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In this column, we will discuss some papers in online algorithms that appeared in 2020. As
usual, we make no claim at complete coverage here, and have instead made a selection. If we have
unaccountably missed your favorite paper and you would like to write about it or about any other
topic in online algorithms, please don’t hesitate to contact us!

1 Online matching

The famous online matching problem continues to inspire new research. In this year’s FOCS, Zhiyi
Huang et al. [40] improve results for fully online matching, recently introduced by them [39, 38] (see
also previous surveys in this series). In this model, all vertices are online. Once a vertex arrives,
its incident edges to previously arrived vertices are revealed. This is called an edge-arrival model.
Each vertex has a deadline that is after all its neighbors’ arrivals. If a vertex is unmatched until
its deadline, it must then irrevocably either be matched to another unmatched vertex or be left
unmatched. Huang et al. [39] showed that for bipartite graphs the competitive ratio of Ranking
is between 0.5541 and 0.5671.

In SODA 2019, Zhiyi Huang et al. [38] (an overlapping set of authors) improved this result to
a tight bound of 0.5671. If fractional matchings are allowed then the algorithm water filling,
which at each vertex’s deadline matches its unmatched portion fractionally to all neighbors with
smallest matched portion, achieves a tight competitive ratio of 2−

√
2 = 0.585.

In their FOCS 2020 paper, ideas from Water Filling and Ranking are used to give a 0.569-
competitive algorithm for integral matching using the online primal dual framework. Essentially,
the authors find a way to (in some cases) correct the decisions by Ranking using the decisions
by Water Filling (even though that is an algorithm for fractional matching). They also give an
algorithm for fractional matching on general graphs called Eager Water-Filling which some-
times matches vertices immediately upon arrival instead of always waiting until the deadline. This
algorithm achieves a competitive ratio of 0.592.

In STOC 2020, Zhiyi Huang and Qiankun Zhang consider online matching with stochastic
rewards. Each edge has a success probability and the matching along this edge succeeds with that
probability. This models online advertising, where it is not certain that a user will click on an ad.
This model was introduced by Mehta and Panigrahi in FOCS 2012 [52], who focused on the case
where every edge has the same success probability p. They gave results for general p and for the
case where p tends to 0 (vanishing probabilities).

Huang and Zhang apply the randomized online primal dual framework using the configuration
LP, and achieve a competitive ratio of 0.572 (resp., 0.576) for the case of vanishing and unequal
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(resp., unequal) probabilities. The previous best results were 0.534 due to Mehta et al. [53] and
0.567 [52].

In another FOCS paper, Matthew Fahbrach et al. [31] consider the less studied edge-weighted
version of the online bipartite matching problem. A simple example with three nodes and two
edges, where the first arriving edge has weight 1 and the second has weight either 0 or W for some
large value W shows that it is not possible to be competitive in this model without additional
assumptions. Fahrbach et al. consider the free disposal model, in which previously matched edges
may be disposed of for free, a widely-accepted assumption in display advertising. For this model,
the authors give the first algorithm which beats the ratio of 1/2 by providing an algorithm with
competitive ratio 0.5086.

An important idea in the algorithm is to use a subroutine which the authors call online correlated
selection. It ensures that decisions across different pairs of vertices are negatively correlated and
ultimately guarantees that a vertex appearing in k pairs is selected at least once with probability
greater than 1−2−k. Essentially, for neighbors of an online vertex, we select the least matched ones.
For the vertex-weighted problem, this would mean those vertices that have appeared in the least
number of pairs. For the edge-weighted problem, the authors use the online primal-dual framework
of Devanur et al. [28] and a formulation of the problem due to Devanur et al. [27] to design a
“least-matched” notion.

In APPROX 2020, Nicole Megow and Lukas Nölke [51] considered the problem of online match-
ing on the line, which we have covered extensively in previous editions of this column [59, 60].
All known deterministic algorithms are Ω(log n)-competitive [3], and the algorithm by Nayyar and
Raghvendra [54] has been shown to be O(log n)-competitive by Raghvendra [56]. Megow and Nölke
consider the situation where previous matching decisions may be changed to some extent (the al-
gorithm has recourse) and they give an O(1)-competitive algorithm using O(log n) recourse. The
algorithm interpolates between an O(log n)-competitive online solution without recourse and an
O(1)-approximate offline solution, i.e., with very large recourse. They also consider the special case
of alternating instances, in which no more than one request arrives between two adjacent servers,
and give a (1 + ε)-competitive algorithm that reassigns each request O(ε−1.001) times. For this
special case, the lower bound of Ω(log n) without recourse still holds.

In the same workshop, Varun Gupta et al. [37] also give an O(log k)-competitive algorithm for
online matching in general metrics, using O(log k) recourse per client, as well as a 3-competitive
algorithm on the line using O(log k) amortized recourse. They also consider the dynamic setting
in which clients and servers may arrive or depart. For this model, they present a simple random-
ized O(log n)-competitive algorithm with O(log ∆) recourse, where ∆ is the aspect ratio of the
underlying metric. Without recourse, it is not possible to achieve any nontrivial result in this
setting.

2 Covering problems

The classic NP-hard set cover problem has been studied extensively. One is given a set X of n
elements (universe) and a collection S of m sets, where each set of this collection is associated with
a non-negative cost. The goal is to find a cover of minimum cost, that is, a subcollection of S which
contains all items in X. Various online versions have also been studied.

In ESA 2020, Yossi Azar et al. [5] consider the online version with delay (SCD). The universe
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and the family of sets are known in advance, but the requests arrive over time and accumulate delay
cost until served by the algorithm. By buying (choosing) a set, the algorithm serves all pending
requests on elements of that set. Requests that have not been revealed up to this point in time
when the set is bought are not served, hence an algorithm may need to buy a set multiple times.
The goal is to minimize the sum of the total buying cost and the total delay cost.

There are two variants of SCD. One is the clairvoyant variant, where the delay function of a
request is revealed to the algorithm upon the release of the request. The other one is the non-
clairvoyant variant, where at any point in time the algorithm only has knowledge of the delay
accumulated up to that point in time. Previous work on this topic [21] provided an O(logN)-
competitive clairvoyant algorithm, where N is the number of requests. Because this algorithm
relies on oracle calls which compute optimal solutions for NP-hard problems, it has exponential
running time.

Yossi Azar et al. present an O(log n logm)-competitive, randomized, non-clairvoyant algorithm.
This is the first known online algorithm for SCD that runs in polynomial time. The main concept
is to solve the fractional relaxation problem and then use randomized rounding. Additionally,
they prove lower bounds of Ω(

√
logm) and Ω(

√
log n) on the competitiveness for clairvoyant SCD.

This is quite surprising, because it shows that clairvoyance cannot improve competitiveness beyond
a quadratic factor. To round out their paper, they present a short and simple deterministic 3-
competitive algorithm for vertex cover with delay (a special case of SCD).

Dimitris Fotakis et al. [33] in ICALP 2020 initiate the study of the online Min-Sum Set Cover
problem (MSSC). Sets arrive online and an algorithm has to construct a permutation π of elements
of X. To serve a request St, the algorithm has to pay access cost πt(St), which is the position of the
first element of St in πt. After every requests at time t the algorithm can change its permutation by
paying moving cost dKT(πt, πt+1) (known as the Kendall tau distance), that is equal to the number of
inversions between πt and πt+1. The goal is to minimize the overall cost

∑
t (πt(St) + dKT(πt, πt+1)).

The first part of their paper focuses on the static MSSC in the r-uniform case, where all request sets
have the same size |St| = r. Here the online algorithm is compared to a static adversary, that serves
the entire request sequence using one permutation. They show a lower bound of (r + 1)(1− r

n+1)
on the competitiveness of any deterministic online algorithm for the online static MSSC. Further
they complement this lower bound by giving a (5r + 2)-competitive deterministic algorithm called
Lazy-Rounding.

Their algorithm is essentially a lazy derandomization of the well-known multiplicative weight
updates (MWU) algorithm. With an eye on computational efficiency, the authors remark that
Lazy-Rounding is computationally inefficient since it simulates the MWU algorithm, which main-
tains a probability distribution over all n! permutations. For this reason they propose a memoryless
algorithm Move-All-Equally (MAE), which moves all elements of the request set St at the same
speed towards the beginning of the permutation until the first element reaches the first position.
Their analysis shows that the competitive ratio of MAE is Ω(r2) and the authors conjecture that an
O(r) guarantee cannot be achieved by a memoryless algorithm. Additionally, they show an upper
bound of 2O(

√
logn log r) on the competitiveness of MAE.

The second part of their paper deals with the dynamic variant, where online algorithms are
compared against an optimal solution that is allowed to change its permutations over time. In this
setting they show that MAE is still O(r3/2√n)-competitive. By crafting an adversarial instance
they further show that for any r ≥ 3 the competitive ratio of MAE is Ω(r

√
n).
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In SODA 2020, Anupam Gupta and Roie Levin [36] consider the online version of a very general
covering problem, the so-called online submodular cover problem. Over time a time-monotone
sequence of monotone submodular functions f (1), f (2), . . . is revealed, where time-monotonicity
means that any submodular cover for f (t) is also a cover for f (t−1). At each time step t an algorithm
must output a set St such that f (t) (St) = f (t) (X). Additionally, past decisions cannot be revoked,
it is required that St−1 ⊆ St. The goal is to minimize the cost of the output solution. The authors
approach this problem by first solving fractional relaxations of covering LPs online and then use
randomized rounding to output integer solutions. This results in an efficient randomized algorithm,
which guarantees that for each N the expected cost of solution SN is within O(lnn ln(N ·fmax/fmin))
of the optimal solution, where fmax and fmin are the largest and smallest marginals for any of the
functions in the input sequence respectively.

3 The random-order model

When analyzing the competitiveness of an algorithm we usually have an adversary decide the
complete input. In some cases this model is too pessimistic and no algorithm can outperform
trivial ones. This has prompted the study of beyond worst case models like the random-order
model in which an adversary decides the items but they arrive in random order. This model has
been receiving increasing attention.

In ICALP 2020, Susanne Albers and Maximilian Janke [1] consider the fundamental makespan
minimization problem in this model. They give an algorithm that achieves a competitive ratio of
1.8478, not just in expectation but with high probability. The algorithm is analyzed by identifying
a set of properties that a random permutation of the input jobs satisfies with high probability.
They also give a lower bound of 4/3 for the expected competitive ratio and show that no algorithm
can be better than 3/2-competitive with high probability.

In many real-world scenarios, we do not only have the online input available but also data from
the past or other sources. Motivated by this, in SODA 2020 Haim Kaplan et al. [43] extend the
standard online worst-case model as well as the random-order model by revealing a random sample
of the adversarial input in advance. They study this model on the secretary problem. In the worst
case model with sample, the adversary picks n+h candidates and h candidates are revealed to the
algorithm for the purpose of learning. They give simple algorithms with a competitive ratio that
is essentially optimal. For h ≥ n− 1 this ratio is 1

2 with an upper bound of 1
2 ·

2n

2n−1 for h ≥ n.
In the random order model with sample, the algorithm functions just like the algorithm for the

ordinary secretary problem. The h revealed candidates are used to shorten or remove the sampling
phase. When given a sample of size n the algorithm starts making decisions based on random
subsets of the observed input. This algorithm is nearly optimal if h is small compared to n but
there is an interesting gap for large h.

Finally, the authors show that an algorithm can not at the same time be optimal in the worst
case and in the random order model. More precisely, a c-competitive algorithm for the worst case
model with sample is at most (1− c)-competitive in the random-order model with sample.

Of interest are also algorithms that combine the best of both worlds and perform well on
purely stochastic and purely adversarial inputs. And even more interesting are algorithms that can
perform well when given an input that is a mix of both. In order to better understand these kinds of
robust algorithms, Thomas Kesselheim et al. in ICALP 2020 [44] propose the Bursty Adversary plus
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Random Order (BARO) model in which bursts of adversarial time steps are mixed into a random-
order input. They study this model on the knapsack secretary problem and give an algorithm that
is 1 − Õ(Γ

k )-competitive when the adversarial time steps can be covered by Γ ≥
√
k intervals of

size Õ(nk ). (The notation Õ hides log factors.) Setting Γ =
√
k the algorithm is (1 − O( ln2 k√

k
))-

competitive with a fraction of up to O( ln k√
k

) of items being adversarial. For large k this is almost

optimal, even in the absence of adversarial items.

4 Chasing convex bodies

In the convex body chasing problem, an online algorithm receives a request sequence of convex sets
(bodies) {K1,K2, . . . } ∈ Rd and has to respond with a sequence of points {x1, x2, . . . } located in
these sets. The goal is to minimize the total distance between these consecutive points.

In last year’s STOC, Sébastien Bubeck et al. [18] were able to prove that there exists an online
algorithm with finite competitive ratio for the family of convex sets in the Euclidean space. Their
presented algorithm is 2O(d)-competitive. This year’s focus has been on improving the competitive
ratio.

In SODA 2020, two independent papers present algorithms that are d-competitive for arbitrary
normed spaces and O(

√
d log T )-competitive in the Euclidean space, where T is the length of the

request sequence. In [58], Mark Sellke explains that chasing convex bodies is a special case of the
functional variant called chasing convex functions. For a convex function he defines the functional
Steiner point. The main idea of his algorithm is to stay at the functional Steiner point of the work
function. The work function Wt(x) is defined as the smallest cost opt could have at time t while
starting at x0 = 0 and ending up at xt = x. As one of his last steps he shows that the functional
Steiner point of the work function at time t is indeed an element of Kt.

C.J. Argue et al. [4] propose an algorithm that uses an outer guess-and-double step, which
maintains a current estimate r that lies in the interval [opt/2,opt]. At each time step t, their
algorithm moves to the Steiner point of the 2r-level set Ωt of the work function.

The above mentioned paper by Mark Sellke is an extension to the work of him with Sébastien
Bubeck et al. [17]—also published in SODA 2020. They started by investigating the nested version
of convex body chasing. Here the requested sets have the additional property that each set is
contained within the previous one (i.e., they are nested). In the first part of their paper, they
analyze the algorithm that moves to the Steiner point of the newly requested set. They prove its
competitive ratio to be O(min(d,

√
d log T )) which is nearly optimal for sub-exponentially many

requests. Further, by comparing the competitive ratio against the Hausdorff distance between K1

and KT , they show that the memoryless Steiner point approach actually achieves exact optimal
competitiveness for any pair (d, T ).

In the second part of their paper, they give a different algorithm, which is nearly optimal even
for exponentially many requests. Instead of moving to the Steiner point of Kt, they add a small
ball Br to Kt and select the centroid with respect to a log-concave measure that depends on the
normed space. This new approach yields O(

√
d log d) competitiveness for Euclidean spaces. For

normed `p spaces with p ≥ 1 this new algorithm is optimal up to a factor of O(log d).
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5 Caching

In the online caching problem, a sequence of items arrives one by one and we have a cache of fixed
size. The goal is to minimize the number of page faults. For the traditional online model, there is
a lower bound of Ω(log k) on the competitive ratio of randomized algorithms.

We can get around this lower bound by changing the model and giving the algorithm access to
more information. One possibility is giving the online algorithm access to machine learned advice.
This model has previously been applied to a variety of online problems including ski-rental, job
scheduling and others. In the case of online caching, an oracle predicts when an element will
arrive again. Lykouris and Vassilvitskii [50] showed that there is a prediction augmented caching
algorithm with a competitive ratio of O(1 + min(

√
η/Opt, log k)) where the prediction error is

bounded by η. The dependence on k in the competitive ratio is optimal but the dependence on
η/Opt left room for improvement. Dhruv Rohatgi in SODA 2020 [57] makes progress in closing
this gap by providing an improved algorithm with competitive ratio O(1+min( log k

k
η

Opt , log k)) and

a lower bound of Ω(log min(η/Opt
k log k , k)).

The algorithm in [50] is a marking algorithm that considers eviction chains and trusts the
oracle until the chain becomes too long and then ignores the oracle. A marking algorithm works
in phases that start with all elements being unmarked. When a cache hit occurs the corresponding
element is marked. When a cache miss occurs, some unmarked element is evicted and the new
element is inserted and marked. If all elements in the cache are marked and a cache miss occurs,
all elements are unmarked and a new phase begins. Rohatgi shows that the simple improvement
of only trusting the oracle once at the start of each eviction chain already leads to an improved
ratio of O(1 + min( log η

Opt , log k)). Further improvement of the algorithm requires deviating from the
marking based framework by sometimes evicting marked elements.

Alexander Wei [61] in APPROX 2020 directly follows up on this work. They give a substan-
tially simpler algorithm that gives an improved competitive ratio of O(1 + min( 1

k
η

Opt , log k)). This
algorithm compares LRU and BlindOracle, the algorithm that blindly follows the oracle, and
follows the one that has performed better so far. This algorithm is optimal among deterministic
algorithm, which means randomization is needed to approach Ruhatgi’s lower bound.

Zhihao Jiang et al. in ICALP 2020 [42] continue this line of work by considering weighted paging
(caching) with predictions. As shown by Rohatgi, predicting the next arrival of an element with
perfect accuracy gives a competitive ratio of O(1) for unweighted paging. Furthermore it is also
possible to obtain a constant approximation when given a lookahead of l ≥ k − 2 distinct pages.
However, neither of these models are sufficient to beat the existing lower bounds for online weighted
caching, which are Ω(k) for deterministic and Ω(log k) for randomized algorithms. Jiang et al. show
that combining both models allows for a 2-competitive algorithm. In the combined model, when an
item p arrives the algorithm is given the next time-step when p will arrive again and additionally
all page requests until that request.

Ravi Kumar et al. in SODA 2020 [47] consider a different way of giving the algorithm informa-
tion about the request sequence. They consider a semi-online model where request sequences are
generated by walks on a directed graph called the access graph. The algorithm knows the access
graph but not the actual request sequence. Kumar et al. extend this model by creating several
individual request sequences using access graphs. The final sequence given to the algorithm is then
obtained by interleaving the individual sequences. This approach is motivated by multitasking
systems that support a number of tasks at the same time with a limited cache.
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For the case of a single access graph, they give a tight competitive ratio of Θ(b) where b is a
structural parameter of the graph called branching depth. For the interleaved model, they give
a tight competitive ratio of Θ(b + log t) where t is the maximum number of interleaved access
graphs. For the case of interleaved cashing, they reduce the problem to a coin hunting game where
a hider hides a coin in one of t bins and a seeker, that only knows the probability distribution
used by the hider, tries to find that coin. Interestingly, they show that this coin hunting game has
other applications besides the interleaved caching model. In particular, it can be used to yield an
alternative analysis of the classical random marking algorithm for the standard caching problem.

6 Online scheduling

In SODA 2020, Silvio Lattanzi et al. [49] consider online scheduling with a similar approach as
[57, 42] for caching. They use machine learned predictions to overcome lower bounds on the
competitive ratio in the classic online problem. Specifically they consider makespan minimization
under restricted assignment. This is a special case of unrelated machines. Jobs arrive one at a
time, each annotated with its size and a subset of m machines it can run on.

In the classical online setting, there is an Ω(logm) lower bound for the competitive ratio.
Lattanzi et al. assign weights to each machine, and fractionally assign jobs according to these
weights. Given predictions of these weights with error η, they construct a O(log η)-competitive
fractional assignment. The second step is an online rounding algorithm that rounds any fractional
assignment into an integral schedule, losing an O((log logm)3) factor in the makespan. This is
nearly optimal, since they also give an Ω(log logm) lower bound for online rounding algorithms.
Combining both steps yields a competitive ratio of O(log η(log logm)3).

In ICALP 2020, Cohen et al. [25] consider online 2D load balancing. Two-dimensional vectors
arrive and need to be assigned to two-dimensional machines. The goal is to minimize the makespan,
which is defined as the maximum load of any machine in any dimension. (The load of a machine
in dimension i is the sum of the i-th entries of the vectors assigned to this machine.) This can
of course be seen as a special case of vector scheduling, which has already been (asymptotically)
resolved. However, it is also a generalization of the widely studied online load balancing problem.
The authors argue that this is an important case to study as it models the case where resources of
two types are available and we try to minimize their usage.

First, they show that (a straightforward generalization of) the classical load balancing algo-
rithm has competitive ratio exactly 8/3. This is done by analyzing reachable states for priority
algorithms [14], which allows us to essentially restrict our attention to two machines. In the analy-
sis, the pair of machines considered needs to be selected carefully, and it is therefore not simply a
matter of analyzing an algorithm which only has two machines in the first place.

For the case where OPT is known, the authors give a best fit-type algorithm with competitive
ratio exactly 9/4. (For one dimension, the best known result for this problem is 3/2.) This
algorithm works by balancing between the two dimensions and minimizing the difference in their
loads subject to the constraint that the goal competitive ratio of 2.25 is maintained. They further
analyze First Fit and show that it has competitive ratio 2.5 for known OPT and 2.89 for unknown
OPT (by maintaining a guess for OPT), beating the simple upper bound of 3 achieved by a greedy
algorithm.

Finally, they give an existence result for fixed dimension d, showing that it is (in theory) possible
to give a deterministic online algorithm with competitive ratio arbitrarily close to cd, the optimal
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competitive ratio against the fractional optimal solution. It is interesting that this can be achieved,
especially given that cd is not actually known. As the authors stress, actually constructing the
algorithm (or to be precise, constructing the decision tree that it needs) requires extremely large,
though polynomial for fixed d and ε, running time.

In SPAA 2020, Jamalabadi et al. [41] considered an admission control problem on parallel
machines. Jobs with deadlines arrive online and need to be assigned to a machine (potentially
starting only later) or discarded immediately. The goal is to maximize the total size of the accepted
jobs. Of course, the schedule must be such that all accepted jobs complete by their deadlines.

The authors show that if each job has a small amount of slack, it is possible to design a nearly
optimal deterministic online algorithm. Here a slack of ε means that for a job with size p, deadline
d and release date r, we always have d ≥ (1 + ε)p + r. The paper first gives a lower bound. The
design of the algorithm is then based on this lower bound construction. This is the first such result
which holds for parallel machines and does not require job preemption or migration.

7 The k-server problem and metrical task systems

Predrag Krnetić et al. [46] consider the online k-server problem with delays on a uniform metric
space (k-OSD). This problem is defined on k + n nodes in a metric space, where the distance
between any pair of nodes is 1. An algorithm has access to k servers and over time m requests to
locations appear. The algorithm serves a request on a node by moving a server to this node. In
the classic k-server problem the algorithm has to serve requests immediately. If instead delays are
allowed, the algorithm can wait and incur delay costs instead of answering the request immediately.
In the end all requests have to be served. The goal is to minimize the sum of moving and delay
costs.

In the clairvoyant setting (where the algorithm knows the delay function of a request when it
appears) they use an average technique to prove a lower bound of 2k + 1 on the competitive ratio
of all deterministic algorithms. Here they highlight similarities to the classic paging problem.

They then give a construction of an algorithm. This algorithm has a history counter (for each
server) that tracks the ordering in which the servers were moved and it is updated with every new
request. If a new request appears on a currently occupied node, such a request is served immediately
by the server that occupies the node. If instead a new request appears on a node with a hole, an
accumulative delay counter is started at this node or the counter is incremented. If this counter
reaches the threshold (k + 1)/k, the algorithm moves a server according to a selection strategy.
By an intricate phase partitioning analysis, they show that if this selection strategy fulfills two
conditions, the constructed algorithm is 2k + 1-competitive for the k-OSD problem with delays on
uniform metrics. The first condition is called conservativeness, which makes sure that for every
subsequence of requests the servers are not moved too much. The second condition is called perfect-
usefulness, which makes sure that only one server is used for every critical node (that is a node for
which the threshold is reached, but it has not been served yet).

The authors then analyze different well-known page eviction strategies as selection strategies
and again highlight the similarities to paging. They show that least recently used (LRU), clock re-
placement (CLOCK) and first-in/first-out (FIFO) all fulfill the required conditions and hence yield
a 2k + 1-competitive algorithm. Even tho flush-when-full (FWF) does not fulfill conservativeness,
it still yields a 2k + 1-competitive algorithm.
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This shows that clairvoyance does not give any advantage for the k-OSD problem with delays
on uniform metrics, because the presented algorithms are designed in the non-clairvoyant setting.

In ISAAC 2020, Sébastien Bubeck and Yuval Rabani [19] consider parametrized versions of
metrical task systems and metrical service systems, where the constrained parameter is the number
of possible distinct requests m. Formally, a metrical task system instance consists of a finite
metric space M = (X, d), an initial state s0 and a sequence of requests ρ1, ρ2, . . . , ρL, where the
request ρt is a cost function. They denote n = |X|. At each time step an online algorithm
has to choose a state st ∈ X based only on M and ρ1, ρ2, . . . , ρt. The objective is to minimize
the sum of the transition costs and the processing costs

∑L
t=1(d(st−1, st) + ρt(st)). The authors

denote by cdet
M,m (crand

M,m, respectively) the best possible competitive ratio that can be achieved by
a deterministic (randomized, respectively) online algorithm, when the number of possible distinct
requests is restricted by m.

They then analyze how restricting m affects the achievable competitive ratios ifM is a uniform
metric space or a paired-uniform metric space. For a uniform metric space they show that for every
m ≤ n, it is cdet

M,m = Θ(m log(en/m)) and crand
M,2 = Θ(crand

M ) = Θ(log n). This shows that in this
setting restricting m helps deterministic algorithms immensely, but not randomized algorithms. If
instead M is a paired-uniform metric space, they show cdet

M,2 = Θ(n) and crand
M,2 = Θ(log n). Com-

pared to previous results, this show that the restriction does not help the asymptotic performance
of deterministic algorithms, nor that of randomized algorithms.

The authors also investigate the impact of restricting m for metrical service systems, that use
just two scales, 0 and∞ (a.k.a. set chasing). They now denote the best deterministic (randomized,
respectively) competitive ratio that can be achieved for chasing sets drawn from a collection of m
subsets of points in M by ĉdet

M,m (ĉrand
M,m, respectively). In this setting the restriction helps both

deterministic and randomized algorithms. If M is a uniform metric space, then for every m ∈ N,
it holds that min{m,n} − 1 ≤ ĉdet

M,m ≤ min{m,n} and ĉrand
M,m = Θ(min{m, log n}). Their last result

is that both the supremums of ĉdet
M,m, respectively ĉrand

M,m, over all L-level hierarchically separated

trees M are between 2bm/2c−1 and m2m.

8 Facility location

Another well-studied problem is facility location. In APPROX 2020, Xiangyu Guo et al. [34]
considers the models with recourse (see also Megow and Nölke [51] discussed above) and the dynamic
version. They give a (1 +

√
2 + ε)-competitive algorithm using O(1

ε log n log 1
ε ) amortized facility

and client recourse, where n is the total number of clients arrived during the process. Together
with the randomized local search technique of Charikar and Guha [23], this gives a (1 +

√
2 + ε)-

approximate dynamic algorithm with total update time Õ(n2) for the setting in which clients
only arrive (incremental setting). In the fully dynamic model, they give an O(1)-approximation
algorithm with O(|F |) preprocessing time and O(n log3D) total update time for HST metric spaces.
Here |F | is the number of potential facility locations and D is the diameter of the metric. This
also implies an O(log |F |) approximation with preprocessing time of O(|F |2 log |F |) and O(n log3D)
total update time [8, 32].

In SPAA 2020, Jannik Castenow et al. [22] consider the multi-commodity version. Here there is
a set S of commodities and it needs to be determined which facility will offer which commodities.
Each request must be connected to a set of facilities jointly offering the commodities demanded
by it. The authors provide an Ω(

√
|S| + logn

log logn) lower bound for randomized algorithms which
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already holds on the line. They also give a deterministic O(
√
|S| log n)-competitive algorithm and

a randomized O(
√
|S| logn

log logn)-competitive algorithm. Xiangyu Guo et al. [35] in APPROX 2020

consider variants of this problem. In their first result they allow for recourse, meaning the solution
can be changed at each step. The recourse per step of an online algorithm is then the number of
changes it makes to the solution. They give a (1+

√
2+ε) competitive algorithm with O( logn

ε log 1
ε )

amortized facility and client recourse. n is the total number of clients that arrived during the
process.

In the dynamic facility location problem the goal is to maintain a good solution while minimizing
the time spend updating the solution. They give a (1 +

√
2 + ε)-approximation dynamic algorithm

with total update time of Õ(n2). This algorithm is based on local search, an algorithm that achieves
an approximation factor of (1 +

√
2) in the offline setting.

Finally they consider the fully dynamic model, where clients can arrive as well as depart. Their
main result is an O(1)-approximation algorithm with O(|F |) preprocessing time and O(n log3D)
total update time for HST metric spaces. F is the number of potential facility locations and D
the diameter of the aspect ratio of the metric space, i.e. the largest distance between two points
in it. Using results from [8] and [32] which show that any N -point metric space can be embedded
into a distribution over HSTs, such that the expected distortion is at most O(log n), they obtain
a O(log |F |) approximate algorithm with preprocessing time O(|F |2 log |F |) and O(n log3D) total
update time. This results holds in expectation for every time step in the oblivious adversary model.

9 Various problems

In the best paper of FOCS 2020, Mark Bun et al. [20] investigate the relationship between online
learnability and private probably approximately correct (PAC) learnability. In online learning,
there is a class of predictors H = {h : X → {±1}} over a domain X. Over time an algorithm
is fed with examples (x1, y1), . . . , (xT , yT ) ∈ X × {±1} and at each time step t it has to make a
prediction ŷt ∈ {±1}. After its prediction, the algorithm learns whether its prediction was correct.
The goal is to minimize the regret, which is the difference between the number of mistakes made
by the algorithm and the best predictor in H. A class H is said to be online learnable if for every
T , there is an algorithm that achieves sublinear regret o(T ) against any sequence of T samples. In
PAC learning, the algorithm has access to the whole sample, that is drawn from some unknown
distribution and labeled by an unknown hypothesis h∗. The goal is to output a hypothesis h ∈ H
that mostly matches the labels of h∗ on future examples from the unknown example distribution
with high probability. A class H is said to be PAC learnable with complexity n, if n samples are
sufficient to obtain error at most α over new examples from the distribution with probability at
least 1−β. A differential privacy constraint ensures that changing any one of the samples may not
affect the output distributions by the learner by too much.

The authors show that every online learnable class H is also approximate differentially-privately
PAC learnable (i.e. there exists an algorithm for it). This result not only answers an open question
of Noga Alon et al. [2] in STOC 2019, it in fact complements the results of Alon et al. and shows
the equivalence of online learnability and private PAC learnability.

Also in FOCS, Braverman et al. [16] provide a new framework for randomized algorithms for
numerical linear algebra problems in the sliding window model. They also exhibit a connection
to the online model, providing online algorithms for several problems and in particular resolving
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an open question by Bhaskara et al. [12] from the previous FOCS. Finally, they provide another
framework for deterministic algorithms, leading to several new online algorithms that use nearly
optimal space.

Nikhil Bansal et al. [6] continue their study of minimizing discrepancies. In STOC 2020, they
consider the online vector balancing problem. In this problem, T vectors arrive one by one and need
to be given a sign. The n coordinates of each vector are taken from some arbitrary distribution
over [−1, 1], and the goal is to keep the maximum norm of any signed prefix-sum (the discrepancy)
as small as possible. Bansal and Spencer [7] recently gave an O(

√
n log T ) bound for the case where

each coordinate is chosen independently.
In their new paper, they consider the case where there are dependencies. One example of this

case is the online interval discrepancy problem. In this problem, T points are sampled one by one
uniformly in the unit interval [0, 1], and the goal is to give them signs so that each sub-interval
remains nearly balanced. They give an upper bound which is polynomial in n and log T for this
model and a polylog(T ) upper bound for online interval discrepancy. To do this, they give new
anti-concentration bounds for uncorrelated and pairwise independent variables.

Their work also has applications for the online envy minimization problem, which was introduced
by Benade et al. [10] in EC 2018. In this problem, T items arrive one by one and need to be assigned
to one of two players, knowing their valuations, and the goal is to minimize cardinal or ordinal envy.
Benade et al. gave a lower bound of Ω(T 1/2) for the adversarial model. Bansal et al. [6] give an upper
bound of O(log3 T ) for ordinal envy and O(log T ) for cardinal envy when the player valuations are
drawn from a distribution.

William Kuszmaul [48] considers the p-processor cup game in SODA 2020. In this game, a filler
distributes up to p units of water among n cups. Then an emptier selects p cups and removes up to
one unit of water from each. The goal is to minimize the amount of water in the fullest cup which
is called the backlog. We can also think of p processors working on one of n tasks each while p
new units of work may arrive during each slice of time. So far the positive results on these problem
used resource augmentation where the filler is restricted to distributing (1 − ε)p units of water in
each step. Kuszmaul shows that Greedy (the algorithm that always chooses the highest p cups)
is O(log n) competitive and this is optimal for n ≥ 2p. This is shown using an intricate system of
invariants for the p-processor cup game.

Michael Bender et al. [11] proposed an algorithm called smoothed greedy for the variation of
the problem with resource augmentation. Kuszmaul shows that this algorithm achieves backlog
O(log p+log log n) with probability 1−2−polylog(n) for 2polylog(n) steps. For fixed p and n large enough
this becomes O(log log n) which is asymptotically optimal. This result doubles as a smoothed
analysis of the deterministic greedy algorithm.

Also in SODA, Prosenjit Bose et al. [15] propose a new structure for searching elements of a
tree-structured space online. Given a graph G, over time a request sequence X = x1, x2, . . . of
searches drawn from the vertices of the graph is revealed. Once the pointer from the root has been
moved to the requested node, this request counts as served. At unit cost an algorithm can move
the pointer from a node to a child or its parent and perform a rotation of the current node. A
rotation is swapping two adjacent nodes and reorganizing the search tree accordingly. In the past
binary search trees (BSTs) have been the tool to deal with this problem. The authors generalize
BSTs to the general search tree model (GST). In the GST a node of the search tree may have
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multiple children. If the underlying tree G is a path both models are equivalent. They highlight
which properties generalize from BST to GST and which do not.

Their main result is an O(log log n)-competitive algorithm for any search sequence of length
m = Ω(n), where n is the number of vertices of G. This matches the best known competitive ratio
for binary search trees. By generalizing the interleave lower bound of BSTs to their model, they
are able to give a lower bound on the optimal cost of answering a request sequence. It will be
interesting to see how this new model will impact further research on searching on trees.

Probabilistic metric embedding is a tool for designing online algorithms on metric spaces by
embedding the underlying metric into a simpler tree metric and solving the problem there. Due to
distortion, this incurs some overhead in the competitive ratio. A question is whether this embedding
can be constructed online such that the distortion is a polylogarithmic function of k the number
of terminals. Yair Bartal et al. [9] in SODA 2020 answer this question negatively by giving a lower
bound of Ω̃(log k log Φ) where Φ is the aspect ratio of the set of terminals. (In this case, the notation
Ω̃ hides log log factors.) Unfortunately this may result in a polynomial dependence in terms of k, as
Φ may be exponential in k. They also show that a careful modification of probabilistic embedding
into trees of Bartal [8] in FOCS 1996 has distortion ratio O(log k log Φ) which is therefore optimal
up to log log factors.

As a second result, they give a framework that bypasses this lower bound for a broad class of
problems which they call abstract network design. For this class they devise an algorithm with only
O(min(log k log(kr), log3 k)) overhead in the competitive ratio. This also implies first polylog(k)-
competitive algorithms for the problems subadditive network design and group Steiner forests.

In the online multiple knapsack problem, incoming items have to be either rejected or irrevocably
stored in one of n bins. Marcin Bienkowski et al. in ICALP 2020 [13] study the proportional version
of the problem where profits and item sizes are equal and the goal is to maximize the sum over all
accepted items. The online complexity has been resolved for other variants of this problem. For
example if the objective function is to maximize the load in the fullest bin, instead of the sum over
the load in all bins, there is an optimal 1/2-competitive deterministic algorithm. The generalization
where profits and sizes are unrelated does not admit any competitive algorithms.

For the proportional version, there has been a gap between the 1/2-competitive algorithm
FirstFit and an upper bound of R = 1/(1+ln 2) = 0.5906 for randomized algorithms. Bienkowski
et al. close this gap by providing a R − O(1/n)-competitive deterministic online algorithm that is
also optimal up to lower order terms for the class of randomized solutions. They show that the
algorithm is indeed optimal and the O(1/n)-term is not avoidable in the deterministic case.

The algorithm classifies the items as small, middle or large items, and deals with each class
differently. If an algorithm greedily collects large items the adversary may give it n items of size
1
2 + ε, which are all accepted by Alg, followed by n items of size 1 which are accepted by Opt
giving ratio arbitrarily close to 1

2 . An algorithm that stops accepting large items may end up with
a very small profit compared to Opt, who keeps accepting those items.

The Rising Threshold algorithm uses an increasing threshold function f to balance these
strategies and ensures that the size of the ith accepted item is at least f(i/n). It also carefully
manages medium sized items by stacking some of them in the same bin and leaving others in their
own bins and available to be combined with larger items.

Boaz Patt-Shamir and Evyatar Yadai introduce and work on a generalization of the well-known
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ski rental problem in SPAA 2020 [55]. One is confronted with a task of unknown duration (i.e.
the stopping time is unknown) and at every time step one has to chose to “buy” or to continue to
“rent”. Both alternatives are associated with a cost function and switching from rent to buy incurs
a constant one-time cost. The goal is to minimize the cost paid compared to the optimal cost,
over all possible durations. The problem has been studied for linear and exponential cost functions
intensively in the literature.

This paper considers (for the first time) a much more general case, where the cost functions
are continuous and only have to satisfy certain mild monotonicity conditions. In the deterministic
setting, they give an algorithm that finds the best possible strategy by comparing the cost of the
strategy that never buys, the strategy that never rents, and a “middle-ground” strategy which
balances buy and rent. In the probabilistic setting, for any given ε > 0, they present an algorithm
whose competitive ratio is within (1 + ε)-factor from the best possible, if the rent function is
unbounded. They show that their proposed probabilistic algorithm runs in time O(ε−6 log4(1/ε)).

In the graph (vertex) coloring problem the question is how to color the vertices of a graph such
that no two adjacent vertices are of the same color. Trying to minimize the amount of colors used
is quite challenging. In the online version, the vertices arrive one by one (together with all the
edges adjacent to the already presented vertices) and must be assigned a color immediately and
irrevocably. Joanna Chybowska-Sokól et al. [24] work on the online graph coloring problems on the
intersection graphs of intervals. Here no two overlapping intervals can be of the same color. If all
intervals have length between 1 and σ, the problem is called σ-interval coloring. The authors show
that σ-interval coloring is strictly easier than interval coloring and σ-interval coloring is strictly
harder than unit interval coloring (where σ is 1).

They present an algorithm that for every σ ∈ Q with σ ≥ 1 is 1 + σ-competitive regarding the
asymptotic competitive ratio. Their algorithm constructs small and large blocks (intervals) and
then uses counters for these blocks to determine the color for an incoming interval. For σ < 2, the
competitive ratio is less than 3, whereas Kierstead and Trotter [45] showed that there cannot exist
a less-than-3-competitive algorithm for (general) interval coloring.

For different values of σ, the authors present corresponding lower bounds. They begin with
showing that for every σ > 1 there is no online algorithm for σ-interval coloring with an asymptotic
competitive ratio less than 5/3. Then they improve the lower bound to 7/4 for every σ > 2. Their
main result regarding lower bounds is that for every ε > 0 there is σ ≥ 1 such that there is no
online algorithm with an asymptotic competitive ratio 5/2 − ε. This implies that there is no 2-
competitive algorithm for σ-interval coloring (for σ > 278). For unit interval graphs, the simple
greedy FirstFit algorithm is 2-competitive [30].

A contention resolution scheme abstracts the task in constraint optimization of converting a
(random) set-valued solution which is on average feasible for a packing program into one that is
always feasible. CRSs are connected to a variety of online and offline problem including online
mechanism design, stochastic probing and prophet inequalities.

Most prior work considers a product distribution on the input set of elements (which can arrive
offline or online) and studies contention resolution for increasingly general packing constraints.
Shaddin Dughmi et al. [29] in ICALP 2020 instead focus on generalizing the input distributions
and restrict attention to matroid constraints. Using a set of inequalities, they characterize the
class of α-uncontentious distributions. These distributions permit α-competitive offline content
resolution for a given matroid. With this characterization they show that content resolution is
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the natural distributional generalization of base covering. They then establish some basic closure
properties for this class.

They also consider online contention resolution on matroids in the random arrival model and
tie it to the matroid secretary problem. They show that a γ-competitive secretary algorithm
implies that any α-uncontentious distribution permits γα-competitive online content resolution.
Additionally they reduce the matroid secretary problem to the design of an online contention
resolution scheme for a particular uncontentious distribution.

Mark de Berg et al. [26] introduce the online version of the range-assignment problem in ISAAC
2020. In the offline version, there is a set P of n points in Rd, which models devices in a wireless
network. By assigning each point pi ∈ P a range r(pi), an algorithm induces a directed commu-
nication graph Gr, in which there is a directed edge (pi, pj) iff dist(pi, pj) ≤ r(pi). The task is to
assign ranges in such a manner, that the graph Gr has a broadcast tree rooted at the first point p0,
but the cost of the assignment

∑
pi∈P r(pi)

α (for some constant α > 1) is minimized. In this paper,
the authors consider for the first time the online version, where the points pi arrive over time and
the range assignment has to be updated at each arrival such that a broadcast tree on the currently
inserted points is maintained. At these time steps an algorithm can increase (but not decrease) the
ranges of all already seen points.

Their first result is a lower bound for any online algorithm in R1. They prove that there is
a constant cα > 1 such that no online algorithm can be cα-competitive. For α = 2 this results
in a lower bound of 1.57. Then the authors focus on two natural strategies and analyze their
competitiveness in R1 and R2. In R1 they show that for α = 2 the strategy Nearest-Neighbor
(nn), which for a point pi increases the range of its nearest neighbor such that pi gets covered by its
nearest neighbor, is exactly 2-competitive. For R2 they present a variety of results. First they show
that nn is still O(1)-competitive for α = 2, but the gap between the lower bound of approximately
7.61 and the upper bound of 322 is quite large. Modifying nn, to increase the range to twice the
distance between pi and its nearest neighbor, yields the algorithm 2-Nearest-Neighbor that is

36-competitive. For general α > 1 they prove a lower bound of 6
(

1 + (
√

6−
√

2
2 )α

)
for nn. For

α > 2 they show that nn is better than F ∗α = α 2α−3
2α−1−α -competitive. If α ≥ α∗ ≈ 4.3, where

α∗ = arg minF ∗α, the upper bound improves to approximately 12.94. In fact all their upper bounds
also apply to their second strategy Cheapest Increase (ci). This strategy increases the range of
the point pi for which the resulting cost increase to cover the new point is minimal.

The last part of their paper is about the generalization of the problem to general metric spaces,
for which they present an O(log n)-competitive algorithm.
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