Online unit clustering: variations on a theme

Leah Epstein Asaf Levint Rob van Stee
August 10, 2007

Abstract

Online unit clustering is a clustering problem where cléssiion of points is done in an online fash-
ion, but the exact location of clusters is fixed dynamicallie study several variants and generalizations
of the online unit clustering problem, which are inspireds/ayiants of packing and scheduling problems
in the literature.

1 Introduction

Clustering problems involve a partition of a set of point®igroups, which are often called clusters. The
goal is typically the optimization of a given objective fulon. Clustering problems are fundamental and
have various applications. Such applications include Hage of clustering for computer related purposes,
such as information retrieval and data mining, but alscowariapplications in other fields, such as medical
diagnosis and facility location.

In the online scenario which we study, points are presentedby one to the algorithm, and must be
assigned to clusters upon arrival. An assignment of a poira tluster becomes fixed at this time, and
cannot be changed later. We measure the performance of e @djorithm.4 by comparing it to an
optimal offline algorithmopPT using the competitive ratio, which is definedsas,, %, whereo is the
input, which is a sequence of request points, and (o) denotes the cost of an algorithmn for this input,
which is the number of clusters in the basic problem, andnsesa function of the clusters in a more general
setting. For randomized algorithms, we replat¢ér) with E(A(c)), and define the competitive ratio as

sup, ’f)l;“T(" . An algorithm with competitive ratio of at mo®R is calledR-competitive.

A stuéy of an online problem of partitioning points into diers was studied by Charikar et al. [6]. They
considered the so callemhline unit covering problemin this problem, a set of points needs to be covered
by balls of unit radius, and the goal is to minimize the numiifdsalls used. They gave an upper bound of
O(2%d1og d) and a lower bound of2(log d/ log log log d) on the competitive ratio of deterministic online
algorithms ind dimensions. This problem is fully online in the sense thah{soarrive one by one, each
point needs to be assigned to a ball upon arrival, and if isggmed to a new ball, the exact location of
this ball is fixed at this time. The tight bounds on the contpetiratio ford = 1 andd = 2 are2 and4

respectively.

“Department of Mathematics, University of Haifa, 31905 Haléraell ea@rat h. hai fa. ac.il .

TDepartment of Statistics, The Hebrew University, Jerusalsrael.l evi nas@rscc. huji.ac.il .

fDepartment of Computer Science, University of Karlsruhe7@128 Karlsruhe, Germanyanst ee@r a. uka. de. Re-
search supported by the German Research Foundation (DFG).

Chan and Zarrabi-Zadeh [5] introduced tn&t clustering problemin this problem the input and goals
are very similar to unit covering. This is an online problesweell, but it is more flexible in the sense that
it does not require to fix the exact position of each ball inaabe. The algorithm needs to make sure that
a set of points which is assigned to one ball (cluster) camydvibe covered by a ball. The goal is still to
minimize the total number of balls used. Therefore, theritlym may terminate having clusters that still
have more than one option for their location. In an offlinense®, unit covering and unit clustering are
the same problem. However, in the online model, an algoritbm has the option of shifting a cluster after
a new point arrives, as long as this cluster still covershal goints that are assigned to it. In [5, 11], the
two dimensional problem is considered in thg, norm rather than thé, norm. Thus “balls”, are actually
squares or cubes. In this paper, we focus on the €asé, for which the two metrics are identical.

Note that online clustering is an online graph coloring peoh If we see the clusters as colors, and the
points are seen as vertices, then an edge between two poaussaf they are too far apart to be colored
using the same color. The resulting graph for the one direasiproblem is the complement of a unit
interval graph (alternatively, the problem can be seen disjaecpartition problem in unit interval graphs).
See [17] for a survey on online graph coloring. Note thatrantoloring is a difficult problem that does not
admit a constant competitive ratio already for trees [14, T8@ere is a small number of classes that admit
constant competitive algorithms, one of which is intervalns [18].

For the one-dimensional case, [5] showed that severakragorithms all have a competitive ratio of
2. Some of these algorithms are actually designed to sobveitit covering problem and thus cannot be
expected to overcome this bound (due to the lower bound df [@jey also showed that any randomized
algorithm for unit covering has a competitive ratio of atdea. To demonstrate the difference between unit
covering and unit clustering, they presented a randomilgatithm with a competitive ratio of5/8 =
1.875 (later improved by the same authors to 1.8 in [22]). Finalhey showed a lower bound df/3
on the competitive ratio of any randomized algorithm. The&drinistic lower bound that is implied by
their work is3/2 = 1.5. A multi-dimensional extension of their algorithm, thaeyhdesign, results in a
15/4 = 3.75-competitive algorithm for two dimensions, an@%: 15/16-competitive algorithm for general
d.

Epstein and van Stee [11] improved these results by preseatielatively simplaleterministicalgo-
rithm which attains a competitive ratio f/4 = 1.75. Using the construction presented by Chan and
Zarrabi-Zadeh [5], this implies an upper bound28f- 7/8 in d dimensions. Moreover, they improve the
randomized lower bound /2 = 1.5 and show a deterministic lower bound&f5 = 1.6. Finally they
give a deterministic lower bound of 2 and a randomized loveemiol of11/6 ~ 1.8333 in two dimensions.
The deterministic lower bound holds for tlig norm as well.

In the current paper, we study several variants and genatiains of this problem. These are presented
below together with our results. For most versions, we giatciming upper and lower bounds on the best
possible performance of an online algorithm. In all versiercept the one with resource augmentation, the
maximum possible length of a cluster is still 1 as before.

We study the following problems.

1. Clustering with rejection. An input point is associated with a non-negative value, Wiccalled
its rejection penalty. For each point that is not assigneddoster, its penalty must be paid. Problems
with rejection have application in customer service, witheerejection penalty represents the com-
pensation to be paid to a disappointed customer, or if a mestecannot be refused, it is the cost for
servicing this customer in an alternative way (such as outesng). Many combinatorial optimiza-
tion and online problems were studied in this scenario, e ¥2, 4, 7, 8]. We design an algorithm
of competitive ratio at most 3 for this problem and prove aahiatg lower bound.

2. Max clustering. Every input point has a weight. Points are to be assignedutients, so that every
cluster would not exceed the length of 1. The cost of a clustdre maximum weight of any point
assigned to it. The goal is to minimize the total cost of thesidrs. Max coloring of graphs was
introduced by Pemmaraju, Raman and Varadarajan [21] adéestin an online environment in [10].

We design an algorithm of competitive ratio at most 2 for frigsblem and prove a matching lower
bound.

3. Clustering with cardinality constraints. In this variant we are given a parameterwhere each
cluster can serve at mostpoints that can all be covered by one interval of length 1.sThodel
assumes that the service provided by the cluster is limgdeddiven number of clients.

A large amount of work on capacitated variants of combinataptimization and online problems
exists in the literature [20, 13, 3, 9].

We design algorithms of competitive ratg)for k = 2 and2 for £ > 3. We prove matching lower
bounds fork = 2 andk > 4 and a lower bound of 1.75 fdr = 3.

4. Clustering with resource augmentation. Resource augmentation, or extra resource analysis is
a generalization of competitive analysis, where the ondilgerithm may use resources that are not
available to an optimal offline algorithm to which the onliakgorithm is compared [16]. We study
a resource augmented variant of clustering where onlinarittgn uses clusters of length at maést
whereb > 1 is a given parameter, whereas the clusters of the offlinaigigo are still of length at
most 1. We show tight bounds of 1 for afy> 2, a lower bound o8/2 for any cluster size i1, 2),
and an algorithm of competitive ratio of exactly3 for b > 3/2.

5. Clustering with temporary request points. In this variant requests are not permanent but arrive
and leave over time. The duration of a request point is unknomtil the time it leaves. The cost of
an algorithm at any point in time is determined by the numlbehusters that are serving a non empty
subset of request points.

Previous work on online problems with temporary requestsbeafound in [15, 1, 2].

We design an algorithm of competitive ratio at most 2 for fhiigblem and prove a matching lower
bound.

Note that in this paper we consider only the (absolute) caitiyeratio and not the asymptotic com-
petitive ratio. This is motivated by the fact that in all theriants that we consider one can repeat the input
sequence multiple times in disjoint parts of the real linkeJe disjoint parts cannot be assigned to the same
sets of clusters, and therefore the cost of the solutioreistim of all costs (of the different parts).

2 Clustering with rejection

In this variant of the problem, each points associated with a non-negative weight Each arriving point
must be either assigned to a cluster upon arrival or rejedibd set of points assigned to one cluster must
lie within an interval of lengtH.
A rejected point is not assigned to a cluster but the algorifays a penalty for not assigning it. Thus
the cost of an algorithm is the sum of penalties paid for tegtpoint plus the number of clusters used.
This problem is the generalization of unit clustering. Utitstering is the special case where all rejec-
tion penalties are infinite.

The following algorithm @ID ([5]) is used as a building block in this section.
For every integer-oo < k < oo, GRID considers points arriving in the intervg| = (k, k + 1] separately
and independently from other points. Upon arrival of a paini;, a new cluster is opened in the interval
[k, k + 1] and all future points in this interval.

We prove a tight bound of 3 for this problem. We begin with acdigsion of an algorithm which is
based on ®@ID. For everyk € Z, the algorithm considers points arriving in the interyal= (k, k + 1]
separately and independently from other points. Denotsubsequence (of the input sequence) of points
which belong to this interval by’.. As long as the total weight of point iR, does not exceeé, all such
points are rejected. Let. be the first point which causes the total weight of point®jrthat arrived so far
to be at Ieas%. Upon arrival ofpg, a new cluster is opened in the intery&l k + 1] and all future points in
P, are assigned to it. We call this algorithnERECTIVE GRID (GRID).

Theorem 1 The competitive ratio 0GRID is 3 and this is best possible.

Proof We start with the proof of the upper bound. Consider an optofikne algorithmoprT. We analyze
each interval of the fornfk, k + 1] separately, thus we assign the cosbefr to such intervals so that the
sum of costs assigned to the union of all intervals is exam#tly. The cost of every point rejected kypTis
simply assigned to the unique interval it belongs to. Forneekister oforT, this cluster contains points of
exactly two such intervals. We therefore assign its costjuméshares to both these intervals.

Consider now an interval, = (k, k + 1] that contains at least one point (the algorithm pays a tdtal o
zero on an interval with no points and thus the cost for thisriral clearly does not exceed three times the
cost ofopT that was assigned to this interval).

If the total weight of points iy, which we denote by, is less thar%, the algorithm does not open a
cluster for this interval and thus pays. On the other handyPT either covers these points by at least one
cluster, or rejects all these points. In the first case, at leae cluster obpPT overlaps with/;,, so a cost of
at Ieast% from the cost ofoPT was assigned td,. In the second case, a cost of at legstvas assigned to
this cluster. In both cases the assigned cost is ho smadiertkie cost of GID.

Finally, if r, > % the cost of ®ID on I, is no larger than%. This cost results from the rejection
penalties of all points arriving beforg,, which is less thar%, and the cost of one cluster, which is
Similarly to the previous cas@PT either has at least one cluster overlapping withor rejects all points
of P.. In the first case a cost of at Iealsts assigned to this cluster and in the second case, a cost ©he
ratio of the cost of @ID on [, and the cost assigned 19 is no larger than 3.

We next prove a lower bound of 3 on the competitive ratio of algprithm. Let/N be a large enough
integer. Consider the following sequence. The first phassists of the points fof = 1, ..., each one of
these points has a weight é; These points are presented one by one until a cluster isedpdrne point
for which a cluster is opened is the last point of this phafseo kluster is opened, the first phase stops after
4N points are given, in this case no further points will be definad the sequence stops. Otherwise, let
7" be the index of the last point presented. The next phasestseri multiple instances of the poi%ig—l,
where each such instance has a penal%ofNote that the distance between these points and the point
for which a cluster was opened is+ ﬁ thus the points of the second phase cannot be assigned to the
same cluster. Such points are presented ferl, ..., until a new cluster is opened or urdilV points are
presented. The sequence terminates here in both cases.

Consider first the case wheté/ points were presented in the first phase and no cluster wadpall
points of the first phase lie in an interval of Ien@ththus they can fit in one cluster ameT = 1. The total
rejection penalty paid by the algorithm4swhich results in a competitive ratio df

Next, we consider the case thaV points were presented in the second phase, but no additusaér
was opened. Note that the interV&k:t, 1 + £=L] contains all points but the last point of phase 1, and thus
OPT< 1+ % However, the algorithm pays at least 1 for the first phaseddodthe rejection penalties of
the second phase, which gives a total of at I6adthis case results in a competitive ratio of more than

Consider now the case where clusters were opened in botkesghast;” denote the index of the point
for which a cluster was opened in the second phase. The calse @lgorithm isi'LN"” + 2. As we saw
above, we haveprT < 1 + % Another possible offline solution would be to reject alligsi and get the

cost ™", Thus if "+ < 1 thenopT < " and otherwisePT < 1+ L. If “X < 1, the cost of the

algorithm is at least £~ + 2 > 3(“£%) > 30pPT. Moreover, if “X > 1, the cost of the algorithm is at

least™t" +2 > 3 > 2 opT. SinceN can be chosen to be arbitrarily large, we obtain a lower baiind

3 on the competitive ratio. O

3 Max clustering

In this variant of the problem, each pomis again associated with a non-negative wetght Each arriving
point must be assigned to a cluster upon arrival. The setiofgpassigned to one cluster must lie within an
interval of lengthl. The cost of a cluster is the largest weight of any point a&sigo this cluster. The cost
of an algorithm is the sum of costs of the clusters defined byatgorithm.

This problem is the generalization of unit clustering. Whitstering is the special case where all weights
are equal.

We prove a tight bound of 2 for this problem. The upper is agdeby simply applying &@iD for this
problem.

Theorem 2 The competitive ratio 0BRID is 2 and this is best possible.

Proof We start with the proof of the upper bound. Consider an optofitine algorithmopT. We analyze
each interval of the fornfk, k + 1] separately, thus we assign the cosbefr to such intervals so that the
sum of costs assigned to the union of all intervals is exautly. For every cluster obpT of costw, this
cluster contains points of exactly two such intervals. Werdéfore assign its cost in equal shares to both
these intervals, i.e., a cost gfto each one of them.

Consider now an intervadl, = (k, k + 1] that contains at least one point (the algorithm pays a tdtal o
zero on an interval with no points and thus the cost for thisriral clearly does not exceed two times the
cost ofoPT that was assigned to this interval).

Consider an intervaly, for which the cluster in @D has weightz. Thus/;, contains a request point of
weighta. This point is covered by some clustera#®Twhich has weight at least Thus a cost of at least
was assigned to this cluster. Therefore the ratio of the@oSRID on I, and the cost assigned I is no
larger than 2.

We next prove a lower bound of 2 on the competitive ratio of algprithm. LetM be a large enough
integers, and lelV = M?2. Consider the following sequence. The first request poifif @d has weight.
Clearly the algorithm must open a cluster for this point. Aiddal points are presented until the algorithm
opens an additional cluster or until all these points arsged. The points are+ % fori =1,..., N,
where the point + ﬁ has weightl + % If no additional cluster was opened, a last request for tietp
1+ % with weight A/ + 1 arrives.

If the last point arrived, it means that the algorithm mustrop cluster for this point, since its distance
from the very first point is larger thah Thus the cost of the algorithm for the first cluster is thegheiof

the point1, which isM + 1, and the cost of the second clusterMs+ 1 as well. An optimal algorithm
would assign all points but the first one to one cluster, tartost ofAl + 1 for this cluster, and the first
point can be assigned to an additional cluster, which wiehttae costl. This gives a competitive ratio of
atleast?P i) =2 — 2.

If the last point did not arrive, it means that the sequenappsd right after a second cluster was opened.
Lets > 1 denote the index of the last request point that was presedteaptimal algorithm would use

a single cluster of weight + % for all requests. The algorithm uses two clusters, wherditsiecluster

contains all points but the last one, and thus has the dosté% andl + % We get a competitive
; 2+(2'-1)M/N _ 2M+2i—1 1

ratlo_ofatlea& TN = M+_Zi, _22——. _ _ N _
SinceM can be taken to be arbitrarily large, this results in a lowamua of 2 on the competitive ratio

of any algorithm. O

4 Clustering with cardinality constraints

In this section we consider the unit clustering problem, iefeeparametek limits the cardinality of the set
of items that can be assigned to one cluster. Clearly, theeicas] is trivial.

A cluster can contain a sét of points if it is contained in an interval of length 1, and ap tof that,
|S| < k.

The next proposition resolves the cdse 2. For this case we can apply a greedy algorithm that inserts
an item into an existing cluster if possible, and otherwigers a new cluster for it. Note that this approach
is based on a greedy algorithm for finding a maximum cardinatiatching.

Proposition 1 The competitive ratio of the greedy algorithm for= 2 is % and this is best possible.

Proof For the upper bound, we show the relation to maximum matshihgtm be the cardinality of a
maximum matching on the graph of request points (when twotpahare an edge if the distance between
them is at most). Letn be the number of request points. We hawer = n—m, since an optimal algorithm
is one that maximizes the number of clusters that cover tvimtgpoSince for each edge of the maximum
matching implied byopPT at least one endpoint was assigned to a cluster with two pbinthe algorithm
(by the greedy assignment rule), we get that at leagioints are in such clusters. Thus the cost of the
algorithm is at most — . Usingn > 2m we get”n_f”;é2 <1l+ % <3

For the lower bound, consider the two poiitand2. If the algorithm assigns them to two clusters the
sequence stops. ClearhypT = 1, which gives a competitive ratio @& Otherwise, two additional points
and3 are presented. The algorithm opens two new clusters, whersa= 2, this gives a competitive ratio
of 2. O

We next consider the cage= 3.

Theorem 3 Any algorithm fork = 3 has competitive ratio of at Iea%t: 1.75.

Proof The first three points are in positiogs2.5,3. These three points must be assigned by the online
algorithm to one cluster that we denote By otherwise, the input sequence stops and the online digorit
paid at least twice the cost of the optimal offline solutiddpte that by the cardinality constraint no further
point can be assigned té. We say thatA is full. The next point is in positioB.5 and it must be assigned
to a new cluster that we denote B The fifth point is in positiont.5, and it can be assigned f® or to a
new clusterC'.

e Assume that the fifth point is assigned to clusterThe location ofB is then fixed. The sixth point
is in position5, and it cannot be assigned tbor B, and hence we must open a new cluster denoted
as(for this point. The seventh point is in positidnand it can be assigned to eithBror C' or to a
new clusterD.

— Assume that the seventh point is assigned to cluBterB is now full. The next point is in
position4.4. This point cannot be assigned to clust¢idue to the cardinality constraint, and
hence it must be assigned to eitlieor to a new clusteD.

x Assume that point 8 is assigned to clustér In this case, the next points are at positions
1.7,2.8,3.9,5.5. None of these points can be assigned to existing clustars,there are
now seven clusters. The points can be served using only faatecs that contain three
points each:[1.7,2.5],[2.8,3.5],[3.9,4.4],[4.5,5.5]. Therefore, the competitive ratio in
this case is at leagt/4.

x Assume that point 8 is assigned to clusier The next two points are at 3.3 and 2.1, two
new clusters are opened for them. Two additional points #ppear at 1.1 and 2.2, and
at least one additional cluster must be opened for thermg@jiséven clusters. The points
can be served using only four clusters:1,2.1], (2.2, 3], [3.3,4], [4.4,5]. Therefore, the
competitive ratio in this case is at leastl.

— Assume that the seventh point is assigned to cluSteiThe position ofC' is then fixed. The
next points appear at positiofisl, 3.4, 5.5 and must be assigned to three new clusters. Then a
point arrives at position 2.1. If a new cluster is opened fowie stop. If it is assigned to the
cluster which contains 1.1 (this is the only other posgifilithen an additional point appears
at position 2.2, forcing the seventh cluster. The pointslwaserved using only four clusters:
[1.1,2.1],[2.2,3],[3.4, 4], [4.5,5.5]. Therefore, the competitive ratio in this case is at |&ddt

— Assume that the seventh point is assigned to cluBteNow, two points appear at positions
2.9 and 1.8. Neither one can be assigned to an existing glgstehere are now six clusters.
The points can be served using only three clustérs, 2.5], [2.9, 3.5], [4,5]. Therefore, the
competitive ratio in this case is at le&st

e Assume that the fifth point is assigned to clustér The sixth point is in positiori.1, and it must
be assigned to a new clustBx. The seventh point is in positiol1 and it can be either assigned to
clusterD or to a new clustek.

— Assume that the seventh point is assigned to cluBterThe next points appear at positions
0,1.2,2.3 and must be assigned to three new clusters, sihcefull and the location ofD is
fixed. The points can be served using four clustgrs.1], [1.1, 2], [2.3, 3], [3.5,4.5]. Therefore,
the competitive ratio in this case is at le@gt.

— Assume that the seventh point is assigned to clustemhe eighth point is in positiod. The
input so far can be served using three clustérs:, 1.1], [2, 3], [3.5,4.5]. Therefore, the online
algorithm cannot use a new cluster for the eighth point. &itne distance to the sixth and
seventh point is too large, the online algorithm must asigreighth point ta3 or C'.

x Assume that the eighth point is assigned to clugter The next points are at positions
3.3, 3.4. At most one of these can be assigne@dtdhe other one must be assigned to a new
cluster. Finally there is a point at position 2.2, it musbaie assigned to a new cluster. The
points can be served using four clustdfsi, 1.1], [2,2.5], [3, 3.4], [3.5,4.5]. Therefore, the
competitive ratio is again at least4.

7

x Assume that the 8-th point is assigned to clusteiT he final two points appear at positions
5.5 and 2.3 and must be assigned to new clustérss full and C' cannot serve both 5.5
and 4. The points can be served using four clustéost, 1.1], [2,2.5], [3, 4], [4.5, 5.5].
Therefore, the competitive ratio in this case is at |§gdt

We conclude that in all cases the competitive ratio of thénerdlgorithm is at least/4. O

Finally, we consider the cade > 4. For this case we can show tight bounds2of The algorithm
CONSTRAINED GRID (CGRID) acts as follows. C&ID applies QID in order to partition the requests
points into mega-clusters. Each mega-cluster is parétian an online fashion into clusters consisting of
at mostk points. All these clusters are defined in the exact samevaitas the mega-cluster. Thus, there is
at most one active cluster for each mega-cluster at each Amew point is assigned to a mega-cluster and
then to an active cluster of this mega-cluster. If as a rdkelactive cluster hak points, it is closed. If a
point is assigned to a mega-cluster which has no activeer|ugich an active cluster is opened.

Theorem 4 CGRID has a competitive ratio of 2, which is best possible for any 4.

Proof Consider the cosbPT of an optimal solutioroPT to the problemP’ where every cluster must be
contained in an interval of the forifk, £ + 1]. We can show thabPT < 20PT as follows. Given a cluster
of OPT, [z, y] wherey < = + 1. We can assume without loss of generality thandy are request points,
otherwise we can reduce the length of the cluster so thaffiitsuhis property. Letz = [z]. If z > y, we
are done, since the interval is already contained in anviaterf the form(k, k£ + 1]. Otherwise, let’ be the
leftmost request point i, y] that is larger thar, since there input consists of a finite number of points,
and sincey is a request point ang > z, the pointz’ must exist. We split this cluster of into the two parts
[z, z] and[2’, y]. We show that our algorithm provides an optimal solutio’to Since clusters cbpPT are
always contained in interval of the for(y, 7 + 1], given a set of pointdy, in the interval(k, k + 1], [‘J—,ﬂ
clusters ofoPT are required for this set, and this is exactly the numberadters that the algorithm uses.
Thus the competitive ratio of Ci&D is at most 2.

To prove the lower bound, we define the following sequencstalts withk requestsk — 2 of the point
1 and two of the poin®. At this timeopPT = 1 and thus if at least two clusters are opened we are done. If
a single cluster is opened, this cluster cannot be used athefu Next, two points arrive which a@and
g. If two additional clusters are opened, the padinsg requested. We havarT = 2 (by assigning thé — 2
points atl, and the two points a% and% to one cluster, and the other three points to another cjuskbe
new point is too far from any cluster that can still receivénp®and thus the algorithm uses four clusters.
Otherwise, a single new cluster is opened. Two new pointpasented? and . These points require

two new clusters. However, an optimal solution would be sgsall £ points in the interva[%, %] to one
cluster, and the remaining four points[igl g] to another cluster. The competitive ratio is again O

5 Clustering with resource augmentation

In this variant of the problem, the online algorithm usestts of maximum length which is larger than
the length of clusters used by an optimal offline algorithmallis used for comparison. Thus each arriving
point must be assigned to a cluster upon arrival. The set iotpassigned to one cluster by an online
algorithm must lie within an interval of length The cost of an algorithm is the number of the clusters
defined by the algorithm. An offline algorithm can assign ao$gdoints.S to one cluster if the maximum
distance between any two pointsdds at mostl.

The typical question in problems with resource augmemntasaovhether it is possible to reach a com-
petitive ratio ofl, or an even smaller competitive ratio. We show that the foliminpossible fob < 2 and
the latter is never possible.

Proposition 2 For anyb > 1, the competitive ratio of any algorithm is at ledstFor any1 < b < 2, the
competitive ratio of any algorithm is at least

Proof An input which consists of a single point proves the firstrolailrhe second claim follows from the
lower bound proof in Proposition 1. The first case is the sdm#he second case, two new clusters must be
opened ifh < 2. O

We define the following algorithm ENTER, which is based on an algorithm suggested in [5] for the
standard unit covering problem. For every new request piviistassigned to an existing cluster if possible.
Otherwise, for a request at a clusterfx — 1,z + 1] is opened.

Proposition 3 The competitive ratio 0EENTERfor b > 2 is 1.

Proof We assign each cluster opened bgNGER to a cluster used by an optimal offline algoritrowrT.
The assignment is done so that at most one cluster of cerassigned to each cluster oPT, and thus the
competitive ratio follows.

Given a cluster of ENTER, A = [a — 1,a + 1], the pointa is a request point. ThusPT must have a
clusterO which contains it. We assigA to O. Note thatO is contained inA. We next show that no other
clusters of ENTERare assigned t0@. Assume by contradiction that clust8r= [b—1,b+ 1] of CENTERIS
assigned t@). Thenb is a request point. Without loss of generality, assume thest opened afted. Then
the pointb does not belong to the intervial — 1, a + 1], and thus) does not belong t®, contradiction. [J

5.1 An algorithm with resource augmentation forb € [g, 2)

The algorithm is based on Greedy with clusters of length Lisés the following additional rule. Clusters
never overlap.

The main idea of this algorithm is simple: we take advantdgdleeresource augmentation by not having
to create new clusters between two clusters that are reljatilose together (Step 1) and we do our best to
avoid the situation where three clusters intersect a cominterval of length 1 (Step 2).

We first discuss a general property of algorithms of this tyfe algorithm is calledhrifty if it never
opens a new cluster for a request point which fits in an exjstinster without extending its length beyond
1.

Lemma 1 For a thrifty algorithm, there can be no interval of length hish completely contains two
clusters.

Proof Assume that two clusters that are defined by a thrifty algoriare contained in an interval of length
1. Let A and B be two such consecutive clusters (i.e., such that there ctuster between them).
Without loss of generality, denote by the cluster that is defined earlier by the algorithm. kbt the
first request point iniB. We consider the time at whidhis assigned to a cluster. Since the pdiriits in
A without extending its length above 1, a thrifty algorithrmoat createB at this time, which leads to a
contradiction. O
The algorithm is defined as follows. A cluster is calEidgle unless it has beejoined with another
cluster in Step 1 or in Step 2. Lgtbe the new arriving point.

9

1. If p appears between two existing single clustérand B, and the minimum distance between two
points fromA and B is at most 1, ang cannot be assigned to either cluster while keeping thetesngt
at most 1, we extend both clusters to the point that is in tidelfaiof the gap between them. Novis
contained in (at least) one of the clusters. Assido a cluster it is contained in. We now calland
B joined clusters.

2. If p appears between two existing single clustdrand B, andp can be assigned to both of them
while keeping the lengths at most 1, there are three cases.

(a) If there exist two more clusters and D that are at most 1 away from join A and B at point
p. Assignp arbitrarily to A or B.

(b) If there exists one more clustéfsuch thatl(p, C') < 1, assigrp to the cluster amongl and B
which is closest t@’.

(c) Else, assigmp arbitrarily to A or B.

3. If p appears between a single clusteand a joined clusteB, B was joined in Step 2J(p,q) < 1
for all request pointg € A andd(p, q) < 1 for all pointsq € B, assignp to B unless this bring®3
within a distance of 1 of another clust€’, in that case, assignto A.

4. If p appears between two joined clusters and can be assignedht@bthem while keeping their
lengths at moss /2, assigrp arbitrarily to one of them.

5. If p can be assigned to only one existing cluster while keepsgiitgth at most 1, do so.

6. If pis not assigned to a cluster by the previous rules, open a hestecforp.

For an illustration, see Figure 1. A pair of clusters thabisgd in Step 1 is called lang pair, other
joined pairs are calledhort pairs It can be seen that our algorithm is thrifty. Thus, it follivom Lemma
1 that if Case 2(a) occurs, clustersand D must indeed be at different sidesjof Similarly, in Case 2(b),

A and B cannot be on the same sidemgfsince otherwise they would be contained in an interval z# §i

Note that Lemma 1 holds even if there are joined clusterdoye&pecifically, the lemma shows that for
two single clustersi and B that both contain only one request point, we hayé, B) > 1.

A pair of clusters are calledonsecutivaf there is no cluster that is located between them. In the
following, we will repeatedly discuss sets of consecutiigsiersCy, Cs, In such cases, denote the
leftmost request point contained @) by ¢; and the rightmost request point by We now consider a fixed
optimal offline algorithm. We call the clusters used by thgoathm “optimal clusters”. The clusters used
by our algorithm are called “online clusters”. We say thabatimal clusterconnectdwo online clusters if
it intersects both of them.

As noted in [5], it is trivial to provide an optimal solutioorfa given input offline: starting from the left,
repeatedly define a cluster of length 1 that has as its lefi@ntithe leftmost unserved point. It can be seen
that in this solution, no two clusters overlap (not even airtandpoints). We will compare our algorithm to
this solution.

Lemma 2 There can be no interval of length 1 which intersects witlke¢hdifferent online single clusters.
Proof Suppose there is such an interval which contains requests tfie single cluster€’y, C; and Cs

(from left to right). Note that these three clusters are eontive clusters, since otherwise, if there is a

10

A p B c A P B D
>1 >1 <1 <1
<1
A B C A B D
— | !] f—

|

C A P B A P B
a a

<1 <1 <1 <1

C A B A B

Figure 1: Creation of a joined pair in Step 1 and 2(a), andrasignments

clusterC, betweenC; andC, or betweenC; andCs, thenCsy andC}y are fully contained in an interval of
length1 in contradiction to Lemma 1.

The assumption implied(r, ¢3) < 1. Letq be the oldest request point . There are two cases. ¢f
is newer thanr; and/s, C; andC'5 would have been joined together whearrived in Step 1 or Step 2, or
¢ would have been assigned to one of them in Step 2 or 5.

Otherwise, without loss of generality, lef be newer tharfs (and¢). Whenr; arrives, it could be
assigned td@’y, sincer; is less than 1 away from the furthest point(if. If our algorithm does not do this,
it must be because there was a second possible clustergo assd (Step 2). However, in this case; and
C5 end up joined (Step 2(a)) ef gets assigned t6; because’s is less than 1 away fromy; (Step 2(b)).
O

Definition 1 A groupof online clusters is a maximal set of consecutive clustech shat each two succes-
sive clusters are ‘connected’ by an optimal cluster.

Thatis, ifC4, ..., C,, (numbered from left to right) are consecutive online clisstbat form a group, there
is an optimal cluster which contains bathand?;,; fori = 1,...,m — 1. (These optimal clusters are not
necessarily all distinct.)

If there is more than one group, for each group we have thaeftraost point of the leftmost online
cluster is not to the right of the leftmost point of the lefshoptimal cluster by the way we construct our
optimal solution. Two clusters that are joined togethemerenecessarily in the same group.

Lemma 3 For m > 3, at leastm — 1 optimal clusters are needed to serve all the request pomts: i
consecutive single clusters that are in the same group.

11

Proof If at mostm — 2 optimal clusters serve the requestsiinconsecutive single clusters, then there is
either an optimal cluster which servall requests of at least two single clusters (impossible by Larhjn

or, if there is no such cluster, an optimal cluster that sesmne requests from at least three online clusters
by the pigeonhole principle. This is impossible by Lemma 2. O

Lemma 4 It requires three optimal clusters to serve all requestsi@long pair, and two optimal clusters
to serve all requests from a short pair. A long pair has at tease optimal cluster that is fully contained in
the union of the pair of online clusters.

Proof In Step 1,p is more than one away from the furthest endpoints of bbtnd B, which are both
request points. This gives three points, each one of whickt ipe in a different optimal cluster, which
implies that three optimal clusters are required to servilhalpoints in these two clusters. The cluster that
serves is completely contained within the interval spannedtgnd B.

In Step 2(a), the clusterd and B are not contained in an interval of length 1 by Lemma 1. Sihe@ t
endpoints are request points, the lemma follows. O

Lemma 5 Consider a cluster/ in a short pair, that is joined to a cluster on its left. The fickuster on its
right, sayC, already existed wheit was joined. Just beforé was joined,J and C' were not contained in
an interval of length 1.

Proof WhenJ was joined in Step 2, there was a clustémext to it that/ does not get joined taC’ is at
most 1 away from the pointthat caused to be joined. Therefore, a future request peirbetweenC’ and

J could be assigned té, since they are less than 1 away fremwhich is the left endpoint of . Since our
algorithm is thrifty, it does not open a new cluster fér ThereforeC’ = C'. The second statement follows
from Lemma 1. O

Lemma 6 There can be no optimal cluste¥ which serves requests from two single clustetsk and a
joined cluster.J, unless/ was joined in Step 1.

Proof Assume by contradiction thaf exists. By Lemma 1, these are three consecutive clusters.

We first prove that/ is either to the left or to the right of the clustersand £. Since online clusters do
not overlap, if this claim does not hold, then the cluster toal .J is joined,.J’, as well as/, are between
C andE. Since the distance betweéhand E is at most 1, we conclude thdtand./’ are contained in an
interval of length 1, which contradicts Lemma 4.

Without loss of generality, we assume that the order of theetlelusters from left to right ig, C, E. J
was joined to a clustef’ in Step 2, sa” must have existed whehwas joined by Lemma 5.

While E could have also existed already at this point, it could nothgee been within distance 1 of
J, since otherwise we would have three single clusters afseicting an interval of length 1, contradicting
Lemma 2. Any request point’ that appears betweehandC' can be assigned to eithgror C' without
increasing the length of a cluster above 1. This holds/feinceC' is of distance at most 1 from poipt
which is the left endpoint of . This holds forC' as the distance fromi to E (or to the future left endpoint
of F, up to whichC' would never be extended) is at most 1. Therefore, the canditof Step 3 hold, and
hence poinp’ is assigned in Step 3 (sin€g remains single throughout the process considered her&). Th
pointp’ is not assigned td if this brings.J within 1 of £.

Note that if a poingpy’ appears betweefi and F, it can be assigned t©' without increasing the length
of C' above 1. Therefore such a poyitis not assigned in Step 1. Such a pgihis not assigned to a cluster

12

in Step 2(a) since otherwigé and £/ would not be single. We have thatis of distance of at most 1 from
J, so if p’ can be assigned B, it is assigned t@' in Step 2(b). Otherwisey is assigned t@' in Step 5.
Consider the leftmost point’ in E. p” was not inE at the time when/ was still single due to Lemma
2 (no matter whetheF existed at that time or not). By the above argument, sjfide a new point between
C andF, it must be inserted t6¢’ and not toF. O

Lemma 7 Considerm > 2 consecutive clusters, where the first and the last clustpart of a short pair,
and the othermn — 2 clusters are single. If all these clusters are in one grotitgkes at leastn — 1 optimal
clusters to serve all the requests of these clustens. # 2, two optimal clusters are needed.

Proof If m = 2, then if the two clusters are joined together as a short parare done by Lemma 4.

If they are not joined together, let the left pair Heand B and the right pair bé and E. The names are
from left to right and we are interested in the optimal cosseove the requests iB and D. SupposeA
and B were joined first. When they were joined, since this happen&tep 2,D already existed, but was
not contained in an interval of length 1 together wittby Lemma 5. Since all their endpoints were request
points beforeB was joined, proving the lemma.

If m = 3, then just beford) is joined toF (using the same notations for the joined clusters), thdesing
clusterC betweenB and D already exists by Lemma 5, and we can apply Lemma B tnd the single
clustersC' and D.

Now considern > 3. Denote the single clusters 6y, . .. , C;,_2. Again let A and B be the short pair
that was joined first. We know by Lemma 1 {if = 4) and Lemma 3 that at least — 3 optimal clusters
are needed to serve the — 2 single clusters. Since the single clusters are all in onemrthere are in fact
m — 3 optimal clusters which serve requests from two single elsstbecause this is the number of gaps
between the single clusters, and no optimal cluster caresequests from three single clusters by Lemma
1. If any of thesem — 3 clusters also serves a request frégor D, then since no two optimal clusters
overlap, it must be one of the outermost optimal clustemstradicting Lemma 6. This proves the existence
of two additional optimal clusters, proving the lemma. O

Theorem 5 This algorithm has a competitive ratio of 5/3.

Proof We first show an upper bound 6f3. We patrtition the real line into intervals. The endpointshef
intervals are shared endpoints of joined pairs. If thereweoeconsecutive clusters that are not in the same
group, we also define an endpoint between them if there wasnetlready. There are two half-bounded
intervals on either side, and each group may begin and emdavgingle cluster.

We consider the competitive ratio of our algorithm on eaclthese intervals separately. Note that as
defined, each interval is entirely contained within one grdéithere are no joined pairs within an interval,
we are done by Lemmas 1 and 3.

Next we consider intervals that have a joined pair at bottseRdr long pairs we assign to both clusters
of the pair 3/2 optimal clusters for the calculations, udiegnma 4.

For our analysis, it is irrelevant where exactly the optilakters are that serve the requests of joined
pairs. This leaves us with only a few cases, depending oryffestof the pairs that form the endpoints of
the current interval, and how many single clusters are betvileem.

First of all, if there is a short pair at both ends, we are domaédiately by Lemma 7. If there is a long
pair at at least one end, then some requests froorsingle clusters at that end might be served by the same
optimal cluster. For additional single clusters after thet have Lemma 3. Regarding an end with a short
pair, we know that whery (the half of the short pair which is inside the current in&dywvas joined, the

13

single clusterC immediately next to it already existed, arddand C' were not contained in an interval of
length 1 by Lemma 5. Moreover, there is no optimal clustercitgerves requests froth C' and a third
single cluster by Lemma 6. Therefore, for the purposes efdhalysis,/ acts like a single interval.
Overall, we find the following results.
Left pair Right pair Number of single clusters Cost Optimasic Proof

short short at most 1 3 2 Lemma7
m > 2 m + 2 m-+1 Lemma 7
short long 0 2 3/2 Assignment
at most 2 4 5/2 Lemma5
m >3 m+ 2 m+1/2 Lemmas 3, 6
long long Oorl 3 2 Note 1
20r3 5 3 Note 2
m >4 m + 2 m Note 3

Note 1: we assign/2 from both ends to this interval, but we may count (at most) apgmal cluster
twice, thus we assign at least 2 in total.

Note 2: Now there is no double counting by Lemma 1.

Note 3: Them single clusters require at least — 1 optimal clusters by Lemma 3. Each long pair
contributes an additional/2 cluster that does not serve points of single clusters (Ledma

Finally we consider intervals that do not have a joined pgbadh ends, but do not contain only single
clusters. If an interval contains only one (joined) clustkis just adds 1 to the online and optimal cost of
the interval that contains the cluster with which it is jaln@nproving the competitive ratio on that interval.

If an interval contains more clusters, then w.l.0.g. let tightmost cluster/ be joined. Consider the
offline cost to serve all requests in the group up to and inetud. If J is part of a long pair, we find a ratio
of 2/1.5 = 4/3 if there is only one single cluster, and the ratio decreasestalLemnmas 1 and 3 if there
are more. IfJ is in a short pair, the ratio i3/2 for one or two single clusters and decreases for more in the
same way. This completes the proof of the upper bound.

We now show a matching lower bound for this algorithm. Leain from 1 toM for some large value
M. First we give requests at the poitis6i+ 1,6i+2,6i+3 fori = 1,..., M. The algorithm createx\/
clusters. Then we give requests at the pofnts- 3/2 for i = 1,..., M, this causes Step 1 to be executed
M times. No new clusters are created in this phase.

We then give requests at poiris+ 4,6: + 5 for i = 1,..., M. The algorithm creates/ additional
clusters. Finally we give requests at poifits+ 7/2,6i + 11/2 fori = 1,..., M. This generate8) more
clusters for a total 05 M clusters.

It is easy to see that all request points can be served by tloé desters]i, i 4 1] for all oddi between
5and6M + 5. Thisisaset ob6M /2 + 1 = 3M + 1 clusters. Thus for largé/, the ratio tends t6/3. [

6 Clustering with temporary points

In this variant of the problem, points arrive and departraliEvery event is either an arrival or a departure
of a point. At every time, a cluster can serve points thatitgko an interval of length at most 1. The points
that need to be taken into account at every time are suchlteatly arrived and did not depart yet. The cost
of an algorithm at a given time is the number of clusters thewused to cover at least one point at this time.
The cost of an algorithm is its maximum cost over time. Eaciviag point must be assigned to a cluster
upon arrival and remains assigned to it until its departure.

14

We can show tight bounds of 2 for this problem. The algorithemuse is @ID, where the algorithm
closes clusters which do not have points assigned to thentodieparture of points.

Theorem 6 GRID has competitive ratio 2 for temporary points, and this istlpessible.

Proof To prove an upper bound, consider a titnat which GRID has a maximum number of clusters, and
the set of points existing at this time (live pointd), Letx be the number of intervals of the forta, a + 1]

that contain at least one live point. At this timeR® hasz open clusters and since it achieves a maximum
cost at time, its cost isz. However, an optimal algorithm can serve by each one ofitstefs points from

at most two clusters, thusPT > % and the upper bound follows.

To prove a lower bound, we construct the sequence in phasesach phase a set of three points arrives,
and then one point departs. After phaséor i = 1,..., we haveoPT = i + 1, but oPT only hasi open
clusters right after this phase. The algorithm will be far¢e use2i clusters aftefi phases, and thus the
lower bound will follow from applyingM phases from an arbitrarily large.

In phasei, the three pointdi, 4i 4+ 1,4: + 2 arrive. These points are too far from any previous point
and thus new clusters must be opened for them. The algorithat use at least two different clusters,
and B for the points4i and4: + 2. If the point4i + 1 is in the same cluster &s, then the pointli departs,
and otherwiseli + 2 departs. An optimal algorithm uses one cluster for the pibiat departs and another
cluster for the points that remain. O

References

[1] James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, aridM@aarts. On-line load balancing with
applications to machine scheduling and virtual circuittirogt Journal of the ACM44:486-504, 1997.

[2] Yossi Azar and Leah Epstein. On-line load balancing afpgerary tasks on identical machin€&dAM
Journal on Discrete Mathematic$8(2):347—-352, 2004.

[3] Luitpold Babel, Bo Chen, Hans Kellerer, and Vladimir K@t Algorithms for on-line bin-packing
problems with cardinality constraintRiscrete Applied Mathematic§43(1-3):238-251, 2004.

[4] Yair Bartal, Stefano Leonardi, Alberto Marchetti-Spamela, Jiri Sgall, and Leen Stougie. Multipro-
cessor scheduling with rejectio®IAM Journal on Discrete Mathematick3:64—78, 2000.

[5] Timothy M. Chan and Hamid Zarrabi-Zadeh. A randomizegloakthm for onine unit clustering. In
Proc. 4th Workshop on Approximation and Online AlgorithM&\QA 2006)pages 121-131, 2006.

[6] Moses Charikar, Chandra Chekuri, Tomas Feder, andeRadjotwani. Incremental clustering and
dynamic information retrievalSIAM Journal on Computing3(6):1417-1440, 2004.

[7] Gyobrgy Dosa and Yong He. Bin packing problems with oéifen penalties and their dual problems.
Information and Computatiqr204(5):795-815, 2006.

[8] Leah Epstein. Bin packing with rejection revisited. Pmoc. of the 4th International Workshop on
Approximation and Online Algorithms (WAOA 200pages 146-159, 2006.

[9] Leah Epstein. Online bin packing with cardinality caagtts. SIAM Journal on Discrete Mathematics
20(4):1015-1030, 2006.

15

[10] Leah Epstein and Asaf Levin. On the max coloring problémProc. 5th Workshop on Approximation
and Online Algorithms (WAOA 20Q7)007. To appear.

[11] Leah Epstein and Rob van Stee. On the online unit clumgtgsroblem. InProc. 5th Workshop on
Approximation and Online Algorithms (WAOA 2002007. To appear.

[12] Michel X. Goemans and David P. Williamson. A general mpmation technigue for constrained
forest problemsSIAM Journal on Computind®4(2):296-317, 1995.

[13] Sudipto Guha, Refael Hassin, Samir Khuller, and Einat Capacitated vertex coveringlournal of
Algorithms 48(1):257-270, 2003.

[14] Andras Gyarfas and Jend Lehel. On-line and firstdibrings of graphsJ. Graph Theory12:217-
227, 1988.

[15] Edward G. Coffman Jr., Michael R. Garey, and David Sn3oim. Dynamic bin packingsIAM Journal
on Computing12:227-258, 1983.

[16] Bala Kalyanasundaram and Kirk Pruhs. Speed is as pahasfclairvoyance Journal of the ACM
47(4):617-643, 2000.

[17] Hal A. Kierstead. Coloring graphs on-line. In Amos Faatd Gergard J. Woeginger, edito@nline
Algorithms: The State of the Apages 281-305. Springer, 1998.

[18] Hal A. Kierstead and William T. Trotter. An extremal fmlem in recursive combinatoricsCongr.
Numer, 33:143-153, 1981.

[19] Laszlo Lovasz, Michael E. Saks, and W. T. Trotter. dmline graph coloring algorithm with sublinear
performance ratioDiscrete Math, 75:319-325, 1989.

[20] Mohammad Mahdian, Yingyu Ye, and Jiawei Zhang. A 2-agpnation algorithm for the soft-
capacitated facility location problem. Froc. of the 6th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APRBR2003) pages 129-140, 2003.

[21] Sriram V. Pemmaraju, Rajiv Raman, and Kasturi R. Vara@da. Buffer minimization using max-
coloring. InProc. of 15th Annual ACM-SIAM Symposium on Discrete Algorg (SODA'04)pages
562-571, 2004.

[22] Hamid Zarrabi-Zadeh and Timothy M. Chan. An improvedathm for online unit clustering. In
Proc. of the 13th Annual International Computing and Comabanics Conference (COCOON 2007)
2007. to appeat.

16

