachten zijn benaderingen van bepaalde

waardes, die beter worden naarmate er meer tijd aan besteed wordt.

123

124 Samenvatting

Hoofdstuk 2 behandelt het gemiddelde-wachttijdcriterium, waarbij het on-line algoritme

meer machines heeft dan off-line, die er één heeft. We geven een algoritme en laten zien dat

het optimaal is. In hoofdstuk 3 behandelen we het laatste-eindtijdcriterium op dezelfde manier,

met dit verschil dat hier het off-line algoritme meer dan één machine heeft: we geven optimale

algoritmen voor verschillende situaties.

In hoofdstuk 4 behandelen we scheduling op machines die niet continu beschikbaar zijn,

waarbij het probleem is of er gewacht moet worden tot een machine weer beschikbaar komt

of dat het beter is om op een nieuwe machine helemaal opnieuw te beginnen. In hoofdstuk 5

behandelen we het schematiseren van opdrachten die niet volledig uitgevoerd hoeven te worden.

Hoofdstuk 6 gaat over het probleem van het minimaliseren van de maximale starttijd van

taken die één voor één binnenkomen. Hierbij moeten alle taken toegewezen worden aan ma-

chines voordat de machines gaan draaien. Vervolgens moeten ze uitgevoerd worden waarbij ze

op elke machine in volgorde van toewijzing gedraaid moeten worden.

Hoofdstuk 7 tenslotte gaat over bin packing. Dit is het probleem van het inpakken van

een reeks objecten in dozen (bins) waarbij het de bedoeling is zo weinig mogelijk dozen te

gebruiken. We bekijken een variant van het probleem waarbij er dozen met meerdere groottes

beschikbaar zijn, en het doel is om het totaal gebruikte volume te minimaliseren.

Curriculum vitae

Rob van Stee werd geboren op 19 september 1973 in Vlissingen. Hij behaalde in juni 1991

zijn gymnasiumdiploma aan het Gertrudislyceum te Roosendaal. In juni 1992 behaalde hij

een propedeuse Wiskunde en een propedeuse Informatica aan de universiteit van Leiden. Hij

behaalde zijn doctoraal in de Wiskunde op 28 juni 1996 met als afstudeeronderwerp het aantal

nulpunten van gegeneraliseerde exponentiële polynomen in algebraı̈ sche getallenlichamen. Zijn

begeleider hierbij was dr. J.-H. Evertse.

Vanaf augustus 1996 werkte Rob als onderzoeker in opleiding op een project van NWO, de

Nederlandse Organisatie voor Wetenschappelijk Onderzoek. Hij werd begeleid door prof.dr.ir.

J.A. La Poutré en prof.dr. J.N. Kok. Het onderzoek vond plaats aan de universiteit van Leiden

in het eerste jaar en op het Centrum voor Wiskunde en Informatica van september 1997 tot en

met augustus 2001. Op dit moment werkt hij als postdoc aan de Albert-Ludwigs-Universiteit te

Freiburg.

125

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Process Algebra.

Faculty of Mathematics and Computing Science, TUE.

1996-1

A.M. Geerling. Transformational Development of

Data-Parallel Algorithms. Faculty of Mathematics and

Computer Science, KUN. 1996-2

P.M. Achten. Interactive Functional Programs: Mod-

els, Methods, and Implementation. Faculty of Mathe-

matics and Computer Science, KUN. 1996-3

M.G.A. Verhoeven. Parallel Local Search. Faculty of

Mathematics and Computing Science, TUE. 1996-4

M.H.G.K. Kesseler. The Implementation of Func-

tional Languages on Parallel Machines with Distrib.

Memory. Faculty of Mathematics and Computer Sci-

ence, KUN. 1996-5

D. Alstein. Distributed Algorithms for Hard Real-Time

Systems. Faculty of Mathematics and Computing Sci-

ence, TUE. 1996-6

J.H. Hoepman. Communication, Synchronization, and

Fault-Tolerance. Faculty of Mathematics and Com-

puter Science, UvA. 1996-7

H. Doornbos. Reductivity Arguments and Program

Construction. Faculty of Mathematics and Computing

Science, TUE. 1996-8

D. Turi. Functorial Operational Semantics and its De-

notational Dual. Faculty of Mathematics and Com-

puter Science, VUA. 1996-9

A.M.G. Peeters. Single-Rail Handshake Circuits. Fac-

ulty of Mathematics and Computing Science, TUE.

1996-10

N.W.A. Arends. A Systems Engineering Specification

Formalism. Faculty of Mechanical Engineering, TUE.

1996-11

P. Severi de Santiago. Normalisation in Lambda Cal-

culus and its Relation to Type Inference. Faculty of

Mathematics and Computing Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and Partition Re-

finement for Model Checking. Faculty of Mathematics

and Computing Science, TUE. 1996-13

M.M. Bonsangue. Topological Dualities in Semantics.

Faculty of Mathematics and Computer Science, VUA.

1996-14

B.L.E. de Fluiter. Algorithms for Graphs of Small

Treewidth. Faculty of Mathematics and Computer Sci-

ence, UU. 1997-01

W.T.M. Kars. Process-algebraic Transformations in

Context. Faculty of Computer Science, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data Types.

Faculty of Mathematics and Computing Science, TUE.

1997-03

T.D.L. Laan. The Evolution of Type Theory in Logic

and Mathematics. Faculty of Mathematics and Com-

puting Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for Explicit

Substitution. Faculty of Mathematics and Computing

Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Algebra. Fac-

ulty of Mathematics and Computing Science, TUE.

1997-06

F.A.M. van den Beuken. A Functional Approach to

Syntax and Typing. Faculty of Mathematics and Infor-

matics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal Testing. Fac-

ulty of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-Event Sim-

ulator for Systems Engineering. Faculty of Mechanical

Engineering, TUE. 1998-02

J. Verriet. Scheduling with Communication for Mul-

tiprocessor Computation. Faculty of Mathematics and

Computer Science, UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous Low-Power

80C51 Microcontroller. Faculty of Mathematics and

Computing Science, TUE. 1998-04

A.A. Basten. In Terms of Nets: System Design with

Petri Nets and Process Algebra. Faculty of Mathemat-

ics and Computing Science, TUE. 1998-05

E. Voermans. Inductive Datatypes with Laws and Sub-

typing – A Relational Model. Faculty of Mathematics

and Computing Science, TUE. 1999-01

H. ter Doest. Towards Probabilistic Unification-based

Parsing. Faculty of Computer Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simulation of Sur-

face Processes. Faculty of Mathematics and Comput-

ing Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evolutionary

Search. Faculty of Mathematics and Natural Sciences,

Univ. Leiden. 1999-04

E.I. Barakova. Learning Reliability: a Study on Inde-

cisiveness in Sample Selection. Faculty of Mathematics

and Natural Sciences, RUG. 1999-05

M.P. Bodlaender. Schedulere Optimization in Real-

Time Distributed Databases. Faculty of Mathematics

and Computing Science, TUE. 1999-06

M.A. Reniers. Message Sequence Chart: Syntax and

Semantics. Faculty of Mathematics and Computing

Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to satisfiability

problems. Faculty of Mathematics and Computing Sci-

ence, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Protocols with

Formal Methods. Faculty of Computer Science, UT.

1999-09

P.R. D’Argenio. Algebras and Automata for Timed

and Stochastic Systems. Faculty of Computer Science,

UT. 1999-10

G. Fábián. A Language and Simulator for Hybrid Sys-

tems. Faculty of Mechanical Engineering, TUE. 1999-

11

J. Zwanenburg. Object-Oriented Concepts and Proof

Rules. Faculty of Mathematics and Computing Sci-

ence, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neural Pre-

diction System. Faculty of Mathematics and Natural

Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implementation of At-

tribute Grammars. Faculty of Mathematics and Com-

puter Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool for Paral-

lel Progam Construction. Faculty of Mathematics and

Computing Science, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and Statecraft in the

Dutch Republic. Faculty of Mathematics and Computer

Science, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified approach

to the verification of distributed algorithms. Faculty of

Mathematics and Computer Science, UU. 2000-02

W. Mallon. Theories and Tools for the Design of

Delay-Insensitive Communicating Processes. Faculty

of Mathematics and Natural Sciences, RUG. 2000-03

W.O.D. Griffioen. Studies in Computer Aided Verifi-

cation of Protocols. Faculty of Science, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the MathSpad Ed-

itor. Faculty of Mathematics and Computing Science,

TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and Packag-

ing Plant. Faculty of Mechanical Engineering, TUE.

2000-06

M. Franssen. Cocktail: A Tool for Deriving Correct

Programs. Faculty of Mathematics and Computing

Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging Heteroge-

neous Applications. Faculty of Natural Sciences, Math-

ematics and Computer Science, UvA. 2000-08

E. Saaman. Another Formal Specification Language.

Faculty of Mathematics and Natural Sciences, RUG.

2000-10

M. Jelasity. The Shape of Evolutionary Search Discov-

ering and Representing Search Space Structure. Fac-

ulty of Mathematics and Natural Sciences, UL. 2001-

01

R. Ahn. Agents, Objects and Events a computational

approach to knowledge, observation and communica-

tion. Faculty of Mathematics and Computing Science,

TU/e. 2001-02

M. Huisman. Reasoning about Java programs in

higher order logic using PVS and Isabelle. Faculty of

Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design Processes

through Structured Reflection. Faculty of Mathematics

and Computing Science, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syntax and se-

mantics. Faculty of Sciences, Division of Mathematics

and Computer Science, VUA. 2001-05

R. van Liere. Studies in Interactive Visualization. Fac-

ulty of Natural Sciences, Mathematics and Computer

Science, UvA. 2001-06

A.G. Engels. Languages for Analysis and Testing of

Event Sequences. Faculty of Mathematics and Com-

puting Science, TU/e. 2001-07

J. Hage. Structural Aspects of Switching Classes. Fac-

ulty of Mathematics and Natural Sciences, UL. 2001-

08

M.H. Lamers. Neural Networks for Analysis of Data

in Environmental Epidemiology: A Case-study into

Acute Effects of Air Pollution Episodes. Faculty of

Mathematics and Natural Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model Checking. Fac-

ulty of Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of concurrency

control and recovery protocols. Faculty of Mathemat-

ics and Computing Science, TU/e. 2001-11

M.D. Oostdijk. Generation and presentation of formal

mathematical documents. Faculty of Mathematics and

Computing Science, TU/e. 2001-12

A.T. Hofkamp. Reactive machine control: A simula-

tion approach using � . Faculty of Mechanical Engi-

neering, TU/e. 2001-13

D. Bovsnavcki. Enhancing state space reduction tech-

niques for model checking. Faculty of Mathematics and

Computing Science, TU/e. 2001-14

M.C. van Wezel. Neural Networks for Intelligent Data

Analysis: theoretical and experimental aspects. Fac-

ulty of Mathematics and Natural Sciences, UL. 2002-

01

V. Bos and J.J.T. Kleijn. Formal Specification and

Analysis of Industrial Systems. Faculty of Mathemat-

ics and Computer Science and Faculty of Mechanical

Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understanding Legacy

Software Systems. Faculty of Natural Sciences, Mathe-

matics and Computer Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in Process Algebra.

Faculty of Natural Sciences, Mathematics, and Com-

puter Science, UvA. 2002-04

R.J. Willemen. School Timetable Construction: Al-

gorithms and Complexity. Faculty of Mathematics and

Computer Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verification of Prob-

abilistic, Real-time and Parametric Systems. Faculty

of Science, Mathematics and Computer Science, KUN.

2002-06

N. van Vugt. Models of Molecular Computing. Faculty

of Mathematics and Natural Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guiding and Cost-

Optimality in Model Checking of Timed and Hybrid

Systems. Faculty of Science, Mathematics and Com-

puter Science, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin Packing. Fac-

ulty of Mathematics and Natural Sciences, UL. 2002-

09

