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Abstract. Let f1, f2 : Xm −→ Y n be maps between smooth con-
nected manifolds of the indicated dimensions m and n. Can f1, f2
be deformed by homotopies until they are coincidence free (i.e. f1(x) 6=
f2(x) for all x ∈ X )? The main tool for addressing such a prob-
lem is tradionally the (primary) Nielsen number N(f1, f2) . E.g. when
m < 2n − 2 the question above has a positive answer precisely if
N(f1, f2) = 0 . However, when m = 2n−2 this can be dramatically
wrong, e.g. in the fixed point case when m = n = 2 . Also, in a
very specific setting the Kervaire invariant appears as a (full) additional
obstruction.

In this paper we start exploring a fairly general new approach.
This leads to secondary Nielsen numbers SecN(f1, f2) which allow us
to answer our question e.g. when m = 2n − 2, n 6= 2 is even and
Y is simply connected.
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1. Introduction

Throughout this paper let

f1, f2 : Xm −→ Y n

be (continuous) maps between smooth connected manifolds without bound-
ary, of the indicated dimensions m,n ≥ 1, X being compact.

We are interested in those aspects of the coincidence subspace

C(f1, f2) := {x ∈ X | f1(x) = f2(x)}
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in X which remain unchanged by homotopies of f1 and f2 . These as-
pects are reflected to a large extend by the minimum numbers

MC(f1, f2) := min {#C(f ′1, f
′
2) | f ′1 ∼ f1, f

′
2 ∼ f2}

and, better yet,

MCC(f1, f2) := min {#π0(C(f ′1, f
′
2)) | f ′1 ∼ f1, f

′
2 ∼ f2}

of coincidence points and of coincidence components, resp., as the maps vary
within the given homotopy classes [f1], [f2] .

The principal problem in topological coincidence theory is to determine
these minimum numbers, and –in particular– to decide when they vanish, i.e.
when (f1, f2) is homotopic to a coincidence free pair. In this case we say
that the pair (f1, f2) is loose.

Generalizing a well known notion from fixed point theory, we introduced
(in [Ko2]) a Nielsen number N(f1, f2) which depends only on the homotopy
classes of f1 and f2 and satisfies

0 ≤ N(f1, f2) ≤ MCC(f1, f2) ≤ MC(f1, f2) ≤ ∞ .

Furthermore, we proved the following

Wecken theorem in coincidence theory. Assume m < 2n− 2 .
Then for all maps f1, f2 : Xm −→ Y n we have MCC(f1, f2) = N(f1, f2) .
In particular, (f1, f2) is loose if and only if N(f1, f2) = 0 .

(See [Ko2], theorem 1.10).

CENTRAL QUESTION. What happens when m ≥ 2n − 2 ? Can we
pin down extra looseness obstructions (besides the ’primary’ Nielsen num-
ber (f1, f2) )?

Many specific examples are known where the last claim in the Wecken
theorem fails to hold as soon as the dimension assumption is not satisfied
(compare e.g. the discussion of the ’Wecken condition’ in [Ko3], 1.18–1.29, or
in [KR], table 1.18).

Already in the first critical dimension setting (when m = 2n− 2 ) we
encounter very interesting phenomena.

Example 1.1: (Fixed point theory: f := f1 arbitrary selfmap of X = Y,
f2 = identity map ). Here m = n , and in the dimension range m ≥ 3
our Wecken theorem implies that N(f, id) = MCC(f, id) = MC(f, id)
agrees with the minimum number MF(f) = min {#C(f ′, id) | f ′ ∼ f} of
fixed points. This is the classical Wecken theorem (from 1941/42) for closed
smooth manifolds (cf. [B], p. 12, and [Ko2], pp. 225–227).

In dimension m = 2 J. Nielsen had already shown in the 1920s
that MF(f) = N(f, id) holds whenever X is a closed connected surface
with Euler characteristic χ(X) ≥ 0 . For a long time this restriction was
believed to be merely technical.

However, in 1985 B. Jiang proved that each surface X having a strictly
negative Euler characteristic allows a selfmap f such that MF(f) 6=
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N(f, id) (cf. [J]). Actually, later X. Zhang, M. Kelly and B. Jiang showed
much more: whenever χ(X) < 0 the difference MF(f) − N(f, id) be-
comes arbitrarily large for suitable selfmaps f of the surface X (cf. [B],
p. 16).

B. Jiang used an approach via braid groups. Could the phenomena
described above also be captured by secondary obstructions? �

Example 1.2. X = S2n−2, Y = RP(n) .

Theorem (cf. [Ko3], 1.27, or [KR], 1.13). Assume n is even, n 6= 2, 4, 8 .

Let f̃ : S2n−2 −→ Sn be a lifting of a map f : S2n−2 −→ RP(n) .
Then the pair (f, f) is loose if and only if both N(f, f) and the

Kervaire invariant K([f̃ ]) vanish.

Originally M. Kervaire introduced his (Z2–valued) invariant in order
to exhibit a triangulable closed manifold which does not admit any differen-
tiable structure (cf. [Ke]). Subsequently M. Kervaire and J. Milnor used it in
their classification of exotic spheres (cf. [KM]). And now the Kervaire invari-
ant makes a somewhat surprising appearance as a full secondary looseness
obstruction in a very specific selfcoincidence setting. �

In this paper we start exploring the following general approach to con-
structing secondary looseness obstructions when m ≥ 2n−2 . Given a pair
of maps f1, f2 : Xm −→ Y n such that N(f1, f2) = 0 let us try to
mimic the proof of the Wecken theorem in [Ko2] and measure somehow the
obstacles which we encounter in the process.

We concentrate on the first critical dimension setting m = 2n − 2 .
Here the first two steps of the proof in [Ko2] (embedding a nullbordism and
describing its normal bundle via a suitable desuspension) present no diffi-
culties. But the third step leads to a pair of maps w1, w2 : Wn −→ Y n

which is coincidence free on the boundary of a given compact n–manifold W
and must be made coincidence free on all of W . This ’secondary coin-
cidence problem’ leads to our definition of the secondary Nielsen number
SecN(f1, f2) , a nonnegative integer which depends only on the homotopy
classes of f1 and f2 .

Clearly, if the pair (f1, f2) is loose to begin with, then

N(f1, f2) = 0 = SecN(f1, f2) .

In turn we have

Theorem 1. Assume that Y n is simply connected, n even, n 6= 2 .
Given arbitrary maps f1, f2 : X2n−2 −→ Y n we have: the pair (f1, f2)
is loose if and only if both the (’primary’) Nielsen number N(f1, f2) and
the secondary Nielsen number SecN(f1, f2) vanish.

Example 1.3. Let f : S2n−2 −→ Sn be a map between spheres of the indi-
cated dimensions. Then N(f, f) is known to be a full looseness obstruction
(see e.g. [Ko3], 1.19). Hence SecN(f, f) = 0 .
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Example 1.4. Let Y = KP(n′), K = C or H, n′ ≥ 2 , be com-
plex or quaternionic projective space of (real) dimension n = dn′ where
d = dimR(K) ∈ {2, 4} . Let ∂Y : πm(Y ) −→ πm−1(Sn−1) denote
the boundary homomorphism in the exact homotopy sequence of the tangent
sphere bundle ST (Y ) over Y . Then, given a map f : S2n−2 −→ Y ,
it is well known (cf. [Ko3], 1.19) that the pair (f, f) is loose precisely if
∂Y ([f ]) = 0 ; in contrast, the Nielsen number N(f, f) vanishes precisely
if the suspended value E(∂Y ([f ]) ∈ π2n−2(Sn) is trivial.

Now assume that n 6= 4, 8 and that N(f, f) = 0 . Then

∂Y ([f ]) ∈ KerE ∼= Z2 = {0, 1}

agrees with the secondary Nielsen number SecN(f, f) . It can take a non-
trivial value here if and only if

{0} 6= ∂Y (π2n−2(KP(n′))) ∩Ker(E : π2n−3(Sn−1) −→ π2n−2(Sn))

(i.e. the Wecken condition for (2n − 2,KP(n′)) , cf. [Ko3], Definition 1.18,
fails to hold), or, equivalently, if and only if

0 = jK∗([ιn−1, ιn−1]) ∈ π2n−3(Vn′+1,2(K)) ;

here

jK : Sn−1 ⊂ Vn′+1,2(K), jK(v) := ((0, . . . , 0, 1), (v, 0)), v ∈ Sn−1 ,

denotes the fiber inclusion into the Stiefel manifold of orthonormal 2–frames
in Kn′+1.

2. ’Primary’ Nielsen numbers

In this section we recall basic geometric facts about coincidences and the
resulting definition of the Nielsen number N(f1, f2) of a given pair of maps
f1, f2 : Xm −→ Y n, m, n ≥ 1 . (For details see [Ko2]).

After suitable approximations we may assume that (f1, f2) is a generic
pair, i.e. (f1, f2) : X −→ Y × Y is smooth and transverse to the diagonal
∆ := {(y1, y2) ∈ Y × Y | y1 = y2} . Then the coincidence locus

C := C(f1, f2) = (f1, f2)−1(∆)

is a closed smooth submanifold of X . It is naturally equipped with two
important geometric ’coincidence data’. On the one hand we have a map
(2.1)
g̃ : C −→ E(f1, f2) :=

{
(x, θ) ∈ X × Y I | θ(0) = f1(x), θ(1) = f2(x)

}
such that

g := pr ◦ g̃ = inclusion : C ⊂ X ,

where pr denotes the projection from the ’pathspace’ E(f1, f2) to X ;
g̃ is defined by

g̃(x) = (x, constant path at f1(x) = f2(x)) , x ∈ C .
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On the other hand, the normal bundle ν(C,X) of C in X is described
by the vector bundle isomorphism

(2.2’) ν(C,X)
T (f1,f2)−−−−−→ ((f1, f2)|C)∗(ν(∆, Y × Y )) ∼= f∗1 (TY )|C

over C ; in turn this yields the (stable) isomorphism

(2.2) g : TC ⊕ f∗1 (TY )|C ∼= TX|C .
The resulting normal bordism class

ω̃(f1, f2) := [(C, g̃, g)] ∈ Ωm−n(E(f1, f2); ϕ̃)

is our basic ’primary’ looseness obstruction (cf. [Ko2]).
The decomposition of the pathspace E(f1, f2) into its pathcomponents

A yields the decomposition of the coincidence manifold C into the closed
manifolds

CA := g̃−1(A), A ∈ π0(E(f1, f2)) ,

(named Nielsen classes of the pair (f1, f2) ). The pathcomponent A ∈
π0(E(f1, f2)) is called inessential or essential according as the bordism class

ω̃A(f1, f2) := [CA, g̃|CA, g|] ∈ Ωm−n(E(f1, f2); ϕ̃)

(of the coincidence data restricted to CA ) vanishes or not. By definition the
Nielsen number N(f1, f2) is the number of essential pathcomponents A
of E(f1, f2). It is finite and depends only on the homotopy classes of f1
and f2 .

Remark. The Nielsen number N(f1, f2) is denoted by Ñ(f1, f2) in [Ko3]
and [Ko4]. An important role is also played by the refined (nonstabilized) ver-
sion N#(f1, f2) of our Nielsen number (cf. e.g. [Ko3], [Ko4]). Furthermore,
in [Ko4] a whole intermediate hierarchy

(MC ≥ MCC ≥)N# ≡ N0 ≥ N1 ≥ N2 ≥ · · · ≥ Nr ≥ · · · ≥ N∞ ≡ Ñ ≥ 0

of (primary) Nielsen numbers is discussed. However, they all coincide in the
special dimension setting m = 2n−2 which will interest us in the remainder
of this paper.

3. Secondary Nielsen numbers

Now we concentrate on the case m = 2n− 2 , n ≥ 2 .
Thus let f1, f2 : X2n−2 −→ Y n be a generic pair. Assume that the

Nielsen coincidence class CA = g̃−1(A) corresponding to some pathcom-
ponent A of E(f1, f2) is inessential. Then we can choose a connected,
(n− 1)–dimensional nullbordism B of CA, together with maps

(3.1) G̃ : B −→ E(f1, f2) and G := pr ◦ G̃ : B −→ X

extending g̃ and g , resp., (compare (2.1)) on the one hand, as well as a
(stable) vector bundle isomorphism

(3.2) G : TB ⊕G∗(f∗1 (TY )) ∼= G∗(TX)⊕R˜
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extending g (cf. (2.2)) on the other hand.
Due to our dimension assumption the n–plane bundle G∗(f∗1 (TY ))

allows a nowhere zero section which spans a trivial line bundle R˜ over B .

In view of (3.2) and according to Smale–Hirsch theory we can deform G
until it is an immersion. Generically its selfintersection set consists of finitely
many isolated points. We may ’push’ them all along suitable arcs across the
boundary ∂B = C . So in the end G is a smooth embedding which
extends the inclusion C ⊂ X .

Next let ν(G) be the normal bundle of G . Compose the obvious
isomorphism

TB ⊕ ν(G)⊕R˜ ∼= TX|B ⊕R˜
with the isomorphism G in (3.2). Again in view of our dimension assump-
tion we can desuspend to get the isomorphism

(3.2’) ν(G)⊕R˜ ∼= f∗1 (TY )|B

which extends (2.2’) when we put ν(CA, B) = R˜ |CA .

As in the proof of the Wecken therorem in [Ko2], pp. 223–224, let
i2 : B −→ [0, 1] be a smooth function which is essentially defined by the
second projection on a collar CA × [0, 12 ] of CA in B , and takes the

constant value 1
2 outside of this collar. Consider the embedding

i := (G, i2) : B ↪→ X × [0, 1]

which extends the embedding g : ∂B = CA ↪→ X = X × {0} (compare
[Ko1], figure 3.8). As in [Ko2], pp. 223–224, the isomorphism in (3.2’) allows
us to extend (f1, f2) , defined on X = X × {0} , to a map

(F1, F2) : X × {0} ∪ T −→ Y × Y
where T is a suitable (compact) tubular neighborhood of i(B) in X ×
[0, 1] ; the coincidence locus of the pair (F1, F2) is just i(B) .

Now let W ⊂ X × I denote that part of the ’shadow’

R1 = {(x, t) ∈ G(B)× I | 0 ≤ t ≤ i2(x)}

(compare [Ko1], pp. 38–39) which lies outside of the interior T̊ of T .

The map G̃ (cf. (3.1)) determines an extension of the coincidence free pair
(F1|∂W,F2|∂W ) to the whole n–dimensional manifold W . But now coin-
cidences (which are generically 0–dimensional) may occur in the interior of
W . They lead to A ∈ π0(E(f1, f2)) being called either 2–essential (i.e.
’essential of second order’ ) or not. If CA can be made empty by suitable
homotopies of f1 and f2 , then A is certainly 2–inessential.

Now assume that the (primary) Nielsen number N(f1, f2) vanishes.
Then each pathcomponent A of E(f1, f2) is inessential in the classical
(primary) sense, and hence either 2–essential or not. We define the secondary
Nielsen number SecN(f1, f2) to be the number of 2–essential pathcompo-
nents A ∈ π0(E(f1, f2)) . Clearly SecN(f1, f2) is a nonnegative integer
smaller or equal to the (not necessarily finite) number of pathcomponents of
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E(f1, f2) (which is also known as the Reidemeister number of (f1, f2); see
[Ko2], 2.1, for explicit calculations).

If π1(Y ) = 0 , then not only E(f1, f2) but also E(F1, F2) (in the
construction discussed above) is pathconnected. This allows us to prove the
theorem 1 of the introduction. Details and generalizations will be given in a
future paper.
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