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Abstract. Basic examples show that coincidence theory is intimately related to central subjects

of differential topology and homotopy theory such as Kervaire invariants and divisibility prop-

erties of Whitehead products and of Hopf invariants. We recall some recent results and ask a

few questions which seems to be important for a more comprehensive understanding.

Throughout this paper M and N will denote closed connected smooth manifolds of
dimensions m and n ≥ 2, resp.

Definition 1 (cf. [K2], (2), (3) and 1.1). Given (continuous) maps f1, f2 : M → N , let
MC(f1, f2) and MCC(f1, f2), resp., denote the minimum number of points and of path
components, resp., among all the coincidence subspaces

C(f ′1, f
′
2) = {x ∈ M | f ′1(x) = f ′2(x)} ⊂ M

of maps f ′i which are homotopic to fi, i = 1, 2.
The pair (f1, f2) is called loose if MC(f1, f2) = 0 (or, equivalently, MCC(f1, f2) = 0),

i.e. if the maps f1 and f2 can be deformed away from one another.

The principal aim in topological coincidence theory is to get a good understanding of
the minimum numbers MC(f1, f2) and MCC(f1, f2) (compare [B], p. 9) and, in particular,
to obtain precise looseness criteria.

In [K2] a geometric invariant ω#(f1, f2) was introduced: it is the bordism class of the
(generic) coincidence submanifold

(1) C = C(f1, f2) = {x ∈ M | f1(x) = f2(x)}
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of M , together with a description of its normal bundle and a map into a certain path
space E(f1, f2). Moreover, a simple numerical invariant was extracted: the Nielsen number
N#(f1, f2), which counts the “essential” pathcomponents of the target space E(f1, f2).
We have

(2) N#(f1, f2) ≤ MCC(f1, f2) ≤ MC(f1, f2);

in many cases, e.g. in the stable range m ≤ 2n − 3, actually N#(f1, f2) = MCC(f1, f2)
(compare [K1], 1.10).

Example 2 (Fixed point theory). Here M = N , f2 = identity map, and N#(f1, id) is
the classical Nielsen number of f1; it is known to coincide with the minimum number of
fixed points occuring in the homotopy class of f1, provided n 6= 2 or χ(N) ≥ 0 (“Wecken
theorems”, cf. [B]). ¤

In this paper we will discuss the case M = Sm which is particulary accessible to the
methods of homotopy theory. Here we can identify ω#(f1, f2) with the bordism class of
the (generic) coincidence submanifold C(f1, f2) of Sm together with a (nonstabilized)
framing and a map into the loop space ΩN of N . Via the Pontryagin–Thom procedure,
this can be interpreted by maps from Sm into the Thom space of the trivial n-plane
bundle over ΩN . We obtain the homomorphism

(3) ω# : πm(N)⊕ πm(N) −→ πm(Sn ∧ (ΩN)+)

where (ΩN)+ denotes the loop space with one point added disjointly (cf. section 6 of [K2];
for a stabilized version and its relations e.g. to Hopf-James invariants see [K1], 1.14).

From now on we consider only maps f1, f2, f . . . : Sm → N where we assume that
the order

k := #π1(N)

of the fundamental group of N is finite (otherwise (f1, f2) is loose for all f1, f1 : Sm → N ,
cf. [K4], 1.3). Then the exact homotopy sequence of the obvious projection

∨k
Sn∨ Ñ →

Ñ , turned into a fibre map, yields the isomorphism

(4) κ : πm(Sn ∧ (ΩN)+) −→ πm(
k∨

Sn ∨ Ñ , Ñ)

(cf. [K2], (61)) which may give useful information on the target group of ω#; here Ñ

denotes the universal covering space of N .
If N happens to be a spherical space form (so that Ñ ∼= Sn), we can describe the

homotopy groups of the wedge
∨k

Sn ∨ Ñ as a direct sum of the homotopy groups of
spheres Sj(n−1)+1 (cf. [H]); often this allows explicit calculations.

Question A. What can be said about the homotopy groups of the wedge
∨k

Sn ∨ Ñ for
general manifolds?

We have the logical implications

(5) (f1, f2) is loose =⇒ ω#(f1, f2) = 0 ⇐⇒ N#(f1, f2) = 0

(cf. [K4], theorem 1.30). Of course it is of central importance to know when ω# and N#

are complete looseness obstructions, i.e. when the vanishing of ω#(f1, f2) or, equivalently,
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of N#(f1, f2) is also sufficient for the pair (f1, f2) to be loose. Since

(6) ω#([f1], [f2]) = ω#([f1]− [f2], 0) + ω#([f2], [f2])

the following two settings are of particular interest.

I. The root case: f2 ≡ y0 (where the fixed value y0 ∈ N is given).
Here our invariant yields the degree homomorphism

(7) deg# := ω#(−, y0) : πm(N) → πm(Sn ∧ (ΩN)+)

which turns out to be essentially an enriched Hopf–Ganea–invariant homomorphism
(see [K2], theorem 7.2). It is also related to the homomorphism

(8) (pinch∗, ∂) : πm(Ñ , Ñ \
k⋃ ◦

Bn) −→ πm(
k∨

Sn ∨ Ñ , Ñ)⊕ πm−1(Ñ \
k⋃ ◦

Bn)

(cf. [K2], 7.3) where
⋃k

◦
Bn is the disjoint union of open n-balls whose (embedded) bound-

ary spheres intersect only in ỹ0 ∈ Ñ ; the “pinching map” pinch collapses these boundary
spheres into a single point and deforms Ñ \ ⋃

Bn to Ñ \ {ỹ0}; ∂ denotes the obvious
connecting homomorphism.

Clearly deg# vanishes on i∗(πm(N \{y0})) where i denotes the inclusion N \{y0} ⊂ N .
The following conditions are equivalent (cf. [K2], 6.4 and 7.3):
(i) the sequence

πm(N \ {y0}) i∗−→ πm(N)
deg#

−→ πm(Sn ∧ (ΩN)+)

is exact;
(ii) the homomorphism (pinch, ∂) (cf. (8)) is injective;
(iii) deg#(f) is the complete looseness obstruction for all pairs of the form (f, y0),

where f : Sm → N .
All these conditions are often satisfied, e.g. when m ≤ 2n − 3 or n = 2 or N is

a sphere or a (real, complex or quaternionic) projective space of arbitrary dimension
(cf. [K2], theorem 6.5). Do they always hold?

Question B. What can be said about the kernel of (pinch, ∂) (cf. (8)) for general N and
arbitrary dimensions?

It may also be interesting to note that the Nielsen number N#(f, y0) can assume only
the values 0 and k (cf. [K2], 4.3).

II. The selfcoincidence case: f1 = f2 =: f .
Here the loopspace aspect of our invariants carries no extra information. Therefore

ω#(f, f) is precisely as strong as its image in πm(Sn) under the obvious forgetful map,
and the Nielsen Number N#(f, f) can take only the values 0 and 1. However, we can
distinguish between two kinds of deformations: small deformations (which move f only
ε-far away for a small ε > 0) on one hand, and arbitrary deformations (which may use
all the space available in N) on the other hand (cf. [DG]).

Consider the bundle ST (N) of unit tangent vectors over N (with respect to some
metric) and the resulting exact (horizontal) homotopy sequence as well as the Freudenthal
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suspension homomorphism E:

(9) . . . // πm(ST (N)) // πm(N) ∂ // πm−1(Sn−1) //

E

²²

. . .

πm(Sn) .

Theorem 3. Given [f ] ∈ πm(N), we have the following logical implications:

(i) ∂([f ]) ∈ πm−1(Sn−1) vanishes;
m
(ii) (f, f) is loose by small deformation;

⇓ (m if N = RP(n))

(iii) (f, f) is loose (by any deformation);

⇓ (m if N = Sn)

(iv) ω#(f, f) = 0;
m

(v) E(∂([f ]) = 0.

Thus ω#(f, f) is just “one desuspension short” of being the complete looseness ob-
struction.

The equivalence of (i) and (ii) was already noted by A. Dold and D.L. Gonçalves
in [DG].

Observe also that all the conditions (i), . . . ,(v) above except (iii) are compatible with
covering projections p : Ñ → N (compare [K3],1.22).

Corollary 4. The conditions (i), . . . ,(v) in theorem 3 are all equivalent if the suspension
homomorphism E, when restricted to ∂(πm(N)) (cf. (9)), is injective and, in particular,
if m ≤ n + 3 or if m = n + 4 6= 10 or in the stable dimensional range m ≤ 2n− 3.

Indeed, in these three dimension settings E is injective whenever n ≡ 0(2) (compare
e.g. [T] or [K4], 4.5). If the Euler characteristic of N vanishes (e.g. when n 6≡ 0(2)), then
the conditions (i), . . . ,(v) in theorem 3 are automatically satisfied due to the existence
of a nowhere vanishing vector field along which the map f can be pushed slightly away
from itself.

Corollary 5. Assume that
(i) #π1(N) > 2 and N is orientable or not; or
(ii) #π1(N) ≥ 2 and N is orientable.
If in addition E|∂(πm(N)) is injective, then for all maps f : Sm → N the pair (f, f) is

loose by small (and hence by any) deformation.

Indeed, according to theorem 1.21 of [K4] ω#(f, f) vanishes here.
This suggests that our invariants are particularly interesting when N has a small

fundamental group, e.g. in the case of spheres and projective spaces.
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Theorem 6. Given a map f : Sm → RP(n), m,n ≥ 2, let f̃ : Sm → Sn be a lifting. Then
the following conditions are equivalent:

(i) ω#(f, f) = 0, but (f, f) is not loose;
(ii) (f̃ , f̃) is loose but not by small deformation;
(iii) ∂R([f̃ ]) 6= 0, but E ◦ ∂R([f̃ ]) = 0;
(iv) (f̃ , f̃) is loose, but (f, f) is not loose;
(v) MC(f̃ , f̃) < MC(f, f);
(vi) MCC(f̃ , f̃) < MCC(f, f).
In particular, maps f, f̃ which satisfy these conditions exist precisely in those dimen-

sion combinations where E is not injective on ∂(πm(Sn)).

Already in the first nonstable dimension setting we encounter fascinating interrelations
with other, seemingly distant, branches of topology.

Theorem 7. Let f̃ : S2n−2 → Sn be a lifting of a map f : S2n−2 → RP(n). Assume that
n is even, n 6= 2, 4, 8.

Then the pair (f, f) is loose if and only if both ω#(f, f) and the Kervaire invariant
K([f̃ ]) of f̃ vanish.

Such a connection with the Kervaire invariant was originally discovered by D.L. Gon-
çalves and D. Randall [GR2] who also studied the second nonstable dimension setting
(in [GR1]) and found the first examples illustrating a version of the following result
(cf. [KR]).

Theorem 8. Let f̃ : S2n−1 → Sn be a lifting of a map f : S2n−1 → RP(n). Assume that
n ≡ 2(4), n ≥ 6.

Then (f, f) is loose if and only if ω#(f, f) = 0 and, in addition, the Hopf invariant
H(f̃) is divisible by 4.

In the next nonstable dimension settings the noninjectivity of E|∂(πm(Sn)) turns out
to be closely related to the question whether the Whitehead products of ιn−1 with
η2

n−1, νn−1, ν
2
n−1, σn−1, . . . can be halved, i.e. lie in 2π∗(Sn−1). Many relevant results

have been listed by M. Golasiński and J. Mukai in their very helpful paper [GM], but
what else is known?

Question C. Which Whitehead products in πm−1(Sn−1), n even, are divisible by 2?

This seems to be a subtle problem; in coincidence theory it arises already in the very
special case where N equals Sn or RP(n).

Question D. What can be said about the subgroup ∂(πm(N)) of πm−1(Sn−1) (cf. (9))
for arbitrary manifolds N with nontrivial Euler characteristic?

When is E|∂(πm(N)) injective?

E.g. what about the case where N is a general Grassmanian manifold?
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