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In this column, I will discuss some papers in online algorithms that appeared in 2018. It is very
nice to see many good papers on this topic appearing year after year. I make no claim at complete
coverage here, and have instead made a selection.

As always, if I have unaccountably missed your favorite paper and you would like to write about
it or about any other topic in online algorithms, please don’t hesitate to contact me!

1 The k-server problem

The k-server problem has played a major role in the development of the whole field of online
algorithms, and remains one of the most well-studied problems in this area. In this problem,
requests arrive online in a metric space. The online algorithm has k servers and has to move (at
least) one server to the current request before the next one is revealed. The goal is to minimize the
total distance traveled by all the servers.

Manasse et al. [40] who introduced this problem in STOC 1988 conjecture that for each metric
space, there exists a k-competitive algorithm. Despite decades of work, this conjecture remains
open, though it was shown already within a few years by Koutsoupias and Papadimitriou [33] to
be true within a factor of 2. Later on, a folklore conjecture arose that for every metric space, a
randomized O(log k)-competitive algorithm exists.

Two strong papers on this topic appeared this year. In FOCS 2018, in what is possibly the most
impressive result of the year in online algorithms, James Lee [36] presents an O(log6 k)-competitive
randomized algorithm for the k-server problem on any metric space. He shows that a potential-
based algorithm for the fractional k-server problem on hierarchically separated trees (HSTs) with
competitive ratio f(k) can be used to obtain a randomized algorithm for any metric space with
competitive ratio f2(k)O(log2 k). Employing the O(log2 k)-competitive algorithm for HSTs from
Bubeck et al. [15] yields the claimed bound.
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This shows for the very first time that for every metric space on which the problem is non-
trivial, randomized algorithms give an exponential improvement over deterministic algorithms.
Even though this result does not resolve the randomized k-server conjecture entirely, it is a huge
improvement compared to what was known.

Nikhil Bansal et al. [11] considered a generalization of the k-server problem in which each server
is in its own metric space and each request consists of a point in each metric space. As before, (at
least) one server has to travel to a request point each time, and the goal is to minimize the total
distance travelled. This paper gives for the first time an f(k)-competitive algorithm. That is, the
competitive ratio is a function which depends only on k and not on any property of a metric space.

In particular, the authors obtain deterministic and randomized algorithms with competitive ra-
tio k2k and O(k3 log k) respectively. The deterministic bound essentially matches the lower bound

of 2k−1 by Koutsoupias and Taylor [34]. The authors also give a 22
O(k)

-competitive deterministic al-
gorithm for weighted uniform metrics, which also essentially matches last year’s doubly exponential
lower bound for the problem by a subset of the authors [10].

2 Online scheduling

There were several papers on minimizing total weighted flow time this year. This is a problem which
in some sense is completely hopeless from a pure competitive ratio perspective, as no algorithm
can hope to be competitive. Even on a single machine, there is a lower bound of Ω(

√
n) where n is

the number of job [25]. However, if some parameters of the problem are bounded, positive results
can be achieved.

Define P as the maximal ratio between the processing times of any two jobs, and W as the
maximal ratio between the weights of any two jobs. Finally, let D be the maximal ratio between
the densities of any two jobs, where the density of a job is its weight divided by its size. In STOC
2001, Chekuri et al. [17] had presented an O(log2 P )-competitive algorithm for a single machine,
where P is the ratio between the maximum and the minimum processing time of any job. In SODA
2003, Bansal and Dhamdhere [9] gave an O(logW )-competitive algorithm for this problem.

In this year’s FOCS, Yossi Azar and Noam Touitou [5] improve and generalize these results
by first presenting an O(logP )-competitive algorithm and a (different) O(logD)-competitive algo-
rithm. (The authors point out that although the parameter D had not previously been considered
in the literature, the algorithm of Chekuri et al. can be easily modified to give an O(log2D)-
competitive algorithm as well.) They then show how to combine these results with the algorithm
of Bansal and Dhamdhere to give an algorithm which is O(log min(P,D,W ))-competitive without
knowing any of these values in advance. Bansal and Chan [8] had shown in SODA 2009 that no
constant-competitive algorithm exists for this problem.

The O(logP )-competitive algorithm works by classifying items geometrically by weight and
assigning each class to a separate bin. Within a bin, the jobs are stacked first by weight (highest
weight at the top) and then by density (lowest density at the top). At any point in time, the
algorithm chooses a bin from which to process the uppermost job. At each point in time, each bin
is assigned a score, such that the bin with the highest score is processed.

In Bansal and Dhamdhere [9], the score assigned to each bin is the total weight of the jobs in that
bin. In the new algorithm, the score is more complex. All jobs except the top job add their weight
to the total score of the bin. The top job adds to the score of the bin either its complete weight,
if it has high remaining processing time, or half of it, if it has low remaining processing time. This
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means that a job can be preempted during processing because its processing time has decreased
below the threshold, lowering the score of its bin. This preemption is not due to any external
event; no job has been released to trigger it. Similar ideas are used for the O(logD)-competitive
algorithm.

Progress was also made on scheduling to minimize weighted flow time on unrelated machines.
In ESA 2016, Giorgio Lucarelli et al.[39] had considered a version where the online algorithm can
reject some εr > 0 fraction (by weight) of the jobs and have machines that are 1 + εs as fast as the
offline machines, for some εs > 0. They showed that this is already enough to achieve a competitive
ratio of O(1/(εsεr).

In SPAA 2018, Giorgio Lucarelli et al.[37] (a superset of the previous authors) showed that it
is in fact sufficient to reject a 2ε fraction of the total number of jobs to achieve a competitive ratio
of 2

(
1+ε
ε

)2
for minimizing the total flow time. This algorithm sometimes rejects a job other than

the one that has just arrived. The authors show that this is necessary, as otherwise there is a lower
bound of Ω(∆) even on a single machine. Here ∆ is the size ratio (the ratio of largest to smallest
job size). (Obviously this lower bound also holds if you cannot reject jobs at all.)

They also consider the speed scaling model, in which machines can be sped up if additional
energy is invested, and the goal is to minimize the total weighted flow time plus energy usage. If
the power function of machine i is given by P (si(t)) = si(t)

α, where si(t) is the current speed of
machine i, there is an algorithm which is O((1 + 1/ε)α/(α−1))-competitive that rejects jobs of total
weight at most a fraction ε of the total weight of all the jobs. They also give a positive result for
jobs with hard deadlines, where the goal is to minimize the total energy usage and no job may be
rejected.

In ESA 2018, the same set of authors [38] improved/generalized these results by showing that
rejection alone is sufficient for an algorithm to be competitive even for weighted flow time. They
presented an O(1/ε3)-competitive algorithm that rejects at most O(ε) of the total weight of the
jobs. In this algorithm, jobs are assigned (approximately) greedily to machines, and each machine
runs the jobs assigned to it using Highest Density First. A job may be rejected if it is running
while much heavier jobs arrive or if it is in the queue while very many jobs arrive. The second rule
simulates the resource augmentation on the speed.

Also in ESA 2018, Matthias Englert et al. [24] considered the classic online load balancing
problem. In this problem, jobs arrive online (not over time) and need to be assigned to machines.
The machines are uniform, meaning that they have different speeds. Each job is assigned to one
machine and the goal is to minimize the makespan, which is the time it takes until all jobs are
processed. Englert et al. consider a setting in which k job can be migrated after the final job has
arrived. This setting was previously considered by Albers and Hellwig [1] on parallel (identical)
machines. They showed that the competitive ratio of this problem depends on m and grows from
4/3 on two machines to approximately 1.4659 as m tends to infinity.

Englert et al. show that the problem with related machines is harder by presenting a lower bound
which is strictly above 1.4659 for large m, as long as k = o(n). They also present an algorithm with
competitive ratio between 4/3 and approximately 1.7992, and prove that k = Ω(m) is necessary to
achieve a competitive ratio below 2. The algorithm works by carefully maintaining an imbalance
between the machine loads and using a bicriteria approximation algorithm that minimizes the
makespan and maximizes the average completion time for certain sets of machines.
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Again in ESA 2018, Waldo Gálvez et al. [28] considered machine covering, another problem that
I have enjoyed working on in the past. In this problem, the goal is to maximize the minimum load
(thus “covering” all the machines with as much load as possible). The authors consider a variant
of this problem with migration as above, but in this paper, migration is allowed after every single
job arrival. That is, we are allowed to reassign some jobs as long as their total size is (at most)
proportional to the processing time of the arriving job. The proportionality constant is called the
migration factor of the algorithm. The authors present a (4/3 + ε)-competitive algorithm with
migration factor Õ(1/ε3). It runs an adaptation of LPT at every job arrival. Since the new job
can cause a complete change of the assignment of smaller jobs, a low migration factor is achieved
by carefully exploiting the highly symmetric structure obtained by the rounding procedure.

In STOC 2018, Sungjin Im et al. [31] considered load balancing on related machines. They give
a constant competitive algorithm for optimizing any `p-norm for scheduling on related machines.
The only previously known result was for the makespan norm. Additionally, they consider vector
scheduling. In vector scheduling, vectors need to be assigned to machines and the goal is to minimize
the makespan, which is defined as the maximum load across all dimensions and machines. Im et
al. show that there is a sharp contrast between the case where the speed of a machine depends on
the dimension and the case where it does not. In fact they show that the first case is equivalent to
scheduling on unrelated machines and the second case is equivalent to scheduling identical machines.
The results are also extended to `p norms of the machine loads.

Finally, in ESA 2018, Alon Eden et al. [23] considered truthful prompt scheduling. They
consider an algorithmic game theory setting and give an online mechanism for minimizing the sum
of weighted completion times. The mechanism is prompt, meaning that the mechanism immediately
decides when an incoming job will be processed, without using preemption. It does not mean that
incoming jobs will be served as soon as possible (if they are served), as it is impossible to be
competitive in that setting.

In the mechanism presented here, each job (agent) is presented with a menu of options when
it arrives, which specify an interval for the job and a cost to be run in that interval. These menus
are anonymous and do not depend on the agent that arrives; in particular, they do not depend
on the size of the current job (which the agent could try to misrepresent in order to be served
sooner). This is a very nice idea and the authors prove that this mechanism achieves logarithmic
competitive ratios in several settings of the parameters. In addition, it is shown that these ratios
are (essentially) optimal.

3 Online matching problems

There are several models for online matching. In the most commonly studied version, one set L
of vertices is given in advance (the offline vertices), and the other set R arrives online. Karp et
al. [32] introduced this problem in STOC 1990. In SODA 2018, Ilan Reuven Cohen et al. [18]
considered randomized matching in regular graphs. They showed that for this problem, a compet-
itive ratio of 1 − O(

√
log d/

√
d) can be achieved in expectation on d-regular graphs, and a ratio

of 1 − O(log(n)/
√
d) can be achieved with high probability, as well as guaranteeing each vertex a

probability of being matched tending to 1. These results are complemented by a randomized lower
bound of 1 − O(1/

√
d) using Yao’s principle. The algorithm works by marking a superset of the

matched vertices to ensure that each offline vertex has a fixed probability of exactly 1/d of being
marked.
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Also in SODA, Bernstein et al. [12] considered this problem with amortized replacements. The
goal is to maintain a maximum matching while minimizing the number of changes (replacements) to
the matching. They show that a greedy algorithm that always takes the shortest augmenting path
(SAP) from the newly inserted vertex uses at most O(log2 n) replacements per insertion, where n
is the total number of vertices inserted. This improves on the previously best result of O(

√
n) from

Bosek et al. [13] in FOCS 2014 and almost matches the lower bound of Ω(log n). The result also
works for the capacitated assignment problem, where each offline vertex has a capacity to serve a
number of online vertices.

In STOC, Zhiyi Huang et al. [29] introduce a fully online model in which all vertices online.
On the arrival of a vertex, its incident edges to previously-arrived vertices are revealed. Each
vertex has a deadline that is after all its neighbors’ arrivals. If a vertex remains unmatched until
its deadline, the algorithm must then irrevocably either match it to an unmatched neighbor, or
leave it unmatched. The model generalizes the existing one-sided online model and is motivated
by applications including ride-sharing platforms, real-estate agency, etc.

They show that the Ranking algorithm by Karp et al. [32] is 0.5211-competitive for this model
on general graphs, getting a bound above 0.5 for the first time. For bipartite graphs, the competitive
ratio of Ranking is shown to be between 0.5541 and 0.5671. Additionally, a lower bound of 0.6317 <
1− 1/e for bipartite graphs shows that this fully online model is strictly harder than the previous
model.

A subset of the authors considered the standard (one-sided online) version of this problem in
ICALP [30]. They introduce a weighted version of Karp’s algorithm and prove a competitive ratio
of 0.6534 for vertex-weighted online bipartite matching when the online vertices arrive in random
(rather than adversarial) order. The algorithm uses a gain sharing function which depends on two
variables. Essentially, offline vertices offer a larger portion of their weights to the online vertices as
time goes by, and each online vertex matches the neighbor with the highest offer at its arrival.

In SoCG, Sharath Raghvendra [42] considered the famous problem of online matching on the
line (see also last year’s column [45]). He shows that the algorithm from his joint paper with
Nayyar [41] from FOCS 2017 is in fact O(log n)-competitive, thus proving it is at least as good as
the work function algorithm. Of course, whether a constant competitive algorithm exists remains
an open question!

4 Bin and vector packing

Vector scheduling and vector bin packing was considered by Yossi Azar et al. [4] in SODA. In vector
bin packing, vectors with entries between 0 and 1 need to be assigned to bins of size B and the
goal is to minimize the number of bins used. Previous work of an overlapping set of authors [3]
had given an upper bound of Õ(d1/(B−1)) and a lower bound of Ω(d1/B−ε) for any ε > 0. The new
paper closes the gap (up to log factors) by giving an algorithm with competitive ratio Õ(d1/B). For
B = 2, the result is improved from O(d) to Õ(

√
d).

They also give a randomized lower bound for vector scheduling which matches the best known
(and deterministic) upper bound for this problem, which is Θ(log d/ log log d).

János Balogh et al. [6] considered online bin packing in ESA. They give a 1.578-competitive
online algorithm for this classic problem by setting up different linear programs for every relevant
case. In a few years, the gap for this problem has now been reduced from about 0.05 to about
0.038. Will we ever know the true ratio of this problem?
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5 Online facility location

Marek Cygan et al. [19] considered a dynamic version of the online facility location problem,
where clients as well as facilities may depart. They give an optimal O(log a/ log log a)-competitive
algorithm, where a is the number of active clients at the end of the input sequence. They also
consider the uniform capacitated version, where each facility has a capacity c. If deletions are not
allowed, they give an optimal O(log n/ log logn)-competitive algorithm where n is the length of
the sequence. For the more challenging case with deletions, they present an O(logm + log c log n)-
competitive algorithm, where m is the number of points in the input metric.

Bjrn Feldkord and Friedhelm Meyer auf der Heide [26] consider another variant of the facility
location problem, in which the online algorithm is allowed to adapt the position of the facilities
for costs proportional to the distance by which the position is changed. They give algorithms for
Euclidean space of arbitrary dimension and show that these are asymptotically optimal for the line.
The competitive ratios of the algorithms do not depend on the number of clients.

In the streaming model, the order of the stream can significantly affect the difficulty of a prob-
lem. Harry Lang [35] considered a t-semirandom stream, which was introduced as an interpolation
between random-order (t = 1) and adversarial-order (t = n) streams where an adversary intercepts
a random-order stream and can delay up to t elements at a time. IITK Sublinear Open Problem 15
asks to find algorithms whose performance degrades smoothly as t increases. Lang shows that the
known online facility location algorithm achieves an expected competitive ratio of O(log t/ log log t)
and a matching lower bound. He also gives an application to streaming for k-median clustering.

6 Various problems

Nikhil Bansal et al. [7] considered the convex body chasing problem in SODA 2018. In this problem,
we are given an initial point v0 ∈ Rd and an online sequence of n convex bodies F1, . . . , Fn. When
we receive Fi, we are required to move inside Fi. Our goal is to minimize the total distance traveled.
This fundamental online problem was first studied by Friedman and Linial [27]. They proved an
Ω(
√
d) lower bound on the competitive ratio, and conjectured that a competitive ratio depending

only on d is possible. However, despite much interest in the problem, the conjecture remained wide
open (but see [14] which arrived just before press time).

Bansal et al. consider the setting in which the convex bodies are nested: F1 ⊃ . . . ⊃ Fn. The
motivation for this is that understanding this problem is a necessary step towards the larger goal
of extending the online LP framework of Buchbinder and Naor [16] more broadly beyond packing
and covering LPs. For example, it is unclear how to do this even for seemingly simple formulations
such as k-server on depth-2 HSTs or Metrical Task Systems on a line. The nested convex body
chasing problem corresponds to solving online LPs with arbitrary constraints (with both positive
and negative entries) and a specific type of objective.

Moreover, this setting retains much of the difficulty of the general setting and captures an
essential obstacle in resolving Friedman and Linials conjecture. The authors give a f(d)-competitive
algorithm for chasing nested convex bodies in Rd.

Nikhil Devanur et al. [21] considered online auctions. They showed that it is not possible to give
any deterministic individually rational mechanism for this problem which has a finite competitive
ratio for the social welfare if the auctioneer has to decide immediately after each item arrives how
to allocate it. This holds even for the most restricted nontrivial version of the problem in which
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there are only two item types and two unit-demand bidders, and even if the payments are allowed
to be computed after knowing how many items arrived.
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