
SIGACT News Online Algorithms Column 23

Rob van Stee
University of Leicester

Leicester, United Kingdom

For this first column of 2014, my predecessor as editor of this column, Marek Chrobak, graciously
offered to write a contribution, discussing online aggregation problems. Readers might remember
the TCP acknowledgement problem which has been studied in various papers. This survey considers
generalizations of that problem, with emphasis on some (very) recent results. Thanks a lot to Marek
for his contribution!

I would like to invite more contributions to this column, be it surveys, conference reports, or
technical articles related to online algorithms and competitive analysis. If you are considering
becoming a guest writer, don’t hesitate to mail me at rob.vanstee@le.ac.uk.

Online Aggregation Problems

Marek Chrobak∗

February 14, 2014

1 Introduction

This paper is a survey of research on online algorithms for aggregation problems. Generally, an
aggregation problem can be thought of as a scheduling problem, where tasks can be executed in
batches. The cost of executing a batch is fixed, independent of the number of tasks in the batch.
There is also a “conformity” cost associated with a task being assigned to a batch. This cost may
depend on the job and the batch. Typically, the conformity costs represent the waiting cost (delay),
and we will often use this term in the paper. But other types of conformity costs may appear in
some applications, for example the cost of pre- or post-processing if the batch processing does not
fully meet the requirements of the task. Our objective is to minimize the total cost:

cost = (total batch cost) + (total conformity cost).

A simple example of such an aggregation problem is the well-known Dynamic TCP Acknowledge-
ment Problem, where we wish to schedule transmissions of control (acknowledgement) messages
along a network link. These messages are very small and any number of them can be aggregated
and transmitted as a single packet. The tradeoff is that more aggregation reduces congestion but
it also increases average delay. The objective is to minimize the sum of the number of transmitted
packets and the total delay of all messages.

The TCP acknowledgement problem can be naturally extended from a single link to trees of
arbitrary depth. Control packets can be generated at all nodes and they need to be transmitted to
the root. We are allowed to aggregate them at intermediate nodes, to reduce cost. This extension
was studied by Khanna et al. [12] and Brito et al. [6]. We extend it further, by allowing waiting
cost functions that are not necessarily linear.

More formally, we consider the Multi-Level Aggregation Problem (MLAP), defined as follows.
We are given a tree T with root r, whose edges are assigned positive weights. We are also given
a set of requests R, where each request π ∈ R is specified by its arrival time aπ and the node vπ
where π arrives. Any subtree X of T rooted at r is called a service. Such X serves all requests that
are pending at its nodes at the cost equal to the total weight of X. For each request π we are also
given its waiting cost function ωπ whose values are non-negative and non-decreasing with time. If
π is served at time t ≥ aπ then its waiting cost is ωπ(t). The objective is to find a schedule (that
is, a set of service trees) that minimizes the total service cost plus the total waiting cost.

∗Department of Computer Science, University of California at Riverside, USA. Work partially supported by NSF
Grants CCF-1217314 and OISE-1157129.

r a

b

d

c

e

f

7
3

5

6

8

2

r a

b

d

c

e

f

7
3

5

6

8

2

Figure 1: An example of a service subtree in MLAP. The dots next to vertices represent requests.
The service subtree is marked by thick edges. After the service, all requests in the subtree are
satisfied. The cost of this service is 7 + 3 + 5 + 2 = 17.

The waiting cost function is often assumed to be linear, that is ωπ(t) = t − aπ for t ≥ aπ,
but most results in the literature hold for arbitrary waiting cost functions, as long as they are
non-negative and non-decreasing. One other function that has been studied has the form ωπ(t) = 0
for t ≤ dπ and∞ for t > dπ, where dπ is called the deadline of π. Let MLAP-L and MLAP-D denote
the variants of MLAP with, respectively, linear waiting cost functions and with deadlines.

The online variant of MLAP is defined in a natural way: The requests arrive over time, and
at time aπ, when a request π arrives, all attributes of π are revealed. At each time t, we need
to decide whether to schedule a service at this time, and, if so, what service tree to use. These
decisions depend only on the information revealed up to time t and are irrevocable. As computing
an optimal schedule in an online fashion is in general not possible, we use the standard notion of
competitive analysis to evaluate online algorithms.

2 Single-Phase Game

Almost all existing lower bound proofs for online versions of MLAP in [7, 4, 5] utilize a reduction
to a variant of MLAP that we will refer to as the Single-Phase MLAP. The only exception we are
aware of is the lower bound for the TCP Acknowledgement Problem, or 1-level MLAP (see the next
section). In the Single-Phase MLAP all requests are issued at the beginning, at time 0. However,
the adversary can terminate the game at any time ξ, that we will refer to as the expiration time,
unknown to the online algorithm. All requests that are still pending at time ξ are cancelled, and
they only contribute their waiting cost (from the release time until time ξ) to the overall cost. Note
that Single-Phase MLAP is not a special case of MLAP, due to the fact that we do not require all
requests to be serviced.

We claim that a lower bound of R on the competitive ratio for the Single-Phase MLAP implies
a lower bound of R for MLAP. Suppose we have some adversary strategy F for the Single-Phase
MLAP that uses an instance I and forces ratio R. The idea is to concatenate together a large number
of copies of I, with each consecutive copy “compressed” by some large factor. More specifically,
choose some large constant M . In the i-th copy of I we will replace each request by M i identical
requests (think about it as assigning it weight M i) and scaling down (dividing) all time values
by M i. So, roughly, the instances get shorter and shorter but also heavier and heavier. These
two changes ensure that if we execute F in each instance, the waiting costs will remain the same.
(In [7], the authors use the fitting term “zooming” to describe this trick.) Each copy of I may
leave some unserved requests, but these can be all satisfied at the end with a single service that

only contributes a constant additive term to the adversary cost.
We need two more observations before we continue. One is that the above reduction applies to

sub-problems of MLAP where restrictions are placed on the trees that can appear in the instance,
since all copies of the original instance of MLAP in this reduction use the same tree and only
duplicate the requests.

The second observation is that this reduction applies as well to sub-problems of MLAP where we
place some restrictions on the waiting cost function, for example when we assume that the waiting
cost function is linear or a step function.

3 Single-Level Aggregation

Consider first the case when the depth of T is 1, that is all nodes of T other than r are r’s children.
Since no aggregation takes place in such a tree, we can process each edge separately, and thus
we can assume that T is in fact just a single edge (r, q) of length L = 1. In this case, assuming
further that the cost function is linear, MLAP is equivalent to the Dynamic TCP Acknowledgement
model, mentioned earlier, introduced by Dooly, Goldman and Scott [8, 9] in 1998. It captures the
algorithmic essence of the dilemma facing the implementers of the TCP protocol, namely how to
achieve a good balance between the congestion and delay. Needless to add, the model from [8, 9]
is a very rough simplification; the actual problem involves a number of other technical constraints
that are difficult to model mathematically.

Recall that our objective is to minimize the total cost:

cost = (number of acknowledgement packets) + (total delay).

It is not hard to prove that no online algorithm can achieve competitive ratio better than 2. There
are actually two completely different adversary strategies that we can use to prove this lower bound.
The first strategy uses the reduction to Single-Phase MLAP, as described in the previous section.
In the lower bound strategy, the adversary issues just one request at q. The algorithm eventually
must serve this request, say at time t. Then the adversary terminates the phase right after time t.
The algorithm pays 1 + t, while the adversary’s cost is min(1, t) ≤ 1

2(1 + t).
There is also a more direct proof that does not use the reduction to Single-Phase MLAP, which

goes as follows. For any given online algorithm A, the adversary issues one request at q at a time,
with each new request issued right after the previous one is served. The adversary can choose
one of two strategies: serve when odd-numbered requests arrive, or when even-numbered requests
arrive. The cost of these two strategies together is equal to A’s cost, so one of them achieves cost
not larger than half of A’s cost.

To match this lower bound, we can employ a strategy that resembles the one for the ski-rental
problem. After each service we wait until the new accumulated waiting cost becomes equal 1, and
then we serve q again. The cost of any phase, namely the waiting interval plus the subsequent
service cost, is 2. Within any phase the adversary cost must be at least 1, since the adversary must
either serve q or pay 1 for waiting. So the competitive ratio is at most 2.

The randomized case is more interesting. Seiden [16] gave a lower bound of e/(e−1) (this result
was independently obtained by Noga), but proving a matching upper bound turned out to be more
challenging. A natural approach would be to schedule each service according to some probability
distribution on the accumulated waiting cost, but no solutions along these lines are known. Using

a more sophisticated approach, Karlin, Kenyon and Randall [11] were able to design a randomized
algorithm with ratio e/(e− 1).

For a bit of historical perspective, a few comments about the offline version of the 1-level MLAP,
or the TCP Acknowledgement Problem. In [8, 9], the authors also showed that the optimum
schedule can be computed in time O(n2) with dynamic programming. Interestingly, as it turned
out, this is not a new problem. The 1-level MLAP is also mathematically equivalent to the economic
lot sizing problem, that was formulated by Wagner and Whitin [17] in 1958. (The history of the
lot-sizing problem can be traced, in fact, as far back as 1913, to the paper by Ford Whitman Harris
[10].) The problem is concerned with scheduling orders for a commodity to satisfy a collection
of demands. These demands appear at specified times and they need to be satisfied from the
current inventory. The inventory can be replenished by orders, with each order having a fixed cost,
independent of its size. The objective is to minimize the sum of the ordering costs and the inventory
holding cost, where the holding costs accrue at the rate proportional to the inventory size. You
can think of the lot sizing problem as the TCP Acknowledgement Problem with the time direction
reversed, with demands corresponding to packets and orders corresponding to transmissions. In
their paper, Wagner and Whitin also gave an O(n2)-time algorithm. As shown by Aggarwal and
Park [1] in early 1990s, the running time can be improved to O(n log n) by exploiting the Monge
property.

4 Two-Level Aggregation

Just like for the single level, for two-level trees we can assume that the root has only one child. The
resulting tree has a broom-like shape, with root r connected to the central node q, and q connected
to the leaves:

r q
11

5

6

12
4

21

The length of edge (r, q) will be denoted by L and the length of each edge (q, v), where v is a
leaf, will be denoted `v.

This model has been studied in several contexts. Brito et al. [6] called such trees flat trees and
studied the online TCP Acknowledgement Problem in this model. They developed an 8-competitive
algorithm for such trees.

Mathematically, the 2-level MLAP is equivalent to the Joint Replenishment Problem (JRP),
well studied in the operations research literature. The offline version of JRP is NP-hard [2], and,
recently, there has been substantial effort in designing offline approximation algorithms for JRP,
see [13, 14, 15, 3]. JRP can be thought of as a generalization of the lot sizing problem to the case
of multiple retailers. Each retailer has demands that arrive at certain times. These demands need
to be satisfied from their inventories. The inventories can be replenished with orders, but now each
order is realized in two stages: first, the items are delivered from the supplier to the warehouse,

at some cost L, from which they are redistributed to retailers that issued these orders, paying cost
`x for each retailer x involved in the order. As before, we also have holding cost functions for the
inventories. Similar to the single-level case, the correspondence between JRP and the 2-level MLAP
involves reversing the time direction.

As stated, JRP does not quite make sense as an online problem, since the orders take place before
the demand times. However, there is also a natural version of JRP when orders (or shipments) take
place after the demands are issued. In this case there are no inventories, but instead of holding
costs we have waiting costs that reflect the urgency of different demands. This model was studied
in the online scenario by Buchbinder et al. [7], who gave a 3-competitive algorithm, improving the
ratio from [6], and proved a lower bound of 2.64. This lower bound has been recently improved in
[4] to 2.75. (These lower bounds hold even for the linear cost function.) The same paper gives a
2-competitive algorithm and a matching lower bound for JRP-D, the version of JRP with deadlines.

In this section, we will sketch some of these results. First, we will discuss the proofs for lower
and upper bounds of 2 for JRP-D. We then explain the ideas behind proving a lower bound of 2.75
for the linear cost function, and the 3-competitive algorithm for arbitrary cost functions.

In this section we will use terminology inspired by JRP, referring to the root r as the supplier,
to the central node q as the warehouse, to the leaves as retailers. Terms “request” and “demand”,
as well as “service” and “shipment” will be used interchangeably. L will be called the warehouse
shipping cost and each `v, for a retailer v, will be called the retailer v’s shipping cost.

4.1 Lower Bounds for Two Levels

Lower bound of 2 for the deadline case. As shown in [3], no online algorithm for JRP can
have competitive ratio better than 2, even for the deadline case. The instance used in the proof
has some large number N + 1 of retailers v0, v1, ..., vN . The warehouse shipping cost is L = 1, the
retailer shipping costs are `v0 = 0 and `vi = 1 for i = 1, ..., N . Each vi has a request issued at
time 0 with deadline i. So any online algorithm A must serve vi no later than at time i. By a
simple exchange argument, we can assume that each vi is served earlier than or at the same time
as vi+1. If A serves each request separately, its total cost is 2N + 1, while the adversary can serve
all requests at the beginning paying only N + 1, so the ratio approaches 2 for N →∞. So suppose
that some vk is served together with vk+1 and let k be the smallest such index. Then vk+1 is served
strictly before its deadline k + 1. The adversary will stop the phase right after this shipment. The
algorithm’s cost is at least 1 + 2(k− 1) + 3 = 2k+ 2 (note that this is correct even for k = 0), while
the adversary at time 0 can serve v0, ..., vk (but not vk+1), paying k + 1, so the ratio is 2.

A better lower bound. For the linear waiting cost function, Buchbinder et al. [7] gave a lower
bound proof of 2.64, which was recently improved to 2.75 in [4]. The proof in [7] uses only a
constant number of retailers, while the strategy in [4] follows the general strategy for the deadline
case, outlined above, with an unbounded number of retailers. We will now sketch the idea of this
proof.

We will assume the cost function to be linear, although the argument works as well for any con-
tinuous, non-negative and increasing function. One way to think about this proof is as “simulating”
the strategy for deadlines. We use essentially the same instance as before, but with a little twist.
Instead of just one request at vi, we will issue ωi requests at vi at time 0, where the numbers ωi are
quickly decreasing, ω0 � ω1 � ...� ωi � It is more convenient to think about this as having
one request in vi with weight ωi, so that its waiting cost function is ωit, for t ≥ 0. As before, we

can assume that the requests are served in order v1, v2, ..., possibly several at the same time. Note
that to be competitive, an online algorithm needs to serve vi no later than at time O(1/ωi). Also,
at this time the waiting cost of the remaining requests at vi+1, vi+2, ... is negligible. The adversary
strategy is very similar to that for the deadlines: finish the phase if either (i) A serves vi and vi+1

together, or (ii) A serves vi before some threshold time σi.
Think about this game from the point of view of just a single retailer vi, as if we only wanted

to be competitive with respect to vi’s cost. Then this game is equivalent to the single-level MLAP,
for which the optimal competitive ratio is 2. But here, the adversary can also serve many requests
together at the beginning of the phase, while A can do this only once, since as soon as A serves
more than one retailer, the phase ends. So the intuition is, we should be able to beat ratio 2.

The rest is basically just calculation. In the proof in [3], to optimize the lower bound, the costs
`vi are actually taken to be some constant c (not necessarily 1). Equalizing the ratios for all i
and both types of endings (whether A serves vi too early, or together with vi+1), and solving the
resulting recurrence, we get that the best choice of c is the root of c3 + c2 − 1 = 0, c ≈ 0.7548, and
the lower bound on the competitive ratio is 2 + c ≈ 2.7548.

4.2 Upper Bounds for Two Levels

In this section we will review upper bounds for the competitive ratio for the 2-level MLAP, a.k.a.
JRP. We will start with the version with deadlines, JRP-D, for which we present a 2-competitive
algorithm. We then show how to extend it to JRP with an arbitrary waiting cost function, achieving
ratio 3. We will formulate the algorithms for arbitrary costs, but the ideas for the competitive
analysis proofs will be presented only for instances where all retailer shipping costs `v are very
small compared to L, the warehouse shipping cost.

4.2.1 Upper Bound of 2 for JRP-D

The 2-competitive algorithm for JRP-D appeared in [4]. The idea is to schedule shipments in
batches, with each shipment taking place when some request is about to expire. Suppose we
already shipped batches B1, ..., Bj , with each Bi serviced at time ti. We then wait until we reach
the deadline dv of some retailer v, where the deadline of a retailer is the earliest deadline of the
pending requests in this retailer. Then tj+1 = dv and Bj+1 is the maximum set of retailers with
earliest deadlines whose total retailer cost does not exceed L. This retailer v, as well as the request
in v with deadline dv, is said to trigger batch Bj+1.

As mentioned earlier, to present the idea behind the competitive analysis of this algorithm, we
will focus on the case when L is a very large integer and `v = 1 for all v. In this case each batch
Bi will have retailer cost exactly L.

For each batch Bi, define Di to be the earliest deadline of a request that is pending at time
ti but is not included in batch Bi. We will say that batch Bi is timely if ti = Di−1. To see why
this notion is useful, suppose that batch Bi is not timely, that is ti < Di−1. (Note that ti cannot
be larger than Di−1.) This batch Bi is triggered by some request with deadline ti. But then the
definition of Di−1 implies that this request could not have been pending at time ti−1, so it must
have been released between times ti−1 and ti. In such a case, we know that the adversary must have
a shipment scheduled between ti−1 and ti. This observation will help us estimate the adversary
cost.

We divide the computation into phases. The first phase starts with the first batch B1 (so t1 is
the first deadline in the instance). Suppose we have already defined some number of phases and
that the next phase starts at batch Bg. Then this phase will end with the earliest batch Bh, h ≥ g,
such that the adversary has a shipment between times th and th+1. Naturally, the next phase starts
with batch Bh+1.

Consider a phase Bg, ..., Bh. We now estimate the adversary cost associated with this phase.
By definition, the adversary’s schedule must have a shipment between tg−1 and tg. We associate
the warehouse cost of L of this shipment with this phase. For any batch Bj , j = g, ..., h− 1, since
the adversary does not have a shipment between tj and tj+1, Bj+1 must be timely, which implies
that each retailer v in Bj has deadline no later than at time tj+1. If ρ is the request in v with this
deadline, the adversary must have served ρ at some time t between aρ and dρ. Also, the algorithm
could not have had any shipment for v between rρ and tj , for otherwise ρ would not be pending at
time tj . We can thus associate, in a unique way, the adversary cost of serving v at t to the phase
Bg, ..., Bh. (Note that we are not claiming that t is actually within this phase; in general, t could
be in some earlier phase.) These costs will add up to (h− g)L, and adding the warehouse shipment
cost of L right before time tg, the total adversary cost associated with this phase is (h− g + 1)L.
But the algorithm pays 2(h− d+ 1)L, only twice as much, so the competitive ratio is at most 2.

4.2.2 Upper Bound of 4 for JRP

We now show how to generalize the algorithm for JRP-D to arbitrary waiting cost functions. We
first show how to get competitive ratio 4, and then later outline the idea for reducing it to 3. The
basic idea is that now, instead of transmitting at a deadline, we transmit when the total waiting
time of some subset of retailers (called the critical set) is equal to its shipping cost. The ratio is
4 because, intuitively, our cost doubles (compared to JRP-D), since each shipment is first paid for
with the waiting cost, while the optimum algorithm can only pay one cost (for waiting or shipping.

At any time t, denote by wt(v) the number of requests at a retailer v, that we also refer to as the
weight of v. We use notation twct(v) for the total waiting cost of the requests pending in v at time
t (counting only the cost accumulated until time t). A retailer v is called mature if twct(v) ≥ `v.
For immature retailers, the time mtrt(v) = t+ (`v− twct(v))/wt(v) is called the maturity time of v.
Intuitively, this is the time when the requests that are currently at v will pay `v for waiting. Note
that if the set of requests in v does not change in some time interval then v’s maturity time remains
constant. When t is understood from context, we will omit the subscript t and write simply w(v),
twc(v), and mtr(v). We will also extend some of these notations to sets of retailers.

At a time t, a set C of retailers is called critical if (i) twct(u) ≥ `u for all u ∈ C, (ii) twct(u) < `u
for all u /∈ C, and (iii)

∑
v∈C twct(v) = L+ `(C). The last condition says that the waiting cost of

C is equal to its shipping cost. It is easy to see that if a critical set exists, then it is unique, and
that all retailers in the critical set are mature.

Algorithm A4. If there is no critical set, do nothing. Otherwise, let C be the critical set. Let X
be the maximum set of retailers not in C, chosen in order of increasing maturity times, such that
`(X) ≤ L. Transmit the batch B = C ∪X.

As before, we will analyze this algorithm only for the special case when the instance has the
warehouse shipping cost L, for some large L, and all retailer shipping costs are ` = 1.

Lr q

C

X

s

B

Figure 2: An example of a batch B = C ∪X. Thick lines represent portions of the edges (shipping
costs) paid for with the waiting cost. Retailers are ordered clockwise according to their maturity
times. C is the critical set, X is the set of extra retailers, and s is the special retailer.

We number the batches B1, B2, ..., and their transmission times are denoted t1, t2, The
corresponding critical sets and extra sets are denoted Ci and Xi, respectively. So Bi = Ci ∪ Xi.
(See Figure 2.) The vertex s /∈ Bi with minimum mtrti(s) is called the special node at time ti and
is denoted si and let Di = mtrti(si). Generalizing the definitions from the previous section, batch
Bi will be called timely if ti ≥ Di−1.

We will again divide the batch sequence into phases. The first phase starts with batch B1. If
some phase starts with batch Bg, it ends with the first batch Bh, for h ≥ g, such that either the
adversary has a shipment between times th and th+1 or batch Bh+1 is untimely. This is very similar
to what we did for the deadline case, but we need to include the second option (ending the phase
before untimely batches), because the adversary may not schedule any shipments for a long time
and only pay for waiting. This second option will also allow us to associate the “extra” cost of L
with a phase.

We now focus on one phase Bg, ..., Bh and define the adversary cost associated with this phase.
Consider some retailer v ∈ Bj , where j ∈ [g, h], except that we assume that v /∈ Ch. Let ti be the
last time when the algorithm served v before time tj . If v ∈ Cj then v accumulated waiting cost
at least 1, because v is mature at time tj . So the adversary must either serve v between ti or tj or
pay for waiting, paying the cost of 1 in either case. We associate this adversary cost, in a unique
way, with this service of v at time tj . If v ∈ Xj , then we can use the same argument to associate an
adversary cost of 1 with our service of v, but we need to be a bit more careful, since v is not mature
at time tj . But, by the definition of phases, v will mature before time tj+1 and the adversary does
not have any shipments before time tj+1, so the earlier argument still applies.

We claim that the adversary must pay some extra cost of L for each phase, which is not included
in the costs discussed in the previous paragraph. If the adversary has a shipment between tg−1
and tg then this extra cost of L is the warehouse shipping cost of this shipment. Otherwise, Bg
is not timely, that is Dg−1 > tg. This implies that the requests in each node u ∈ Cg that were
pending at time tg−1, by time tg will accumulate waiting at most 1. Since the total waiting cost of
Cg is L+ |Cg|, this additional waiting cost of L must have been paid by the new requests, released
between tg−1 and tg. We then use this waiting cost of L as the extra cost associated with phase
Bg, ..., Bh.

Putting it together, the adversary cost associated with phase Bg, ..., Bh is L +
∑h

j=g |Cj | +∑h−1
j=g |Xj | = (h − g + 1)L +

∑h
j=g |Cj |. (Recall that |Xj | = L, by our simplifying assumption.)

For each batch Bj the algorithm pays L + |Bj | for shipping and at most L + |Bj | for waiting.

The algorithm’s cost is at most
∑h

j=g(2L + 2|Cj | + 2|Xj |) = (h − g + 1)4L + 2
∑h

j=g |Cj |, which
is not more than 4 times the adversary cost. This argument could be easier to visualize in terms
of charging: For each batch Bj , where j 6= h, charge its cost of 2L + 2|Bj | to the adversary cost
associated with the nodes in Bj . Since |Bj | ≥ L, the charging ratio is at most 4. As for Bh, charge
the cost of Ch (at most 2|Ch|) to the adversary cost associated with Ch, and the remaining cost of
at most 2L+ 2|Xh| to the extra adversary cost of L associated with the phase. Here, the charging
ratio is also at most 4.

4.2.3 Improving the Upper Bound for JRP to 3

A 3-competitive algorithm for JRP, for arbitrary waiting cost functions, was given by Buchbinder et
al. [7]. They formulated their algorithm as a primal-dual algorithm. Below, we sketch how Algo-
rithm A4 above can be modified to give the same ratio of 3. Whether there is a better-than-3-
competitive algorithm online algorithm for JRP remains an open problem.

To improve the ratio, note that in some situations we can schedule shipments earlier, before
a critical set appears. Specifically, if we already scheduled a batch Bj , we would like to schedule
the next batch at the maturity time of the special node sj . The hope is that this should save us
a waiting cost of L associated with a critical set. In the previous algorithm, the last batch Bh
of a phase was charged partly to mature nodes in Ch, and partly to the extra cost of L for this
phase. This we can still do. But in any earlier batch Bj in this phase we needed that the nodes
in Xj mature within this phase so that we can charge to the adversary cost associated with this
phase. We can still do this, as long as Bj+1 is timely. This means that we can schedule Bj+1 at
the maturity time of sj , and we are okay. The only potential problem is that new requests arriving
after time tj could create a critical set before sj matures, in which case we cannot wait any longer
and we need to schedule a shipment when this critical set appears. But in the analysis this starts
a new phase, with the adversary paying an extra cost of L for this phase, so the analysis should
extend to this case.

Algorithm A3. Suppose we have already shipped batches B1, ..., Bj . The next shipment Bj+1

occurs either when a critical set appears or at time Dj , whichever happens first. If a critical set
appears at some time t < Dj , we let tj+1 = t and Cj+1 is this critical set. If there is no critical set
until time Dj , then tj+1 = Dj and Cj+1 is the set of mature nodes at that time. The transmitted
batch is Bj+1 = Cj+1 ∪Xj+1, where Xj+1 is the maximum set of nodes not in Bj , ordered in order
of increasing maturity times, such that `(Xj+1) ≤ L.

5 Aggregation on the Line

Another natural special case of MLAP is that when the tree is just a path. It is more convenient
to think about this problem as aggregation on a line, with the “root” node being at r = 0 and
all requests at points x > 0. Brito et al. [6] gave an 8-competitive online algorithm. Recently,
Bienkowski et al. [5] improved this result by proving that the competitive ratio of this problem is
between 2 + φ ≈ 3.618 and 5, and they provided a polynomial time algorithm that computes an
optimal schedule.

Getting any constant ratio is quite simple: Divide the positive half-line into intervals between
powers of two, Ji = (2i, 2i+1], for all integers i (including negative integers). For each interval apply
the ski-rental strategy. Specifically, if the waiting cost of all requests in Ji is at least 2i−1 then
serve all pending requests in (0, 2i+1].

The cost associated with this service is then at most 3 ·2i; this includes 2i+1 for service, 2i−1 for
the waiting cost in Ji, and at most another 2i−1 for the waiting cost at all intervals Jp, for p < i.

Consider any two consecutive services from 2i+1, say at time t and t′. If the adversary does not
have a service from Ji between t and t′, his waiting cost is at least 2i−1. Otherwise, the adversary
has at least one service from some point in Ji between t and t′. We will associate the portion Ji−1,
of cost 2i−1, of this adversary service with our service at t′. (Think about this service as an interval
(0, x], for x ∈ Ji, and divide it into intervals Jp, for p < i, plus interval (2i, x]. We then associate
the interval Ji−1 with the service at t′.) Note that with different services we associate different
portions of the adversary cost.

So, overall, we pay at most 3 · 2i, and charging it to the associated adversary cost of 2i−1, the
ratio is 6. Thus the competitive ratio is at most 6. With a slightly different algorithm and charging,
this ratio can be improved to 5 [5].

The lower-bound proof in [5] is a bit technical. It uses again the argument based on Single-Phase
MLAP. The requests are initially issued at points bi, for all positive integers i, with bi’s increasing
more or less like a geometric sequence. Also, the number of requests wi issued at bi (or weights
of requests) are fast decreasing. The adversary waits until either some request is served too early
(earlier than an appropriate threshold), or the algorithm serves two requests at the same. If either
of these two events happens, the phase ends. Equalizing the resulting ratios and setting this up as
a recurrence, yields the lower bound 2 + φ ≈ 3.618 on the competitive ratio.

6 Summary

Very little is known about the general case of MLAP, for arbitrary trees. Khanna et al. [12]
considered an equivalent problem phrased in terms of message aggregation in networks, and they
gave an online algorithm with competitive ratio O(logC), where C is the total cost of the tree.
The waiting cost function in [12] is assumed to be linear, so their result applies to MLAP-L. To our
knowledge, there are no other results in the literature on this problem.

deterministic randomized
lower bound upper bound lower bound upper bound

1-Level (TCP Ack.) 2 2 e/(e− 1) e/(e− 1)

2-Levels, deadlines (JRP-D) 2 2

2-Levels (JRP) 2.754 3

Line 3.618 5

The table above summarizes the known bounds on the competitive ratios for different variants
of MLAP. The upper bounds for JRP and the line are valid for arbitrary waiting cost functions
[7, 5], while the lower bounds hold even for linear waiting cost functions [4, 5].

The most intriguing open problem at this time is whether there is a constant-competitive online
algorithm for MLAP. This is open even for MLAP-D and MLAP-L, that is special cases with deadlines
and linear waiting costs, respectively. Also, what is the best competitive ratio for JRP? Improving
the upper bound of 3 [7] or the lower bound of 2.75 [4] will require significant new insights.

References

[1] Alok Aggarwal and James K. Park. Improved algorithms for economic lot sizing problems.
Operations Research, 41:549–571, 1993.

[2] Esther Arkin, Dev Joneja, and Robin Roundy. Computational complexity of uncapacitated
multi-echelon production planning problems. Operations Research Letters, 8(2):61–66, 1989.

[3] Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Neil Dobbs, Tomasz Nowicki, Maxim
Sviridenko, Grzegorz Swirszcz, and Neal Young. Algorithms for the joint replenishment prob-
lem with deadlines. In Proc. 40th Int. Colloquium on Automata, Languages, and Programming
(ICALP’13), pages 135–147, 2013.

[4] Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Lukasz Jeż, Dorian Nogneng, and Jiri
Sgall. Better approximation bounds for the joint replenishment problem. In Proceedings 25th
Symposium on Discrete Algorithms (SODA’14), pages 42–54, 2014.

[5] Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Lukasz Jeż, Jǐŕı Sgall, and Grzegorz
Stachowiak. Online control message aggregation in chain networks. In Proc. of the 13th
Algorithms and Data Structures Symposium (WADS), pages 133–145, 2013.

[6] Carlos Brito, Elias Koutsoupias, and Shailesh Vaya. Competitive analysis of organization
networks or multicast acknowledgement: How much to wait? Algorithmica, 64(4):584–605,
2012.

[7] Niv Buchbinder, Tracy Kimbrel, Retsef Levi, Konstantin Makarychev, and Maxim Sviridenko.
Online make-to-order joint replenishment model: primal dual competitive algorithms. In
Proc. of the 19th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 952–961, 2008.

[8] Daniel Dooly, Sally A. Goldman, and Stephen D. Scott. TCP dynamic acknowledgment delay:
theory and practice. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, pages 389–398. ACM Press, 1998.

[9] Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. On-line analysis of the TCP
acknowledgment delay problem. Journal of the ACM, 48(2):243–273, 2001.

[10] Ford Whitman Harris. How many parts to make at once. Factory: The Magazine of Manage-
ment, 10:135–136, 152, 1913.

[11] Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic TCP acknowledgement and
other stories about e/(e - 1). Algorithmica, 36(3):209–224, 2003.

[12] Sanjeev Khanna, Joseph Naor, and Danny Raz. Control message aggregation in group commu-
nication protocols. In Proc. of the 29th Int. Colloq. on Automata, Languages and Programming
(ICALP), pages 135–146, 2002.

[13] Retsef Levi, Robin Roundy, and David B. Shmoys. A constant approximation algorithm for
the one-warehouse multi-retailer problem. In Proc. of the 16th ACM-SIAM Symp. on Discrete
Algorithms (SODA), pages 365–374, 2005.

[14] Retsef Levi, Robin Roundy, David B. Shmoys, and Maxim Sviridenko. A constant approxima-
tion algorithm for the one-warehouse multiretailer problem. Management Science, 54(4):763–
776, 2008.

[15] Retsef Levi and Maxim Sviridenko. Improved approximation algorithm for the one-warehouse
multi-retailer problem. In Proc. of the 9th Int. Workshop on Approximation Algorithms for
Combinatorial Optimization (APPROX), pages 188–199, 2006.

[16] Steven S. Seiden. A guessing game and randomized online algorithms. In Proceedings of
the Thirty-Second Annual ACM Symposium on Theory of Computing (STOC), 2000, pages
592–601, 2000.

[17] H.M. Wagner and T. Whitin. Dynamic version of the economic lot size model. Management
Science, 5:89–96, 1958.

	Introduction
	Single-Phase Game
	Single-Level Aggregation
	Two-Level Aggregation
	Lower Bounds for Two Levels
	Upper Bounds for Two Levels
	Upper Bound of 2 for JRP-D
	Upper Bound of 4 for JRP
	Improving the Upper Bound for JRP to 3

	Aggregation on the Line
	Summary

