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Abstract. In the variable-sized online bin packing problem, one has to assign items to bins one
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1. Introduction. In this paper, we investigate the bin packing problem, one
of the oldest and most thoroughly studied problems in computer science [3, 5]. In
particular, we investigate a natural generalization of the classical online bin packing
problem known as online variable-sized bin packing. We show improved upper bounds
and the first lower bounds for this problem and in the process encounter several strange
fractal-like curves.

Problem definition. In the classical bin packing problem, we receive a se-
quence σ of pieces p1, p2, . . . , pN . Each piece has a fixed size in (0, 1]. In a slight
abuse of notation, we use pi to indicate both the ith piece and its size. We have an
infinite number of bins each with capacity 1. Each piece must be assigned to a bin.
Further, the sum of the sizes of the pieces assigned to any bin may not exceed its
capacity. A bin is empty if no piece is assigned to it; otherwise, it is used. The goal
is to minimize the number of bins used.

The variable-sized bin packing problem differs from the classical one in that the
bins do not all have the same capacity. There are an infinite number of bins of each
capacity α1 < α2 < · · · < αm = 1. The goal now is to minimize the sum of the
capacities of the bins used.

In the online versions of these problems, each piece must be assigned in turn,
without knowledge of the next pieces. Since it is impossible in general to produce the
best possible solution when computation occurs online, we consider approximation
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algorithms. Basically, we want to find an algorithm which incurs cost which is within
a constant factor of the minimum possible cost, no matter what the input is. This
constant factor is known as the asymptotic performance ratio.
A bin packing algorithm uses bounded space if it has only a constant number of

bins available to accept items at any point during processing. These bins are called
open bins. Bins which have already accepted some items, but which the algorithm
no longer considers for packing, are closed bins. While bounded space algorithms are
sometimes desirable, it is often the case that unbounded space algorithms can achieve
lower performance ratios.
We define the asymptotic performance ratio more precisely. For a given input

sequence σ, let costA(σ) be the sum of the capacities of the bins used by algorithm A
on σ. Let cost(σ) be the minimum possible cost to pack pieces in σ. The asymptotic
performance ratio for an algorithm A is defined to be

R∞
A = lim sup

n→∞
max
σ

{
costA(σ)
cost(σ)

∣∣∣∣ cost(σ) = n
}
.

The optimal asymptotic performance ratio is defined to be

R∞
OPT = infA

R∞
A .

Our goal is to find an algorithm with asymptotic performance ratio close to R∞
OPT.

Previous results. The online bin packing problem was first investigated by
Johnson [9, 10]. He showed that the Next Fit algorithm has performance ratio 2.
Subsequently, it was shown by Johnson et al. that the First Fit algorithm has per-
formance ratio 17

10 [11]. Yao showed that Revised First Fit has performance ratio 5
3

and further showed that no online algorithm has performance ratio less than 3
2 [21].

Brown [1] and Liang [14] independently improved this lower bound to 1.53635. This
was subsequently improved by van Vliet to 1.54014 [19]. Chandra [2] shows that the
preceding lower bounds also apply to randomized algorithms.
Define

ui+1 = ui(ui − 1) + 1, u1 = 2,

and

h∞ =
∞∑
i=1

1

ui − 1 ≈ 1.69103.

Lee and Lee showed that the Harmonic algorithm, which uses bounded space,
achieves a performance ratio arbitrarily close to h∞ [13]. They further showed that no
bounded space online algorithm achieves a performance ratio less than h∞ [13]. A se-
quence of further results has brought the upper bound down to 1.58889 [13, 15, 16, 17].
The variable-sized bin packing problem was first investigated by Friesen and

Langston [7, 8]. Kinnersley and Langston gave an online algorithm with performance
ratio 7

4 [12]. Csirik proposed the Variable Harmonic algorithm and showed that
it has performance ratio at most h∞ [4]. This algorithm is based on the Harmonic
algorithm of Lee and Lee [13]. Like Harmonic, it uses bounded space. Csirik also
showed that if the algorithm has two bin sizes 1 and α < 1 and if it is allowed to
pick α, then a performance ratio of 7

5 is possible [4]. Seiden has recently shown that
Variable Harmonic is an optimal bounded-space algorithm [18].
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The related problem of variable-sized bin covering has been solved by Woeginger
and Zhang [20] and extended by Epstein [6].

Our results. In this paper, we present new algorithms for the variable-sized
online bin packing problem. By combining the upper bounds for these algorithms, we
improve the upper bound for this problem from 1.69103 to 1.63597. Our technique
extends the general packing algorithm analysis technique developed by Seiden [17].
We also show the first lower bounds for variable-sized online bin packing. We focus
on the case in which there are two bin sizes. However, our techniques are applicable
to the general case. We think that our results are particularly interesting because of
the unusual fractal-like curves that arise in the investigation of our algorithms and
lower bounds.

2. Upper bounds. To begin, we present two different online algorithms for
variable-sized bin packing.
We focus in on the case in which there are two bin sizes, α1 < 1 and α2 = 1, and

examine how the performance ratios of our algorithms change as a function of α1.
Since it is understood that m = 2, we abbreviate α1 using α. Both of our algorithms
are combinations of the Harmonic and Refined Harmonic algorithms. Both have
a real parameter µ ∈ ( 13 , 1

2 ). We call these algorithms vrh1(µ) and vrh2(µ). vrh1(µ)
is defined for all α ∈ (0, 1), but vrh2(µ) is defined only for

α > max

{
1

2(1− µ) ,
1

3µ

}
.(2.1)

First, we describe vrh1(µ). Define n1 = 50, n2 = �n1α�, ε = 1/n1, and

T =

{
1

i

∣∣∣∣ 1 ≤ i ≤ n1

}
∪
{
α

i

∣∣∣∣ 1 ≤ i ≤ n2

}
∪ {µ, 1− µ}.

Define n = |T |. Note that it may be that n < n1 + n2 + 2 since T is not a multiset.
Rename the members of T as t1 = 1 > t2 > t3 > · · · > tn = ε. For convenience,
define tn+1 = 0. The interval Ij is defined to be (tj+1, tj ] for j = 1, . . . , n + 1. Note
that these intervals are disjoint and that they cover (0, 1]. A piece of size s has type j
if s ∈ Ij . Define the class of an interval Ij to be α if tj = α/k for some positive
integer k; otherwise, the class is 1.
The basic idea of vrh1 is as follows: When each piece arrives, we determine the

interval Ij to which it belongs. If this is a class 1 interval, we pack the item in a size 1
bin using a variant of Refined Harmonic. If it is a class α interval, we pack the
item in a size α bin using a variant of Harmonic.

vrh1 packs bins in groups. All the bins in a group are packed in a similar fashion.
The groups are determined by the set T . We define

g =

{
3 if α > 1− µ,
2 otherwise.

h =



6 if α/2 > µ,
5 if α > µ and α/2 ≤ µ,
4 otherwise.

Note that these functions are defined so that tg = 1− µ and th = µ. The groups are
named (g, h), 1, . . . , g − 1, g + 1, g + 2, . . . , n.
Bins in group j ∈ {1, 2, . . . , n} \ {g} contain only type j pieces.
Bins in group (g, h) all have capacity 1. Closed bins contain one type g piece and

one type h piece.
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vrh1
Initialize x← 0 and y ← 0.
For each item p:

j ← type of p.
If j = n then pack p using Next Fit in a group n bin.
Else, if j = g then Put(p, (g, h)).
Else, if j = h:

x← x+ 1.
If y < �τx�:

y ← y + 1.
Put(p, (g, h)).

Else Put(p, h).
Else Put(p, j).

Put(p,G)
If there is no open bin in G then allocate a new bin b.
Else, let b be an arbitrary open bin in G.
Pack p in b.

Fig. 2.1. The vrh1(µ) algorithm and the Put subroutine.

Bins in group n all have capacity 1 and are packed using the Next Fit algorithm.
There is always one open bin in group n. When a type n piece arrives, if the piece fits
in the open bin, it is placed there. If not, the open bin is closed, the piece is placed
in a newly allocated open group n bin.

For group j ∈ {1, 2, . . . , n − 1} \ {g}, the capacity of bins in the group depends
on the class of Ij . If Ij has class 1, then each bin has capacity 1, and each closed bin
contains �1/tj� items of type j. Note that tj is the reciprocal of an integer for j �= h,
and therefore �1/tj� = 1/tj . If Ij has class α, then each bin has capacity α, and each
closed bin contains �α/tj� items of type j. Similarly to before, tj/α is the reciprocal
of an integer, and therefore �α/tj� = α/tj . For each of these groups, there is at most
one open bin.

The algorithm has a real parameter τ ∈ [0, 1], which for now we fix to be 1
7 .

Essentially, a proportion τ of the type h items are reserved for placement with type g
items.

A precise definition of vrh1 appears in Figure 2.1. The algorithm uses the sub-
routine Put(p,G), where p is an item and G is a group.

We analyze vrh1 using the technique of weighting systems introduced in [17]. A
weighting system is a tuple (R	,w, ξ), where R

	 is a real vector space, w is a weighting
function, and ξ is a consolidation function. We shall simply describe the weighting
system for vrh1 and assure the reader that our definitions meet the requirements put
forth in [17].

For vrh1, we use � = 3 and define a, b, and c to be orthogonal unit basis vectors.
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The weighting function is

w(x) =




b if x ∈ Ig,
(1− τ)a

2
+ τ c if x ∈ Ih,

ax

1− ε if x ∈ In,
a ti otherwise.

The consolidation function is ξ(xa+y b+z c) = x+max{y, z}. The following lemma
allows us to upper bound the performance of vrh1 using the preceding weighting
system.

Lemma 2.1. For all input sequences σ,

costvrh1(σ) ≤ ξ
(

n∑
i=1

w(pi)

)
+O(1).

Proof. We count the cost for bins in each group.
First, consider bins in group n. Each of these is packed using Next Fit and

contains only pieces of size at most ε. By the definition of Next Fit, each closed bin
contains items of total size at least 1−ε, and there is at most one open bin. Therefore,
the number of bins used is at most

1

1− ε
∑
pi∈In

pi + 1 = a ·
∑
pi∈In

w(pi) +O(1).

Now consider group j with j /∈ {h, (g, h), n}. There is at most one open bin in
this group. The capacity x of each bin is equal to the class of Ij . The number of items
in each closed bin is �x/tj�. Since j /∈ {h, (g, h), n}, we have �x/tj� = x/tj . Putting
these facts together, the cost is at most∑

pi∈Ij

x

�x/tj� + 1 =
∑
pi∈Ij

tj + 1 = a ·
∑
pi∈Ij

w(pi) +O(1).

Next, consider group h. Let k be the number of type h items in σ. The algorithm
clearly maintains the invariant that �τk� of these items go to group (g, h). The
remainder are packed two to a bin in capacity 1 bins. At most one bin in group h is
open. The total is at most

k − �τk�
2

+ 1 =
∑
pi∈Ih

1− τ
2
+O(1) = a ·

∑
pi∈Ih

w(pi) +O(1).

Finally, consider group (g, h). Let f be the number of type g items in σ. The number
of bins is

max{f, �τk�} = max{f, τk}+O(1) = max

b ·

∑
pi∈Ig

w(pi), c ·
∑
pi∈Ih

w(pi)


+O(1).

Putting all these results together, the total cost is at most

a·
n∑

i=1

w(pi)+max

{
b ·

n∑
i=1

w(pi), c ·
n∑

i=1

w(pi)

}
+O(1) = ξ

(
n∑

i=1

w(pi)

)
+O(1).
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From [17], we also have the following lemma.
Lemma 2.2. For any input σ on which vrh1 achieves a performance ratio of c,

there exists an input σ′ where vrh1 achieves a performance ratio of at least c and
1. every bin in an optimal solution is full, and
2. every bin in some optimal solution is packed identically.
Given these two lemmas, the problem of upper bounding the performance ratio

of vrh1 is reduced to that of finding the single packing of an optimal bin with maxi-
mal weight/size ratio. We consider the following integer program: Maximize ξ(x)/β
subject to

x = w(y) +
n−1∑
j=1

qjw(tj);(2.2)

y = β −
n−1∑
j=1

qj tj+1,(2.3)

y > 0,(2.4)

qj ∈ N for 1 ≤ j ≤ n− 1,(2.5)

β ∈ {1, α},(2.6)

over variables x, y, β, q1, . . . , qn−1. Intuitively, qj is the number of type j pieces in an
optimal bin. y is an upper bound on space available for type n pieces. Note that
strict inequality is required in (2.4) because a type j piece is strictly larger than tj+1.
Call this integer linear program P. The value of P upper bounds the asymptotic
performance ratio of vrh1.
The value of P is easily determined using a branch and bound procedure very

similar to those in [17, 18]. Define

ψi = max

{
(a+ b+ c) ·w(ti), 1

1− ε
}

for 1 ≤ i ≤ n− 1; ψn =
1

1− ε .

Intuitively, ψi is the maximum contribution to the objective function for a type i item
relative to its size. We define π so that

ψπ(1) ≥ ψπ(2) ≥ · · · ≥ ψπ(n).

The procedure is displayed in Figure 2.2. The heart of the procedure is the subroutine
Tryall, which basically finds the maximum weight which can be packed into a bin
of size β. Using π, we try first to include items which contribute the most to the
objective relative to their size. This is a heuristic. The variables v and y keep track
of the weight and total size of items included so far. The variable j indicates that the
current item type is π(j). In the For loop at the end of Tryall, we try each possible
number of type π(j) items, starting with the largest possible number. First packing
as many items as possible is a heuristic which seems to speed up computation. The
current maximum is stored in x. When we enter Tryall, we first compute an upper
bound given the packing so far, which is stored in z. When j = n, this upper bound
is exactly the objective value. If z ≤ x, we do not have to consider any packing
reachable from the current one, and we drop straight through. In the main routine,
we simply initialize x, call Tryall for the two bin sizes, and return x.
Now we describe vrh2(µ). Redefine

T =

{
1

i

∣∣∣∣ 1 ≤ i ≤ n1

}
∪
{
α

i

∣∣∣∣ 1 ≤ i ≤ n2

}
∪ {αµ, α(1− µ)}.
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x← 1.
Tryall(1, 0, 1, 1).
Tryall(1, 0, α, α).
Return x.

Tryall(j,v, y, β)
z ← (

ξ(v) + y ψπ(j)

)
/β.

If z > x then:
If j = n then:

x← z.
Else:

For i← �y/tπ(j)+1� − 1, . . . , 0:
Tryall(j + 1, v+ iw(tπ(j)), y − itπ(j)+1, β).

Fig. 2.2. The algorithm for computing P along with subroutine Tryall.

Define n1, n2, ε, and n as for vrh1. Again, rename the members of T as t1 = 1 >
t2 > t3 > · · · > tn = ε. Equation (2.1) guarantees that 1/2 < α(1 − µ) < α < 1 and
1/3 < αµ < α/2 < 1/2, so we have g = 3 and h = 6. The only difference from vrh1
is that (g, h) bins have capacity α. Otherwise, the two algorithms are identical. We
therefore omit a detailed description and analysis of vrh2.
We display the upper bound on the performance ratio achieved using the best of

vrh1(µ), vrh2(µ), and Variable Harmonic in Figure 4.3. This upper bound is
achieved by optimizing µ for each choice of α. Our upper bound is at most 373

228 <
1.63597 for all α, which is the performance ratio of Refined Harmonic in the classic
bin packing context.

3. Lower bounds. We now consider the question of lower bounds. Prior to this
work, no general lower bounds for variable-sized online bin packing were known.
Our method follows that of Brown [1], Liang [14], and van Vliet [19]. We give

some unknown online bin packing algorithm A one of k possible different inputs.
These inputs are defined as follows: Let ' = s1, s2, . . . , sk be a sequence of item sizes
such that 0 < s1 < s2 < · · · < sk ≤ 1. Let ε be a small positive constant. We define
σ0 to be the empty input. Input σi consists of σi−1 followed by n items of size si+ ε.
Algorithm A is given σi for some i ∈ {1, . . . , k}.
A pattern with respect to ' is a tuple p = 〈size(p), p1, . . . , pk〉, where size(p) is a

positive real number and pi, 1 ≤ i ≤ k, are nonnegative integers such that
k∑

i=1

pi si < size(p).

Intuitively, a pattern describes the contents of some bin of capacity size(p). Define
P(', β) to be the set of all patterns p with respect to ' with size(p) = β. Further
define

P(') =
m⋃
i=1

P(', αi).

Note that P(') is necessarily finite. Given an input sequence of items, an algorithm
is defined by the numbers and types of items it places in each of the bins it uses.
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Specifically, any algorithm is defined by a function Φ : P(') �→ R≥0. The algorithm
uses Φ(p) bins containing items as described by the pattern p. We define φ(p) =
Φ(p)/n.
Consider the function Φ that determines the packing used by online algorithm A

for σk. Since A is online, the packings it uses for σ1, . . . , σk−1 are completely deter-
mined by Φ. We assign to each pattern a class, which is defined as

class(p) = min{i | pi �= 0}.
Intuitively, the class tells us the first sequence σi, which results in some item being
placed into a bin packed according to this pattern. That is, if the algorithm packs
some bins according to a pattern which has class i, then these bins will contain one
or more items after σi. Define

Pi(') = {p ∈ P(') | class(p) ≤ i}.
Then, if A is determined by Φ, its cost for σi is simply

n
∑

p∈Pi(�)

size(p)φ(p).

Since the algorithm must pack every item, we have the following constraints:

n
∑

p∈P(�)

φ(p) pi ≥ n for 1 ≤ i ≤ k.

For a fixed n, define χi(n) to be the optimal offline cost for packing the items in σi.
The following lemma gives us a method of computing the optimal offline cost for each
sequence.

Lemma 3.1. For 1 ≤ i ≤ k, χ∗ = limn→∞ χi(n)/n exists and is the value of the
following linear program: Minimize∑

p∈Pi(�)

size(p)φ(p)(3.1)

subject to

1 ≤
∑

p∈P(�)

φ(p) pj for 1 ≤ j ≤ i(3.2)

over variables χi and φ(p), p ∈ P(').
Proof. Clearly, the linear program always has a finite value between

∑i
j=1 sj and i.

For any fixed n, the optimal offline solution is determined by some φ. It must satisfy
the constraints of the linear program, and the objective value is exactly the cost
incurred. Therefore, the linear program lower bounds the optimal offline cost. The
linear program is a relaxation in that it allows a fractional number of bins of any
pattern, whereas a legitimate solution must have an integral number. Rounding the
relaxed solution up to get a legitimate one, the change in the objective value is at
most |P(')|/n.
Given the construction of a sequence, we need to evaluate

c = min
A
max

i=1,...,k
lim sup
n→∞

costA(σi)
χi(n)

.
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As n → ∞, we can replace χi(n)/n by χ∗i . Once we have the values χ∗1, . . . , χ∗k, we
can readily compute a lower bound for our online algorithm.

Lemma 3.2. The optimal value of the linear program: Minimize c subject to

c ≥ 1

χ∗i

∑
p∈Pi(�)

size(p)φ(p) for 1 ≤ i ≤ k,

1 ≤
∑

p∈P(�)

φ(p) pi for 1 ≤ i ≤ k
(3.3)

over variables c and φ(p), p ∈ P('), is a lower bound on the asymptotic performance
ratio of any online bin packing algorithm.

Proof. For any fixed n, any algorithm A has some Φ which must satisfy the second
constraint. Further, Φ should assign an integral number of bins to each pattern.
However, this integrality constraint is relaxed, and

∑
p∈Pi(�)

size(p)φ(p) is 1/n times
the cost to A for σi as n→∞. The value of c is just the maximum of the performance
ratios achieved on σ1, . . . , σk.
Although this is essentially the result we seek, a number of issues are left to be

resolved.
The first is that these linear programs have a variable for each possible pattern.

The number of such patterns is potentially quite large, and we would like to reduce
the linear program size if possible. We show that this goal is indeed achievable. We
say that a pattern p of class i is dominant if

si +

k∑
j=1

pj sj > size(p).

Let p be a nondominant pattern with class i. There exists a unique dominant pattern q
of class i such that pj = qj for all i �= j. We call q the dominator of p with respect to
class i.

Lemma 3.3. In computing the values of the linear programs in Lemmas 3.1
and 3.2, it suffices to consider only dominant patterns.

Proof. We transform a linear program solution by applying the following operation
to each nondominant pattern p of class i: Let x = φ(p) in the original solution. We
set φ(p) = 0 and increment φ(q) by x, where q is the dominator of p with respect to i.
The new solution remains feasible, and its objective value has not changed. Further,
the value of φ(p) is zero for every nondominant p; therefore, these variables can be
safely deleted.
Given a sequence of item sizes ', we can compute a lower bound Lm(', α1, . . . ,

αm−1) using the following algorithm:
1. Enumerate the dominant patterns.
2. For 1 ≤ i ≤ k, compute χi via the linear program given in Lemma 3.1.
3. Compute and return the value of the linear program given in Lemma 3.2.

Step 1 is most easily accomplished via a simple recursive function. Our concern in
the remainder of the paper shall be to study the behavior of Lm(', α1, . . . , αm−1) as
a function of ' and α1, . . . , αm−1.

4. Lower bound sequences. Up to this point, we have assumed that we were
given some fixed item sequence '. We consider now the question of choosing '. We
again focus on the case in which there are two bin sizes and examine properties
of L2(', α1). We again abbreviate α1 using α and L2 using L.
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To begin, we define the idea of a greedy sequence. Let ε denote the empty
sequence, and let ∧ denote the sequence concatenation operator. The greedy se-
quence Γτ (β) for capacity β with cutoff τ is defined by

γ(β) =
1

� 1
β �+ 1

, Γτ (β) =

{
ε if β < τ ,
γ(β) ∧ Γτ (β − γ(β)) otherwise.

The sequence defines the item sizes which would be used if we packed a bin of ca-
pacity β using the following procedure: At each step, we determine the remaining
capacity in our bin. We choose as the next item the largest reciprocal of an integer
which fits without using the remaining capacity completely. We stop when the re-
maining capacity is smaller than τ . Note that, for τ = 0, we get the infinite sequence.
We shall use Γ as a shorthand for Γ0.
The recurrence ui described in section 1, which is found in connection with

bounded-space bin packing [13], gives rise to the sequence

1

ui
=
1

2
,
1

3
,
1

7
,
1

43
,
1

1807
, . . . .

This turns out to be the infinite greedy sequence Γ(1). Somewhat surprisingly, it is
also the sequence used by Brown [1], Liang [14], and van Vliet [19] in the construction
of their lower bounds. In essence, they analytically determine the value of L1(Γτ (1)).
Liang and Brown lower bound the value, while van Vliet determines it exactly.
This well-known sequence is our first candidate. Actually, we use the first k item

sizes in it, and we resort them so that the algorithm is confronted with items from
smallest to largest. In general, this resorting seems to be a good heuristic since the
algorithm has the most decisions to make about how the smallest items are packed
but, on the other hand, has the least information about which further items will be
received. The results are shown in Figure 4.1.
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Examining Figure 4.1, one immediately notices that L(Γτ (1), α) exhibits some
very strange behavior. The curve is highly discontinuous. Suppose we have a finite
sequence ', where each item size is a continuous function of α ∈ (0, 1). Tuple p is
a potential pattern if there exists an α ∈ (0, 1) such that p is a pattern. The set of
breakpoints of p with respect to ' is defined to be

B(p, ') =

{
α ∈ (0, 1)

∣∣∣∣∣
k∑

i=1

pi si = size(p)

}
.

Let P∗ be the set of all potential patterns. The set of all breakpoints is

B(') =
⋃

p∈P∗
B(p, ').

Intuitively, at each breakpoint, some combinatorial change occurs, and the curve may
jump. In the intervals between breakpoints, the curve behaves nicely as summarized
by the following lemma.

Lemma 4.1. Let ' be a finite item sequence with each item size a continuous
function of α ∈ (0, 1). In any interval I = (�, h) which does not contain a breakpoint,
L(', α) is continuous. Furthermore, for all α ∈ I,

L(', α) ≥ min
{
�+ h

2h
,
2�

�+ h

}
L
(
', 1

2 (�+ h)
)
.

This lemma follows as a corollary from the following lemma.
Lemma 4.2. Let ' be a finite item sequence with each item size a continuous

function of α ∈ (0, 1). Let I be any interval which does not contain a breakpoint, and
let α be any point in I. The following two results hold:

1. If δ > 0 is such that α+ δ ∈ I, then

L(', α+ δ) ≥
(
1− δ

α+ δ

)
L(', α).

2. If δ > 0 is such that α− δ ∈ I, then

L(', α− δ) ≥
(
1− δ

α

)
L(', α).

Proof. We first prove statement 1. Denote by χ∗i (x) the value of χ
∗
i at α = x.

For 1 ≤ i ≤ k, we have

χ∗i (α+ δ) ≤
α+ δ

α
χ∗i (α).

To see this, note that any feasible Φ at α is also feasible at α+ δ since both points are
within I and (3.2) does not change within this interval. Each term in (3.1) increases
by at most (α + δ)/α. Now consider the linear program of Lemma 3.2. Consider
some arbitrary feasible solution φ at α. At α+ δ, this solution is still feasible (except
that possibly c must increase). In the sum 1/χ∗i

∑
p∈Pi(�)

size(p)φ(p), the factor 1/χ∗i
decreases by at most α/(α+ δ), and size(p) cannot decrease.
Now consider statement 2. The arguments are quite similar. For 1 ≤ i ≤ k, we

have

χ∗i (α− δ) ≤ χ∗i (α).
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Again, a feasible solution remains feasible. Further, its objective value (3.1) cannot
increase. Considering the linear program of Lemma 3.2, we find that, for each fea-
sible solution, each sum 1/χ∗i

∑
p∈Pi(�)

size(p)φ(p) decreases by a factor of at most

(α− δ)/α.
Considering Figure 4.1 again, there are sharp drops in the lower bound near the

points 1
3 ,

1
2 , and

2
3 . It is not hard to see why the bound drops so sharply at those points.

For instance, if α is just larger than 1
2+ε, then the largest items in Γ(1) can each be put

in their own bin of size α. If α ≥ 2
3 +2ε, two items of size

1
3 + ε can be put pairwise in

bins of size α. In short, in such cases, the online algorithm can pack some of the largest
elements in the list with very little wasted space—hence the low resulting bound.

This observation leads us to try other sequences in which the last items cannot be
packed well. A first candidate is the sequence α,Γ(1−α). As expected, this sequence
performs much better than Γ(1) in the areas described above.

It is possible to find further improvements for certain values of α. For instance, the
sequence α/2,Γ(1−α/2) also works well in some places, and we used other sequences
as well. We give two examples in Figure 4.2.

0 0.2 0.4 0.6 0.8 1
α

1.1

1.2

1.3

1.4

1.5

1.6

0 0.2 0.4 0.6 0.8 1
α

1.1

1.2

1.3

1.4

1.5

1.6

Fig. 4.2. Two lower bound sequences for τ = 1/1000 : On the left is α,Γτ (1 − α), and on the
right is α

2
,Γτ (1− α

2
).

As a general guideline for finding sequences, items should not fit too well in either
bin size. If an item has size x, then min{1 − � 1

x�x, α − �αx �x} should be as large as
possible. In areas where a certain item in a sequence fits very well, that item should
be adjusted (e.g., use an item 1/(j + 1) instead of the item 1/j), or a completely
different sequence should be used. (This helps explain why the algorithms have a low
competitive ratio for α close to 0.7: in that area, this minimum is never very large.)

Furthermore, as in the classical bin packing problem, sequences that are bad
for the online algorithm should have very different optimal solutions for each prefix
sequence. Finally, the item sizes should not increase too quickly or too slowly: If
items are very small, the smallest items do not affect the online performance much,
while if items are close in size, the sequence is easy because the optimal solutions for
the prefixes are alike.

In addition to the three sequences already described, namely, the greedy sequence,
α,Γ(1 − α), and α/2,Γ(1 − α/2), we have found that the following sequences yield
good results in restricted areas: α, 1

3 ,
1
7 ,

1
43 ;

1
2 ,

1
4 ,

1
5 ,

1
21 ; and

1
2 ,

α
2 ,

1
9 ,Γτ (

7
18 − α

2 ).

Using Lemma 4.2, we obtain the following main theorem of this section.

Theorem 4.3. Any online algorithm for the variable-sized bin packing problem
with m = 2 has asymptotic performance ratio at least 495176908800/370749511199 >
1.33561.
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0 0.2 0.4 0.6 0.8 1
α

1.3

1.4

1.5

1.6

0.6 0.65 0.7 0.75 0.8
α

1.35

1.4

1.45

1.5

1.55

Fig. 4.3. The best upper and lower bounds for variable-sized online bin packing. The bottom
figure is a closeup of [.6, .8]. The upper bound is best of the vrh1, vrh2, and Variable Harmonic
algorithms.
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Proof. First, note that, for α ∈ (0, 1/43], the sequence 1
2 ,

1
3 ,

1
7 ,

1
43 yields a lower

bound of 217/141 > 1.53900 as in the classic problem: Bins of size α are of no use.
We use the sequences described in the preceding paragraphs. For each sequence ',

we compute a lower bound on (1/43, 1) using the following procedure.
Define ε = 1/10000. We break the interval (0, 1) into subintervals using the

lattice points ε, 2ε, . . . , 1 − ε. To simplify the determination of breakpoints, we use
a constant sequence for each subinterval. This constant sequence is fixed at the
upper limit of the interval. That is, throughout the interval [�ε, �ε + ε), we use the
sequence '|α=	ε+ε. Since the sequence is constant, a lower bound on the performance
ratio of any online bin packing algorithm with α ∈ [�ε, �ε+ ε) can be determined by
the following algorithm:

1. '′ ← '|α=	ε+ε.
2. Initialize B ← {�ε, �ε+ ε}.
3. Enumerate all the patterns for '′ at α = �ε+ ε.
4. For each pattern:
(a) z ←∑k

i=1 pi si.
(b) If z ∈ (�ε, �ε+ ε), then B ← B ∪ {z}.

5. Sort B to get b1, b2, . . . , bj .
6. Calculate and return the value:

min
1≤i<j

min

{
bi + bi+1

2bi+1
,
2bi

bi + bi+1

}
L
(
'′, 1

2 (bi + bi+1)
)
.

We implemented this algorithm in Mathematica and used it to find lower bounds
for each of the aforementioned sequences. The results are shown in Figures 4.2
and 4.3. The lowest lower bound is 495176908800/370749511199 in the interval
[0.7196, 0.7197).

5. Conclusions. We have shown new algorithms and lower bounds for variable-
sized online bin packing with two bin sizes. By combining these algorithms with
Variable Harmonic, choosing for each size α of the second bin the best algorithm
for that size, we find an algorithm with asymptotic performance ratio of at most
373
228 < 1.63597 for all α. The best previous upper bound was h∞ ≈ 1.69103.
The largest gap between the performance of the algorithm and the lower bound is

0.18193 achieved for α = 0.9071. The smallest gap is 0.03371 achieved for α = 0.6667.
Note that, for α ≤ 1

2 , there is not much differing from the classical problem: having
the extra bin size does not help the online algorithm much. To be more precise, it
helps about as much as it helps the offline algorithm.
Our work raises the following questions: Is there a value of α where it is possible

to design a better algorithm and show a matching lower bound? Or, can a lower
bound be shown anywhere that matches an existing algorithm? Note that at the
moment there is also a small gap between the competitive ratio of the best algorithm
and the lower bound in the classical bin packing problem.
Another interesting open problem is analyzing variable-sized bin packing with an

arbitrary number of bin sizes.
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