
April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

Two for One:
Tight approximation of 2D Bin Packing∗

ROLF HARREN and ROB VAN STEE
Max-Planck-Institut für Informatik (MPII), Campus E1 4,

66123 Saarbrücken, Germany.
rharren@mpi-inf.mpg.de
vanstee@mpi-inf.mpg.de

KLAUS JANSEN and LARS PRÄDEL and ULRICH M. SCHWARZ
Universität Kiel, Institut für Informatik, Christian-Albrechts-Platz 4,

24118 Kiel, Germany.
kj@informatik.uni-kiel.de
lap@informatik.uni-kiel.de
ums@informatik.uni-kiel.de

In this paper, we study the two-dimensional geometrical bin packing problem (2DBP):
given a list of rectangles, provide a packing of all these into the smallest possible number
of unit bins without rotating the rectangles. Beyond its theoretical appeal, this problem
has many practical applications, for example in print layout and VLSI chip design.

We present a 2-approximate algorithm, which improves over the previous best known
ratio of 3, matches the best results for the problem where rotations are allowed and also
matches the known lower bound of approximability. Our approach makes strong use of a
PTAS for a related 2D knapsack problem and a new algorithm that can pack instances
into two bins if OPT = 1.

Keywords: bin packing; approximation; rectangle packing.

1. Introduction

In recent years, there has been increasing interest in extensions of packing prob-
lems such as strip packing [1, 2, 14, 17, 19], knapsack [3, 15, 18] and bin packing
[4, 5, 6, 9, 20], to multiple independent criteria (vector packing) or multiple dimen-
sions (geometric packing).

Two-dimensional geometric bin packing, both with and without rotations, is
one of the very classical problems in combinatorial optimization and its study has
begun several decades ago. This is not only due to its theoretical appeal, but also
to a large number of applications, ranging from print and web layout [7] (putting

∗Work supported by EU project “AEOLUS: Algorithmic Principles for Building Efficient Overlay
Computers”, EU contract number 015964, and DFG projects JA612/12-1, “Design and analysis
of approximation algorithms for two- and threedimensional packing problems” and STE 1727/3-2,
“Approximation and online algorithms for game theory”. This paper is a complete and combined
version of papers that appeared earlier in WADS ’09 and APPROX ’09.

1

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

2

all ads and articles onto the minimum number of pages) to office planning (putting
a fixed number of office cubicles into a small number of floors), to transportation
problems (packing goods into the minimum number of standard-sized containers)
and VLSI design [11].

It is easy to see that two-dimensional bin packing without rotations (2DBP) is
strongly NP-hard as a generalization of its one-dimensional counterpart, hence the
main focus is on algorithms with provable approximation quality.

Consider an algorithm A for 2DBP, and denote for each instance I with
A(I) the number of bins A produces and with OPT(I) the smallest number
of bins into which I can be packed. A is an α-approximation for 2DBP if
supI{A(I)/OPT(I)} ≤ α over all instances I, and an asymptotical α-approximation
if lim supOPT(I)→∞A(I)/OPT(I) ≤ α. A polynomial-time approximation scheme
(PTAS) is a family {Aε : ε > 0} of (1 + ε)-approximation algorithms.

Remark 1. Assuming P 6= NP , 2DBP is (2 − ε)-inapproximable for all ε > 0,
since the decision problem “can the n items of the instance be packed into a single
bin?” contains the strongly NP-hard problem 3Partition as a special case (where
all n items have the same height 3/n).

The best previous result for the problem without rotations was a 3-
approximation by Zhang [20]; Harren and van Stee have given another 3-
approximation with an improved running time of O(n logn) [10]. For the case that
rotation by 90° is allowed, Harren and van Stee have given a 2-approximation in [9],
the same ratio can be achieved using techniques by Jansen and Solis-Oba [14].

As to asymptotical approximation ratios, Bansal and Sviridenko showed in [5]
that 2DBP does not admit an asymptotical PTAS. Caprara gave an algorithm
with ratio of 1.692 in [6], breaking the important barrier of 2. Bansal, Caprara
and Sviridenko improved the rate to 1.526 in [4] for both the problem with and
without rotations. Recently, this result was further improved for both problems to
an (1.5+ ε)-approximation with additive constant 69 by Jansen and Prädel [12], for
an arbitrary ε > 0.

A closely related problem is two-dimensional knapsack: here, every rectangle
also has a profit and the objective is to pack a subset of high profit into a constant
number (usually one) of target bins. The best currently known results here are a
(2 + ε)-approximation by Jansen and Zhang [16] for the general case, and a PTAS
by Jansen and Solis-Oba [13] if all items are squares. For our purposes, the special
case that the profit equals the item’s area is important. Bansal et al. have shown
in [3] that this problem admits a PTAS, and this algorithm is one of the corner
stones of the algorithm presented here.

Our contribution We study the geometric two-dimensional bin packing problem
without rotations. We are given a list of rectangles (items) r1 = (w1, h1), . . . , rn =
(wn, hn) with all wi, hi taken from the interval (0, 1], and the objective is to find a
non-overlapping packing of all items into the minimum number of containers (bins)

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

3

of unit size without rotating the items. The main result of this paper is the following
theorem:

Theorem 2. There is a polynomial-time 2-approximation for two-dimensional ge-
ometric bin packing.

This result is achieved using an asymptotic approximation algorithm such
as [4, 6] or [12] for large optimal values; smaller (i.e. constant) values are solved
by applying the PTAS mentioned above [3], combined with other packing algo-
rithms. If the optimal packing uses only one bin, we conduct a case study, again
starting from a packing that covers 1 − ε of the bin, and generate a packing into
OPT + 1 = 2 bins.

As it turns out, this last case is the most involved one; the following crucial
theorem is proven in Sect. 4:

Theorem 3. There is a polynomial-time algorithm that finds a packing into two
bins, provided that a packing into one bin exists.

2. Definitions

In the following, we consider a bin packing instance specified as a list I of n items
r1, . . . , rn, where each ri = (wi, hi) has height hi and width wi taken from the
interval (0, 1]. A packing into a number k of bins is a mapping

p : {r1, . . . , rn} → {1, . . . , k} × [0, 1)× [0, 1)

that assigns each item’s lower left corner a position in one of the bins such that no
two items overlap or protude beyond their bin, without rotating the items. For these
purposes, we consider an item ri = (wi, hi) at position (xi, yi) to be the cartesian
product of open-ended intervals (xi, xi + wi)× (yi, yi + hi).

For this fixed input I, we define the set of high items H := {ri : hi > 1/2}
and the set of wide items W := {ri : wi > 1/2}. We extend the notion of width
and height to sets T of items by setting w(T) :=

∑
i∈T wi, the total width of T

and h(T) :=
∑
i∈T hi, the total height of T . The total area of T is denoted by

A(T) =
∑
i∈T wihi.

In many cases, we will pack parts of the instance using the classic 2-
approximation for strip packing by Steinberg [19], which we quote without proof:

Theorem 4 (Steinberg) We can pack a set of items {ri = (wi, hi), i = 1, . . . , n}
into a target area of size u× v if the following conditions hold:

1. max{wi : i = 1, . . . , n} ≤ u,
2. max{hi : i = 1, . . . , n} ≤ v,
3. 2

∑n
i=1 wihi ≤ uv − (2 max{wi : 1 ≤ i ≤ n} − u)+(2 max{hi : 1 ≤ i ≤

n} − v)+,

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

4

where (·)+ denotes max{·, 0}.

Corollary 5. We can pack a set of items {ri = (wi, hi), i = 1, . . . , n} into a target
area of size u× v if the following conditions hold:

1. max{wi : i = 1, . . . , n} ≤ u,
2. max{hi : i = 1, . . . , n} ≤ v/2,
3. 2

∑n
i=1 wihi ≤ uv.

Naturally, this also holds in the symmetrical case of width and height interchanged.
Bansal et al. [3] considered the two-dimensional knapsack problem in which

each item ri ∈ I has an associated profit pi and the goal is to maximize the total
profit that is packed into a unit-sized bin. Using a technical Structural Lemma they
derived an algorithm that we call BCJPS algorithm in this paper. They showed the
following theorem.

Theorem 6 (Bansal, Caprara, Jansen, Prädel & Sviridenko) For any fixed
r ≥ 1 and δ > 0, the BCJPS algorithm returns a packing of value at least (1 −
δ)OPT2KP (I) for instances I for which pi/A(ri) ∈ [1, r] for ri ∈ I. The running
time of the BCJPS algorithm is polynomial in the number of items.

Here OPT2KP (I) denotes the maximal profit that can be packed in a bin of unit
size. In the case that pi = wihi for all items ri ∈ I we want to maximize the total
packed area. Let OPT(a,b)(T) denote the maximum area of items from T that can
be packed into the rectangle (a, b), where individual items in T do not necessarily
fit in (a, b). By appropriately scaling the bin, the items and the accuracy we get the
following corollary.

Corollary 7. For any fixed ε > 0, the BCJPS algorithm returns a packing of I ′ ⊆ I
in a rectangle of width a ≤ 1 and height b ≤ 1 such that A(I ′) ≥ OPT(a,b)(I)− ε.

3. Packing instances that have a large optimal value or that fit
into a constant number of bins

As mentioned above, Jansen and Prädel have given in [12] an algorithm that for
any ε and any instance obtains in polynomial time a solution with at most (1.5 +
ε)OPT + 69 bins. Let us consider the case that OPT is at least the threshold value
k := 140. In this case, the algorithm obtains with ε = 0.005 a solution that uses at
most

(1.5 + 0.005)OPT + 69 = 1.505OPT + 69k/k = 1.505OPT + 69k/140
≤ 1.505OPT + 0.493k ≤ 1.505OPT + 0.493OPT < 2OPT

bins. Hence, we do not need to consider this case explicitly.
In the following we give a brief description of our algorithm that packs the

instances I with 2 ≤ OPT < k into 2 OPT bins. Let ε := 1/(20k3 + 2).

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

5

Let L = {ri | wihi > ε} be the set of large items and let T = {ri | wihi ≤ ε} be
the set of tiny items.

Recall the definitions of W and H from Sect. 2. We extend these definitions to
the set B of big items, which have width and height larger 1/2 and the set S of
small items, which have width and height less or equal than 1/2.

Note that the terms large and tiny refer to the area of the items whereas big,
wide, high and small refer to their widths and heights. Also note that, e.g., an item
can be tiny and high, or wide and big at the same time.

We guess ` = OPT < k and open 2` bins that we denote by B1, . . . , B` and
C1, . . . , C`. By guessing we mean that we iterate over all possible values for ` and
apply the remainder of this algorithm on every value. As there are only a constant
number of values, this is possible in polynomial time. We assume that we know the
correct value of ` as we eventually consider this value in an iteration. For the ease
of presentation, we also denote the sets of items that are associated with the bins
by B1, . . . , B` and C1, . . . , C`. We will ensure that the set of items that is associated
with a bin is feasible and a packing is known or can be computed in polynomial
time. To do this we use the following corollary from Theorem 4 for some of these
sets by Jansen and Zhang [16].

Corollary 8 (Jansen & Zhang) If the total area of a set X of items is at most
1/2 and there are no wide items (except a possible big item) then the items in X

can be packed into a bin.

Obviously, this corollary also holds for the case that there are no high items
(except a possible big item). This corollary is an improvement upon Theorem 4 if
there is a big item in T as in this case Theorem 4 would give a worse area bound.

Let I∗i be the set of items in the i-th bin in an optimal solution. We assume
w.l.o.g. that A(I∗i) ≥ A(I∗j) for i < j. Then we have

A(I) = A(I∗1) + · · ·+A(I∗`) ≤ ` · A(I∗1). (2)

In a first step, we guess the assignment of the large items to bins. Using this
assignment and the BCJPS algorithm we pack a total area of at least A(I∗1)− ε into
B1 and keep C1 empty. This step has the purpose of providing a good area bound
for the first bin and leaving a free bin for later use. We ensure that the large items
that are assigned to B1 are actually packed. For all other bins we reserve Bi for the
wide and small items (except the big items) and Ci for the high and big items for
i = 2, . . . , `. This separation enables us to use Steinberg’s algorithm (Corollary 8)
to pack up to half of the bins’ area. In detail, the first part of the algorithm works
as follows.

1. Guess Li = I∗i ∩ L for i = 1, . . . , `.
2. Apply the BCJPS algorithm on L1∪T with pi = A(ri)(1/ε+1) for ri ∈ L1,
pi = A(ri) for ri ∈ T and an accuracy of ε2/(1 + ε). Assign the output to
bin B1 and keep an empty bin C1.

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

6

3. For i = 2, . . . , `, assign the wide and small items of Li to Bi (omitting big
items) and assign the high and big items of Li to Ci. That is, Bi = Li \H
and Ci = Li ∩H.

4. For i = 2, . . . , `, greedily add tiny wide items from T ∩W by non-increasing
order of width to Bi as long asA(Bi) ≤ 1/2 and greedily add tiny high items
from T ∩H by non-increasing order of height to Ci as long as w(Ci) ≤ 1.

The bins B2, . . . , Bl can be packed as follows. If no tiny items have been added
in Step 4, a packing of Bi can be derived by an exact algorithm as the number of
items in Bi is bounded by 1/ε (since all items in Bi are large) and Bi is feasible
since Bi ⊆ Li ⊆ I∗i . Otherwise, A(Bi) ≤ 1/2 and thus Corollary 8 can be applied
(as there are no high items in Bi). The bins C2, . . . , C` can be packed with a simple
stack as they contain only high items of total width at most 1. Observe that in
Step 4 we only add to a new bin Bi if the previous bins contain items of total area
at least 1/2− ε and we only add to a new bin Ci if the previous bins contain items
of total width at least 1− 2ε (as the width of the tiny high items is at most 2ε) and
thus of total area at least 1/2 · (1− 2ε) = 1/2− ε. After the application of this first
part of the algorithm, some tiny items T ′ ⊆ T might remain unpacked. Note that
if A(B`) < 1/2− ε, then there are no wide items in T ′ and if A(C`) < 1/2− ε then
there are no high items in T ′ (as these items would have been packed in Step 4).
We distinguish different cases to continue the packing according to the filling of the
last bins B` and C`.

In the following we show that we actually ensure that the large items that are
assigned to B1 are packed into this bin. First note that Theorem 6 can be applied
for r = 1/ε+ 1 as pi/A(ri) ∈ {1, 1/ε+ 1} for all items in L1 ∪ T . Now it is easy to
see that L1 is packed since pi > 1 + ε for ri ∈ L1, whereas p(T̃) = A(T̃) ≤ 1 for any
feasible set T̃ ⊆ T . Thus L1 = I∗1 ∩ L = B1 ∩ L. Furthermore, for the set of packed
tiny items B1 ∩ T we have

A(B1 ∩ T) ≥ A(I∗1 ∩ T)− ε

since (1/ε+ 1)A(B1 ∩ L) +A(B1 ∩ T) = p(B1) and

p(B1) ≥
(

1− ε2

1 + ε

)
OPT(L1 ∪ T) by Theorem 6

≥
(

1− ε2

1 + ε

)[(1
ε

+ 1
)
A(I∗1 ∩ L) +A(I∗1 ∩ T)

]
≥
(1
ε

+ 1
)
A(I∗1 ∩ L) +A(I∗1 ∩ T)− ε2

1 + ε

(1
ε

+ 1
)

as
(ε2

1 + ε

)[(1
ε

+ 1
)
A(I∗1 ∩ L) +A(I∗1 ∩ T)

]
<

ε2

1 + ε

(1
ε

+ 1
)

=
(1
ε

+ 1
)
A(B1 ∩ L) +A(I∗1 ∩ T)− ε.

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

7

Thus we have

A(B1) ≥ A(I∗1)− ε. (3)

Now we are ready to start with the case analysis.
Case 1. A(B`) < 1/2− ε and A(C`) < 1/2− ε.

In this case T ′ does not contain any wide or high items as these items would have
been packed to B` or C`. Greedily add items from T ′ into all bins except B1 as long
as the bins contain items of total area at most 1/2. After adding the items from T ′,
either all items are assigned to a bin (and can thus be packed) or each bin contains
items of total area at least 1/2− ε and we packed a total area of at least

A ≥ A(B1) + (2`− 1)
(1

2 − ε
)

≥ A(I∗1) + `− 1
2 − 2`ε by Inequality 3

≥ A(I∗1) + `A(I∗1) + (`− 1)(1−A(I∗1)) + 1−A(I∗1)− 1
2 − 2`ε

≥ `A(I∗1) + 1
2 − 2`ε as ` ≥ 2 and 1−A(I∗1) ≥ 0

> `A(I∗1) as ε < 1
4` .

Since this contradicts Inequality 2, all items are packed.
Case 2. A(B`) ≥ 1/2− ε and A(C`) ≥ 1/2− ε.

In this case T ′ might contain wide and high items. On the other hand the bin C1
is still available for packing. We use the area of the items in bin C` to bound the
total area of the packed items and (with a similar calculation as in Case 1) we get a
packed area of at least A ≥ A(B1) +A(C`) + (2`− 3)(1/2− ε) ≥ `A(I∗1) +A(C`)−
1/2− (2`− 2)ε. As A(I) ≤ `A(I∗1) (Inequality 2) we get

A(T ′) ≤ A(I)−A ≤ 1
2 + (2`− 2)ε−A(C`) and hence (4)

A(T ′) ≤ (2`− 1)ε as A(C`) ≥ 1/2− ε (5)

Assume that A(C`) < 1/2 + (2`− 2)ε as otherwise T ′ = ∅ by Inequality 4.
We consider the set Ĥ = {ri ∈ C` | hi ≤ 3/4}. If w(Ĥ) ≥ (4`−3)ε then remove Ĥ

from C` and pack it in a stack in C1 instead. As we now have A(C`) < 1/2−(2`−1)ε
and A(T ′ \W) ≤ A(T ′) ≤ (2`− 1)ε by Inequality 5, we can pack T ′ \W together
with C`. The remaining items T ′ ∩W have total height at most 2(2`− 1)ε and thus
fit above Ĥ into C1.

Otherwise, there is no item r′ = (w′, h′) in C` with h′ ≤ 3/4 and w′ ≥ (4`− 3)ε.
Let H̃ = {ri ∈ C` ∪ T ′ | hi > 3/4}. Observe that we have

w(H̃) ≤ A(C` ∪ T ′)
3/4 ≤ 4

3

(1
2 + (2`− 2)ε+ (2`− 1)ε

)
= 2

3 +
(16

3 `− 4
)
ε < 1. (6)

We take all high items from C` ∪ T ′ and order them by non-increasing height.
Now pack the items greedily into a stack of width up to 1 and pack this stack into

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

8

C`. We have w(C`) ≥ 1 − (4` − 3)ε as we bounded the total width of the items
from H̃ in Inequality 6 and thus all further items have width at most (4`− 3)ε (as
otherwise Ĥ ≥ (4`−3)ε and we had solved the problem in the previous step). For the
remaining items T ′ we have hmax(T ′) ≤ 3/4 and A(T ′) ≤ 1/2− (2`−2)ε−A(C`) ≤
(4` − 7/2)ε ≤ 1/4 (by Inequality 4 and as A(C`) ≥ w(C`)/2 ≥ 1/2 − (2` − 3/2)ε
and ε < 1/(16`)). Thus T ′ can be packed into bin C1 using Steinberg’s algorithm.

Case 3. A(B`) < 1/2− ε and A(C`) ≥ 1/2− ε.
If w(T ′ ∩H) ≤ 1 then pack T ′ ∩H in C1 and proceed as in Case 1.

The subcase where w(T ′ ∩ H) > 1 is the most difficult of all four cases. The
challenge that we face is that w(H) can be close to ` (which is a natural upper
bound) but we can only ensure a packed total width of at least `(1− 2ε) in the bins
C1, . . . , C`. So we have to pack high items into the bins B2, . . . , B`. We distinguish
two further subcases.

1. Assume that there exists j ∈ {2, . . . , `} with w(Lj ∩ H) > 10`ε, i.e., the
total width of the items that are large and high and associated with the
j-th bin in an optimal packing is large enough such that moving these items
away gives sufficient space for the still unpacked high items.

Go back to Step 3 in the first part of the algorithm and omit separating
the items from Lj . Instead we assign the items from Lj to bin Bj and
keep Cj free at the moment. Note that Lj admits a packing into a bin as
Lj corresponds to the large items in a bin of an optimal solution. Since
|Lj | ≤ 1/ε we can find such a packing in constant time.

While greedily adding tiny items in Step 4, we skip Bj for the wide items
and we continue packing high items in C1 after we have filled C2, . . . , C`.
As we moved high items of total width at least 10`ε to Bj and we can
pack high items of total width at least 1− 2ε into each bin, no high items
remains after this step. Finally, greedily add remaining tiny items to bins
B2, . . . , B` except Bj , using the area bound 1/2.

Now consider the bins C1 and Cj . Both contain only tiny items, as we
moved the large items from Cj to Bj . We packed the tiny items greedily
by height and thus all items in Cj have height greater or equal to any item
in C1. Let h′ be greatest height in C1. Then we have A(Cj) ≥ h′(1 − 2ε).
Furthermore, we know that w(H) > `(1− 2ε). Thus we have

A(H) > (`− 1)(1/2− ε) + h′(1− 2ε).

If after the modified Step 4 tiny items remain unpacked, then all bins Bi
for i ∈ {2, . . . , `} \ {j} have area A(Bi) ≥ 1/2− ε. By summing up the area

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

9

of the high items separately we get a total packed area of at least

A ≥ A(B1) +

Bi for i∈{2,...,`}\{j}︷ ︸︸ ︷
(`− 2)

(1
2 − ε

)
+A(H)

> A(B1) + (`− 2)
(1

2 − ε
)

+ (`− 1)
(1

2 − ε
)

+ h′(1− 2ε)

≥ A(I∗1) + `− 3
2 + h′ − (2`− 2 + 2h′)ε by Inequality 3

≥ A(I∗1) + `A(I∗1) + (`− 1)(1−A(I∗1)) + 1−A(I∗1)

− 3
2 + h′ − 2`ε as h′ ≤ 1

≥ `A(I∗1)− 1
2 + h′ − 2`ε as ` ≥ 2 and

1−A(I∗1) ≥ 0.

On the other hand we have A ≤ A(I) ≤ `A(I∗1) by Inequality 2. Thus the
total area of the remaining items T ′ is at most A(T ′) ≤ 1/2 + 2`ε − h′. If
h′ ≥ 1/2 + 2`ε we packed all items.

Otherwise we have 1/2 < h′ < 1/2 + 2`ε and

A(T ′) ≤ 2`ε. (7)

We will pack T ′ in C1 together with the already packed high items. Observe
that

w(C1 ∩H) ≤ 1− 8`ε (8)

as we move high items of total area of at least 10`ε to Bj and all bins
C2, . . . , C` are filled up to a width of at least 1− 2ε.

We pack the remaining items T ′ into three rectangles R1 = (1, 4`ε),
R2 = (8`ε, 1−4`ε) and R3 = (1−8`ε, 1/2−6`ε) which can be packed in C1
together with C1∩H as follows—see Fig. 1. Pack the stack of C1∩H in the
lower left corner and pack R3 above this stack. As h′+ h(R3) ≤ 1− h(R1),
R1 fits in the top of C1. Finally, pack R2 in the bottom right corner. This
is possible as h(R2) ≤ 1− h(R1) and w(C1 ∩H) ≤ 1− 8`ε = 1−w(R3) by
Inequality 8.

Now pack T ′ ∩W in a stack in R1 (which is possible since h(T ′ ∩W) ≤
2A(T ′) ≤ 4`ε by Inequality 7) and pack all ri = (wi, hi) ∈ T ′ with hi >

1/2− 6`ε in a vertical stack in R2 (this fits as the total width of items with
hi > 1/2 − 6`ε is at most A(T ′)/(1/2 − 6`ε) ≤ 8`ε by Inequality 7 and as
6`ε ≤ 1/4). Finally, use Steinberg’s algorithm to pack the remaining items
in R3. This is possible since wmax ≤ 1/2, hmax ≤ 1/2− 6`ε and

2A(T ′) ≤ 4`ε ≤ 1
2 − 14`ε+ 96`2ε2

= (1− 8`ε)
(1

2 − 6`ε
)
− (1− 1 + 8`ε)+

(
1− 12`ε− 1

2 + 6`ε
)

+
.

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

10

C1∩H

R3

R2

R1

h′

Fig. 1: The three rectangles R1, R2 and R3 for packing T ′ together with C1 ∩H in
C1.

This finishes the first case where we assumed that there exists j ∈
{2, . . . , `} with w(Lj ∩H) > 10`ε.

2. Now assume that we have w(Lj ∩ H) ≤ 10`ε for all j ∈ {2, . . . , `} and in
particular wi ≤ 10`ε for all items ri = (wi, hi) ∈ (L2∪· · ·∪L`). Thus all high
items that are not packed in B1 are thin, i.e., have width at most 10`ε. We
use this fact by repacking the high items greedily by non-increasing height
in the bins C1, . . . , C`. Each bin contains high items of total width at least
1 − 10`ε afterwards. Thus high items of total width at most 10`2ε remain
unpacked. This is worse than in the previous case but since we repacked
all items we can get a nice bound on the height of the unpacked items. Let
h′ be the smallest height in C`. Then all items in C1, . . . , C` have height
at least h′ and the remaining items T ′ have height at most h′. If there
is an i ∈ {2, . . . , `} with A(Bi) ≤ 1 − h′ − 10`2ε then we can add the
remaining items T ′ to Bi using Steinberg’s algorithm. To see this note that
hmax(T ′∪Bi) ≤ h′ and 2A(T ′∪Bi) ≤ 2A(Bi) + 2(10`2ε)h′ ≤ 2−2h′ which
corresponds to the bound of Theorem 4.

Otherwise for all i ∈ {2, . . . , `} we have A(Bi) ≥ 1 − h′ − 10`2ε. Then

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

11

we packed a total area of at least

A ≥ A(B1) +A(C1 ∪ · · · ∪ C`) +A(B2 ∪ · · · ∪B`)
≥ A(B1) + h′`(1− 10`ε) + (`− 1)(1− h′ − 10`2ε)
≥ A(I∗1) + `− 1 + h′ − (10`3 + 1)ε

> A(I∗1) + `A(I∗1) + `(1−A(I∗1))− 1 + 1
2 − (10`3 + 1)ε as h′ > 1

2
≥ `A(I∗1) + 1

2 − (10`3 + 1)ε as ` ≥ 1 and

1−A(I∗1) ≥ 0.

And since 1/2 − (10`3 + 1)ε ≥ 0 and A ≤ A(I) ≤ `A(I∗1) by Inequality 2,
no item remains unpacked.

Thus in both subcases we are able to derive a feasible packing.
Case 4. A(B`) ≥ 1/2− ε and A(C`) < 1/2− ε.

In this case T ′ contains no high items. If there are also no wide items remaining
in T ′, apply the methods of Case 1. Otherwise we use the following process to free
some space in the bins for wide and small items, i.e., B2, . . . , B`. The idea of the
process is to move small items from bins Bi to bins Ci and thereby move the tiny
high items T ′ ∩H further in direction C`. To do this, let Si = Li ∩ S be the set of
small items in Bi.

Remove the tiny items from C2, . . . , C`. If there exists an item r ∈ Si ∩ Bi for
some i ∈ {2, . . . , `} then remove r from Bi and add it to Ci, otherwise stop. Adding
r to Ci is possible as Ci is a subset of Li = I∗i and thus feasible. Add wide items
from W ∩ T ′ to Bi until A(Bi) ≥ 1/2 − ε again or W ∩ T ′ = ∅. Finally, add the
high items from H ∩ T ′ to C2, . . . , C` in a greedy manner analogously to Step 4 of
the first part of the algorithm but using the area bound A(Ci) ≤ 1/2. This ensures
that all sets Ci can be packed with Steinberg’s algorithm (we use Corollary 8 here
as there might be big items in Ci). Repeat this process until Si ∩ Bi = ∅ for all
i ∈ {2, . . . , `} or T ′ contains a high item at the end of an iteration.

There are two ways in which this process can stop. First if we moved all items
from Si to Ci, and second if in the next step a high item would remain in T ′ after
the process. In the first case we have reached a situation as in Case 2 or Case 3,
i.e., the roles of the wide and the high items are interchanged and A(B`) ≥ 1/2− ε.
Thus by rotating all items and the packing derived so far, we can solve this case
analogously to Case 2 or Case 3, depending on A(C`).

In the second case, let r∗ be the item that stopped the process, i.e., if r∗ is
moved from Bi to Ci for some i ∈ {2, . . . , `}, at least one high item would remain
in T ′. Then, instead of moving r∗ to Ci we move r∗ to C1 and add items from T ′

to C1 and Ci as long as A(C1) ≤ 1/2 and A(Ci) ≤ 1/2. The resulting sets can be
packed with Steinberg’s algorithm as no item has width greater than 1/2. If after
this step still items remain unpacked then a calculation similar to Case 1 gives a

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

12

total packed area of

A ≥ A(B1) +

all bins except B1, Bi︷ ︸︸ ︷
(2`− 2)

(1
2 − ε

)
+

bin Bi︷ ︸︸ ︷
1
2 − ε−A(r∗)

≥ `A(I∗1) + 1
2 − 2`ε−A(r∗) > `A(I∗1) since A(r∗) ≤ 1/4 and ε < 1/(8`).

As we have a contradiction to A ≤ A(I) ≤ `A(I∗1) by Inequality 2, all items are
packed.

We showed the following lemma which concludes our presentation of the 2-ap-
proximation algorithm for two-dimensional bin packing.

Lemma 9. There exists a polynomial-time algorithm that, given an instance I with
1 < OPT(I) < k, returns a packing in 2 OPT(I) bins.

4. Solving with 2 bins for OPT = 1

In this section, we consider the remaining case that there exists a packing of all
items into a single bin. We will start off by some general statements that can be
shown for packings into a single bin before showing that each instance falls into one
of four cases, each of which we consider separately.

Let us first make easy observations about the presence of high and wide items in
an instance that admits a packing into one bin. As everywhere in this paper, these
results still hold for wide items instead of high items by rotating the construction
by 90 degrees.

Remark 10. We can always fit all high items into a single bin by packing them
next to each other in non-increasing order of height, since no two of them fit on top
of each other in the optimum.

Remark 11. If we can pack a set of items which includes all high items into one
bin such that the total area of the packed items is at least 1/2, we can pack the
remainder of the instance into the second bin using Steinberg’s algorithm.

Lemma 12. Consider some γ ∈ [0, 1/2) and let w the total width of all items of
height at least 1−γ. Then, the total height of items of width larger than max{1/2, 1−
w} and height less than 1− γ is at most 2γ.

Proof. Consider a horizontal line y = y0 in any feasible packing, for any y0 ∈
(γ, 1 − γ). Such a line clearly must intersect all items of height at least 1 − γ, cf.
Fig. 2, which take up total width w. In particular, it cannot intersect any other
item of width more than 1−w, so all these items must be located in the outermost
γ of the bin. Since the items are also wide, no two of them could be next to one
another, so the total height can be at most 2γ.

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

13

γ

γ

≤ 1−w

Fig. 2: Items of height > 1− γ limit items of width > 1− w.

Two parameters will appear in the following analysis, a width limit for high
items δ and the accuracy ε used for the knapsack PTAS Corollary 7. We set

δ := 1/25; ε := min{δ/144, 1/308.4} = 1/3600 , (9)

but note that the same arguments can be carried out for a slightly larger δ at the
expense of a more involved analysis in Subsect. 4.1.

4.1. Many high or many wide items

In this section, we consider the case that the subset of high items, i.e. those of
height more than 1/2, is comparatively large. (Symmetrically, this also solves the
case that many items are wide; again, we only consider high items explicitly.) To
be more specific, we want to prove that if the total width of high items w(H) is at
least 1− δ, we can pack all items into two bins.

We will show this in the following way: we first pack all high items by Remark 10,
and then try to pack additional items so that the total area covered is at least 1/2,
at which point we can invoke Remark 11 on the remainder. Note that the high items
alone already cover at least (1− δ)/2, so we need only δ/2 in extra items. We will
try this in five different ways corresponding to five classes of items, which in total
cover all non-high items. If none of these five succeeds, we know that the area of
each class is bounded by a small term in ε. In particular, the total unpacked area
will then be bounded by 1/2 so we can still use Steinberg’s algorithm on the second
bin and the unpacked items.

To see this, we first show some technical results:

Observation 13. Each item ri satisfies at least one of the following conditions:

1. hi > 1/3,

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

14

2. hi · wi ≥ δ/2,
3. hi ≤

√
δ/2 and wi ≤ 1/2,

4. hi ≤ 1/3 and wi ≤
√
δ/2,

5. hi ≤ 1/2 and wi > 1/2.

Proof. Suppose by contradiction, that there is an item ri that does not satisfy any
of the above conditions. It follows that hi ≤ 1/3, since otherwise it would satisfy
Condition 1. Condition 4 and 5 restricts the width to wi ∈ (

√
δ/2, 1/2]. We have

wi ≤ 1/2, thus the Condition 3 bounds the height by hi ∈ (
√
δ/2, 1/3]. Therefore,

hi >
√
δ/2 and wi >

√
δ/2 and we have hi ·wi ≥ δ/2. This is a contradiction, since

ri satisfies Condition 2, cf. Fig. 3.

wi

hi

√
δ/2

√
δ/2

1/2

1/3

1/2

(1)

(3)

(4)
(5)

(2)

Fig. 3: Schematic representation of the different conditions

Lemma 14. Given a list of rectangles q1 = (w1, h1), . . . , qm = (wm, hm) of total
width at most 1 and one extra rectangle q′ = (w′, h′) with h′ ≤ 1/2, we can either
pack these items into one bin or the set {q′} ∪ {qi : hi > 1 − h′} cannot be packed
into a single bin at all.

Note in particular that we do not require the qi to be a subset of the input
instance.

Proof. By reindexing, we assume w.l.o.g. h1 ≥ h2 ≥ · · · ≥ hm. We pack the items
at the bottom of the bin in this order, cf. Fig. 4. This is feasible since their total
width is at most 1. Assume that placing q′ in the top-right corner creates an overlap
with a certain qi. Since h′ < 1/2, we have h1 ≥ · · · ≥ hi > 1− h′ ≥ 1/2 ≥ h′, so no
two of these could be on top of one another in any feasible packing. However, we

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

15

q1

qi

w1 + · · ·+wi

hi

q′

w′

h′

1/2

Fig. 4: A high item intersecting the extra item of Lemma 14

have w1 + · · · + wi > 1 − w′, so a bin of width 1 does not admit a packing of all
these items next to each other either.

From Remark 11, Remark 10 and Lemma 14, we obtain:

Corollary 15. If the total area of high items is (at least) 1/2− δ/2, then all other
items have individual area at most δ/2, or else we can pack the instance into two
bins.

Note that for purposes of proving Lemma 22, this means that we can restrict
ourselves to the case that Case 2 of Observation 13 does not hold true for any other
item, i.e. all other items have (individual) area of less than δ/2, and in particular
they are bounded in at least one direction by

√
δ/2.

Similar to Lemma 14, we can show:

Lemma 16. If the total width of high items w(H) is at least 1− δ, we can pack all
high items and leave an empty area sized (1−δ/(1−2h))×h in the top right corner
for any desired 0 < h < 1/2, or we can directly pack the instance into two bins.

Proof. As before, we order the high items by non-increasing height and pack them
from left to right. Note that there is a total area of at least (1 − δ)/2 covered by
high items below the line y = 1/2. If the area (1 − δ/(1 − 2h)) × h intersects the
high items, then in particular the point (δ/(1−2h); 1−h) is within some high item,
cf. Fig. 5. This means that there is covered area above the line y = 1/2 of at least
δ/(1 − 2h) · (1/2 − h) = δ/2. Thus, the total area of high items would be at least
1/2, and we can pack the instance by Remark 11.

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

16

δ

Area 1/2

δ/(1−2h) 1−δ/(1−2h)

h

1/2−h

Fig. 5: Free space available in the top right corner.

We will now use this bound of the area for two classes of items, those that
satisfy either Case 3 or 4 in Observation 13. Let us first consider Case 3, the set
of items that have height at most

√
δ/2 and width at most 1/2. Assume that the

total area of these items is at least δ/2 and greedily select a subset S of total area
in the interval [δ/2, δ). This is possible, since every individual item can be assumed
to have area at most δ/2 by Corollary 15.

We define a container of size 1/2× 2
√
δ and note that its area is

√
δ = 1/5 ≥ 2δ

and its height is more than 2
√
δ/2. In particular, we can pack S into this container

with Steinberg’s algorithm by Corollary 5. It remains to verify that the container
itself can be packed by Lemma 16, and indeed its height is 2

√
δ < 1/2 since δ = 1/25

and the allowed width of a container of this height is

1− δ

1− 4
√
δ

= 1− 1/25
1− 4/5 = 4/5 > 1/2 , (10)

so the container fits. This shows:

Lemma 17. If w(H) ≥ 1 − δ and the total area of items with hi ≤
√
δ/2 and

wi ≤ 1/2 is at least δ/2, we can pack all items into two bins.

We now turn to the items of Case 4, having height at most 1/3 and width at
most

√
δ/2. (Note this set might not be disjoint from the previous set.) Again, if

these items have total area at least δ/2, we can select a subset S with area in the
interval [δ/2, δ) and pack this subset into a container sized 2

√
δ × 1/3 which has

area 2
√
δ/3 = 2/15 > 2δ. Again by Lemma 16, this container will fit into the bin

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

17

since its height is less than 1/2 and the allowed width is

1− δ/(1− 2/3) = 1− 3δ = 22/25 > 2/5 = 2
√
δ . (11)

This shows:

Lemma 18. If w(H) ≥ 1 − δ and the total area of items with hi ≤ 1/3 and wi ≤√
δ/2 is at least δ/2, we can pack all items into two bins.

Next, we consider Case 5 of Observation 13, the items of width more than 1/2
which are not already packed. (There could be one wide item that is also high.)
Their individual height is automatically less than δ by Corollary 15. We can pack
a specific subset of these by using the following lemma:

Lemma 19. Let r1, . . . , rm be the items of W \H, i.e. all wide items apart from up
to one item which is high as well, ordered by non-decreasing width, and let k ≤ m

such that
∑k
i=1 hi ≤ h(W \H)/2. We can then pack H and {r1, . . . , rk} into a single

bin.

Proof. Pack the high items from left to right ordered by non-increasing height at
the bottom of the bin and stack the wide items from the top right corner downwards
ordered by non-increasing width as shown in Fig. 6, and assume that there is an
overlap. Choose j ≤ k maximal such that rj intersects a high item r`. Clearly, the
total width of items at least as high as r` is larger than 1−wj , otherwise, the overlap
would not have occurred. By Lemma 12, setting γ = 1− h` < 1/2, the total height
of wide non-high items of width at least wj is then at most 2(1−h`), however, it is
also at least

m∑
i=j

hi =
k∑
i=j

hi +
m∑

i=k+1
hi ≥

k∑
i=j

hi + h(W \H)/2 ≥ 2
k∑
i=j

hi > 2(1− h`) , (12)

which contradicts the assumption of overlap.

Assume that their total area is at least 4δ, then their total height is also at least
4δ. In particular, by greedily selecting the narrowest wide items of total height at
least δ and at most 2δ, this shows

Corollary 20. If w(H) ≥ 1 − δ and the total area of items with wi > 1/2 and
hi ≤ 1/2 is at least 4δ, we can pack all items into two bins.

Finally, we consider Case 1, items of height larger than 1/3, but at most 1/2.
Each item’s width is then bounded by 3δ/2 by Corollary 15. We then succeed by
the following lemma:

Lemma 21. We can pack all but one item of height larger than 1/3 into one bin,
and the unpacked item has height at most 1/2.

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

18

rl

r1

r j

≥ h(W)/2

≤ h(W)/2

> 1−w j

Fig. 6: High and wide items in a single bin.

Proof. The idea of this proof is a generalization of a result implicit in Graham’s
proof of the performance of the Longest Processing Time scheduling heuristic [8],
i.e. that this heuristic is optimal as long as there are at most two jobs per machine.
We sort all items by non-increasing height (assume by reindexing h1 ≥ h2 . . .) and
start packing them at the bottom of the bin until the total width is at least 1. If the
width is strictly larger, the last item, rk, protrudes beyond the bin and we split it.
(This is the one item that we are allowed to not pack at the end.) By Remark 10,
the split item cannot have height larger than 1/2. The rest of the split item and
all further items are packed from right to left at the top of the bin into a ‘reverse
shelf’, cf. Fig. 7.

Assume now that there is a collision of items. Clearly, this can only happen if
one of the items involved, say ri at position (xi, 0) in the lower shelf, has height
larger than 1/2, and the other one, rj at (xj , 1− hj) in the upper shelf, has height
at most 1/2. In particular, we can conclude that the total width of items of height
at least hj , w1 + · · ·+ wj , is at least 2− xj , and the total width of items of height
at least 1− hj is at least w1 + · · ·+ wi > xj .

However, in any feasible packing of the items r1, . . . , rj , there are vertical strips
of total width w1 + · · ·+wi > xj that can contain only r1, . . . , ri. In the remaining
width, 1−w1−· · ·−wi, at most two rectangles can be on top of one another at any

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

19

1/3

1/2

2/3

ri

rk

rkr j

w1 + · · ·+wi 1− x j

h j

hi

Fig. 7: Items of height larger than 1/3 in a single bin

place, so the total width of those items there is at most 2−2(w1 + · · ·+wi). Hence,
the entire width of items at least as high as rj is at most 2−w1−· · ·−wi < 2−xj ,
which contradicts that it is also at least 2− xj by assumption of overlap.

Hence, our packing is feasible apart from the fact that at most one item is split.
We discard this item.

Assume the total area of items of height larger than 1/3 and at most 1/2 is
at least δ. The previous lemma then packs all but one item, but the area of the
discarded item is at most δ/2 by Corollary 15, so we have still packed at least δ/2
additional area.

Lemma 22. If the total width of high items w(H) is at least 1− δ, we can pack all
items into two bins.

Proof. We pack all high items by Remark 10. The total area of them is at least
(1− δ)/2. Afterwards we add some items of a total area at least δ/2 to this bin, so
that we are able to invoke Remark 11 on the remainder. We do this by considering
the five conditions of Observation 13. If the total area of the remaining unpacked
items that satisfy Condition 1, i.e. the items that have height larger than 1/3 but
at most 1/2, is larger than δ then we invoke Lemma 21. If there is at least one item
that satisfies Condition 2, i.e. it has an area of at least δ/2, we are able to adopt
Corollary 15. If there are items of the total area δ that satisfy Condition 3, i.e. the
items that have height at most

√
δ/2 and width at most 1/2, then we make use

of Lemma 17. The same holds with Lemma 18 if there are items of the total area
δ that satisfy Condition 4, i.e. the items that have height at most 1/3 and width
at most

√
δ/2. Corollary 20 is used when there are items of the total area 4δ that

satisfy Condition 5, i.e. the items that have height at most 1/2 and width larger
than 1/2. If none of these attempts solves the problem, we can hence bound the

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

20

2ε

(a) Clearing a horizontal strip in the
first bin

2ε

(b) Clearing a vertical strip in the
second bin

4ε

1/2

(c) Finding two areas in the second bin

Fig. 8: General approach

total area of non-high items by δ + 0 + δ/2 + δ/2 + 4δ = 6δ ≤ 1/2, so we can pack
all non-high items in the second bin using Steinberg’s algorithm.

In the following, we therefore always assume that w(H) ≤ 1 − δ and, by sym-
metry, h(W) ≤ 1− δ.

In the remaining cases, we will always pursue the same angle of attack: starting
off with a packing of area (

∑n
i=1 wihi)− ε2 into one bin generated with the BCJPS-

algorithm (Corollary 7) and precision ε2, we will identify a suitable strip of size 2ε
and move all items that properly intersect the strip into the second bin, cf. Fig. 8a.
For convenience, we always consider horizontal strips, but all results still hold with
‘horizontal’ and ‘vertical’ interchanged.

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

21

All unpacked items that are bounded in height by ε can then be packed into the
empty strip sized 1× 2ε in the first bin using Steinberg’s algorithm by Corollary 5.

We will then re-arrange the moved items in the second bin in such a way that
the second bin also accomodates the other unpacked items of area at most ε2 (each
of which is bounded in width by ε) in one of two ways: we either clear a full-height
area of size 2ε× 1, Fig. 8b, into which they can be packed by Steinberg’s algorithm
again, or we will argue that in specific cases, a certain subset of high unpacked items
can be packed ‘manually’ so that the rest can fit into a free area of height less than
1 but width larger than 2ε as in Fig. 8c.

The following lemma will prove useful for rearranging items of height at most
1/2:

Lemma 23. Given a set {a1 ≥ . . . ≥ am} of numbers, a total width S ≥
∑m
i=1 ai

and a desired target value T such that S ≥ 2T + a1, we can find in linear time a
subset P ⊆ {1, . . . ,m} such that

∑
i∈P ai ≤ S − T and

∑
i6∈P ai ≤ S − T .

Proof. If
∑m
i=1 ai ≤ S − T , P := ∅ is a trivial solution. Otherwise, we find k < m

such that
∑k
i=1 ai ≤ S − T <

∑k+1
i=1 ai. Then, we also have

m∑
i=k+1

ai ≤ S −
k+1∑
i=1

ai + ak+1 < T + ak+1 ≤ T + a1 ≤ S − T , (13)

so P = {1, . . . , k} is the desired set.

4.2. One big item

In this section, we will consider the case that there exists one item in the packing
generated by the BCJPS-algorithm (Corollary 7), say r1, such that w1, h1 > 1/2.
By Lemma 22, we also may assume that w1, h1 ≤ 1− δ. Let (x1, y1) the coordinates
of r1’s lower left corner. Without loss of generality, we assume the bottom edge of r1
is closer to the bottom of the bin than the top edge to the top, i.e. y1 ≤ 1−h1−y1,
i.e. y1 ≤ (1−h1)/2, otherwise, we would flip the packing upside down. We consider
the strip defined by y ∈ (y1, y1+2ε) and denote with S the set of items that intersect
y = y1 + 2ε (in particular, r1). We move all items in S to the second bin. Note that
all items that intersect the strip and do not intersect y = y1 +2ε are already packed
in two areas sized x1 × (y1 + 2ε) and (1− w1 − x1)× (y1 + 2ε), because they were
either to the left or to the right of r1. Since x1 + (1−w1−x1) = 1−w1 ≤ 1/2 ≤ w1
and y1 + 2ε ≤ (1−h1)/2 + 2ε ≤ 1/4 + 2ε ≤ h1−2ε, we can pack these areas into the
empty space freed by r1 without obstructing the horizontal strip at the bottom, cf.
Fig. 9a.

Let us now order the items in the second bin by non-increasing height, and note
in particular that by Lemma 22, we may assume that the total width of high items,
wH := w(S ∩H), is at most 1− δ.

We consider two cases now: either there is a non-high item, say r2, of width at
least 1 − wH − 4ε or not. If there is no such item, we can apply Lemma 23 on the

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

22

2ε

≤ h1−2ε

r1

≥ 1/2x1 1− x1−w1

(a) Re-packing items in the first bin

r1

2ε

(b) Clearing a strip if many items are nar-
row enough

r1

r2

4ε

1/2

(c) Clearing areas if a sufficiently wide item
exists

Fig. 9: Re-packing if a big item r1 exists

widths of non-high items with total available width S at least max{δ, 1−wH} and
target size T := 2ε. The two sets can be packed on two shelves atop each other, and
this frees a vertical strip of width at least 2ε as shown in Fig. 9b.

If, however, such r2 exists, it has width at least 1 − wH − 4ε ≥ δ − 4ε ≥ 6ε.
In particular, we can apply Lemma 14 on the following items: (1) S \ {r2}, (2) all
unpacked high items (of total width at most 2ε) (3) a container sized 4ε× 1/2, into
which we can pack all remaining unpacked items by Steinberg’s algorithm, and use
r2 as the extra item, as depicted in Fig. 9c. Note that r2 and the container will not
intersect since both their heights are bounded by 1/2.

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

23

4.3. One medium item

In this section, we will consider the case that there exists one item in the packing,
say r1, such that w1, h1 ≥ 12ε, and this item’s lower left corner is at (x1, y1). In
light of the previous section, we can assume min{w1, h1} ≤ 1/2, say h1 ≤ 1/2. We
also assume that y1 ≤ 1−y1−h1, i.e. y1 ≤ (1−h1)/2, otherwise we flip the packing
upside-down.

We now set y0 := max{2ε, y1} and consider three consecutive horizontal strips:
Strip I is defined by y ∈ (y0, y0 + 2ε), Strip II by y ∈ (y0 + 2ε, y0 + 4ε) and Strip III
by y ∈ (y0 + 4ε, y0 + 6ε), see Fig. 11a. Since y0 + 6ε ≤ y1 + 2ε + 6ε < y1 + h1, all
three strips are entirely bisected by r1.

We claim the following properties hold:

y0 + 6ε ≤ 1/2 , (14)
y0 + 4ε ≤ 1− h1 . (15)

Eq. (14) is trivial for y0 = 2ε since ε ≤ 1/16, and for y0 = y1 we have y0 + 6ε ≤
y1 + h1/2 ≤ (1 − h1)/2 + h1/2 = 1/2. As to (15), it is now sufficient to note that
y0 + 4ε < y0 + 6ε ≤ 1/2 ≤ 1− h1.

We are now interested in the sets of items that intersect the strips, which we
will denote by SI , SII and SIII , respectively.

Remark 24. If one of Strips I, II, III contains items other than r1 of height at
most 1− h1 and total width at least 2ε that totally bisect the strip, we can pack the
instance into two bins.

Proof. Move the strip in question and the corresponding items to the second bin,
maintaining their packing, as shown in Fig. 10a. We modify the packing as follows:
By reordering, we can assume that all bisecting items are adjacent to r1 and r1 is
at the right side of the bin, as shown in Fig. 10b. r1 is shifted up to the top of the
bin, all other items that bisect the strip are shifted down to the bottom of the bin.
It is then possible to shift r1 to the left by at least 2ε, which frees a vertical strip
of width 2ε, cf. Fig. 10c.

If this does not apply, we will move SII to the second bin and rearrange it to
accomodate the remaining items. In more detail, we create the following packing
(cf. Fig. 11b): the item r1 is packed in the top right corner of the bin. Below it, there
are two containers, C1 sized 4ε× (1−h1) and C2 sized 6ε× (1−h1). The first holds
all unpacked items of height at most 1−h1, packed with Steinberg’s algorithm. This
is feasible by Corollary 5 since each unpacked item’s width is bounded by ε ≤ 4ε/2
and their total area is at most ε2 ≤ ε ≤ (4ε)/4 ≤ (4ε) · (1 − h1)/2. The container
C2 contains all items of SII with height at most 1−h1 that bisected at least one of
Strip I, II or III entirely, which means they can be packed next to each other since
by Remark 24, their total width is at most 6ε. (These are marked in a darker shade

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

24

r1

≥ 12ε

(a) Strip moved to the second bin

r1

(b) Reordering items

2ε

r1

(c) Shifting items

Fig. 10: Packing items if enough items exist in Remark 24

in both Fig. 11a and Fig. 11b.) Note in particular that all items with height in the
interval [4ε, 1− h1] end up in C2.

The remaining items in SII \SIII , shaded darkest, can be shifted into a container
C3 sized (1 − w′) × 4ε, where w′ is the total width of all items in SII ∩ SIII that
bisect Strip II. It is immediate that this width is sufficient, because all items in
SII \ SIII do not intersect Strip III and no item in SII is below an item that
bisects Strip II. As to the height, note that all these items are bounded in height
by 1− h1 by (15), and all those that bisected an entire strip were already removed
to C2 above. This means that all remaining items in SII \ SIII do not cross the
line y = y0 nor y = y0 + 4ε. We position C3 at the bottom of the bin, next to C1
and C2, and note that it is shifted at least 2ε under r1. Since its width is at most
1− w1, the combined width of C1, C2, C3 is less than 1− 2ε.

Now, the following items are still remaining: unpacked items of height more than

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

25

1−h1, and packed items of height either larger than 1−h1 or smaller than 4ε from
the set SII ∩SIII \ {r1}, i.e. they all intersected the line y = y0 + 4ε. Note that the
total width of all these is at most ε/(1− h1) + (1− w1) ≤ 2ε+ 1− w1 ≤ 1− 10ε.

We sort these items by decreasing height and pack them left-to-right, starting
at position (0, 0), and continuing on top of C3. The total width available is hence
1 − 10ε, so the items will not intersect C2, but conceivably intersect r1 or extend
beyond the top of the bin.

Assume that some item ri collides with r1. This cannot be an item of height at
most 4ε since yi+hi ≤ 4ε+4ε ≤ 1/2 ≤ 1−h1, hence its height is larger than 1−h1,
and the collision would then contradict Lemma 14, since all such items must have
fit next to r1 in an optimal packing.

Finally consider that some item ri might protude beyond the top of the bin
(whether or not it collides with r1). Such an item must have hi > 1 − 4ε and
be positioned atop C3. However, since 1/2 > y0 ≥ 2ε, this means that ri either
completely bisected both SII and SIII or was unpacked. The total width of such
items (other than r1) is at most (w′ − w1) + ε/(1− 4ε) < w′ − w1 + 2ε. The width
of the area next to C1, C2, C3 is 1− (1−w′)− 10ε = w′ − 10ε ≥ w′ −w1 + 2ε since
w1 ≥ 12ε, so all items of height more than 1− 4ε were successfully packed there by
the algorithm.

4.4. All small and elongated items

In this section, we consider the remaining case that every packed item is bounded
in at least one direction by 12ε. Note that all unpacked items are even bounded by
ε in one direction. First of all, we want to show that the difficult subcase here is
if there are few items which have one ‘medium’ sidelength. (We show the claim for
items of medium height, but the same argument works for medium width.)

Lemma 25. If the total area of packed items of height at least 12ε and at most 1/2
and width at most 12ε (‘tallish items’) is at least 19.2ε, we can pack all items into
two bins.

Proof. Suppose for illustration that there is a strip y ∈ (y0, y0 +2ε) that is entirely
bisected by some tallish items. If the total width of these items is at least 16ε, we
can move this strip to the second bin and apply Lemma 23 with T := 2ε to clear a
vertical strip of width 2ε in the second bin.

To formalize this notion and show that such a strip must exist, we define for
every tallish item ri packed at location (xi, yi) the function

χi(y) :=
{
wi, y ∈ [yi, yi + hi − 2ε)
0, otherwise.

(16)

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

26

Strip II

r1

(a) A suitable strip, before reordering

r1

4ε

C1C2

6ε

C3

1−w′

≥ 2ε

4ε

(b) after reordering

Fig. 11: Reordering items that intersect Strip II.

Note that ri will completely bisect the strip (y, y + 2ε) iff χi(y) = wi. (See also
Fig. 12, where the missing 2ε are hatched.) We have that

∫ 1

0
χi(y)dy = wi · (hi − 2ε) ≥ wi · hi · 10/12 , (17)

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

27

Fig. 12: Areas of tallish items that “do not count towards the 16ε”.

since hi ≥ 12ε. Summing over all tallish items, we obtain that∫ 1

0

∑
ri tallish

χi(y)dy ≥
∑

ri tallish
10wihi/12 = 10/12·

∑
ri tallish

wihi ≥ 10/12·19.2ε = 16ε .(18)

In particular, there exists some y such that
∑
{χi(y) : ri tallish} ≥ 16ε, which

identifies a suitable strip for re-packing in the second bin.
We can also find such a strip in polynomial time. To do this, note that when

sweeping the horizontal line from the bottom of the bin upwards, the amount of
‘counting’ tallish items

∑
{χi(y) : ri tallish} only increases if y = yi for some tallish

item ri. In particular, the maximum value, which is at least 16ε, is attained in one
of the at most n elements of {yi : ri packed and tallish}.

If the previous lemma does not give us a solution, we know that most of the
area of the instance is in items that are either high or wide or very small in both
directions. (We have 2 · 19.2ε in tallish and widish items and ε2 in unpacked items
that we have not reasoned about yet.) In this case, we will construct a packing from
scratch as shown in Fig. 13. Beforehand, we would like to recall a folklore lemma
concerning Next Fit Decreasing Height (NFDH) when applied to small items:

Lemma 26. Given a set of items which are bounded in width and height by 12ε
and a target area sized a × b (for a, b ≥ 12ε), NFDH packs all the items or covers
an area of at least (a− 12ε)(b− 24ε).

In the following, we denote withA(H) the total area of all high items, withA(W)
the total area of wide items and withA(S) the total area of items which are bounded
by 12ε in both directions. Without loss of generality, we assume A(H) ≥ A(W).
We have already shown in Lemma 19 that we can arrange all of the high items and

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

28

≤ h(W)/2

b≥ 1/2

w(H) a≥ δ

NFDH

Fig. 13: Packing items if few tallish and widish items exist

approximately half (in terms of total height) of the wide items as shown in Fig. 13.
The area covered by these items is at least A(H) +A(W)/3− 12ε, since all packed
wide items might have width close to 1/2 while all unpacked wide items might have
width 1, and one item of individual area at most 12ε might be split. Denote with a
and b the width and height of the area to be filled with NFDH. Following Lemma 22,
we may assume that a ≥ δ and b ≥ 1 − (1 − δ)/2 > 1/2. (Bear in mind we have
not packed at least half of the stack of wide items in Lemma 19.) In particular, by
Lemma 26 we either pack all small items there or cover an area of

(a− 12ε)(b− 24ε) > ab− 12ε(2a+ b) ≥ ab− 36ε ≥ ab− δ/4 ≥ ab/2 , (19)

where we use that ε ≤ δ/144 and ab ≥ δ/2. In this case, we have filled the entire
bin at least halfway: the area sized (1− a)× 1 at the left side of the bin is covered
at least halfway by the high items, the (not disjoint) area sized 1 × (1 − b) at the
top of the bin is covered at least halfway by wide items, and as we have just seen,
the NFDH region is also covered with at least ab/2.

Even if we run out of small items, the area remaining for the second bin is small:
it is bounded by (2A(W)/3 + 12ε) + 2 · 19.2ε+ ε2 for wide, widish and tallish and
unpacked (non-high non-wide) items, respectively. Since A(W) ≤ A(H), we have
A(W) ≤ 1/2, so the above sum is bounded by 1/3+51.4ε, which is at most 1/2 since
ε ≤ 1/308.4. Hence, in either case, the second bin can be packed using Steinberg’s
algorithm.

5. Conclusion

We have presented an algorithm that generates 2-approximate solutions for two-
dimensional geometric bin packing, which matches the rate known for the problem

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

29

with rotations. Since both the problem with and without rotations are not approx-
imable to any 2 − ε unless P = NP , this settles the question of absolute approx-
imability of these problems. For practical applications, it would be interesting to
find faster algorithms: our algorithm relies heavily on the knapsack PTAS in [3] and
techniques in [14] with a doubly-exponential dependency on ε, in particular when
compared to the running time O(n logn) of Harren and van Stee’s 3-approximation
in [10].

Another important open problem is the gap in asymptotic behaviour between
the non-existence of an APTAS and the best known algorithm with asymptotic
quality of 1.525.

References
[1] B. S. Baker, D. J. Brown, and H. P. Katseff. A 5/4 algorithm for two-dimensional

packing. Journal of Algorithms, 2(4):348–368, 1981.
[2] B. S. Baker, E. G. Coffman Jr., and R. L. Rivest. Orthogonal packings in two dimen-

sions. SIAM Journal on Computing, 9(4):846–855, 1980.
[3] N. Bansal, A. Caprara, K. Jansen, L. Prädel, and M. Sviridenko. A structural lemma

in 2-dimensional packing, and its implications on approximability. In Proceedings of
the 20th International Symposium on Algorithms and Computation (ISAAC 2009),
LNCS 5878, pages 77–86, 2009.

[4] N. Bansal, A. Caprara, and M. Sviridenko. A new approximation method for set
covering problems, with applications to multidimensional bin packing. SIAM Journal
on Computing, 39(4):1256–1278, 2009.

[5] N. Bansal and M. Sviridenko. New approximability and inapproximability results
for 2-dimensional bin packing. In Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2004), pages 196–203, 2004.

[6] A. Caprara. Packing d-dimensional bins in d stages. Mathematics of Operations Re-
search, 33:203–215, February 2008.

[7] A. Freund and J. Naor. Approximating the advertisement placement problem. Journal
of Scheduling, 7(5):365–374, 2004.

[8] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of Applied
Mathematics, 17(2):416–429, 1969.

[9] R. Harren and R. van Stee. Packing rectangles into 2opt bins using rotations. In
Proceedings of the 11th Scandinavian Workshop on Algorithm Theory (SWAT 2008),
LNCS 5124, pages 306–318, 2008.

[10] R. Harren and R. van Stee. Absolute approximation ratios for packing rectangles into
bins. Journal of Scheduling, pages 1–13, 2009.

[11] D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing
problems in robotics and VLSI. In Proceedings of the Symposium of Theoretical As-
pects of Computer Science (STACS 1984), LNCS 166, pages 55–62, 1984.

[12] K. Jansen and L. Prädel. New approximability results for two-dimensional bin pack-
ing. In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2013), pages 919–936, 2013.

[13] K. Jansen and R. Solis-Oba. A polynomial time approximation scheme for the square
packing problem. In Proceedings of the 13th International Conference on Integer Pro-
gramming and Combinatorial Optimization (IPCO 2008), LNCS 5053, pages 184–
198, 2008.

April 29, 2013 15:29 WSPC/INSTRUCTION FILE TwoForOneRevised

30

[14] K. Jansen and R. Solis-Oba. Rectangle packing with one-dimensional resource aug-
mentation. Discrete Optimization, 6(3):310–323, 2009.

[15] K. Jansen and G. Zhang. On rectangle packing: maximizing benefits. In Proceedings of
the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004),
pages 204–213, 2004.

[16] K. Jansen and G. Zhang. Maximizing the total profit of rectangles packed into a
rectangle. Algorithmica, 47(3):323–342, 2007.

[17] C. Kenyon and E. Rémila. A near-optimal solution to a two-dimensional cutting stock
problem. Mathematics of Operations Research, 25(4):645–656, 2000.

[18] J. Y.-T. Leung, T. W. Tam, C. S. Wong, G. H. Young, and F. Y. L. Chin. Packing
squares into a square. Journal of Parallel Distributed Computing, 10(3):271–275, 1990.

[19] A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM
Journal on Computing, 26(2):401–409, 1997.

[20] G. Zhang. A 3-approximation algorithm for two-dimensional bin packing. Operations
Research Letters, 33(2):121–126, 2005.

	Introduction
	Definitions
	Packing instances that have a large optimal value or that fit into a constant number of bins
	Solving with 2 bins for OPT=1
	Many high or many wide items
	One big item
	One medium item
	All small and elongated items

	Conclusion

