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Abstract

Online unit clustering is a clustering problem where classification of points is done in an online fash-
ion, but the exact location of clusters is fixed dynamically.We study several variants and generalizations
of the online unit clustering problem, which are inspired byvariants of packing and scheduling problems
in the literature.

1 Introduction

Clustering problems involve a partition of a set of points into groups, which are often called clusters. The
goal is typically the optimization of a given objective function. Clustering problems are fundamental and
have various applications. Such applications include the usage of clustering for computer related purposes,
such as information retrieval and data mining, but also various applications in other fields, such as medical
diagnosis and facility location.

In the online scenario which we study, points are presented one by one to the algorithm, and must be
assigned to clusters upon arrival. An assignment of a point to a cluster becomes fixed at this time, and
cannot be changed later. We measure the performance of an online algorithmA by comparing it to an
optimal offline algorithmOPT using the competitive ratio, which is defined assupσ

A(σ)
OPT(σ) , whereσ is the

input, which is a sequence of request points, andALG(σ) denotes the cost of an algorithmALG for this input,
which is the number of clusters in the basic problem, and is some a function of the clusters in a more general
setting. For randomized algorithms, we replaceA(σ) with E(A(σ)), and define the competitive ratio as
supσ

E(A(σ))
OPT(σ) . An algorithm with competitive ratio of at mostR is calledR-competitive.

A study of an online problem of partitioning points into clusters was studied by Charikar et al. [6]. They
considered the so calledonline unit covering problem. In this problem, a set ofn points needs to be covered
by balls of unit radius, and the goal is to minimize the numberof balls used. They gave an upper bound of
O(2dd log d) and a lower bound ofΩ(log d/ log log log d) on the competitive ratio of deterministic online
algorithms ind dimensions. This problem is fully online in the sense that points arrive one by one, each
point needs to be assigned to a ball upon arrival, and if it is assigned to a new ball, the exact location of
this ball is fixed at this time. The tight bounds on the competitive ratio ford = 1 andd = 2 are2 and4
respectively.
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Chan and Zarrabi-Zadeh [5] introduced theunit clustering problem. In this problem the input and goals
are very similar to unit covering. This is an online problem as well, but it is more flexible in the sense that
it does not require to fix the exact position of each ball in advance. The algorithm needs to make sure that
a set of points which is assigned to one ball (cluster) can always be covered by a ball. The goal is still to
minimize the total number of balls used. Therefore, the algorithm may terminate having clusters that still
have more than one option for their location. In an offline scenario, unit covering and unit clustering are
the same problem. However, in the online model, an algorithmnow has the option of shifting a cluster after
a new point arrives, as long as this cluster still covers all the points that are assigned to it. In [5, 11], the
two dimensional problem is considered in theL∞ norm rather than theL2 norm. Thus “balls”, are actually
squares or cubes. In this paper, we focus on the cased = 1, for which the two metrics are identical.

Note that online clustering is an online graph coloring problem. If we see the clusters as colors, and the
points are seen as vertices, then an edge between two points occurs if they are too far apart to be colored
using the same color. The resulting graph for the one dimensional problem is the complement of a unit
interval graph (alternatively, the problem can be seen as a clique partition problem in unit interval graphs).
See [17] for a survey on online graph coloring. Note that online coloring is a difficult problem that does not
admit a constant competitive ratio already for trees [14, 19]. There is a small number of classes that admit
constant competitive algorithms, one of which is interval graphs [18].

For the one-dimensional case, [5] showed that several naı̈ve algorithms all have a competitive ratio of
2. Some of these algorithms are actually designed to solve the unit covering problem and thus cannot be
expected to overcome this bound (due to the lower bound of [6]). They also showed that any randomized
algorithm for unit covering has a competitive ratio of at least 2. To demonstrate the difference between unit
covering and unit clustering, they presented a randomized algorithm with a competitive ratio of15/8 =
1.875 (later improved by the same authors to 1.8 in [22]). Finally,they showed a lower bound of4/3
on the competitive ratio of any randomized algorithm. The deterministic lower bound that is implied by
their work is3/2 = 1.5. A multi-dimensional extension of their algorithm, that they design, results in a
15/4 = 3.75-competitive algorithm for two dimensions, and a2d · 15/16-competitive algorithm for general
d.

Epstein and van Stee [11] improved these results by presenting a relatively simpledeterministicalgo-
rithm which attains a competitive ratio of7/4 = 1.75. Using the construction presented by Chan and
Zarrabi-Zadeh [5], this implies an upper bound of2d · 7/8 in d dimensions. Moreover, they improve the
randomized lower bound to3/2 = 1.5 and show a deterministic lower bound of8/5 = 1.6. Finally they
give a deterministic lower bound of 2 and a randomized lower bound of11/6 ≈ 1.8333 in two dimensions.
The deterministic lower bound holds for theL2 norm as well.

In the current paper, we study several variants and generalizations of this problem. These are presented
below together with our results. For most versions, we give matching upper and lower bounds on the best
possible performance of an online algorithm. In all versions except the one with resource augmentation, the
maximum possible length of a cluster is still 1 as before.

We study the following problems.

1. Clustering with rejection. An input point is associated with a non-negative value, which is called
its rejection penalty. For each point that is not assigned toa cluster, its penalty must be paid. Problems
with rejection have application in customer service, wherethe rejection penalty represents the com-
pensation to be paid to a disappointed customer, or if a customer cannot be refused, it is the cost for
servicing this customer in an alternative way (such as out-sourcing). Many combinatorial optimiza-
tion and online problems were studied in this scenario, see e.g. [12, 4, 7, 8]. We design an algorithm
of competitive ratio at most 3 for this problem and prove a matching lower bound.
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2. Max clustering. Every input point has a weight. Points are to be assigned to clusters, so that every
cluster would not exceed the length of 1. The cost of a clusteris the maximum weight of any point
assigned to it. The goal is to minimize the total cost of the clusters. Max coloring of graphs was
introduced by Pemmaraju, Raman and Varadarajan [21] and studied in an online environment in [10].

We design an algorithm of competitive ratio at most 2 for thisproblem and prove a matching lower
bound.

3. Clustering with cardinality constraints. In this variant we are given a parameterk, where each
cluster can serve at mostk points that can all be covered by one interval of length 1. This model
assumes that the service provided by the cluster is limited to a given number of clients.

A large amount of work on capacitated variants of combinatorial optimization and online problems
exists in the literature [20, 13, 3, 9].

We design algorithms of competitive ratio32 for k = 2 and2 for k ≥ 3. We prove matching lower
bounds fork = 2 andk ≥ 4 and a lower bound of 1.75 fork = 3.

4. Clustering with resource augmentation. Resource augmentation, or extra resource analysis is
a generalization of competitive analysis, where the onlinealgorithm may use resources that are not
available to an optimal offline algorithm to which the onlinealgorithm is compared [16]. We study
a resource augmented variant of clustering where online algorithm uses clusters of length at mostb,
whereb > 1 is a given parameter, whereas the clusters of the offline algorithm are still of length at
most 1. We show tight bounds of 1 for anyb ≥ 2, a lower bound of3/2 for any cluster size in(1, 2),
and an algorithm of competitive ratio of exactly5/3 for b ≥ 3/2.

5. Clustering with temporary request points. In this variant requests are not permanent but arrive
and leave over time. The duration of a request point is unknown until the time it leaves. The cost of
an algorithm at any point in time is determined by the number of clusters that are serving a non empty
subset of request points.

Previous work on online problems with temporary requests can be found in [15, 1, 2].

We design an algorithm of competitive ratio at most 2 for thisproblem and prove a matching lower
bound.

Note that in this paper we consider only the (absolute) competitive ratio and not the asymptotic com-
petitive ratio. This is motivated by the fact that in all the variants that we consider one can repeat the input
sequence multiple times in disjoint parts of the real line. These disjoint parts cannot be assigned to the same
sets of clusters, and therefore the cost of the solution is the sum of all costs (of the different parts).

2 Clustering with rejection

In this variant of the problem, each pointp is associated with a non-negative weightwp. Each arriving point
must be either assigned to a cluster upon arrival or rejected. The set of points assigned to one cluster must
lie within an interval of length1.

A rejected point is not assigned to a cluster but the algorithm pays a penalty for not assigning it. Thus
the cost of an algorithm is the sum of penalties paid for rejected point plus the number of clusters used.

This problem is the generalization of unit clustering. Unitclustering is the special case where all rejec-
tion penalties are infinite.
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The following algorithm GRID ([5]) is used as a building block in this section.
For every integer−∞ < k < ∞, GRID considers points arriving in the intervalIk = (k, k + 1] separately
and independently from other points. Upon arrival of a pointin Ik, a new cluster is opened in the interval
[k, k + 1] and all future points in this interval.

We prove a tight bound of 3 for this problem. We begin with a description of an algorithm which is
based on GRID. For everyk ∈ Z, the algorithm considers points arriving in the intervalIk = (k, k + 1]
separately and independently from other points. Denote thesubsequence (of the input sequence) of points
which belong to this interval byPk. As long as the total weight of point inPk does not exceed12 , all such
points are rejected. Letpk be the first point which causes the total weight of points inPk that arrived so far
to be at least12 . Upon arrival ofpk, a new cluster is opened in the interval[k, k + 1] and all future points in
Pk are assigned to it. We call this algorithm REJECTIVE GRID (GRID).

Theorem 1 The competitive ratio ofGRID is 3 and this is best possible.

Proof We start with the proof of the upper bound. Consider an optimal offline algorithmOPT. We analyze
each interval of the form(k, k + 1] separately, thus we assign the cost ofOPT to such intervals so that the
sum of costs assigned to the union of all intervals is exactlyOPT. The cost of every point rejected byOPT is
simply assigned to the unique interval it belongs to. For every cluster ofOPT, this cluster contains points of
exactly two such intervals. We therefore assign its cost in equal shares to both these intervals.

Consider now an intervalIk = (k, k + 1] that contains at least one point (the algorithm pays a total of
zero on an interval with no points and thus the cost for this interval clearly does not exceed three times the
cost ofOPT that was assigned to this interval).

If the total weight of points inIk, which we denote byrk, is less than12 , the algorithm does not open a
cluster for this interval and thus paysrk. On the other hand,OPT either covers these points by at least one
cluster, or rejects all these points. In the first case, at least one cluster ofOPT overlaps withIk, so a cost of
at least12 from the cost ofOPT was assigned toIk. In the second case, a cost of at leastrk was assigned to
this cluster. In both cases the assigned cost is no smaller than the cost of GRID.

Finally, if rk ≥ 1
2 , the cost of GRID on Ik is no larger than3

2 . This cost results from the rejection
penalties of all points arriving beforepk, which is less than12 , and the cost of one cluster, which is1.
Similarly to the previous case,OPT either has at least one cluster overlapping withIk, or rejects all points
of Pk. In the first case a cost of at least1

2 is assigned to this cluster and in the second case, a cost ofrk. The
ratio of the cost of GRID on Ik and the cost assigned toIk is no larger than 3.

We next prove a lower bound of 3 on the competitive ratio of anyalgorithm. LetN be a large enough
integer. Consider the following sequence. The first phase consists of the points fori = 1, . . ., each one of
these points has a weight of1N . These points are presented one by one until a cluster is opened. The point
for which a cluster is opened is the last point of this phase. If no cluster is opened, the first phase stops after
4N points are given, in this case no further points will be defined and the sequence stops. Otherwise, let
i′ be the index of the last point presented. The next phase consists of multiple instances of the pointi′−1

16N ,
where each such instance has a penalty of1

N . Note that the distance between these points and the point
for which a cluster was opened is1 + 1

16N , thus the points of the second phase cannot be assigned to the
same cluster. Such points are presented fori = 1, . . ., until a new cluster is opened or until4N points are
presented. The sequence terminates here in both cases.

Consider first the case where4N points were presented in the first phase and no cluster was opened. All
points of the first phase lie in an interval of length1

4 , thus they can fit in one cluster andOPT = 1. The total
rejection penalty paid by the algorithm is4, which results in a competitive ratio of4.
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Next, we consider the case that4N points were presented in the second phase, but no additionalcluster
was opened. Note that the interval[ i

′−1
16N , 1 + i′−1

16N ] contains all points but the last point of phase 1, and thus
OPT ≤ 1 + 1

N . However, the algorithm pays at least 1 for the first phase and4 for the rejection penalties of
the second phase, which gives a total of at least5. This case results in a competitive ratio of more than4.

Consider now the case where clusters were opened in both phases. Leti′′ denote the index of the point
for which a cluster was opened in the second phase. The cost ofthe algorithm isi′+i′′

N + 2. As we saw
above, we haveOPT ≤ 1 + 1

N . Another possible offline solution would be to reject all points, and get the
cost i′+i′′

N . Thus if i′+i′′

N ≤ 1 thenOPT ≤ i′+i′′

N and otherwiseOPT ≤ 1 + 1
N . If i′+i′′

N ≤ 1, the cost of the

algorithm is at leasti
′+i′′

N + 2 ≥ 3( i′+i′′

N ) ≥ 3OPT. Moreover, if i′+i′′

N > 1, the cost of the algorithm is at
least i′+i′′

N + 2 > 3 ≥ 3N
N+1 OPT. SinceN can be chosen to be arbitrarily large, we obtain a lower boundof

3 on the competitive ratio. �

3 Max clustering

In this variant of the problem, each pointp is again associated with a non-negative weightwp. Each arriving
point must be assigned to a cluster upon arrival. The set of points assigned to one cluster must lie within an
interval of length1. The cost of a cluster is the largest weight of any point assigned to this cluster. The cost
of an algorithm is the sum of costs of the clusters defined by the algorithm.

This problem is the generalization of unit clustering. Unitclustering is the special case where all weights
are equal.

We prove a tight bound of 2 for this problem. The upper is achieved by simply applying GRID for this
problem.

Theorem 2 The competitive ratio ofGRID is 2 and this is best possible.

Proof We start with the proof of the upper bound. Consider an optimal offline algorithmOPT. We analyze
each interval of the form(k, k + 1] separately, thus we assign the cost ofOPT to such intervals so that the
sum of costs assigned to the union of all intervals is exactlyOPT. For every cluster ofOPT of costw, this
cluster contains points of exactly two such intervals. We therefore assign its cost in equal shares to both
these intervals, i.e., a cost ofw

2 to each one of them.
Consider now an intervalIk = (k, k + 1] that contains at least one point (the algorithm pays a total of

zero on an interval with no points and thus the cost for this interval clearly does not exceed two times the
cost ofOPT that was assigned to this interval).

Consider an intervalIk for which the cluster in GRID has weighta. ThusIk contains a request point of
weighta. This point is covered by some cluster ofOPT which has weight at leasta. Thus a cost of at leasta2
was assigned to this cluster. Therefore the ratio of the costof GRID on Ik and the cost assigned toIk is no
larger than 2.

We next prove a lower bound of 2 on the competitive ratio of anyalgorithm. LetM be a large enough
integers, and letN = M2. Consider the following sequence. The first request point is0, and has weight1.
Clearly the algorithm must open a cluster for this point. Additional points are presented until the algorithm
opens an additional cluster or until all these points are presented. The points are1 + i

N for i = 1, . . . ,N ,
where the point1 + i

N has weight1 + iM
N . If no additional cluster was opened, a last request for the point

1 + 1
N with weightM + 1 arrives.

If the last point arrived, it means that the algorithm must open a cluster for this point, since its distance
from the very first point is larger than1. Thus the cost of the algorithm for the first cluster is the weight of
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the point1, which isM + 1, and the cost of the second cluster isM + 1 as well. An optimal algorithm
would assign all points but the first one to one cluster, having a cost ofM + 1 for this cluster, and the first
point can be assigned to an additional cluster, which will have the cost1. This gives a competitive ratio of
at least2(M+1)

M+2 = 2 − 2
M .

If the last point did not arrive, it means that the sequence stopped right after a second cluster was opened.
Let i′ ≥ 1 denote the index of the last request point that was presented. An optimal algorithm would use
a single cluster of weight1 + i′M

N for all requests. The algorithm uses two clusters, where thefirst cluster

contains all points but the last one, and thus has the costs1 + (i′−1)M
N and1 + i′M

N . We get a competitive

ratio of at least2+(2i′−1)M/N
1+i′M/N = 2M+2i′−1

M+i′ ≥ 2 − 1
M .

SinceM can be taken to be arbitrarily large, this results in a lower bound of 2 on the competitive ratio
of any algorithm. �

4 Clustering with cardinality constraints

In this section we consider the unit clustering problem, where a parameterk limits the cardinality of the set
of items that can be assigned to one cluster. Clearly, the casek = 1 is trivial.

A cluster can contain a setS of points if it is contained in an interval of length 1, and on top of that,
|S| ≤ k.

The next proposition resolves the casek = 2. For this case we can apply a greedy algorithm that inserts
an item into an existing cluster if possible, and otherwise opens a new cluster for it. Note that this approach
is based on a greedy algorithm for finding a maximum cardinality matching.

Proposition 1 The competitive ratio of the greedy algorithm fork = 2 is 3
2 , and this is best possible.

Proof For the upper bound, we show the relation to maximum matchings. Letm be the cardinality of a
maximum matching on the graph of request points (when two points share an edge if the distance between
them is at most1). Letn be the number of request points. We haveOPT = n−m, since an optimal algorithm
is one that maximizes the number of clusters that cover two points. Since for each edge of the maximum
matching implied byOPT at least one endpoint was assigned to a cluster with two points by the algorithm
(by the greedy assignment rule), we get that at leastm points are in such clusters. Thus the cost of the
algorithm is at mostn − m

2 . Usingn ≥ 2m we getn−m/2
n−m ≤ 1 + m/2

n−m ≤ 3
2 .

For the lower bound, consider the two points1 and2. If the algorithm assigns them to two clusters the
sequence stops. ClearlyOPT = 1, which gives a competitive ratio of2. Otherwise, two additional points0
and3 are presented. The algorithm opens two new clusters, whereas OPT = 2, this gives a competitive ratio
of 3

2 . �

We next consider the casek = 3.

Theorem 3 Any algorithm fork = 3 has competitive ratio of at least74 = 1.75.

Proof The first three points are in positions2, 2.5, 3. These three points must be assigned by the online
algorithm to one cluster that we denote byA (otherwise, the input sequence stops and the online algorithm
paid at least twice the cost of the optimal offline solution).Note that by the cardinality constraint no further
point can be assigned toA. We say thatA is full. The next point is in position3.5 and it must be assigned
to a new cluster that we denote byB. The fifth point is in position4.5, and it can be assigned toB or to a
new clusterC.
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• Assume that the fifth point is assigned to clusterB. The location ofB is then fixed. The sixth point
is in position5, and it cannot be assigned toA or B, and hence we must open a new cluster denoted
asC for this point. The seventh point is in position4, and it can be assigned to eitherB or C or to a
new clusterD.

– Assume that the seventh point is assigned to clusterB. B is now full. The next point is in
position4.4. This point cannot be assigned to clusterB due to the cardinality constraint, and
hence it must be assigned to eitherC or to a new clusterD.

∗ Assume that point 8 is assigned to clusterC. In this case, the next points are at positions
1.7, 2.8, 3.9, 5.5. None of these points can be assigned to existing clusters, thus there are
now seven clusters. The points can be served using only four clusters that contain three
points each:[1.7, 2.5], [2.8, 3.5], [3.9, 4.4], [4.5, 5.5]. Therefore, the competitive ratio in
this case is at least7/4.

∗ Assume that point 8 is assigned to clusterD. The next two points are at 3.3 and 2.1, two
new clusters are opened for them. Two additional points thenappear at 1.1 and 2.2, and
at least one additional cluster must be opened for them, giving seven clusters. The points
can be served using only four clusters:[1.1, 2.1], [2.2, 3], [3.3, 4], [4.4, 5]. Therefore, the
competitive ratio in this case is at least7/4.

– Assume that the seventh point is assigned to clusterC. The position ofC is then fixed. The
next points appear at positions1.1, 3.4, 5.5 and must be assigned to three new clusters. Then a
point arrives at position 2.1. If a new cluster is opened for it, we stop. If it is assigned to the
cluster which contains 1.1 (this is the only other possibility), then an additional point appears
at position 2.2, forcing the seventh cluster. The points canbe served using only four clusters:
[1.1, 2.1], [2.2, 3], [3.4, 4], [4.5, 5.5]. Therefore, the competitive ratio in this case is at least7/4.

– Assume that the seventh point is assigned to clusterD. Now, two points appear at positions
2.9 and 1.8. Neither one can be assigned to an existing cluster, so there are now six clusters.
The points can be served using only three clusters:[1.8, 2.5], [2.9, 3.5], [4, 5]. Therefore, the
competitive ratio in this case is at least2.

• Assume that the fifth point is assigned to clusterC. The sixth point is in position1.1, and it must
be assigned to a new clusterD. The seventh point is in position0.1 and it can be either assigned to
clusterD or to a new clusterE.

– Assume that the seventh point is assigned to clusterD. The next points appear at positions
0, 1.2, 2.3 and must be assigned to three new clusters, sinceA is full and the location ofD is
fixed. The points can be served using four clusters:[0, 0.1], [1.1, 2], [2.3, 3], [3.5, 4.5]. Therefore,
the competitive ratio in this case is at least7/4.

– Assume that the seventh point is assigned to clusterE. The eighth point is in position4. The
input so far can be served using three clusters:[0.1, 1.1], [2, 3], [3.5, 4.5]. Therefore, the online
algorithm cannot use a new cluster for the eighth point. Since the distance to the sixth and
seventh point is too large, the online algorithm must assignthe eighth point toB or C.

∗ Assume that the eighth point is assigned to clusterB. The next points are at positions
3.3, 3.4. At most one of these can be assigned toB, the other one must be assigned to a new
cluster. Finally there is a point at position 2.2, it must also be assigned to a new cluster. The
points can be served using four clusters:[0.1, 1.1], [2, 2.5], [3, 3.4], [3.5, 4.5]. Therefore, the
competitive ratio is again at least7/4.
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∗ Assume that the 8-th point is assigned to clusterC. The final two points appear at positions
5.5 and 2.3 and must be assigned to new clusters:A is full and C cannot serve both 5.5
and 4. The points can be served using four clusters:[0.1, 1.1], [2, 2.5], [3, 4], [4.5, 5.5].
Therefore, the competitive ratio in this case is at least7/4.

We conclude that in all cases the competitive ratio of the online algorithm is at least7/4. �

Finally, we consider the casek ≥ 4. For this case we can show tight bounds of2. The algorithm
CONSTRAINED GRID (CGRID) acts as follows. CGRID applies GRID in order to partition the requests
points into mega-clusters. Each mega-cluster is partitioned in an online fashion into clusters consisting of
at mostk points. All these clusters are defined in the exact same interval as the mega-cluster. Thus, there is
at most one active cluster for each mega-cluster at each time. A new point is assigned to a mega-cluster and
then to an active cluster of this mega-cluster. If as a resultthe active cluster hask points, it is closed. If a
point is assigned to a mega-cluster which has no active cluster, such an active cluster is opened.

Theorem 4 CGRID has a competitive ratio of 2, which is best possible for anyk ≥ 4.

Proof Consider the costOPT′ of an optimal solutionOPT’ to the problemP ′ where every cluster must be
contained in an interval of the form(k, k + 1]. We can show thatOPT′ ≤ 2OPT as follows. Given a cluster
of OPT, [x, y] wherey ≤ x + 1. We can assume without loss of generality thatx andy are request points,
otherwise we can reduce the length of the cluster so that it fulfills this property. Letz = ⌈x⌉. If z ≥ y, we
are done, since the interval is already contained in an interval of the form(k, k + 1]. Otherwise, letz′ be the
leftmost request point in(x, y] that is larger thanz, since there input consists of a finite number of points,
and sincey is a request point andy > z, the pointz′ must exist. We split this cluster of into the two parts
[x, z] and[z′, y]. We show that our algorithm provides an optimal solution toP ′. Since clusters ofOPT’ are
always contained in interval of the form(j, j + 1], given a set of pointsJk in the interval(k, k + 1], ⌈ |Jk|

k ⌉
clusters ofOPT’ are required for this set, and this is exactly the number of clusters that the algorithm uses.
Thus the competitive ratio of CGRID is at most 2.

To prove the lower bound, we define the following sequence. Itstarts withk requests,k− 2 of the point
1 and two of the point2. At this timeOPT = 1 and thus if at least two clusters are opened we are done. If
a single cluster is opened, this cluster cannot be used any further. Next, two points arrive which are43 and
5
3 . If two additional clusters are opened, the point3 is requested. We haveOPT = 2 (by assigning thek − 2
points at1, and the two points at43 and 5

3 to one cluster, and the other three points to another cluster). The
new point is too far from any cluster that can still receive points and thus the algorithm uses four clusters.
Otherwise, a single new cluster is opened. Two new points arepresented;83 and 1

3 . These points require
two new clusters. However, an optimal solution would be to assign allk points in the interval[13 , 4

3 ] to one
cluster, and the remaining four points in[53 , 8

3 ] to another cluster. The competitive ratio is again2. �

5 Clustering with resource augmentation

In this variant of the problem, the online algorithm uses clusters of maximum lengthb which is larger than
the length of clusters used by an optimal offline algorithm which is used for comparison. Thus each arriving
point must be assigned to a cluster upon arrival. The set of points assigned to one cluster by an online
algorithm must lie within an interval of lengthb. The cost of an algorithm is the number of the clusters
defined by the algorithm. An offline algorithm can assign a setof pointsS to one cluster if the maximum
distance between any two points isS is at most1.
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The typical question in problems with resource augmentation is whether it is possible to reach a com-
petitive ratio of1, or an even smaller competitive ratio. We show that the former is impossible forb < 2 and
the latter is never possible.

Proposition 2 For anyb > 1, the competitive ratio of any algorithm is at least1. For any1 < b < 2, the
competitive ratio of any algorithm is at least3

2 .

Proof An input which consists of a single point proves the first claim. The second claim follows from the
lower bound proof in Proposition 1. The first case is the same.In the second case, two new clusters must be
opened ifb < 2. �

We define the following algorithm CENTER, which is based on an algorithm suggested in [5] for the
standard unit covering problem. For every new request point, it is assigned to an existing cluster if possible.
Otherwise, for a request atx, a cluster[x − 1, x + 1] is opened.

Proposition 3 The competitive ratio ofCENTER for b ≥ 2 is 1.

Proof We assign each cluster opened by CENTER to a cluster used by an optimal offline algorithmOPT.
The assignment is done so that at most one cluster of centre isassigned to each cluster ofOPT, and thus the
competitive ratio follows.

Given a cluster of CENTER, A = [a − 1, a + 1], the pointa is a request point. ThusOPT must have a
clusterO which contains it. We assignA to O. Note thatO is contained inA. We next show that no other
clusters of CENTER are assigned toO. Assume by contradiction that clusterB = [b−1, b+1] of CENTER is
assigned toO. Thenb is a request point. Without loss of generality, assume thatB is opened afterA. Then
the pointb does not belong to the interval[a − 1, a + 1], and thusb does not belong toO, contradiction. �

5.1 An algorithm with resource augmentation forb ∈ [3
2
, 2)

The algorithm is based on Greedy with clusters of length 1. Ituses the following additional rule. Clusters
never overlap.

The main idea of this algorithm is simple: we take advantage of the resource augmentation by not having
to create new clusters between two clusters that are relatively close together (Step 1) and we do our best to
avoid the situation where three clusters intersect a commoninterval of length 1 (Step 2).

We first discuss a general property of algorithms of this type. An algorithm is calledthrifty if it never
opens a new cluster for a request point which fits in an existing cluster without extending its length beyond
1.

Lemma 1 For a thrifty algorithm, there can be no interval of length 1 which completely contains two
clusters.

Proof Assume that two clusters that are defined by a thrifty algorithm are contained in an interval of length
1. LetA andB be two such consecutive clusters (i.e., such that there is nocluster between them).

Without loss of generality, denote byA the cluster that is defined earlier by the algorithm. Letb be the
first request point inB. We consider the time at whichb is assigned to a cluster. Since the pointb fits in
A without extending its length above 1, a thrifty algorithm cannot createB at this time, which leads to a
contradiction. �

The algorithm is defined as follows. A cluster is calledsingleunless it has beenjoined with another
cluster in Step 1 or in Step 2. Letp be the new arriving point.
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1. If p appears between two existing single clustersA andB, and the minimum distance between two
points fromA andB is at most 1, andp cannot be assigned to either cluster while keeping the lengths
at most 1, we extend both clusters to the point that is in the middle of the gap between them. Nowp is
contained in (at least) one of the clusters. Assignp to a cluster it is contained in. We now callA and
B joinedclusters.

2. If p appears between two existing single clustersA andB, andp can be assigned to both of them
while keeping the lengths at most 1, there are three cases.

(a) If there exist two more clustersC andD that are at most 1 away fromp, join A andB at point
p. Assignp arbitrarily toA or B.

(b) If there exists one more clusterC such thatd(p,C) ≤ 1, assignp to the cluster amongA andB
which is closest toC.

(c) Else, assignp arbitrarily toA or B.

3. If p appears between a single clusterA and a joined clusterB, B was joined in Step 2,d(p, q) ≤ 1
for all request pointsq ∈ A andd(p, q) ≤ 1 for all pointsq ∈ B, assignp to B unless this bringsB
within a distance of 1 of another clusterC; in that case, assignp to A.

4. If p appears between two joined clusters and can be assigned to both of them while keeping their
lengths at most3/2, assignp arbitrarily to one of them.

5. If p can be assigned to only one existing cluster while keeping its length at most 1, do so.

6. If p is not assigned to a cluster by the previous rules, open a new cluster forp.

For an illustration, see Figure 1. A pair of clusters that is joined in Step 1 is called along pair, other
joined pairs are calledshort pairs. It can be seen that our algorithm is thrifty. Thus, it follows from Lemma
1 that if Case 2(a) occurs, clustersC andD must indeed be at different sides ofp. Similarly, in Case 2(b),
A andB cannot be on the same side ofp, since otherwise they would be contained in an interval of size 1.

Note that Lemma 1 holds even if there are joined clusters nearby. Specifically, the lemma shows that for
two single clustersA andB that both contain only one request point, we haved(A,B) > 1.

A pair of clusters are calledconsecutiveif there is no cluster that is located between them. In the
following, we will repeatedly discuss sets of consecutive clustersC1, C2, . . .. In such cases, denote the
leftmost request point contained inCi by ℓi and the rightmost request point byri. We now consider a fixed
optimal offline algorithm. We call the clusters used by this algorithm “optimal clusters”. The clusters used
by our algorithm are called “online clusters”. We say that anoptimal clusterconnectstwo online clusters if
it intersects both of them.

As noted in [5], it is trivial to provide an optimal solution for a given input offline: starting from the left,
repeatedly define a cluster of length 1 that has as its left endpoint the leftmost unserved point. It can be seen
that in this solution, no two clusters overlap (not even at their endpoints). We will compare our algorithm to
this solution.

Lemma 2 There can be no interval of length 1 which intersects with three different online single clusters.

Proof Suppose there is such an interval which contains requests from the single clustersC1, C2 andC3

(from left to right). Note that these three clusters are consecutive clusters, since otherwise, if there is a
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Figure 1: Creation of a joined pair in Step 1 and 2(a), and other assignments

clusterC4 betweenC1 andC2 or betweenC2 andC3, thenC2 andC4 are fully contained in an interval of
length1 in contradiction to Lemma 1.

The assumption impliesd(r1, ℓ3) ≤ 1. Let q be the oldest request point inC2. There are two cases. Ifq
is newer thanr1 andℓ3, C1 andC3 would have been joined together whenq arrived in Step 1 or Step 2, or
q would have been assigned to one of them in Step 2 or 5.

Otherwise, without loss of generality, letr1 be newer thanℓ3 (and q). Whenr1 arrives, it could be
assigned toC2, sincer1 is less than 1 away from the furthest point inC2. If our algorithm does not do this,
it must be because there was a second possible cluster to assign r1 to (Step 2). However, in this case,C1 and
C2 end up joined (Step 2(a)) orr1 gets assigned toC2 becauseC3 is less than 1 away fromr1 (Step 2(b)).
�

Definition 1 A groupof online clusters is a maximal set of consecutive clusters such that each two succes-
sive clusters are ‘connected’ by an optimal cluster.

That is, ifC1, . . . , Cm (numbered from left to right) are consecutive online clusters that form a group, there
is an optimal cluster which contains bothri andℓi+1 for i = 1, . . . ,m − 1. (These optimal clusters are not
necessarily all distinct.)

If there is more than one group, for each group we have that theleftmost point of the leftmost online
cluster is not to the right of the leftmost point of the leftmost optimal cluster by the way we construct our
optimal solution. Two clusters that are joined together arenot necessarily in the same group.

Lemma 3 For m ≥ 3, at leastm − 1 optimal clusters are needed to serve all the request points in m
consecutive single clusters that are in the same group.

11



Proof If at mostm − 2 optimal clusters serve the requests inm consecutive single clusters, then there is
either an optimal cluster which servesall requests of at least two single clusters (impossible by Lemma 1)
or, if there is no such cluster, an optimal cluster that serves some requests from at least three online clusters
by the pigeonhole principle. This is impossible by Lemma 2. �

Lemma 4 It requires three optimal clusters to serve all requests from a long pair, and two optimal clusters
to serve all requests from a short pair. A long pair has at least one optimal cluster that is fully contained in
the union of the pair of online clusters.

Proof In Step 1,p is more than one away from the furthest endpoints of bothA andB, which are both
request points. This gives three points, each one of which must be in a different optimal cluster, which
implies that three optimal clusters are required to serve all the points in these two clusters. The cluster that
servesp is completely contained within the interval spanned byA andB.

In Step 2(a), the clustersA andB are not contained in an interval of length 1 by Lemma 1. Since their
endpoints are request points, the lemma follows. �

Lemma 5 Consider a clusterJ in a short pair, that is joined to a cluster on its left. The first cluster on its
right, sayC, already existed whenJ was joined. Just beforeJ was joined,J andC were not contained in
an interval of length 1.

Proof WhenJ was joined in Step 2, there was a clusterC ′ next to it thatJ does not get joined to.C ′ is at
most 1 away from the pointp that causedJ to be joined. Therefore, a future request pointp′ betweenC ′ and
J could be assigned toJ , since they are less than 1 away fromp which is the left endpoint ofJ . Since our
algorithm is thrifty, it does not open a new cluster forp′. ThereforeC ′ = C. The second statement follows
from Lemma 1. �

Lemma 6 There can be no optimal clusterX which serves requests from two single clustersC, E and a
joined clusterJ , unlessJ was joined in Step 1.

Proof Assume by contradiction thatX exists. By Lemma 1, these are three consecutive clusters.
We first prove thatJ is either to the left or to the right of the clustersC andE. Since online clusters do

not overlap, if this claim does not hold, then the cluster to which J is joined,J ′, as well asJ , are between
C andE. Since the distance betweenC andE is at most 1, we conclude thatJ andJ ′ are contained in an
interval of length 1, which contradicts Lemma 4.

Without loss of generality, we assume that the order of the three clusters from left to right isJ , C, E. J
was joined to a clusterJ ′ in Step 2, soC must have existed whenJ was joined by Lemma 5.

While E could have also existed already at this point, it could not yet have been within distance 1 of
J , since otherwise we would have three single clusters all intersecting an interval of length 1, contradicting
Lemma 2. Any request pointp′ that appears betweenJ andC can be assigned to eitherJ or C without
increasing the length of a cluster above 1. This holds forJ sinceC is of distance at most 1 from pointp
which is the left endpoint ofJ . This holds forC as the distance fromJ to E (or to the future left endpoint
of E, up to whichC would never be extended) is at most 1. Therefore, the conditions of Step 3 hold, and
hence pointp′ is assigned in Step 3 (sinceC remains single throughout the process considered here). The
point p′ is not assigned toJ if this bringsJ within 1 of E.

Note that if a pointp′ appears betweenC andE, it can be assigned toC without increasing the length
of C above 1. Therefore such a pointp′ is not assigned in Step 1. Such a pointp′ is not assigned to a cluster
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in Step 2(a) since otherwiseC andE would not be single. We have thatp′ is of distance of at most 1 from
J , so if p′ can be assigned toE, it is assigned toC in Step 2(b). Otherwise,p′ is assigned toC in Step 5.

Consider the leftmost pointp′′ in E. p′′ was not inE at the time whenJ was still single due to Lemma
2 (no matter whetherE existed at that time or not). By the above argument, sincep′′ is a new point between
C andE, it must be inserted toC and not toE. �

Lemma 7 Considerm ≥ 2 consecutive clusters, where the first and the last cluster are part of a short pair,
and the otherm− 2 clusters are single. If all these clusters are in one group, it takes at leastm− 1 optimal
clusters to serve all the requests of these clusters. Ifm = 2, two optimal clusters are needed.

Proof If m = 2, then if the two clusters are joined together as a short pair,we are done by Lemma 4.
If they are not joined together, let the left pair beA andB and the right pair beD andE. The names are
from left to right and we are interested in the optimal cost toserve the requests inB andD. SupposeA
andB were joined first. When they were joined, since this happenedin Step 2,D already existed, but was
not contained in an interval of length 1 together withB by Lemma 5. Since all their endpoints were request
points beforeB was joined, proving the lemma.

If m = 3, then just beforeD is joined toE (using the same notations for the joined clusters), the single
clusterC betweenB andD already exists by Lemma 5, and we can apply Lemma 6 toB and the single
clustersC andD.

Now considerm > 3. Denote the single clusters byC1, . . . , Cm−2. Again letA andB be the short pair
that was joined first. We know by Lemma 1 (ifm = 4) and Lemma 3 that at leastm − 3 optimal clusters
are needed to serve them − 2 single clusters. Since the single clusters are all in one group, there are in fact
m − 3 optimal clusters which serve requests from two single clusters, because this is the number of gaps
between the single clusters, and no optimal cluster can serve requests from three single clusters by Lemma
1. If any of thesem − 3 clusters also serves a request fromB or D, then since no two optimal clusters
overlap, it must be one of the outermost optimal clusters, contradicting Lemma 6. This proves the existence
of two additional optimal clusters, proving the lemma. �

Theorem 5 This algorithm has a competitive ratio of 5/3.

Proof We first show an upper bound of5/3. We partition the real line into intervals. The endpoints ofthe
intervals are shared endpoints of joined pairs. If there aretwo consecutive clusters that are not in the same
group, we also define an endpoint between them if there was notone already. There are two half-bounded
intervals on either side, and each group may begin and end with a single cluster.

We consider the competitive ratio of our algorithm on each ofthese intervals separately. Note that as
defined, each interval is entirely contained within one group. If there are no joined pairs within an interval,
we are done by Lemmas 1 and 3.

Next we consider intervals that have a joined pair at both ends. For long pairs we assign to both clusters
of the pair 3/2 optimal clusters for the calculations, usingLemma 4.

For our analysis, it is irrelevant where exactly the optimalclusters are that serve the requests of joined
pairs. This leaves us with only a few cases, depending on the types of the pairs that form the endpoints of
the current interval, and how many single clusters are between them.

First of all, if there is a short pair at both ends, we are done immediately by Lemma 7. If there is a long
pair at at least one end, then some requests fromtwosingle clusters at that end might be served by the same
optimal cluster. For additional single clusters after that, we have Lemma 3. Regarding an end with a short
pair, we know that whenJ (the half of the short pair which is inside the current interval) was joined, the
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single clusterC immediately next to it already existed, andJ andC were not contained in an interval of
length 1 by Lemma 5. Moreover, there is no optimal cluster which serves requests fromJ , C and a third
single cluster by Lemma 6. Therefore, for the purposes of this analysis,J acts like a single interval.

Overall, we find the following results.
Left pair Right pair Number of single clusters Cost Optimal cost Proof

short short at most 1 3 2 Lemma 7
m ≥ 2 m + 2 m + 1 Lemma 7

short long 0 2 3/2 Assignment
at most 2 4 5/2 Lemma 5
m ≥ 3 m + 2 m + 1/2 Lemmas 3, 6

long long 0 or 1 3 2 Note 1
2 or 3 5 3 Note 2
m ≥ 4 m + 2 m Note 3

Note 1: we assign3/2 from both ends to this interval, but we may count (at most) oneoptimal cluster
twice, thus we assign at least 2 in total.

Note 2: Now there is no double counting by Lemma 1.
Note 3: Them single clusters require at leastm − 1 optimal clusters by Lemma 3. Each long pair

contributes an additional1/2 cluster that does not serve points of single clusters (Lemma4).
Finally we consider intervals that do not have a joined pair at both ends, but do not contain only single

clusters. If an interval contains only one (joined) cluster, this just adds 1 to the online and optimal cost of
the interval that contains the cluster with which it is joined, improving the competitive ratio on that interval.

If an interval contains more clusters, then w.l.o.g. let therightmost clusterJ be joined. Consider the
offline cost to serve all requests in the group up to and including J . If J is part of a long pair, we find a ratio
of 2/1.5 = 4/3 if there is only one single cluster, and the ratio decreases due to Lemnmas 1 and 3 if there
are more. IfJ is in a short pair, the ratio is3/2 for one or two single clusters and decreases for more in the
same way. This completes the proof of the upper bound.

We now show a matching lower bound for this algorithm. Leti run from 1 toM for some large value
M . First we give requests at the points6i, 6i+1, 6i+2, 6i+3 for i = 1, . . . ,M . The algorithm creates2M
clusters. Then we give requests at the points6i + 3/2 for i = 1, . . . ,M , this causes Step 1 to be executed
M times. No new clusters are created in this phase.

We then give requests at points6i + 4, 6i + 5 for i = 1, . . . ,M . The algorithm createsM additional
clusters. Finally we give requests at points6i + 7/2, 6i + 11/2 for i = 1, . . . ,M . This generates2M more
clusters for a total of5M clusters.

It is easy to see that all request points can be served by the set of clusters[i, i + 1] for all oddi between
5 and6M + 5. This is a set of6M/2 + 1 = 3M + 1 clusters. Thus for largeM , the ratio tends to5/3. �

6 Clustering with temporary points

In this variant of the problem, points arrive and depart online. Every event is either an arrival or a departure
of a point. At every time, a cluster can serve points that belong to an interval of length at most 1. The points
that need to be taken into account at every time are such that already arrived and did not depart yet. The cost
of an algorithm at a given time is the number of clusters that are used to cover at least one point at this time.
The cost of an algorithm is its maximum cost over time. Each arriving point must be assigned to a cluster
upon arrival and remains assigned to it until its departure.
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We can show tight bounds of 2 for this problem. The algorithm we use is GRID, where the algorithm
closes clusters which do not have points assigned to them dueto departure of points.

Theorem 6 GRID has competitive ratio 2 for temporary points, and this is best possible.

Proof To prove an upper bound, consider a timet, at which GRID has a maximum number of clusters, and
the set of points existing at this time (live points),Jt. Letx be the number of intervals of the form(a, a + 1]
that contain at least one live point. At this time, GRID hasx open clusters and since it achieves a maximum
cost at timet, its cost isx. However, an optimal algorithm can serve by each one of its clusters points from
at most two clusters, thusOPT ≥ t

2 and the upper bound follows.
To prove a lower bound, we construct the sequence in phases. In each phase a set of three points arrives,

and then one point departs. After phasei, for i = 1, . . ., we haveOPT = i + 1, but OPT only hasi open
clusters right after this phase. The algorithm will be forced to use2i clusters afteri phases, and thus the
lower bound will follow from applyingM phases from an arbitrarily largeM .

In phasei, the three points4i, 4i + 1, 4i + 2 arrive. These points are too far from any previous point
and thus new clusters must be opened for them. The algorithm must use at least two different clusters,A
andB for the points4i and4i + 2. If the point4i + 1 is in the same cluster as4i, then the point4i departs,
and otherwise4i + 2 departs. An optimal algorithm uses one cluster for the pointthat departs and another
cluster for the points that remain. �
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