
A truthful constant approximation for maximizing
the minimum load on related machines∗

George Christodoulou† Annamária Kovács‡ Rob van Stee§

September 8, 2011

Abstract

Designing truthful mechanisms for scheduling on related machines is a very important problem in
single-parameter mechanism design. We consider the covering objective, that is we are interested in
maximizing the minimum completion time of a machine. This problem falls into the class of problems
where the optimal allocation can be truthfully implemented. A major open issue for this class is whether
truthfulness affects the polynomial-time implementation.

We provide the first constant factor approximation for deterministic truthful mechanisms. In particu-
lar we come up with a approximation guarantee of 2 + ε, significantly improving on the previous upper
bound of min(m, (2 + ε)sm/s1).

Keywords: algorithmic mechanism design, scheduling, machine covering, approximation algo-
rithms

1 Introduction

Algorithmic Mechanism Design studies scenarios where there is an optimization problem at hand, but selfish
agents control some input parameters. These parameters are unknown to the optimizer and are private values
of the agents. Moreover, the agents might be only interested in satisfying their own interests and therefore
they might have incentive to misreport their values, if this can lead to an output or solution that they prefer.
In order to elicit the missing information, the mechanism design approach uses side payments to motivate
the agents to reveal their true values. Roughly speaking, a mechanism consists of two components: an
algorithm that takes as input the reported values, and returns a solution of the optimization problem, and a
payment algorithm that hands out payments to the agents. Each agent’s goal is to maximize her utility, that
is the payment she gets minus her actual value on the solution. A mechanism is truthful if it is in the best
interest of each agent to report truthfully.

Given a class of problems, the challenge is to characterize the objective functions that one can truthfully
optimize/approximate. Under this framework, scheduling is a very natural and well-studied setting to ex-
plore the boundaries of truthful implementation. On the one hand, the algorithmic techniques that have been

∗An extended abstract of this paper appeared in the 6th Workshop on Internet and Network Economics (WINE 2010), LNCS
6484, p.182–193. Springer, 2010.

†University of Liverpool, U.K. gchristo@liv.ac.uk
‡Department of Informatics, Goethe University, Frankfurt am Main, Germany. panni@cs.uni-frankfurt.de. Research

supported by the German Research Foundation (DFG) grant KO 4083/1-1.
§Max Planck Institute for Informatics, Saarbrücken, Germany. vanstee@mpi-inf.mpg.de. Research supported by the

German Research Foundation (DFG) grant STE 1727/3-2.

1

developed are very broad, and the question is to what extent those techniques can be applied to the design
of truthful mechanisms. On the other hand scheduling is conceptually similar to a combinatorial auction,
a setting that is very important in economics, and therefore insights can be transfered from one problem to
the other. In a scheduling setting, there are m machines and n tasks, and each machine is controlled by an
agent that has as private values the processing times it needs to execute the tasks. The algorithmic goal is to
allocate the jobs to the machines so that some objective (most commonly the makespan) is optimized. In the
unrelated machines setup the processing times for each machine are expressed via a vector of size m, while
for the related machines setup they are expressed via a single parameter, the speed of the machine.

A natural question that arises in many single-parameter settings is: what is the approximability of
polynomial-time truthful mechanisms? Taking a problem that one can solve exactly with a truthful mecha-
nism, can one also achieve the best possible approximation guarantee, or does truthfulness have a negative
computational impact? Is the class of polynomial-time truthful mechanisms less powerful with respect to
approximation, compared to the class of polynomial-time non-truthful algorithms? For makespan minimiza-
tion such a separation does not exist. Dhangwatnotai et al. [8] showed a randomized truthful-in-expectation
PTAS and later Christodoulou and Kovács [7] showed a deterministic truthful PTAS that is the best one can
achieve even with non-truthful approximation algorithms [13, 10].

In order to explore further the performance of truthful mechanisms in single-parameter problems, we
focus on the covering objective for scheduling on related machines, that is we are interested in maximizing
the minimum completion time over all machines. This objective is important in settings where a system is
only alive if all of its components are alive. One can think of the jobs as batteries with varying capacities,
or hard-drives of various sizes that we want to use as a backup medium [16]. The covering problem is also
closely related to the max-min fairness problem, where we want to distribute indivisible goods to players so
as to maximize the minimum valuation.

Mu’alem and Schapira [14] showed that maximizing the minimum load for unrelated machines cannot
be approximated within a constant factor by a deterministic truthful mechanism.1 On the other hand, using
the arguments in [1], one can show that for related machines the optimal allocation is truthful, although not
efficient. For the non-strategic version, Epstein and Sgall showed a PTAS [10].

The question we address in this paper is: ‘What is the best deterministic, polynomial-time, truthful
approximation mechanism that one can design for the covering problem?’ We provide the first deterministic
truthful mechanism with constant approximation for the covering objective. In particular, we obtain an
approximation guarantee of 2 + ε.

Related work The non-strategic version of the problem has been extensively studied in the past in various
contexts for online and approximations algorithms. For identical machines, Woeginger [17] designed a
polynomial time approximation scheme (PTAS) and gave tight results for deterministic online algorithms.
Azar and Epstein [3] studied the randomized online setting. Furthermore, for the case where jobs arrive in
non-increasing order and also the optimal value is known in advance, they gave a deterministic 2-competitive
online algorithm NEXT COVER.

In [4], a PTAS was designed for related machines, and later this was generalized to capture a large class
of objective functions in [10]. Epstein and van Stee [11] provide a PTAS and also an FPTAS for constant
number of related machines which they then use as a subroutine for a truthful FPTAS, while Efraimidis and
Spirakis [9] show an FPTAS for the more general case of unrelated machines. Dhangwatnotai et al. [8] pro-
vide a randomized truthful-in-expectation PTAS. Epstein and van Stee [11] give a monotone approximation

1In fact the authors showed this for the combinatorials auctions setup where the agents are utility maximizers, while in the
scheduling setting the agents are cost minimizers. However, a simple modification of their argument works for scheduling as well.

2

algorithm with approximation ratio min(m, (2+ ε)sm/s1) where ε > 0 can be chosen arbitrarily small and
si is the (real) speed of machine i.

The max-min fairness problem has been studied intensively in recent years, see for instance [2, 5, 6, 12]
and references therein.

Our results and techniques. For any positive ε < 1/5, we show a (2 + 5 ε)-approximation, monotone
algorithm for the covering problem. Monotonicity of a scheduling algorithm means that whenever a single
machine (agent) increases his reported speed (asuming that the other speeds are unchanged), the machine
receives not less total jobsize, than with the original speed. As known from the classic work of Myerson [15],
and completed with the payment scheme given there, this yields a truthful mechanism, that is computable
in polynomial running time for constant ε. With this result we significantly improve upon the previous best
approximation ratio of min(m, (2 + ε)sm/s1) given in [11].

As a standard technique applied in all approximation schemes for related scheduling [13, 10, 8, 7],
we define a directed acyclic graph with vertices representing possible job-sets allocated to single machines.
Relative to the total size of any given set, we distinguish normal and tiny jobs in the set. We consider a special
form of schedules, where the whole sequence of machines is partitioned into segments, each segment having
either sets of (nearly) only normal jobs, or sets of only tiny jobs. The allocation of jobs within segments must
adhere to strict regulations, which allow for both good approximation and polynomial-time optimization.

We could exploit some of the ideas used for the monotone PTAS for related machine scheduling (with
the makespan objective) [7], while defining an essentially different type of allocation. We point out that
the current result is not a straightforward adaptation of [7]. Somewhat surprisingly, we were unable to find
such an adaptation for maximizing the cover: although in many aspects the setting is symmetric to that of
makespan minimization, this symmetry breaks when handling the tiny jobs.2

On the positive side, striving for the weaker approximation ratio admits a simpler and technically less
demanding construction than in [7].

2 Preliminaries

The input is given by a set PI of n input jobs, and a vector σ of input speeds σ1 ≤ . . . ≤ σm. We round
up every input speed to the nearest integral power of 1 + ε. Denoting the respective rounded speeds by si,
we have s1 ≤ . . . ≤ sm. We use the interval notation (e.g., [1,m]) for a set of consecutive machine indices.
The letters p or q are used to denote jobs, as well as the respective job sizes in a given formula. We fix
a nondecreasing order p1 ≤ p2 ≤ . . . ≤ pn of all input jobs. If Q = {q1, q2, . . . , qj} is an arbitrary job
set, then the weight or workload of Q is |Q| =

∑j
r=1 qr. An allocation of the jobs to the machines is an

(ordered) partition (P1, P2, . . . , Pm) of the jobs into m sets. We search for an output where the workloads
|Pi| are in non-decreasing order. We assume w.l.o.g. that n ≥ m, since otherwise the cover is trivial. We
are only interested in allocations where Pi 6= ∅ for i ∈ [1,m] (otherwise the approximation ratio is ∞).

Our graph-algorithm outputs a schedule of optimum cover over a restricted type of job partitions. We
name these partitions segmented partitions, because the output partition can be subdivided into segments,
each consisting of consecutive job sets of the partition. Every job allocated in some earlier segment precedes
all jobs allocated in any later segment, with respect to the fixed job order. The allocation of jobs within a
partition segment will have to adhere to one of two forms: smooth allocation, or canonical allocation.

2The difficulty lies roughly in the fact that in case of makespan minimization a machine that becomes bottleneck loses (many or
all of) its tiny jobs, while in case of maximizing the cover, a bottleneck machine might collect all tiny jobs from faster machines.
This makes exact optimization with our methods impossible, since the exact workload of a set of tiny jobs is not known.

3

Input: (Q1, . . . , Qr) be a partition of a subset Q of the input jobs
Output: a partition (Q′

1, . . . , Q
′
r) of Q with canonical allocation

CANON(Q1, . . . , Qr)

If r = 1 then return (Q1). Else

1. Q :=
⋃r

k=1Qk

2. Let QQ
i be a set of maximum workload among {QQ

1 , Q
Q
2 , . . . , Q

Q
r }.

3. Q′
r := QQ

i .

4. in Q1, . . . , Qi−1, Qi+1, . . . , Qr exchange the jobs of QQ
i for jobs (of the same class) of Qi

5. (Q′
1, . . . , Q

′
r−1) := CANON(Q1, . . . , Qi−1, Qi+1, . . . , Qr)

6. return (Q′
1, . . . , Q

′
r)

Figure 1: Canonization procedure. We use the following definition: Let Qi ⊂ R be sets of input jobs. We
say that we maximize Qi with respect to R, if for every class l we replace the jobs in Qi ∩ Cl by the largest
jobs in R∩Cl (i.e., if there are t such jobs in Qi ∩Cl, then we replace them with the t jobs of highest index
in R ∩ Cl). We denote the maximized set by QR

i .

A smooth allocation of a set of consecutive jobs P = {pj , pj+1, . . . , pk} into r sets is the partition
segment output by the following smoothing procedure: We construct a fractional allocation into r sets of
equal workloads of size |P |/r (we assume pk � |P |/r). We start with the smallest job pj , add jobs in the
fixed order, and cut a job into two whenever the total workload reached |P |/r. We continue with the next
set, and the remaining part of the divided job, and so on. Next, we allocate each job that was cut into two,
to the first one of its two sets. Finally, we order the job partition in increasing order of workloads.

Before we turn to canonical allocations, we need to fix the constants δ and ρ, and classify the input
job sizes accordingly. For a desired approximation bound of 2 + 5ε, we choose a δ � ε. 3 For ease of
exposition, we will assume that (1+δ)t = 2 for some t ∈ N. Furthermore, we define ρ as the unique integer
power of 2 in (δ/8, δ/4].

Definition 1 If p denotes (the size of) a job, then p denotes this job rounded up to the nearest integral power
of (1 + δ). A job p is in the job class Cl, iff p = (1 + δ)l.

A canonical allocation within a segment means that the sets have non-decreasing workloads, moreover
that jobs that belong to the same job class appear in increasing order over the sets of the segment. Given an
arbitrary partition (Q1, Q2, . . . , Qr) of some subset Q ⊆ PI of the jobs, the canonization procedure shown
in Figure 1 constructs a partition (Q′

1, Q
′
2, . . . , Q

′
r) of Q with canonical allocation. The procedure appeared

previously in the full version of [7]; we include it here for completeness. In effect, this procedure

(A) permutes jobs within job classes, and thus perturbs each set Qi, so that the perturbed set Q̃i has a
workload in [|Qi|/(1 + δ), |Qi|(1 + δ)]; and then

(B) sorts the perturbed Q̃i sets by increasing workloads to obtain (Q′
1, . . . , Q

′
r).

312δ < ε suffices

4

3 Segmented partitions

In the following we introduce magnitudes, and make the definition of segmented partitions exact. As the
main result of the section, we show in Theorem 1 that for arbitrary input with rounded speeds, a segmented
partition of cover within a factor of 1−ε

2 of the optimum exists. As done previously in [10, 8, 7], we
associate a magnitude wi, an integer power of 2, with each set Pi in the partition. The set with the associated
magnitude will also be denoted by (Pi, wi). Magnitudes are used to focus on the relevant job sizes when
representing job sets with the help of integer arrays. We will require wi/5 < |Pi| ≤ wi (i ∈ [1,m]), and
w1 ≤ w2 ≤ . . . ≤ wm.

Definition 2 A job p is tiny wrt. magnitude wi, if p ≤ ρ · wi. A jobset (Pi, wi) is sandy, if all jobs in Pi

are tiny wrt. wi. A jobset (Pi, wi) is normal, if it has at least one non-tiny job, and a (possibly empty)
consecutive sequence of the largest tiny jobs wrt. wi.

Note that the property of being a tiny job for some magnitude either holds for a whole class of jobs or for
none of them, as ρ ·wi is an integer power of 2. Next we define the two allowed sorts of partition segments:
one for sandy sets, and another one for normal sets.

Definition 3 A sandy segment consists of sandy sets of equal magnitude (Pi, w), (Pi+1, w), . . . , (Ph, w)
with a smooth allocation of consecutive jobs (of size at most ρ · w).

Definition 4 A normal segment of a partition consists of normal sets of nondecreasing magnitudes (Pi, wi),
(Pi+1, wi+1), . . . , (Ph, wh), with a canonical job allocation. The union of the sets contains consecutive jobs
of the ordered input.

Definition 5 A segmented partition is a partition of the input jobs into m jobsets Pi of non-decreasing
workloads |Pi|. It is subdivided into partition segments each of which is either sandy or normal; if job p
precedes job q in the fixed ordering, then p belongs to the same segment as q, or to an earlier segment.

Theorem 1 Let 0 < ε < 1/5 and δ � ε be fixed. Given an arbitrary set of n input jobs in a fixed non-
decreasing order, and m non-decreasing input speeds that are integral powers of (1 + ε), there exists a
segmented partition having a cover of at least (1− ε)OPT

2 , where OPT means the optimum cover.

Proof We begin by showing the following claim.

Claim 1 It is possible to allocate the jobs in nondecreasing order, to machines of nondecreasing speeds, so
that the machines are filled up to a finish time of at least OPT/2.

Proof Consider first the following simple greedy allocation procedure (a variant of the 2-approximation
algorithm of Azar and Epstein [3]). It is well known (see e.g., [10]), that a schedule of maximum cover,
and increasing workloads over the machines of increasing speeds exists. Suppose that Wi is the workload
of machine i in a fixed optimal schedule of increasing workloads. Fill the machines with consecutive jobs,
in the given increasing order, each up to workload Wi. Cut a job into two when Wi is reached and continue
on the next machine. Observe that in the resulting fractional allocation every (fractional) job p assigned to
machine i has full size of at most Wi. Otherwise only jobs smaller than p would be allocated to machines
1, 2, . . . , i in the optimal schedule, contradicting that all jobs smaller than p did not fill the total workload∑i

h=1Wh. This implies that each machine with a fractional job has at least two (fractional) jobs. Thus,

5

Input: job set PI , machine speeds s1 ≤ · · · ≤ sm, optimal cover OPT.

1. Let C = OPT/2. For machine i of speed si let the pre-magnitude w′
i (a power of 2) be uniquely

defined so that 2siC ≤ w′
i < 4siC.

2. Allocate jobs in the fixed increasing order as follows. For i = 1 to m− 1 do

(a) Assign jobs to the current machine until the finish time is at least (1− ε/2)C.
(b) If the last (largest) job on the machine has size more than ρw′

i, continue assigning jobs until
the finish time is at least C.

3. Assign the remaining jobs to machine m.

Output: job assignment Q1, . . . , Qm with cover of at least (1− ε/2)OPT/2.

Figure 2: Greedy integral allocation procedure.

if we allocate every job to the lower-indexed machine where it appears, then each machine i loses, in the
worst case, the smallest one among its (at least two) jobs, so that it still keeps a workload of at least Wi

2 .
In summary, we could allocate the integral jobs consecutively, in increasing order, so that the machines are
filled up to a finish time of at least OPT/2. �

Obviously, this claim also holds if each machine i is filled up to some given finish time fi ≤ OPT/2.
Now we construct the segmented partition for the given input. We start by a greedy integral allocation

which is shown in Figure 2. Note that the pre-magnitudes defined in Step 1 are increasing in i. Observe
that those machines that were filled up to C = OPT/2 have normal jobsets (call them normal machines),
and those filled only to (1 − ε/2) · C have sandy sets (call them sandy machines), with respect to the pre-
magnitudes w′

i. The only possible exception to this is machine m, which is always filled up to at least C, but
might contain a sandy set (in this case it is a sandy machine).

Within machines of equal speed, zero or more sandy machines are followed by zero or more normal ma-
chines, since such machines have the same pre-magnitude. Each such sequence of sandy machines (i.e., of
the same machine speed) will be a sandy segment. The remaining maximal sequences of normal machines,
possibly spanning over different machine speeds will be the normal segments. Next, we redistribute the jobs
within each segment in order to fulfill the conditions of Definitions 3 and 4 and prove the approximation
bound of (1− ε) · C = (1− ε) · OPT

2 . The sets of this final allocation will be denoted by P1, P2, . . . , Pm.

Sandy segments. Consider first a segment consisting of all the sandy machines of the same speed s and
having the same pre-magnitude w′ < 4Cs. Using ρw′ < 4ρCs ≤ δCs, such machines have a workload of
at least (1 − ε/2) · C · s and at most (1 − ε/2 + δ) · C · s. We now apply the smoothing procedure (see
Section 2) to these machines and the jobs assigned to them. Then for each machine i of the segment we have

(1− ε/2− δ) · C · s ≤ |Pi| ≤ (1− ε/2 + 2δ) · C · s. (1)

The obtained partition on the segment adheres to Definition 3, and the cover is higher than (1− ε) · C; the
pre-magnitudes can remain the valid magnitudes wi of the jobsets.

An exceptional case occurs when machine m is (sandy and) is part of the segment. In this case the upper
bound in (1) might fail, and the common magnitude of the segment needs to be increased acccordingly.
However, then the segment is the very last one, and Claim 2 and the theorem still holds.

6

Normal segments. Consider now an arbitrary normal segment (Qs, . . . , Qt). We create a canonical al-
location by running the canonization procedure (see the last lines of 4). Since sorting cannot decrease the
cover [10], the cover remains above C/(1 + δ) > (1 − ε)C. We also need to find proper magnitudes for
machines in the normal segment. Before doing this, we conclude the main line of the proof by showing that
the workloads |Pi| are increasing in i. All other conditions of Definition 5 hold by construction.

Claim 2 The workloads |Pi| are increasing in i.

Proof Clearly, the workloads within each segment are increasing, since the segments have either a canonical
or a smooth allocation. Next we show that they are increasing over the whole schedule. First, we compare a
normal set Pi with a sandy set Pj of a preceding sandy segment. Assume that Pi = Q̃i′ , for some sj ≤ si′ ,
where i′ and i are in the same normal segment. We saw in (1) that for the sandy set

|Pj | ≤ (1− ε/2 + 2δ) · C · sj ,

whereas for the normal set

1

(1 + δ)
· C · si′ ≤

1

(1 + δ)
· |Qi′ | ≤ |Q̃i′ | = |Pi|.

Using 1− ε/2 + 2δ < 1− δ < 1
1+δ , this proves |Pj | < |Pi|.

Assume now that Pi is a sandy set, and Pj is either a jobset in a preceding sandy segment, or the
perturbed Q̃j ′ set of a preceding normal segment. Let s = sj in the first, and s = sj ′ in the second case,
respectively. In both cases, by construction s ≤ si/(1 + ε). Furthermore, all the jobs in Pi, and in sets of
previous segments have size of at most ρwi ≤ δCsi, which implies the bound

|Pj | ≤ (C · s+ δCsi)(1 + δ) ≤ C · si ·
(

1

1 + ε
+ δ

)
(1 + δ)

for both cases. Using the lower bound for |Pi| from (1) and the fact that (1
1+ε + δ)(1 + δ) < 1 − ε/2 − δ

for δ < ε/12, we obtain |Pj | < |Pi|. �
Finally, we define magnitudes wi. Fix a normal segment, and let w′

0 be the smallest pre-magnitude in
this segment. For each set Pi of the segment, we define the magnitude as wi = max{w′

0, 2
dlog |Pi|e}. For

these magnitudes wi/5 < |Pi| ≤ wi holds.

Claim 3 The magnitudes are increasing over the whole schedule, and the (Pj , wj) are normal sets.

Proof The magnitudes are increasing within the segment because the workloads are increasing. Further-
more, if the magnitude wj of some set Pj = Q̃i is larger than the pre-magnitude w′

i of Qi, then

2siC ≤ w′
i ≤ wj/2 < |Q̃i| < (1 + δ)|Qi|,

whereas |Qi| had to reach (only) a workload of siC. Thus, the last job in Qi is at least as big as (roughly)
the sum of all other jobs in Qi, and in particular for δ < 1/5 we obtain:

(∗) If wj > w′
i then Qi contains a job of size at least wi

5(1+δ) .
Since in the subsequent sandy segment (of magnitude w) this jobsize is tiny by definition, we have

wi/[5(1 + δ)] < ρw. Therefore, the magnitudes are increasing over the whole partition.
We show that the (Pj , wj) are normal sets. Let Pj = Q̃i. Recall that (Qi, w

′
i) is normal by the definition

of normal machines. With respect to the new magnitude wj , there is at least one normal job in the set. This

7

is clear if wj ≤ w′
i, and follows from (∗) if wj > w′

i. Assume now that the machine also contains tiny jobs
with respect to wj . Note that since the jobs are consecutive (disregarding perturbation) in each set, every
other set has either only tiny jobs or only normal jobs with respect to wj . However, any set in the same
normal segment that has only tiny jobs with respect to wj , must have a magnitude less than wj (since each
set does have a normal job for its own magnitude) and so (since magnitudes are increasing) it is a set Pk for
some k < j. By the definition of canonical allocations and normal sets, this proves the normality of Pj . �
This proves the existence of a segmented partition with cover at least (1− ε)OPT

2 . �

4 Graph construction

In this section we construct a directed acyclic graph, depending on the set of input jobs PI . The vertices
represent either normal jobsets, or sandy partition segments. An arc between two vertices should indicate
that the corresponding sets or segments can be neighbors in the partition (e.g., that some normal set Pi can be
followed by a certain sandy segment (Pi+1, . . . , Pk)). A given input speed vector (s1, . . . , sm), determines
a weight on each graph vertex, meaning the (minimum) finish time induced by the workload(s) |Pi|. A
path, leading over some P1, P2, . . . , Pm, that maximizes the minimum weight over its vertices, represents
an optimal solution among all segmented partitions.

The above outlined technique was introduced by Hochbaum and Shmoys [13] for a PTAS for related
scheduling, and has been used for (monotone) approximation schemes for related scheduling [10, 4, 8, 7].
Based on this previous work, our graph construction (adapted for segmented partitions) is straightforward.
As a difference to all of the known PTAS algorithms, the notion of segmented partitions allows for a pure and
exact representation of the jobsets, and a very plain graph structure. Of course, we pay for this simplification
with a loss of a factor 2 in the approximation ratio.

Set configurations Set configurations are used to represent normal jobsets. Each set configuration α is
a triple α = (w,~no, ~n1), where w is the magnitude of the set, and the vectors ~n are size vectors. If the
configuration is supposed to define the set Pi, this is done by the two size vectors defining the cumulative
jobsets

⋃i−1
k=1 Pk, and

⋃i
k=1 Pk, respectively. Thus, size vectors represent sets of jobs of size between ρw

and w (in fact, a prefix set of each job class), and a prefix subset of the tiny jobs of size at most ρw. They are
indexed by the integers from λ = log1+ρ ρw to Λ = log1+ρw, and have nonnegative integer coordinates.
The entry nl for some l ∈ (λ,Λ] means that the cumulative jobset contains exactly the first nl jobs of the
class Cl. Observe that this is an adequate representation of canonical allocations, where jobs within each
class appear in the fixed order. Finally, the coordinate nλ stands for some prefix subset {p1, p2, . . . , pnλ

} of
all the jobs of size at most ρw. We can speak of a valid set configuration only if a handful of conditions are
fulfilled. For instance, by the definition of normal sets it is required that either ~no

λ = ~n1
λ (no tiny jobs), or that

~n1
λ is the number of jobs of size at most ρw (the largest tiny jobs are all in the set). Also, w/5 < |P | ≤ w

must hold, and can be easily checked. The rest, like ~no ≤ ~n1, and other bounds on the coordinates, are
straightforward, and will not be detailed here. For an illustration see Figure 3.

We bound the number of different valid set configurations. Every size vector has

log1+δ w − log1+δ ρw = log1+δ 1/ρ = O(1/δ · log(1/ρ))

integer coordinates between 0 and n. Each possible pair of size vectors determines a set, which has at
most 3 possible valid magnitudes. Therefore, for constant δ there is a polynomial number of different set
configurations.

8

wρ

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

w

λ, λ+1, λ+2,.... Λjob class

job size

Figure 3: A set configuration: the thin rectangles represent job classes; the solid part belongs to the set⋃i−1
k=1 Pk, and the striped part to set Pi. Note that Pi has a contiguous set of the largest tiny jobs. The sets

Pi which we construct in Theorem 1 (see Figure 2) always contain jobs of consecutive classes, where each
class except the first and last class is completely contained in Pi.

Segment configurations A segment configuration β = (w, r, no, n1) stands for a sandy segment, and has
altogether four positive integer entries. This tuple defines a smooth allocation of the jobs {pno+1, pno+2, . . . ,
pn1} into r sets of magnitude w. Notice that the jobs are distributed evenly over the segment, regardless of
the machine speeds. Moreover, at any point of the calculation, the sets of the segment Pi, Pi+1, . . . , Pi+r−1

(of increasing workloads) can easily be computed. In order to have a valid configuration, the conditions
pn1 ≤ ρw, and w/5 < |P | ≤ w (for each set P) must hold. The number of different valid segment
configurations is bounded by 3mn2.

The directed graph G(V,A) The vertex set V of G has m + 2 layers. Each layer i ∈ [1,m] contains a
vertex (i, α) for every valid set configuration α, and a vertex (i, β) for every valid segment configuration
β = (w, r, no, n1) for which i + r ≤ m + 1. Recall that for any configuration on level i, the entry ~no

(or no) uniquely determines the cumulative jobset
⋃i−1

k=1 Pk. Similarly, the entry ~n1 (resp. n1), encodes the
cumulative set

⋃i
k=1 Pk (resp.

⋃i+r−1
k=1 Pk)). We add a source vertex s on layer 0, that stands for the empty

jobset (say, with n1 = 0), and a sink vertex t on layer m+ 1 for the complete jobset (say, with no = n).
Next we define the arc set A. There is an arc between two configurations if and only if they satisfy all of

the following conditions. From a set configuration (i, α) all arcs lead into (set or segment) configurations of
layer i + 1. From a segment configuration (i, β), all arcs lead into (set or segment) configurations of layer
i + r. Obviously, a necessary condition for an arc between two configurations is that the ~n1 or n1 entry of
the first one should represent the same jobset as the ~no or no entry of the second one. Finally, it is required
that the magnitudes w are nondecreasing along every arc, and similarly, the workloads of the represented
sets must be nondecreasing (here for set configurations |Pi| is meant, and for segment configurations we
consider |Pi| for incoming arcs, and |Pi+r−1| for outgoing arcs).

The first two arc conditions ensure that any (s, t)-path of the graph induces a partition of the input jobs
into m sets. Due to the fact that here the graph vertices represent jobsets exactly, (as opposed to different
rounding techniques applied in previous work), the following statement is straightforward:

Proposition 1 There is a one-to-one correspondence between segmented partitions of the input jobs PI into
m sets, and the directed (s, t)-paths in graph G.

9

Input: the directed acyclic graph G(V,A), and weights f : V → R

1. let opt(t) = ∞, and opt(v) = −∞ (v ∈ V − {t}), and f(s) = ∞
2. for i = m downto 0 do

for every vertex x in layer i do

i. let succ(x) = y, if (x, y) ∈ A, and opt(y) = max(x,v)∈Aopt(v), and the configuration
of y is minimal among all such vertices wrt. the total order ≺

ii. let opt(x) = min{f(x), opt(y)}

3. let r = 0 and v0 = s

4. repeat {r := r + 1; vr := succ(vr−1)} until vr = t

Output: optimal (s, t)-path s = v0, v1, . . . , vr = t.

Figure 4: Procedure MAXCOVER. Recall that the vertices of G are arranged on m + 2 layers, with the
singleton vertices s and t in layers 0 and m+ 1, respectively.

Finish times Note that both segmented partitions and the graph G(V,A) were defined independently of
the speed vector. Now for given (rounded) input speeds s1 ≤ s2 ≤ . . . ≤ sm, we can assign a finish time
f(v) (a weight) to every vertex v ∈ V of the graph. For a vertex v = (i, α) with a set configuration α

representing set Pi, the finish time is f(v) = |Pi|
si

. If v = (i, β) with induced jobsets Pi, . . . , Pi+r−1, the
(minimum) finish time is defined as

f(v) = min

{
|Pk|
sk

∣∣∣∣ i ≤ k < i+ r

}
.

5 Monotone algorithm for covering

Once the graph G is constructed, the problem boils down to finding an (s, t)-path of maximum cover. This
can be done by a standard dynamic programming algorithm which we call MAXCOVER (Figure 4); a very
similar algorithm was used in [7]. Because tie-breaking rules are crucial for monotonicity, we fix an arbitrary
(e.g., lexicographical) linear order ≺ over all valid (set and segment) configurations.

The monotone algorithm MONCOVER is presented in Figure 5. Since for constant ε the number of
different configurations is polynomial in n and m, the size of G is polynomial, and the algorithm runs in
polynomial time. Let OPTσ and OPTs denote the optimal cover values with the original and the rounded
speeds, respectively. Clearly, we have OPTσ/(1 + ε) ≤ OPTs, since this ratio holds for the cover of every
fixed allocation. Moreover, by Theorem 1 and Proposition 1, the output of MONCOVER has a cover of at
least OPTs(1− ε)/2. Altogether we obtain that the cover of the output is at least

OPTσ

2
· (1− ε)

(1 + ε)
≥ OPTσ

2 + 5ε
.

Theorem 2 Algorithm MONCOVER is monotone.

10

Input: job set PI , machine speeds σ1 ≤ · · · ≤ σm, and ε ∈ (0, 1/5).

1. Fix an appropriate δ < ε/12, fix a nondecreasing order of the jobs,
determine the job classes Cl, and construct the graph G(V,A).

2. Round up each speed σi to si, the nearest integral power of (1 + ε).

3. Using the rounded speeds, compute the finish time f(v) of every graph vertex v ∈ V .

4. Compute the optimal (s, t)-path (of maximum cover) of G with procedure MAXCOVER.

5. Output the job partition P1, P2, . . . , Pm determined by the path.

Output: a partition of the input jobs with a cover within a factor 2 + 5ε of the optimum cover.

Figure 5: The algorithm MONCOVER

Proof The proof is analogous to part of the monotonicity proof in [7]. With given input speed vector
σ1, σ2, . . . , σm, let the output of MONCOVER be P1, P2, . . . , Pm. We assume that for some machine i ∈
[1,m], the speed σi is increased to σ′ > σi, the new rounded speed being s′, and show that with this new
input the algorithm allocates at least as much workload to the machine, as with speed σi.

We start with a couple of simple observations. Since the machines are indexed in increasing order of
speed (breaking ties by some fixed machine order), the new index i′ of the machine is at least i. If s′ = si
(the rounded speed remains the same), then the output of the algorithm is exactly the same, and the allocated
workload will be |Pi′ | ≥ |Pi|, and the theorem holds. Further, it is enough to prove the theorem for the
case when s′ = (1 + ε)si, and the machine index does not change, i.e., i was the highest index of speed si,
and becomes the lowest index of speed s′i = s′ = (1 + ε)si. For all other cases the proof easily follows by
’continuously’ increasing σi to σ′.

Observe that the graph G(V,A) constructed in step 1 does not change, and f ′(v) ≤ f(v) holds for the
new finish time f ′(v) of each vertex v ∈ V. Now we turn to procedure MAXCOVER. Because the finish
times cannot increase, the minimum of the finish times over any path in G cannot increase. In particular, for
every vertex v the optimum cover opt(v) over all (v, t)-paths cannot increase either, i.e., opt′(v) ≤ opt(v)
holds, where opt′() denotes the new optimum. Note that the optimal (v, t)-path itself might change.

If the path which is output by MAXCOVER is the same for both input speeds, then the theorem holds.
So, let s, v1, v2, . . . , vr = t be the output path with speed si, and s, v′1, v

′
2, . . . , v

′
r′ = t be the output

path with speed s′i, and k be the minimum index s.t. vk 6= v′k. That is, vk = succ(vk−1) for the first,
and v′k = succ′(vk−1) for the second input. Since no vertex could increase its opt() value, in the second
input v′k could improve its relative position to vk only due to opt′(vk) < opt(vk). In particular, the path
vk, vk+1, . . . , vr, decreased its cover from opt(vk) to at most opt′(vk) when si increased. That is, i must have
become a bottleneck machine, and the minimum finish time over vk, vk+1, . . . , vr became |Pi|/s′i = f ′(vq),
where machine i is represented by the configuration of vertex vq in the path. So, we have

|Pi|
s′i

= f ′(vq) ≤ opt′(vk).

On the other hand, opt′(vk) ≤ opt′(v′k), since v′k was selected over vk, and opt′(v′k) ≤ |P ′
i |/s′i, because P ′

i

is determined by the new optimal path. Putting it together, we obtain |Pi| ≤ |P ′
i |. �

11

6 Conclusions

The question whether there is a monotone PTAS for related scheduling with cover optimization remains
open. The same holds for minimizing the Lp-norm of finish times for any p > 1. While for the respective
(non-strategic) problems the classic PTAS, as well as the randomized monotone PTAS are easy to adapt
[10, 8], the same does not seem to hold concerning the deterministic monotone PTAS.

References

[1] Aaron Archer and Éva Tardos. Truthful mechanisms for one-parameter agents. In Proc. 42nd Annual
Symposium on Foundations of Computer Science, pages 482–491, 2001.

[2] Arash Asadpour and Amin Saberi. An approximation algorithm for max-min fair allocation of indi-
visible goods. In Proc. 39th Annual ACM Symp. Theory of Comp. (STOC), pages 114–121, New York,
NY, USA, 2007. ACM.

[3] Yossi Azar and Leah Epstein. On-line machine covering. In Proc. 5th Annual Eur. Symp. Algs. (ESA),
volume 1284 of LNCS, pages 23–36. Springer, 1997.

[4] Yossi Azar and Leah Epstein. Approximation schemes for covering and scheduling on related ma-
chines. In Proc. 1st Intl. Workshop Approx. Algs. for Comb. Opt. (APPROX), volume 1444 of LNCS,
pages 39–47. Springer, 1998.

[5] MohammadHossein Bateni, Moses Charikar, and Venkatesan Guruswami. Maxmin allocation via
degree lower-bounded arborescences. In Proc. 41st Annual ACM Symp. Theory of Comp., pages 543–
552, New York, NY, USA, 2009. ACM.

[6] Deeparnab Chakrabarty, Julia Chuzhoy, and Sanjeev Khanna. On allocating goods to maximize fair-
ness. In Proc. 50th Annual IEEE Symp. on Found. of Comp. Sci. (FOCS), pages 107–116. IEEE
Computer Society, 2009.

[7] George Christodoulou and Annamária Kovács. A deterministic truthful PTAS for scheduling related
machines. In Proc. 21st SIAM Symp. on Disc. Algs. (SODA), pages 1005–1016. SIAM, 2010.

[8] Peerapong Dhangwatnotai, Shahar Dobzinski, Shaddin Dughmi, and Tim Roughgarden. Truthful ap-
proximation schemes for single-parameter agents. In Proc. 49th IEEE Symp. on Found. of Comp. Sci.
(FOCS), 2008.

[9] Pavlos S. Efraimidis and Paul G. Spirakis. Approximation schemes for scheduling and covering on
unrelated machines. Theoretical Computer Science, 359((1-3)):400–417, 2006.

[10] Leah Epstein and Jiřı́ Sgall. Approximation schemes for scheduling on uniformly related and identical
parallel machines. Algorithmica, 39(1):43–57, 2004.

[11] Leah Epstein and Rob van Stee. Maximizing the minimum load for selfish agents. Theoretical Com-
puter Science, 411(1):44–57, 2010.

[12] Uriel Feige. On allocations that maximize fairness. In Proc. 19th annual ACM-SIAM Symp. Discr.
Algs. (SODA), pages 287–293, Philadelphia, PA, USA, 2008. SIAM.

12

[13] Dorit S. Hochbaum and David B. Shmoys. A polynomial approximation scheme for scheduling on
uniform processors: Using the dual approximation approach. SIAM Journal on Computing, 17(3):539–
551, 1988.

[14] Ahuva Mu’alem and Michael Schapira. Setting lower bounds on truthfulness. In Proceedings of the
Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1143–1152, 2007.

[15] Roger B. Myerson. Optimal auction design. Mathematics of Operations Research, 6:58–73, 1981.

[16] Martin Skutella and José Verschae. A robust PTAS for machine covering and packing. In Proc. 18th
Annual European Symposium on Algorithms (ESA 2010) (1), volume 6346 of LNCS, pages 36–47.
Springer, 2010.

[17] Gerhard J. Woeginger. A polynomial time approximation scheme for maximizing the minimum ma-
chine completion time. Operations Research Letters, 20(4):149–154, 1997.

13

