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In this column, I will discuss some recent papers in online algorithms that appeared in 2017. I
plan to make this column an annual feature in the December issue (rather than the March issue of
the following year) in order to be in time for Christmas shopping. . .

As before, quite a number of papers on online algorithms have appeared (ten in SODA alone)
and I have made a selection. There seem to have been a remarkable number of papers on lower
bounds this year, showing that for quite a number of problems, the best known online algorithm so
far is in fact the best possible online algorithm. It is great to see so many problems being resolved,
and to see so much interest in online algorithms. If I have unaccountably missed your favorite
paper and you would like to write about it or about any other topic in online algorithms, please
don’t hesitate to contact me!

1 Online matching problems

In FOCS, Nayyar and Raghvendra [28] consider the general metric bipartite matching problem.
This is a generalization of the problem of online matching on the line, which was recently considered
in this column [30, 31]. There is a set of n servers S in a metric space M . Requests arrive
online and must be matched to the servers; there will be n requests in total. Let µM (S) be
the maximum ratio of the traveling salesman tour and the diameter of any subset of S. Then
any online algorithm has competitive ratio Ω(µM (S)). The authors present an algorithm with
competitive ratio O(µM (S) log2 n). For the case where S is a set of points on the line, this gives a
ratio of O(log2 n), substantially improving on O(n0.59) by Antoniadis et al. [3]. This holds even if
the requests are not necessarily on that line.

For the case where S is a set of points spanning a subspace with doubling dimension d, the
competitive ratio is O(n1−1/d log2 n). The algorithm was already presented in Raghvendra [29].
It works by maintaining an offline matching throughout. For this offline matching, it computes
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a good way to serve the incoming request in each step. This then guides the decision of which
server to use for the online matching. In [29], the same problem had been considered, but without
considering specific metric spaces. The results there were that the presented algorithm achieves
optimal performance both in the adversarial model (ratio 2n− 1 + o(1), where the lower bound is
2n− 1) and in the random arrival model (ratio 2Hn − 1 + o(1); the author gives a lower bound of
2Hn − 1− o(1)).

There are several models for online matching. Buchbinder et al. [16] consider the edge arrival
model in ESA. In this model, edges of an unknown graph appear one by one and must be irrevocably
accepted or rejected. In each step, the set of accepted edges must form a matching. The authors
present a new family of randomized algorithms and show that an algorithm in this family achieves
a ratio of 5/9 when the underlying graph is a forest, while none is better. They also give a general
upper bound (hardness result) of 0.5914. This bound also holds for trees of maximum degree at
most 3.

Their so-called MinIndex framework maintains k matchings, which are ordered. Each arriving
edge is added to the first matching in the fixed ordering to which it can feasibly be added (main-
taining a matching). In the end, one of the k matchings is returned as the output, according to a
probability distribution which is fixed in advance by the algorithm. The algorithms are analyzed
using a primal-dual framework.

2 Matching with delays

In STOC 2016, Emek et al. [22] had introduced min-cost perfect matching with delays. In this
problem, requests in a finite metric space M must be matched to eachother (rather than to servers).
Serving requests immediately can lead to results that are arbitrarily bad from a competitive analysis
point of view (as the title of the paper says, haste makes waste). The authors therefore consider a
model in which an algorithm is allowed to delay the matchings. The cost of the algorithm in this
model is the sum of the distances between matched requests plus the sum of times each request
waited since it arrived until it was matched.

The paper presents a randomized online algorithm with competitive ratio O(log2 n + log ∆)
for this problem. Here n is the number of points in M and ∆ is the aspect ratio of M . Note
that there can be more than n requests in the input. The analysis is based on the study of two
interleaved Poisson processes. The algorithm also works in a setting where unmatched requests
can be cleared at a fixed penalty. The authors conjecture that the competitive ratio of any online
algorithm must depend on n. Finally, they show that the natural deterministic version of their
algorithm is Ω(n)-competitive.

In SODA 2017, Azar et al. [6] present an algorithm with competitive ratio O(log n), thus
improving the ratio and removing the dependence on the aspect ratio, which can be unbounded
in n. The algorithm is based on a deterministic algorithm for metric induced by edge-weighted
trees of height h. This algorithm has cost at most O(1) times the connection cost (the sum of
the distances) plus O(h) times the delay cost of every feasible solution. Its analysis is relatively
simple compared to the previous result. To solve the problem for arbitrary metrics, a randomized
embedding into hierarchically separated trees of height O(log n) and distortion O(log n) is used.
They also provide a randomized lower bound of Ω(

√
log n), thus confirming the conjecture of Emek

et al. [22]. The lower bound was improved to Ω(log n/ log logn) by Ashlagi et al. [4] in APPROX.
This paper focuses on the bipartite version, where each request is positive or negative and must be
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matched to a request of opposite polarity. The authors adapt the algorithm of Emek et al. [22] for
this case and provide a simplified analysis to improve the competitive ratio to O(log n). It is based
on an O(h)-competitive randomized algorithm on weighted trees of height h.

Finally, in WAOA, Bienkowski et al. [13] provided the first deterministic algorithm for this
problem, achieving a competitive ratio of O(m2.46), thus also avoiding any dependence on the
aspect ratio. Here 2m is the number of requests (which can be larger than n in case some points
are repeated). This algorithm does not need to know the metric space in advance. It works by
considering the waiting times of requests. As soon as the total waiting time of a pair of requests
exceeds the distance between them (times some factor), and the waiting times are at most a given
factor apart, then this pair is matched to eachother.

Azar et al. [9] considered a somewhat related problem in STOC 2017. Here, n points in a metric
space issue service requests over time, and there is a server which serves these requests. The goal
is to minimize the sum of the distances traveled by the server and (a function of) the total delay
in serving the requests. The main result is a competitive ratio O(log4 n), achieved by a so-called
preemptive service algorithm. They show that it is not enough to balance the service costs and the
penalty costs locally. There are examples where requests that have not incurred any penalty at all
need to be served. The algorithm therefore balances these costs globally, which is more difficult.
The results are also generalized to the case of k > 1 servers. Finally, special metrics like uniform
and star metrics are considered; stronger results are obtained here.

3 Bin and vector packing

Balogh et al. [11] resolved the problem of cardinality constrained online bin packing in ESA. In
this problem, items with varying sizes arriving online need to packed into bins of size 1. Each bin
may contain at most k items for some predetermined k, and each bin may contain items of total
size at most 1. They provide a lower bound of 2 for this problem (for general k) and also improve
the lower bounds for specific values of k substantially. In particular, for large k, the best known
lower bound before this paper was only 1.54037, whereas it now tends to 2 relatively quickly. It
is rare to see tight results for online bin packing (certainly if the most commonly used asymptotic
competitive ratio is considered), making this a very nice result.

The lower bound construction works adaptively, by considering how exactly each individual item
is packed by an online algorithm. Thus the item sizes are not set in advance. The procedure creates
items that will be called small and items that will be called large, any large item is larger than any
small item, and there is a requirement on the size ratio that will be satisfied (a multiplicative gap
between the size of the smallest large item and the largest small item). In previous works, only
additive gaps were created, and this did not work very well to create lower bounds for k > 2.

The authors also use this idea to show a lower bound strictly larger than 2 on the asymptotic
competitive ratio of the online 2-dimensional vector packing problem (where vectors are packed
into 2-dimensional bins), and thus provide for the first time a lower bound larger than 2 on the
asymptotic competitive ratio for the vector packing problem in any fixed (constant) dimension. In
a followup paper in WAOA [10], the same authors furthermore improve the lower bound for online
square packing from 1.68 to 1.75.

In that paper, they also consider two alternative settings for one-dimensional bin packing. In
the first setting, the value of the optimal offline solution is given in advance. The lower bound is
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improved from 1.32 to 1.40. In the second setting , each item has a color as well, and each bin may
contain items of at most t colors. For t = 2, they improve the lower bound from 1.56 to 1.71, and
for t = 3, they improve the lower bound from 5/3 (which was proved using items of equal size) to
1.80.

This vector packing problem was also considered by Azar et al. [8] in SODA. They called it
the vector bin packing problem to distinguish it from the vector knapsack problem (see below).
The authors give a general technique to construct lower bounds using linear programming duality;
previously, duality had been used to obtain positive results, e.g., via the primal-dual scheme. In
particular, for vector bin packing, they prove a lower bound which tends to e as the dimension d
tends to infinity. This result is tight, as it matches a previous upper bound [7].

The authors provide two additional tight lower bounds for other problems. The first is ad
auctions, where n bidders, each with their own budget B(i), are bidding on products that arrive
online. An algorithm must allocate the items to bidders without exceeding their budgets. The goal
is to maximize the total revenue. For the case where the number of buyers interested in each item
is bounded by a parameter d, a tight lower bound of 1− (1− 1

d)d is presented.
The last problem considered in [8] is capital investment. In this problem, many units of a

particular commodity must be produced. A set of machines is available. Each machine has a
production cost pi and a capital cost ci. In order to use a machine, it first must be bought (at cost
ci). After that, producing one item on that machine costs pi. Orders for units arrive online and
the goal is to minimize the total cost. For the case where all machines are known at the start, a
tight lower bound of e is presented.

Chan et al. [18] considered the vector packing problem, where vectors need to be packed into
a single d-dimensional knapsack. It is allowed to dispose of previously accepted items, but such
items can then not be added in again later. The goal is to maximize a monotone submodular
function of the set of accepted items. The paper focuses on the important parameter k, which is
the maximum number of nonzero coordinates of any vector. Every coordinate of every vector in
the input is required to be at most 1− ε for some ε > 0.

The authors present an O(k/ε2)-competitive algorithm, as well as lower bounds of Ω(k) (de-
terministic) and Ω(k/ log k) (randomized). For the case ε = 0, a lower bound of Ω(k) even for
randomized algorithms is given. Finally, even if vectors are required to be arbitrarily small in
every dimension, a lower bound of Ω(log k/ log log k) is proved. In contrast, Kesselheim et al. [26]
achieved a competitive ratio of 1 + δ for this case in the setting where the arrival order of the items
is random. The algorithm works by maintaining a fractional solution, which is rounded at every
step to achieve an integer solution. The algorithm considers the densities of the vectors (the value
per unit weight) in each dimension separately. When a new item arrives, its accepted fraction is
continuously increased up to at most 1. At the same time, for each of its k nonzero dimensions, the
fraction of the currently least dense accepted item is decreased. This continues as long as the rate
of increase in value due to the new item is at least some factor times the rate of loss due to disposing
items fractionally. At this point, the algorithm checks whether the new item was accepted with
a fraction larger than some threshold α. In this case, the item will be accepted completely. Any
existing item for which its accepted threshold drops below another threshold β is removed from the
integer solution.
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4 Online scheduling

In SODA, Molinaro [27] considered the classic online load balancing problem. In this problem,
jobs arrive online (not over time) and need to be assigned to machines. Each job is assigned to
one machine and the goal in this paper is to minimize the `p norm of the machine loads. Molinaro
considers a setting in which each job can be processed in k different ways on each of the m machines.
This is a generalization of scheduling unrelated machines to minimize makespan. It has long been
known that a greedy algorithm that for each job chooses the processing option that least increases
the `p load has competitive ratio O(p), and this is optimal.

Molinaro extends this result by giving algorithms that are optimal (up to constant factors) for
both the standard adversarial model (competitive ratio) and the random-order model (secretary
model). The algorithm works by “restarting” at time n/2. That is, as soon as n/2 jobs have
arrived, the algorithm ignores everything that has happened so far and pretends all machines are
empty. Of course, this means that it is not an online algorithm anymore, since the algorithm must
know n in advance in order for this to work.

In SPAA, Agrawal et al. [1] consider jobs that can be represented as directed acyclic graphs,
showing the dependencies of tasks within the jobs: different tasks from the same job can run in
parallel, but only if all their predecessors have been completed. In their setting, each job i has an
associated nonincreasing profit function pi(t), which gives the profit for completing this job by time
t. They give an 2 + ε-competitive algorithm using O(1/ε6) resource augmentation on the speed,
and also show that a speed of at least 2− 1/m is needed to be O(1)-competitive.

5 Various problems

Set Cover Gupta et al. [24] study the classic set cover problem in STOC. They consider the
fully-dynamic version of the problem in whcih items arrive and leave, and the goal is to maintain a
competitive solution at all times (with regard to the current optimal solution). Dynamic algorithms
have a restriction on the running time for each update, whereas online algorithms have a restriction
on the number of updates they are allowed to make to the solution (the recourse).

The authors give a dynamic algorithm which achieves O(log n)-competitiveness with O(f log n)
update time, and an algorithm which achieves O(f3)-competitiveness with O(f2) update time.
Here f is the maximum frequency of any element. The second algorithm is the first deterministic
constant competitive constant update time algorithm for fully-dynamic vertex cover.

They also give an online algorithm with competitive ratioO(min log n, f) with constant recourse.
This matches the best offline bounds with O(1) recourse. The results are based on two algorithmic
frameworks, based on the classic greedy and primal-dual frameworks for offline set cover.

Multi-level aggregation Consider requests which arrive at the nodes of an edge-weighted tree
T . Requests are served by repeatedly selecting subtrees from T ; the cost of one such service is the
total weight of the selected subtree. The goal is to minimize the total waiting costs of all requests
plus the total cost of all service subtrees. This problem (MLAP) generalizes the well-known TCP
acknowledgment problem (which corresponds to trees of depth 1) and the joint replenishment
problem (trees of depth 2). In ESA 2016, Bienkowski et al. [12] had given the first constant
competitive online algorithm for trees of depth 2, with a competitive ratio of O(D42D) for trees of
depth D.
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In SODA 2017, Buchbinder et al. [15] improved this to O(D). The algorithm works by trans-
forming the tree into a forest of 3-decreasing trees. In such a tree, the edge costs go down by
a factor of at least 3 on each step of a path from the root to a leaf. The idea is to recursively
aggregate requests to be served into a subtree, starting from the root. Requests are selected in such
a way that as many requests as possible are aggregated while keeping the cost of the tree bounded
in order to relate it to the optimal solution. This is done by providing budgets to selected nodes
which can be used to aggregate additional nodes.

Online TSP on the line Bjelde et al. [14] completely resolved the online traveling salesman
problem on the line. In this problem, requests appear online over time on the real line and need to
be visited by a server which is initially located at the origin. For the closed version of the problem,
where the server needs to return to the origin after visiting all requests, the authors provide an
algorithm with competitive ratio (9+

√
17)/8 ≈ 1.64, matching a lower bound by Ausiello et al. [5].

The algorithm uses waiting to avoid certain bad inputs. In particular, the case where there are
requests at both sides of the server, but the optimal solution serves them in a different order than
the online algorithm, is critical.

For the open version of the problem, a lower bound of 2 is trivial: at time 1, release a request at
position 1 or -1, depending on which is furthest away from the online server. The authors improve
this to approximately 2.04 (the root of a fourth-degree equation) and show that this is tight by
giving a matching upper bound. In this version, the server does not need to return to the origin,
but the algorithm presented by the authors returns to the origin whenever possible. The advantage
of staying near the origin is that the algorithm can delay the choice in which order to serve the
extreme requests to the right and to the left for as long as possible.

Network design In the buy-at-bulk network design problem, there is an underlying graph with
edge lengths d(e). Sending xe flow over an edge e costs d(e)f(xe), where f is a concave cost
function. The goal is to find a routing for demand arriving online in order to minimize the total
cost. Previous results for this problem used tree-embeddings, giving randomized algorithms with
competitive ratios that depend on the number of nodes in the metric. In SODA, Gupta et al. [25]
present a deterministic online algorithm with a competitive ratio logarithmic in k, the number of
terminals that have arrived. This matches a known lower bound even for the online Steiner tree
problem.

They also consider the case where the function f is not known to the online algorithm, and give
a deterministic online algorithm with competitive ratio logarithmic in k. The algorithms work by
assigning integer types to terminals, and routing each terminal through a sequence of terminals with
increasing types, using a spanner-type construction. The authors construct low-stretch spanners in
the online setting. They also extend the notion of light approximate shortest-path trees (LASTs)
to multi-sink LASTs, where both sources and sinks arrive over time, and a set of edges needs to
be maintained so that every source preserves its distance to the closest sink arriving before it at
minimum total cost. As part of their algorith, the authors give a tight deterministic algorithm for
MLASTs.

Graph coloring Albers and Schrank [2] considered online graph coloring in ESA. For the general
case, this problem had essentially been resolved, as an upper bound of O(n log n) and a nearly
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matching lower bound of Ω(n/ log2 n) is known, which holds even for randomized algorithms that
have lookahead or a buffer of size O(log2 n).

For specific graph classes however, better results are possible. For instance for trees, First Fit
achieves a competitive ratio of O(log n), which is optimal. Albers and Schrank consider chordal
graphs, in which every induced cycle with four or more vertices has a chord. They give a lower
bound of Ω(d · log n) for the required number of colors by a randomized online algorithm, where d
is the chromatic number of the graph. That is, the competitive ratio is at least Ω(log n), and First
Fit is optimal. Very few lower bounds for randomized algorithms were previously known. The same
results are obtained for inductive, bounded-threewidth, and strongly chordal graphs.

Online house numbering Devanny et al. [19] published a paper on the online house numbering
problem in ESA. In this problem, houses are added arbitrarily along a road and need to be assigned
labels that are in ascending order along that road. The goal here is to minimize the maximum
number of times that any house is relabeled, in contrast to minimizing the number of relabelings
per update as in previous papers. If labels may be arbitrarily large, it is possible to avoid relabelings
completely by assigning to each new house the average of the labels of the houses to the left and to
the right of it. This however requires Ω(n) bits per label. The authors therefore also aim to minimize
the number of bits used in the labels. Letting h(n) be the maximum number of bits per label and
g(n) be the maximum number of relabels. Then h(n) = Ω(logn) and previous results imply that if
h(n) = O(log n), then g(n) = Ω(log n). The authors provide three data structures which achieve the
following values for (h(n), g(n)): (O(log2 n), O(log n)), (O(log n), O(log2 n)), (O(nε), log n+O(1/ε)).
They use a tree-like structure in which elements that get relabeled often are promoted nearer to
the root of the tree, ensuring fewer relabels in the future.

Differential privacy Differential privacy is a formal guarantee that an algorithm run on a sen-
sitive dataset does not reveal too much about any individual in that dataset. There are three main
models for the selection of queries, which is adversarial in all cases. In the offline model, the queries
are chosen at the beginning, and answered in one step. In the online model, the queries are still
chosen at the beginning, but the adversary determines the order in which they arrive. Finally, in
the adaptive model, the queries are chosen one at a time, and may depend on the answers given to
previous queries.

Many known differentially private mechanisms work just as well in the adaptive model as in the
offline model, whereas most lower bounds are given for the offline setting. In SODA, Bun et al. [17]
show separations between these models for the first time. That is, they give a family of queries
such that exponentially more queries can be answered in the offline model than in the online model,
and another family of queries such that exponentially more queries can be answered in the online
model than in the adaptive model (with the same guarantee for differential privacy).

Online unit clustering Let me conclude by mentioning a WAOA paper by Dumitrescu and
Tóth [20]. They consider a unit clustering problems, where points in Rn arrive online and need to
be put into clusters. A cluster in this case is a d-dimensional unit hypercube. The location of the
hypercube is not set in advance; the only constraint is that it must contain the points assigned to
it at all times.

Dumitrescu and Tóth give a lower bound of Ω(d) for this problem, answering a question that
had been asked a few times over the years [23, 21]: does the competitive ratio of this problem grow
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with the dimension? They also give a randomized O(d2)-competitive algorithm for the unit covering
problem, where the location of the hypercube must be specified when it is opened. Previously, only
a ratio of O(2dd log d) was known.
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