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In the online matching problem on the line, requests (points in R) arrive one by one to be
served by a given set of servers. Each server can be used only once. This is a variant of the k-server
problem restricted to the real line. Although easy to state, this problem is stil wide open. The best
known lower bound is 9.001 [2], showing that this problem is really different from the well-known
cow path problem. Antoniadis et al. [1] recently presented a sublinearly competitive algorithm.

In this column, I present some results by Elias Koutsoupias and Akash Nanavati on this problem
with kind permission of the authors. The column is based on Akash’ PhD thesis [4], which contains
an extended version of their joint WAOA paper [3] which has never appeared in a journal. I have
expanded the proofs and slightly reorganized the presentation.

This column contains a proof of a linear upper bound for the generalized work function algorithm
and a logarithmic lower bound for the algorithm. A later column will give a more detailed analysis
of this algorithm, leading to a more precise (but still linear) upper bound. I conjecture that this
algorithm in fact has a logarithmic competitive ratio (which would match the known lower bound
for it), but this remains an open question.



1 Introduction

In this column, both requests and servers are specified by points on the real line and are multisets,
as there can be multiple requests and/or servers at the same location. The same holds for all other
sets discussed below. For example, for x ∈ X, we have X ( X ∪ {x}. We will use the notation
{x}k to denote a set which contains k copies of the point x. Time is discrete, with one request
occurring per time step.

Let Rt denote the set of requests until time t and let At denote the set of servers used by the
online algorithm to match these requests. Of course |At| = |Rt|. Let M(A,Rt) denote an optimal
way of matching Rt to At that minimizes the total offline cost. Clearly, M(At, Rt) can be obtained
by matching the requests to servers in order from left to right. For simplicity, we will denote the
cost of the optimal matching by M(At, Rt) as well.

Given this definition of the matching M(At, Rt) we can ask how many of its lines cross a point
x ∈ Rt. We denote this number by crossx(At, Rt) or simply crossx. To define it properly let
leftx(X) denote the number of elements of the set X to the left of x. Then crossx(At, Rt) =
leftx(At)− leftx(Rt). We have the following property:

M(At, Rt) =

∫ ∞
−∞
|crossx(At, Rt)|dx (1)

Definition 1 (Generalized Work Function Algorithm) The generalized work function algo-
rithm γ-wfa matches a request r at time t to an unmatched server s that minimizes the expression

γ ·M(At ∪ {s}, Rt ∪ {r}) + d(s, r). (2)

We begin by proving that γ-wfa is a so-called local algorithm in Section 2, and give some useful
properties of local algorithms. In Section 3, we use this to prove that it is sufficient to consider the
performance of γ-wfa compared to a restricted optimal solution which uses the same servers as
γ-wfa. This allows us to show a linear upper bound for its competitive ratio (Section 4). Finally,
we give some lower bounds for γ-wfa in the next section for various values (intervals) of γ.

2 Locality

Let r be a request at time t and let s be the rightmost unmatched server in the interval (−∞, r).
Similarly, let s′ be the leftmost unmatched server in (r,∞). We call the two servers s and s′ the
surrounding servers of r. It is easy to see that any online algorithm can be converted into one that
serves each request with one of its two surrounding servers with the same (or better) competitive
ratio using a simple exchange argument. However, the algorithm’s decisions may be based on
requests and servers that are outside the interval (s, s′). Thus we are led to define a restricted and
interesting class of algorithms whose decisions are myopic.

Definition 2 Let s and s′ be the surrounding servers for request r. An online algorithm is called
local it it serves r with one of s and s′ and the choice is based only upon the history of servers and
requests in the interval [s, s′].

Our first aim is to show that γ-wfa is local.



Property 1 (Locality) γ-wfa serves each request with one of its two surrounding servers.

It is intuitively clear that γ-wfa should have this property: for any other server σ, clearly d(σ, r) ≥
min(d(s, r), d(s′, r)), and the cost of the optimal matching should also increase if we use a server
which is further away. We proceed to prove this formally. In fact we have the following invariant.

Theorem 1 Consider a time t. Let s and s′ be two servers that have not yet been matched by
γ-wfa at time t, whereas every server in the interval (s, s′) has been matched. Let A and R denote
the sets of servers and requests before time t in (s, s′), respectively. Then the sets A and R have
the same cardinality and

γM(A,R) ≤ γM(A ∪ {s}, R ∪ {s′}) + d(s, s′). (3)

Given this theorem, Property 1 follows from the statement that A and R have the same cardinality
and using induction on the requests. In fact we have that at any time, between any two consecutive
unused servers, we have that the number of requests is equal to the number of servers.

Moreover, any time that γ-wfa matches the leftmost unused server to a new request, that
request must be to the left of the second leftmost unused server (and possibly to the left of the
leftmost server as well). If not, after the matching the theorem would be violated for the leftmost
interval between unmatched servers. Thus, to the left of the leftmost unused server, the number
of requests is always the same as the number of servers, and the same holds to the right of the
rightmost unused server by symmetry. Recalling that we can match the servers to requests in a
left-to-right fashion to get an optimal matching, this leads to the following useful observation.

Observation 1 At any time t, in the optimal matching M(At, Rt), there is no line crossing any
unused server.

Hence the value M(At ∪ {s}, Rt ∪ {r}) in (2) can be decomposed as the sum of a set of optimal
matchings of servers to requests, each on a distinct part of the real line. This holds for both
possible choices of s (both surrounding servers of r) and the only term in the sum which is different
between these two choices is the term for the optimal matching in the closed interval between the
surrounding servers. Hence the choice of which surrounding server to use is indeed based only on
the history of requests between these two servers.

Conversely, the theorem follows if we assume that γ-wfa has Property 1: for a request r to the
right of s′ (but to the left of the next unused server), γ-wfa will prefer to use s′ rather than s to
match r by Property 1. Hence

γM(At ∪ {s′}, Rt ∪ {r}) + d(s′, r) ≤ γM(At ∪ {s}, Rt ∪ {r}) + d(s, r)

for any such request r. By letting d(s′, r) tend to 0, we get M(At ∪ {s′}, Rt ∪ {r}) → M(At, Rt),
and M(At ∪ {s}, Rt ∪ {r}) → M(At ∪ {s}, Rt ∪ {s′}): the theorem follows by induction on the
requests (formally, we should prove Observation 1 by induction on the requests, and use that to
split the optimal matching into distinct parts in order to derive (3)).

Proof (Theorem 1) We use induction on the number of requests in R. At the start of the input
(when only the server locations are known), there are no servers or requests between any two
consecutive servers s and s′, so A = R = ∅ and M(A,R) = 0. For the induction step, let r be the
most recent request in R and let sr be the server matched to r by γ-wfa. The induction hypothesis
is that sr is in the interval (s, s′), so sr ∈ A. Let A1 and A2 be the set of servers in (s, sr) and
(sr, s

′), respectively. Let also R1 and R2 be the associated requests in these intervals that arrived
before r. By induction, Ai has the same cardinality as Ri for i = 1, 2.



Case 1: r is to the left of sr By the definition of γ-wfa we have

γM(A1 ∪ {sr}, R1 ∪ {r}) + d(sr, r) ≤ γM(A1 ∪ {s}, R1 ∪ {r}) + d(s, r).

By induction, we have

γM(A2, R2) ≤ γM(A2 ∪ {sr}, R2 ∪ {s′}) + d(sr, s
′).

Therefore

γM(A,R) = γM(A1 ∪ {sr}, R1 ∪ {r}) + γM(A2, R2)

≤ γM(A1 ∪ {s}, R1 ∪ {r}) + d(s, r)− d(sr, r) + γM(A2 ∪ {sr}, R2 ∪ {s′}) + d(sr, s
′)

= γM(A ∪ {s}, R ∪ {s′}) + d(s, r)− d(sr, r) + d(sr, s
′)

≤ γM(A ∪ {s}, R ∪ {s′}) + d(s, s′).

Case 2: r is to the right of sr The proof is completely symmetric to the above, with A1 and
A2 switching roles, as well as R1 and R2. �

We next prove a useful lemma about matchings.

Lemma 1 (Quasi-convexity) Let s and s′ be two servers and let A and R be two sets of points
in (s, s′) of equal cardinality. Let also r1 ≤ r2 be two points in [s, s′]. Then

(i) M(A∪{s}∪ {s}, R∪{r1}∪ {r2})−M(A∪{s}, R∪{r1}) ≥M(A∪{s}, R∪{r2})−M(A,R).

(ii) M(A∪{s}∪{s′}, R∪{r1}∪{r2})−M(A∪{s}, R∪{r1}) = M(A∪{s′}, R∪{r2})−M(A,R).

Proof (i) Because of (1), we will consider the values of crossx = crossx(A,R). The inequality
to be proved can be rewritten as

M(A∪{s}∪ {s}, R∪{r1}∪ {r2}) +M(A,R) ≥M(A∪{s}, R∪{r1}) +M(A∪{s}, R∪{r2}). (4)

Fix a point x ∈ [s, r1). The total number of lines that include x on the right hand side of (4) is

|leftx(A ∪ {s})− leftx(R ∪ {r1})|+ |leftx(A ∪ {s})− leftx(R ∪ {r2})| = 2|crossx + 1|

and on the left hand side of (4) it is

|leftx(A ∪ {s} ∪ {s})− leftx(R ∪ {r1} ∪ {r2})|+ |leftx(A)− leftx(R)|
=|crossx + 2|+ |crossx|
≥2|crossx + 1|

where the inequality follows by concavity of the absolute function.
For x ∈ [r1, r2), we get |crossx|+ |crossx + 1| = |crossx + 1|+ |crossx|, and for ∈ [r2, s), we

get |crossx + 2|+ |crossx| ≥ 2|crossx + 1| again.
(ii) We rewrite the equality using sums of positive terms as above and consider the lines crossing

x. For x ∈ (s, r1]∪[r1, s
′), we get |crossx+1|+|crossx| = |crossx+1|+|crossx|. For x ∈ (r1, r2),

we find 2|crossx| = 2|crossx|: there is no change in this region. �



Theorem 2 (Generalized Quasi-Convexity) Let s1, s2 be two servers. Let A,R denote sets of
servers and requests in (s1, s2), where |A| = |R|. Let e be a point in (s1, s2). Let R1 denote an
arbitrary set of points in [s1, e] and let R2 denote an arbitrary set of points in [e, s2]. Then

M(A ∪ {s1}|R1| ∪ {s2}|R2| ∪ s1, R ∪R1 ∪R2 ∪ e)−M(A ∪ {s1}|R1| ∪ {s2}|R2|, R ∪R1 ∪R2)

≥M(A ∪ {s1}, R ∪ {e})−M(A,R).

Proof Order the points in R1 and R2 in some way. Let R1,i denote the first i requests in R1 and
let R2,j denote the first j requests in R2. Let Ai,j = A ∪ {s1}i ∪ {s2}j and Ri,j = R ∪ R1,i ∪ R2,j .
By repeatedly applying Lemma 1 (ii), we see that

M(Ai,j ∪ {s1}, Ri,j ∪ {e})−M(Ai,j , Ri,j)

=M(Ai,j−1 ∪ {s1}, Ri,j−1 ∪ {e})−M(Ai,j−1, Ri,j−1)

= . . .

=M(Ai,0 ∪ {s1}, Ri,0 ∪ {e})−M(Ai,0, Ri,0).

We then repeatedly apply Lemma 1 (i) to find

M(Ai,0 ∪ {s1}, Ri,0 ∪ {e})−M(Ai,0, Ri,0)

≥M(Ai−1,0 ∪ {s1}, Ri−1,0 ∪ {e})−M(Ai−1,0, Ri−1,0)

≥ . . .
≥M(A ∪ {s1}, R ∪ {e})−M(A,R).

This proves the theorem. �
Theorem 2 allows us to generalize Theorem 1 as follows.

Theorem 3 Consider a time t. Let s and s′ be two servers that have not yet been matched by
γ-wfa at time t, whereas every server in the interval (s, s′) has been matched. Let A and R denote
the sets of servers and requests before time t in (s, s′), respectively. Then for any set of points
R′ = {r1, . . . , rk} in the interval (s, s′) we have

γM(A ∪ {s}k, R ∪R′) ≤ γM(A ∪ {s}k+1, R ∪R′ ∪ {s′}) + d(s, s′).

Proof By applying Lemma 1(i) repeatedly, we get

M(A ∪ {s}k+1, R ∪R′ ∪ {s′})−M(A ∪ {s}k, R ∪R′)
≥M(A ∪ {s}k, R ∪R′\rk ∪ {s′})−M(A ∪ {s}k−1, R ∪R′\rk)
≥ . . .
≥M(A ∪ {s}, R ∪ {s′})−M(A,R)

≥− 1

γ
d(s, s′)

where the last inequality follows from Theorem 2. �



3 Optimal vs pseudo-optimal matching

At any time t, there is the possibility that the adversary uses a subset A′ 6= At of the servers S to
match Rt and potentially have very small cost. Denote the optimal way of matching Rt using S
by optt = M(A′, Rt), and write pseudot = M(At, Rt). Our goal in this section is to show that
pseudot is always relatively close to optt; how close exactly it is depends on γ. This means that
it is sufficient to compare the cost of γ-wfa to pseudot to bound the competitive ratio.

We begin by developing some technical terms that help us exploit the locality property of γ-wfa.

Definition 3 Let s1, s2 be two unmatched servers such that in the interval (s1, s2) all servers A
are matched to requests R. Then the interval (s1, s2) is a balanced interval.

By Property 1, we can focus our analysis on balanced intervals. Let K ⊂ R be a finite union of
finite intervals, and let ||K|| denote the Lebesgue measure of this set, which is the total sum of
the lengths of the intervals in K. Let (s1, s2) be a balanced interval with servers A and requests
R. Define Bj(A,R) = {x : crossx(A,R) = j}, B+ = ∪j>0B

j and B− = ∪j<0B
j . We will abuse

notation and use these same symbols also to denote the Lebesgue measure of these sets. For any
balanced interval (s1, s2), we define

pseudo(s1, s2) = M(A,R) =

∫
x∈(s1,s2)

|crossx(A,R)|dx =
∑
j

|j| ·Bj .

Thus we have for instance M(A ∪ {s1}, R ∪ {s2}) = M(A,R) + B+ + B0 − B− (visually, the
new matching can be obtained by drawing an additional line from s1 to s2; this line gets added
to intervals with zero or more existing lines in the same direction, and cancels out one line in all
intervals with at least one line in the opposite direction) and d(s1, s2) = B++B0+B−. Substituting
these values in (3) in Theorem 1, we find

γM(A,R) ≤ γ(M(A,R) +B+ +B0 −B−) +B+ +B0 +B−

⇒ 0 ≤ (γ + 1)(B+ +B0)− (γ − 1)B−

⇒ (γ − 1)B− ≤ (γ + 1)(B+ +B0)

⇒ 2γB− ≤ (γ + 1)d(s1, s2).

Analogously, M(A ∪ {s2}, R ∪ {s1}) = M(A,R)−B+ +B0 +B− implies 2γB+ ≤ (γ + 1)d(s1, s2).
We generalize this result in the next lemma.

Lemma 2 (Prefix-B-lemma) Let (s1, s2) be a balanced interval which includes the set of servers
A and set of requests R. For any x ∈ (s1, s2),

(γ − 1)||B−(A,R) ∩ [s1, x]|| ≤ (γ + 1)||(B+(A,R) ∪B0(A,R)) ∩ [s1, x]||
(γ − 1)||B+(A,R) ∩ [s1, x]|| ≤ (γ + 1)||(B−(A,R) ∪B0(A,R)) ∩ [s1, x]||.

The intuition behind this lemma is that since s1 is an unmatched server, it was rejected in favor
of other servers in the interval (s1, s2). This indicates that ||B−(A,R) ∩ [s1, x]||, which counts the
parts of (s1, s2) on which there are more requests than servers to the left (alternatively, counts parts
where servers are matched to requests to their left), cannot be too large relative to the distance to
s1.



Proof We use induction on the requests in (s1, s2). Before any requests arrive, we have
A = R = ∅ and the lemma holds. For the induction step, suppose that the statement was true
before the last request r ∈ (s1, s2) was matched to server s ∈ (s1, s2). Let A′ = A\{s} and
R′ = R\{r}. We consider two cases depending on whether s is to the left of r or not.

If s < r, for any x ∈ (s1, s2) we have crossx(A,R) ≥ crossx(A′, R′), so ||B−(A,R) ∩ [s1, x]||
satisfies the bound by induction.

Suppose r < s. For x ∈ (s1, r), the lemma holds by induction, as crossx(A,R) = crossx(A′, R′).
Suppose x = s. Since γ-wfa serves r with x = s and not s1, we have

γM(A′ + s,R′ + r) + d(r, s) ≤ γM(A′ + s1, R
′ + r) + d(s1, r) (5)

Let B+
1 = ||B+(A′, R′)∩ [s1, r]||, B+

2 = ||B+(A′, R′)∩ [r, s]|| and define B−1 , B
0
1 , B

−
2 , B

0
2 analogously.

Finally let B+ = B+
1 +B+

2 etc. We have

||B−(A,R) ∩ [s1, s]|| = B− +B0
2 (6)

since we have leftx(A) < leftx(R) if and only if x ∈ B−∪B0
2 . This means that for the complement

we have
||(B+(A,R) ∪B0(A,R)) ∩ [s1, s]|| = B+ +B0 −B0

2 = B+ +B0
1 . (7)

Now (5) can be rewritten as

γ(M(A′, R′) +B−2 +B0
2 −B+

2 ) + d(r, s) ≤ γ(M(A′, R′) +B+
1 +B0

1 −B−1 ) + d(s1, r)

⇒ γ(B−2 +B0
2 −B+

2 ) ≤ γ(B+
1 +B0

1 −B−1 ) +B+
1 +B0

1 +B−1 − d(r, s)

= (γ + 1)(B+
1 +B0

1)− (γ − 1)B−1 − d(r, s)

⇒ (γ − 1)(B− +B0
2) +B−2 +B0

2 ≤ (γ + 1)(B+ +B0
1)−B+

2 − d(r, s)

⇒ (γ − 1)||B−(A,R) ∩ [s1, s]|| ≤ (γ + 1)((||B+(A,R) ∪B0(A,R)) ∩ [s1, s]||)− 2d(r, s)

⇒ 2γ||B−(A,R) ∩ [s1, s]|| ≤ (γ + 1)d(s1, s)− 2d(r, s) (8)

where we have used (6) and (7) in the penultimate line. This means that the lemma also holds
for any x ∈ [s, s2), from the induction hypothesis for the balanced interval (s, s2) (which has fewer
requests).

Now suppose x ∈ [r, s). Before request r arrived, (s1, s) was a balanced interval. Hence by the
second part of the induction hypothesis, we have

2γ||B+(A′, R′) ∩ [x, s]|| ≤ (γ + 1)d(x, s)

⇒ ||B+(A′, R′) ∩ [x, s]|| ≤ γ + 1

2γ
d(x, s)

⇒ ||B−(A,R) ∩ [x, s]|| ≥ γ − 1

2γ
d(x, s)

⇒ −2γ||B−(A,R) ∩ [x, s]|| ≤ −(γ − 1)d(x, s) (9)

where we have used ||B−(A,R) ∩ [x, s]|| = s− x− ||B+(A′, R′) ∩ [x, s]||. Summing (8) and (9) we
get

2γ||B−(A,R) ∩ [s1, x]|| ≤ (γ + 1)d(s1, x)− 2d(r, x)

and the lemma follows. �



Theorem 4 At any time t,

optt ≤ pseudot ≤
γ + 1

γ − 1
optt. (10)

The first inequality in (10) holds trivially. Thus, consider the second inequality. By Observation 1,
it is sufficient to consider a set of requests in a single balanced interval (s1, s2), with servers A and
requests R. Unlike pseudo, opt may use servers outside this interval to serve some or all of the
requests inside it. Let A′ be the set of servers used by opt. This means that for opt, the servers
in A\A′ are still unmatched. (If A = A′, there is nothing to show.) Hence requests to the locations
of these servers can be matched for free. For the analysis, we add a request for each such location,
and match them to servers in A′\A. We have

optt = M(A′, R) = M(A′ ∪ (A\A′), R ∪ (A\A′)),

whereas pseudot increases by the sum of the distances between the servers in A′\A and the server
locations in A\A′ that they are matched to.

It can be seen that for each x /∈ (s1, s2), the number of lines that connect points outside (s1, s2) to
points inside (s1, s2) and cross x in both optt (modified or unmodified) and the modified pseudot
matching is the same. Therefore the cost of the matchings optt and pseudot outside (s1, s2)
(restricted to requests in (s1, s2)) are the same. Since we are interested in upper bounding the ratio
pseudot/optt, the worst case is that all servers in A′\A are located exactly at the boundaries s1
and s2. Thus, the theorem will follow from the following lemma.

Lemma 3 Let (s1, s2) be a balanced interval that contains the set of servers A which is matched
to requests R. For any set of points {vi}k+mi=1 in the interval (s1, s2), we have

M
(
A ∪ {s1}k ∪ {s2}m, R ∪ {vi}k+mi=1

)
≥ γ − 1

γ + 1
M(A,R).

Proof Rename the points such that v1 ≤ · · · ≤ vk+m and denote v0 = s1 and vk+m+1 = s2. The
difference between the two matchings under consideration consists of k+1−i lines from left to right
in each interval (vi−1, vi) for i = 1, . . . , k, and i− k lines from right to left in each interval (vi, vi+1)
for i = k + 1, . . . , k + m. Particularly, there is no difference in the interval (vk, vk+1) (since for
x ∈ (vk, vk+1) we have leftx(A)− leftx(R) = leftx(A∪ {s1}k ∪ {s2}m)− leftx(R ∪ {vi}k+mi=1 )).
Denote by M(A,R)|(a,b) the total cost of the optimal matching of R to A inside the interval (a, b),
then

M
(
A ∪ {s1}k ∪ {s2}m, R ∪ {vi}k+mi=1

)
|(vk,vk+1) = M(A,R)|(vk,vk+1).

We now proceed to prove

M
(
A ∪ {s1}k, R ∪ {vi}ki=1

)
|(s,vk) ≥

γ − 1

γ + 1
M(A,R)|(s,vk).

The symmetric statement involving s2 then follows immediately, and altogether this proves the

lemma (note that M
(
A ∪ {s1}k, R ∪ {vi}ki=1

)
|(s,vk) = M

(
A ∪ {s1}k ∪ {s2}m, R ∪ {vi}k+mi=1

)
|(s,vk).)

Define Lji = ||{x : crossx(A,R) = j} ∩ (vi−1, vi]|| to be the measure of points between vi−1 and vi
which the optimal matching crosses j times (in the direction indicated by the sign of j).



Let t ∈ {1, . . . , k}. Applying Lemma 2 to interval (s1, vt] we obtain

γ − 1

γ + 1

t∑
i=1

∑
j<0

Lji ≤
t∑
i=1

∑
j≥0

Lji .

Summing for t = 1, . . . , k, we get

γ − 1

γ + 1

k∑
t=1

t∑
i=1

∑
j<0

Lji ≤
k∑
t=1

t∑
i=1

∑
j≥0

Lji

⇒ γ − 1

γ + 1

k∑
i=1

∑
j<0

(k + 1− i)Lji ≤
k∑
i=1

∑
j≥0

(k + 1− i)Lji (11)

Now we can bound

M(A,R)−M
(
A ∪ {s1}k, R ∪ {vi}ki=1

)
=

k∑
i=1

∑
j

|j|Lji −
k∑
i=1

∑
j

|j + k + 1− i|Lji

=
k∑
i=1

∑
j<0

|j|Lji −
k∑
i=1

∑
j<0

|j + k + 1− i|Lji −
k∑
i=1

∑
j≥0

(k + 1− i)Lji

≤
k∑
i=1

∑
j≤−(k+1−i)

(k + 1− i)Lji +
k∑
i=1

k+1−i∑
j=1

(2j − k − 1 + i)Lji

− γ − 1

γ + 1

k∑
i=1

∑
j<0

(k + 1− i)Lji using (11)

=

k∑
i=1

∑
j≤−(k+1−i)

2

γ + 1
(k + 1− i)Lji +

k∑
i=1

k+1−i∑
j=1

(
2j − 2γ

γ + 1
(k + 1− i)

)
Lji

≤
k∑
i=1

∑
j≤−(k+1−i)

2

γ + 1
|j|Lji +

k∑
i=1

k+1−i∑
j=1

2

γ + 1
jLji

=
2

γ + 1

k∑
i=1

∑
j<0

|j|Lji

≤ 2

γ + 1
M(A,R).

Here the penultimate inequality follows since

j ≤ k + 1− i⇒
(

2− 2

γ + 1

)
j =

2γ

γ + 1
j ≤ 2γ

γ + 1
(k + 1− i).

Thus the lemma follows for m = 0. When m > 0 the proof is similar but now the right-hand side
includes also the terms with j > 0; this is still bounded by 2

γ+1M(A,R) and the lemma holds. �



4 A linear upper bound

Let ri be the i-th request and si be the server it is matched to. Generally, let Ri be the set of
the first i requests and denote by Si the set of servers that γ-wfa uses to match them. Using the
crossx values, we have

d(rn, sn) ≤M(Sn−1, Rn−1) +M(Sn, Rn).

This can be seen as follows. Let B0 = B0(Sn−1, Rn−1). If B0 = ∅, we are done. Else, we have
two cases. If rn < sn, we have B−(Sn, Rn) ≥ B0. If sn > rn, we have B+(Sn, Rn) ≥ B0. These
inequalities follow because in intervals where there were previously no lines (i.e., leftx(Sn−1) =
leftx(Rn−1)) we now do have a line, because leftx(Sn) 6= leftx(Rn−1). In both cases, the
desired result follows.

Together with Theorem 1, this implies that the cost to service request at time i is bounded
from above by

pseudoi−1 + pseudoi ≤
γ + 1

γ − 1
(opti−1 + opti).

Since opti ≤ optj for all i ≤ j, the claim follows. (Note that the cost of pseudo is not necessarily
non-decreasing over time.)

5 Lower bounds for γ-wfa

In this section, we will repeatedly use the so-called cruel adversary, which gives each request (after
the first one) at the position of the last server used by γ-wfa. Let n be the number of requests.

Theorem 5 Let α = 2/(γ + 1). Then γ-wfa has a competitive ratio of at least

2
αn−1 − 1

α− 1
+ 1

on the line for 0 ≤ γ < 1.

Proof We have α > 1. Let the positions of the servers be −1 − ε and (αi − 1)/(α − 1) for
i = 1, . . . , n − 1. The requests will be at the locations (αi − 1)/(α − 1) for i = 0, . . . , n − 1. We
show by induction that each request is served from the right. The first request is at position 0, and
the surrounding servers are at positions −1− ε and 1. Thus, γ-wfa serves it from the right since
the distance is smaller. For the ith request, by induction the surrounding servers are at positions
−1− ε and (αi − 1)/(α− 1), and the total cost so far is exactly the position of this request, which
is (αi−1 − 1)/(α− 1). We have that γ-wfa serves it from the right if

γ · (1 + ε) +

(
αi−1 − 1

α− 1
+ 1 + ε

)
> γ

(
αi − 1

α− 1

)
+

(
αi − 1

α− 1
− αi−1 − 1

α− 1

)
⇔ γ(α− 1)(1 + ε) + αi−1 − 1 + (α− 1)(1 + ε) > γ(αi − 1) + (αi − αi−1)

⇔ 2αi−1 − αi + α− 2 > γ(αi − 1− (α− 1)(1 + ε))− ε(α− 1)

= γ(αi − α)− ε(γ + 1)(α− 1)

⇔ (αi−1 − 1)(2− α) > γα(αi−1 − 1)− ε(γ + 1)(α− 1)

⇔ 2− α > αγ − εγ(α− 1)/(αi − 1)

⇔ 2 > α(γ + 1)− ε(γ + 1)(α− 1)/(αi − 1).



Since α = 2/(γ + 1) > 1, this holds for any ε > 0.
The final request at position (αn−1−1)/(α−1) is served from the left, using the last remaining

server, giving a total online cost of 2(αn−1 − 1)/(α − 1) + 1 + ε. The optimal solution is to serve
the request at 0 from the left and all others with cost 0, for an optimal cost of 1 + ε. �

Theorem 6 For γ = 1, γ-wfa has a competitive ratio of at least 2n− 1 on the line.

Proof Let the positions of the servers be −1−ε and i−1 for i = 2, . . . , n. As in the previous proof,
the first request at position 0 is served from the right. We continue using the cruel adversary and
prove by induction that each request is served from the right. By the induction hypothesis, the total
cost to serve the first i−1 requests is i−1. The ith request is at position i−1 and the surrounding
servers are at positions −1−ε and i. γ-wfa uses the server at position i if γ(1+ε)+ i+ε > γ · i+1,
which is true for γ = 1 and any ε > 0.

The final request at position n−1 is served from the left, for a total cost of 2n−1. The optimal
cost to serve this sequence is 1 + ε as before. �

Theorem 7 For γ =∞, γ-wfa has a competitive ratio of at least n on the line.

Proof Let n be even and ε ∈ (0, 1). Let the positions of the servers be i for i = 1, . . . , n/2 and
−i − ε for i = 1, . . . , n/2. Again the first request at position 0 is served from the right. We claim
that the cruel adversary gives the requests in the order 0, 1,−1− ε, 2,−2− ε, ....

For a positive request at location i, by the induction hypothesis, the optimal cost using the
server at −i− ε is −i− ε, and the optimal cost using the server at i+ 1 is i+ 1. Hence γ-wfa will
indeed use the server at position −i− ε.

For a negative request at location −i − ε, by the induction hypothesis, the optimal cost using
the server at i+ 1 is i+ 1 and the optimal cost using the server at −i− 1− ε is i+ 1 + ε. Hence
γ-wfa will indeed use the server at position i+ 1.

The last request is at position n/2 and will be served by the last unused server at position
−n/2− ε. The total online cost is 1 + (2 + ε) + 3 + (4 + ε) + · · ·+ (n+ ε) = n(n+ 1 + ε)/2. The
optimal matching moves all servers at negative locations to the right by 1 and the last one to 0 for
a total cost of n/2 + ε, and the lemma follows. �

Theorem 8 For any value of γ, γ-wfa has a competitive ratio of Ω(log n).

Proof For simplicity, assume that n is of the form n = 2t. Place 1 server at locations 0 and n, and
two servers at each location i = 2, 4, . . . , n− 2. There will be t phases. In the first phase, requests
arrive at locations 2i ± (1 − ε) for i = 1, 3, . . . , n/2 − 1, for some small positive value of ε. γ-wfa
will serve these requests using the pairs of servers at the locations i = 2, 6, . . . , n − 2 (from each
pair, one server will move left and one server will move right). We now have unused servers left at
locations i = 4, 8, . . . , n− 4, as well as the single servers at locations 0 and n. Hence, the structure
of the server locations is exactly the same as at the beginning, but they are now twice as far apart.

In phase p = 2, . . . , t−1, requests at locations i·2p±(2p−1−ε) will arrive for i = 1, 3, . . . , 2t−p−1,
and due to symmetry it is easy to see that they will be served using the servers at locations i2p

for i = 1, 3, . . . , 2t−p − 1. In phase t, there are two requests at location 2t−1, and the only servers
remaining are at locations 0 and 2t.

Ignoring ε, it is easy to see that at the end there is one request at each location 1, 2, . . . , n− 1,
plus one additional request at location n/2. Hence one server at locations 0, 2, . . . , n/2− 2 can be
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Figure 1: The lower bound for n = 16. We have t = 4, so there are four phases; the fourth phase
is slightly different than the others. Circles denote servers and crosses denote requests.

used to serve a request at a distance of 1 to its right, and one server at locations 2, . . . , n/2 can
be used to serve a request at distance 0. We can use a symmetric version of this solution on the
interval [n/2, n] for a total cost of n/2 = 2t−1.

In contrast, γ-wfa incurs a cost of n/2 in each phase 1, . . . , t− 1 and n in phase t. Since there
are t = log n phases, the theorem follows. �
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