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For this issue, Matthias Englert has contributed an alternative and simpler proof of a result by
Gamzu and Segev, which was in ACM Transactions on Algorithms in 2009. The problem considered
in this paper was the reordering buffer problem on the line. Gamzu and Segev were the first to give
an O(log n)-competitive algorithm for this problem, and there has been no improvement on this
since then, leaving a gap with the best known lower bound of 2.154 by the same authors.

Matthias’ proof shows that this result can be slightly improved (a smaller hidden constant) and
simplified. Who is going to be the first to give a constant competitive algorithm, or show that this
cannot be done?

As always, I would like to invite more contributions to this column, be it surveys, conference
reports, or technical articles related to online algorithms and competitive analysis. If you are con-
sidering becoming a guest writer, don’t hesitate to mail me at rob.vanstee@uni-siegen.de.



The reordering buffer problem on the line revisited

Matthias Englert

The reordering buffer problem (or also sorting buffer problem) was introduced by Räcke,
Sohler, and Westermann in 2002 [13] and has been extensively studied since then. In this
problem, a metric space is given1 and a sequence of items arrive online. Each item is associated
with a point in the metric space. We allow multiple items to be associated with the same point.
An online algorithm can store up to k items in a buffer, but once the buffer is full, the algorithm
has to process at least one of the items stored in the buffer. To process an item from the buffer,
the algorithm moves a single server in the metric space to the point corresponding to that item.
The goal is to minimize the total distance that the server has to travel to process the entire
input sequence.

The problem is reasonably well understood for some metric spaces. For uniform metric
spaces for example, a deterministic O(

√
log k)-competitive algorithm is known, which is close

to the lower bound of Ω(
√

log k/ log log k) [1]. Similarly, [4] gives a O(log log k)-competitive
randomized online algorithm, which is asymptotically tight [1].

For other metric spaces however, the picture is less clear. We will refrain from listing all
known results in detail, but there have been a number of papers investigating this online problem
for different metrics spaces and settings [2, 3, 6, 7, 8, 9, 10, 11, 12]. However, in this column, we
will focus on line metric spaces. The last notable result for this metric was obtained eleven years
ago by Gamzu and Segev [10]. Their main result is a deterministic O(log n)-competitive online
algorithm for a line metric space with n evenly spaced points. In the reminder, we will sketch a
slightly simplified and improved version of this result.

An O(log n)-competitive algorithm for the n-point line

We consider a line metric spaces with n evenly spaced points. For simplicity, we refer to the
points by integers from {1, . . . , n} so that the distance between two points p and q is |p − q|.
We call an interval between two neighboring points p and p + 1 a line segment and we say the
server traverses the segment if the server moves from a point less or equal p to a point greater or
equal p + 1 or vice versa.

The central idea behind the online algorithm in [10] is the concept of a doubling partition.

Definition 1 (Doubling partition2). A doubling partition of the line with respect to a point
p is a partition of all remaining n − 1 points into m := 2dlog(n + 1)e − 2 many intervals
Ldlog(n+1)e−1(p), . . . , L1(p), R1(p), . . . , Rdlog(n+1)e−1(p), where

Li(p) = [p− 2i+1 + 2, p− 2i + 1] ∩ [1, n] and

Ri(p) = [p + 2i − 1, p + 2i+1 − 2] ∩ [1, n] .

1[13] introduces the problem for uniform metrics, but different and more general metric spaces were considered
in subsequent works.

2For presentational reasons, our definition differs slightly from the one in [10].
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Note that some intervals may be empty, but this does not cause any problems in the algorithm
or analysis.

The online algorithm in [10] virtually partitions its buffer of size k into m equally sized parts
so that each part contains the items for one of the intervals in the doubling partition. The
algorithm is designed in such a way that none of these virtual sub-buffers overflow. That is, no
interval in the doubling partition ever contains more than k/m items (except in some temporary
intermediate configurations).

However, strictly maintaining such a property leads to slightly more complicated moves of
the server than what would otherwise be required. Therefore, we give an alternative algorithm
which avoids this virtual partition of the buffer. This also improves the competitive ratio slightly
from 168 · blog nc+ 124 to 48 · dlog(n + 1)e − 36.3

The online algorithm works in phases. At the start of a phase, the buffer is filled with items
from the input sequence until it is full, i.e., contains k items. The server position is some point
p. The algorithm then does the following.

1. Determine how many items in the buffer fall into each interval of the doubling partition
with respect to p. Note that since the buffer contains k items and there are at most m
intervals in the doubling partition, there must be some interval containing at least k/m
of the items in the buffer. Say there is such an interval Ri(p) to the right of p (the case
where such an interval is to the left of p is handled symmetrically).

2. Move the server from p to p + 2i − 1, i.e., to the left most endpoint of the interval.

3. Process all items in the buffer which fall into the interval Ri(p), for this, it is sufficient to
move the server once from p + 2i − 1 to p + 2i+1 − 2. After this, move the server back to
p + 2i − 1.

Note that at the end of the input sequence, there may be a situation where there are not enough
items left to completely fill the buffer. For simplicity, we could assume that the model does not
require us to process these remaining items. If we are required to process them, we can do so
(with a single sweep from the left most item to the right most one) at an additional cost no
larger than twice that of an optimal offline algorithm.

For our analysis, we will pretend that the server moves in Step 3, from p+2i−1 to p+2i+1−2
and back, are not performed (but, magically, the items are still processed as before). Note that
the server move in Step 2 incurs cost 2i − 1 and the total cost of the server moves in Step 3 is
2 · (2i − 1). Therefore, ignoring the server moves from Step 3 will result in total cost that is one
third of the true cost.

We fix an arbitrary segment S of the line, say between point q and point q + 1 and analyze
how often the online algorithm traverses this segment versus an optimal algorithm. Given our
new “pretended” server movements, i.e. excluding the movements in Step 3, we make two
important observations:

(a) In every phase in which the online algorithm traverses S from left to right or from right to
left, the online algorithm processes at least k/m items with positions greater or equal than
q + 1 (i.e. to the right of S) or with positions less or equal than q (i.e. to the left of S),
respectively.

(b) After every phase in which the online algorithm traverses S, the final server position is on
the other side of S. That is, if the server started left of S it will be to the right of S after
the phase and vice versa.

3A more careful analysis can improve this further.
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Furthermore, the following general lemma will help us to obtain a lower bound on the optimal
offline cost.

Lemma 1. Suppose we execute two (not necessarily online) algorithms A and B on the same
input. Imagine they are synchronized: whenever A processes one item, B also processes exactly
one. If, for a time interval, A’s server is only located to the left (right) of S, then B can process
at most 2k items that lie to the right (left) of S during this time interval.

Proof. At the start of the considered time interval, B has at most k items in the buffer which
can be located to the right (left) of S. Therefore, if at some point B has processed 2k + 1 items
at such positions, k + 1 of them must have arrived after the start of the time period. Algorithm
A cannot have processed any of these k + 1 items since the server never visited any of the
corresponding points after the start of the time interval. Since A can store at most k of these
items in its buffer, this is a contradiction.

Combining our two observations (a) and (b) with the lemma above gives us the following
result.

Lemma 2. If there is a time interval during which the online algorithm traverses S at least
4m + 2 times, any optimal offline algorithm also has to traverse S at least once during the time
interval.

Proof. Assume for contradiction that the statement is not true. Without loss of generality
assume that the server of the optimal offline algorithms is located to the left of S at the start of
the time interval. Due to observation (b), every second time the online algorithm traverses S,
this movement will be from left to right. Hence, according to observation (a), after traversing S
2` + 1 times, the online algorithm has processed at least ` · k/m items to the right of S. Using
Lemma 1 with A being the optimal offline algorithm and B being the online algorithm, ` · k/m
cannot be greater than 2k. Therefore ` ≤ 2m, which is a contradiction.

This directly gives us the desired result.

Theorem 1. The competitive ratio of the online algorithm is bounded by 48 · dlog(n+ 1)e− 36 =
O(log n).

Proof. The online algorithm never traverses a segment that an optimal offline algorithm never
traverses, because to traverse a segment the input needs to contain at least one item to the
left and one item to the right of the segment. Due to Lemma 2, for each segment, the online
algorithm traverses the segment at most 2 ·(4m+2) times as often as an optimal offline algorithm.
Hence, 2 · (4m + 2) would be the competitive ratio of the online algorithm. However, so far we
have ignored the cost of the server moves in Step 3 of the online algorithm. The correct bound
on the competitive ratio is therefore 6 · (4m + 2).

Open problems

The obvious and intriguing open question is whether there is an online algorithm, either
deterministic or randomized, that has a competitive ratio much better than Θ(log n). The only
known lower bound is 1 + 2/

√
3 ≈ 2.154 [10].

It is not surprising that the algorithm presented here, like the version in [10], is Ω(log n)-
competitive [14]. Let us for simplicity assume that n = 2a − 1 for some a ∈ N, a > 2 and that
2a − 2 | k. Let the points be numbered −n−1

2 ,−n−3
2 , . . . , n−12 . Then m = 2a − 2. The server

starts in the middle, at position 0. Consider an input of the following form. At the beginning,
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there are k
m + a− 2 = k

2a−2 + a− 2 requests at position 1 and at position -1. There are k
m − 1

requests at positions 2, 4, 8, ..., 2a−2 and −2,−4,−8, ...,−(2a−2).
The algorithm will only move between positions 1 and -1. Every time that it serves requests

at 1, k
m + a− 2 new requests arrive at -1, and vice versa. This continues for as long as we want.

The algorithm therefore pays 2 to serve each group of k
m + a− 2 requests. Of course, the optimal

solution is to first clear the line, at cost 2n, and then to move back and forth between 1 and -1
only once every k/2 requests. Setting for instance k = (a− 2)(a− 1), this gives in the long run
a competitive ratio of 2

3(a− 1) = Ω(log n).
More generally, it is known that a different type of analysis would be required for such a

result. Specifically, our proof here as well as the proof in [10] is robust in terms of changes to the
buffer size of the optimal offline algorithm. Specifically, say we compare the cost of the online
algorithm with a buffer of size k to the cost of an optimal offline algorithm with a buffer of
size 4k, then these proofs still go through with appropriately adjusted multiplicative constants.
However, a result by Barman, Chawla, and Umboh [5] implies that no proof with such a property
can provide an upper bound better than Θ(log n) on the competitive ratio.

Another question is what happens if the points on the line are not necessarily evenly spaced
or the line metric is continuous. For this case, [10] gives an upper bound of O(logN log logN)
on the competitive ratio, where N is the length of the input sequence. This can be improved to
O(logN) (Cygan, Mucha, personal communication, 2011), but the gap to the lower bound of
≈ 2.154 remains large.

Finally, deviating slightly from the topic of this column about online algorithms, even the
offline complexity of the problem appears to be open.
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[6] Matthias Englert and Harald Räcke. Reordering buffers with logarithmic diameter depen-
dency for trees. In Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1224–1234, 2017.

4
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