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Abstract. When can a map between manifolds be deformed away from itself? We

describe a (normal bordism) obstruction which is often computable and in general

much stronger than the classical primary obstruction in cohomology. In particular,
it answers our question completely in a large dimension range.

As an illustration we give explicit criteria in three sample settings: projections
from Stiefel manifolds to Grassmannians, sphere bundle projections and maps defined

on spheres. In the first example a theorem of Becker and Schultz concerning the

framed bordism class of a compact Lie group plays a central role; our approach
yields also a very short geometric proof (included as an appendix) of this result.

I. Introduction

Throughout this paper M and N denote smooth connected manifolds without
boundary, of dimensions m and n, resp., M being compact. We say a map
f : M −→ N is loose (or f | o f in the notation of Dold and Gonçalves [DG]) if f
is homotopic to some map f ′ which has no coincidences with f , i.e. f(x) 6= f ′(x)
for all x ∈ M .

Problem: Give strong and computable criteria (expressed in a language of alge-
braic topology) for f to be loose.

In this paper we present some results and examples which seem to indicate that
normal bordism theory offers an appropriate language. Indeed, a careful analysis of
the coincidence behaviour (of a suitable approximation) of (f, f) : M −→ N × N
yields a triple (C, g, g) where

(i) C is a smooth (m − n)–dimensional manifold (the coincidence locus);
(ii) g : C −→ M is a continuous map (the inclusion); and
(iii) g is a vector bundle isomorphism which describes the stable normal bundle

of C in terms of the pullback g∗(ϕ) of the virtual coefficient bundle
ϕ = f∗(TN) − TM over M .

This leads to a well-defined looseness obstruction

ω(f) := [C, g, g] ∈ Ωm−n(M ; f∗(TN) − TM)

in the normal bordism group which consists of the bordism classes of triples as
above.
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Selfcoincidence theorem. Assume m < 2n − 2. Then f is loose if and only
if ω(f) = 0.

This is our central result. In § 2 below we give the proof which is based on the
singularity theory for vector bundle morphisms (see [Ko 1]). As a by-product we
show also that if the map f can be homotoped away from itself, then this can
be achieved by an arbitrarily small deformation. Furthermore we obtain a formula
expressing ω(f) in terms of the Euler number χ(N) of N and of the (normal
bordism) degree of f . Often this makes explicit calculations possible.

The natural Hurewicz homomorphism maps our invariant ω(f) to the Poincaré
dual of the classical primary obstruction on(f, f) in the (co-)homology of M (in
general with twisted coefficients; compare [GJW], theorem 3.3). This transition
forgets the vector bundle isomorphism g nearly completely, keeping track only of
the orientation information it carries. If m = n, this is no loss. However, in higher
codimensions m − n > 0 the knowledge of g is usually crucial.

Example. Consider the canonical projections

p : Vr,k −→ Gr,k and p̃ : Vr,k −→ G̃r,k

from the Stiefel manifold of orthonormal k–frames in Rr to the Grassmannian of
(unoriented or oriented, resp.) k–planes through the origin in Rr.

Then ω(p) = ω(p̃) lies in the framed bordism group Ωfr
d(k)(Vr,k) where d(k) =

1
2k(k − 1). In nearly all interesting cases the map g from the coincidence locus
C into Vr,k factors – up to homotopy – through a lower dimensional manifold so
that the primary obstruction vanishes. Frequently g is even nulhomotopic.

Theorem. Assume r ≥ 2k ≥ 2. Then: p and p̃ are loose if and only if

0 = 2χ(Gr,k) · [SO(k)] ∈ πS
d(k) .

This condition holds e.g. if k is even or k = 7 or 9 or χ(Gr,k) ≡ 0(12).

Here a fascinating problem enters our discussion: to determine the order of
a Lie group, when equipped with a left invariant framing and interpreted – via
the Pontryagin-Thom isomorphism – as an element in the stable homotopy group

of spheres πS
∗

∼= Ωfr
∗ . Deep contributions were made e.g. by Atiyah and Smith

[AS], Becker and Schultz [BS], Knapp [Kn], and Ossa [O], to name but a few
(consult the summary of results and the references in [O]). In particular, it is
known that the invariantly framed special orthogonal group SO(k) is nulbordant
for 4 ≤ k ≤ 9, k 6= 5 (cf. table 1 in [O]) and that 24[SO(k)] = 0 and 2[SO(2`)] = 0
for all k and ` (cf. [O], p. 315, and [BS], 4.7; for a short proof of this last claim
see also our appendix).

On the other hand, the Euler number χ(Gr,k) is easily calculated: it vanishes

if k 6≡ r ≡ 0(2) and equals
([r/2]
[k/2]

)
otherwise (compare [MS], 6.3 and 6.4).

Corollary 1. Assume r > k = 2. Then p and p̃ are loose.

Corollary 2. Assume r ≥ k = 3. Then p (or, equivalently, p̃ ) is loose if and
only if r is even or r ≡ 1(12).

This follows from the fact that [SO(3)] ∈ πS
3
∼= Z24 has order 12 (cf. [AS]).
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Corollary 3. Assume r ≥ k = 5, r 6= 7. Then p (or, equivalently, p̃ ) is loose
if and only if r 6≡ 5(6).

This follows since [SO(5)] has order 3 in πS
10

∼= Z6 (cf. [O]).
The details of this example will be discussed in § 3.

Next consider the case when a map f : M −→ N allows a section s : N −→ M
(i.e. f ◦ s = idN ). Then clearly f is loose if and only if idN is – or, equivalently,
χ(N) = 0 whenever N is closed. In § 4 we refine this simple observation in case f
is the projection of a suitable sphere bundle S(ξ). Here the relative importance of
the g- and g-data (fibre inclusion and “twisted framing”) in ω(f) can be studied
explicitly via Gysin sequences. We obtain divisibility conditions for χ(N) in terms
of the Euler class of ξ.

As a last illustration we discuss the case M = Sm in § 5. Our looseness
obstruction determines (and is determined by) a group homomorphism

ω : πm(N ; y0) −→ Ωfr
m−n .

Thus when m < 2n − 2 a map f : Sm −→ N is loose precisely if its homotopy
class [f ] lies in the kernel of this homomorphism. In the case N = Sn this holds
if 2[f ] = 0 (when n is even) and for all f (when n is odd).

Acknowledgement. It is a pleasure to thank Daciberg Gonçalves for a question
which raised my interest in coincidence problems and for very stimulating discus-
sions.

§ 1. The coincidence invariant and the degree

Consider two maps f1, f2 : M −→ N .
If the resulting map (f1, f2) : M −→ N × N is smooth and transverse to the

diagonal
∆ := {(y, y) ∈ N × N | y ∈ N}

then the coincidence locus

(1.1) C := {x ∈ M | f1(x) = f2(x)} = (f1, f2)
−1(∆)

is a closed (m − n)–dimensional manifold canonically equipped with the following
two data:

a continuous map

(1.2) g : C −→ M (namely the inclusion) ; and

a stable tangent bundle isomorphism

(1.3) g : TC ⊕ g∗(f∗

1 (TN)) ∼= g∗(TM)

(since the normal bundle ν(∆, N ×N) of ∆ in N ×N is canonically isomorphic
to the pullback of the tangent bundle TN under the first projection p1).

If f1 and f2 are arbitrary continuous maps, apply the preceding construction
to a smooth map (f ′

1, f
′

2) which approximates (f1, f2) and is transverse to ∆.
Then a (sufficiently small) homotopy from f1 to f ′

1 determines an isomorphism

f∗
1 (TN) ∼= f

′
∗

1 (TN) which is canonical up to regular homotopy. In any case we
obtain a well-defined normal bordism class

(1.4) ω(f1, f2) := [C, g, g] ∈ Ωm−n(M ; f∗

1 (TN) − TM)

which depends only on f1 and on the homotopy class of f2.
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Proposition 1.5. If there exist maps f ′

i : M −→ N which are homotopic to
fi, i = 1, 2, and such that f ′

1(x) 6≡ f ′

2(x) for all x ∈ M , then ω(f1, f2) = 0.

Proof. The homotopy f1 ∼ f ′

1 yields a nulbordism for ω(f1, f
′

2) = ω(f1, f2).

�

Our approach also leads us to define the (normal bordism) degree of any map
f : M −→ N by

(1.6) deg(f) := ω(f, constant map) .

It is represented by the inverse image F of a regular value of (a smooth approxi-
mation of) f , together with the inclusion map and the obvious stable description
of the tangent bundle TF .

§ 2. Selfcoincidences

Given any continuous map f : M −→ N , we apply the previous discussion to
the special case f1 = f2 = f . We obtain the two invariants

(2.1) ω(f) := ω(f, f), deg(f) ∈ Ωm−n(M ; f∗(TN) − TM)

(cf. 1.4 and 1.6), both lying in the same normal bordism group.
Any generic section s of the vector bundle f ∗(TN) over M gives rise to a map

(which is homotopic to f) from M to a tubular neighbourhood U ∼= ν(∆, N×N) ∼=
p∗1(TN) of the diagonal ∆ in N × N (compare 1.3). The resulting coincidence
locus, together with its normal bordism data, equals the zero set of s (interpreted
as a vector bundle homomorphism from the trivial line bundle R to f ∗(TN)),
together with its singularity data (cf. [Ko 1]). This locus consists of f−1{y1, . . .}
if s is the pullback of a generic section of TN with zeroes {y1, . . .}, which are
regular values of (a smooth approximation of) f . In particular, if N admits a
nowhere zero vector field v – e.g. when N is open – then the map f is loose
(since it can be “pushed slightly along v” to get rid of all selfcoincidences). We
conclude:

Theorem 2.2. Let f : Mm −→ Nn be a continuous map between smooth closed
connected manifolds.

Then the selfcoincidence invariant ω(f) (cf. 2.1) is equal to the singularity
invariant ω(R, f∗(TN)) (cf. [Ko 1], § 2) and hence also to χ(N) · deg(f) (cf.
1.6; here χ(N) denotes the Euler number of N).

Moreover, each of the following conditions implies the next one:

(i) f∗(TN) allows a nowhere zero section over M ;
(ii) f can be approximated by a map which has no coincidences with f ;
(iii) f is loose ;
(iv) there exist maps f ′, f ′′ : M −→ N which have no coincidences and which

are both homotopic to f ; and
(v) ω(f) = 0 .

If m < 2n − 2, all these conditions are equivalent.

Indeed, in this dimension range ω(R, f∗(TN)) is the only obstruction to the
existence of a monomorphism R ↪→ f ∗(TN) (see theorem 3.7 in [Ko 1]).
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Special case 2.3 (codimension zero). Assume m = n ≥ 0. Then f is loose if
and only if ω(f) = 0. Here the relevant normal bordism group Ω0(M ; f∗(TN) −
TM) is isomorphic to Z if w1(M) = f∗(w1(N)) and to Z2 otherwise. ω(f)
counts the isolated zeroes of a generic section in f ∗(TN). We can concentrate
these zeroes in a ball in M and (after isotoping some of them – if needed – around
loops where w1(M) 6= f∗(w1(N)), in order to change their signs) cancel all of them
if ω(f) = 0.

For a very special case in higher codimensions compare [DG], 1.15.

Remark 2.4. In order to understand and compute normal bordism obstructions, it
is often helpful to use the natural forgetful homomorphisms

Ωi(M ; ϕ)
forg

−−−→ Ωi(M ; ϕ)
µ

−−→ Hi(M ; Z̃ϕ) .

Here forg retains only the orientation information contained in the g–components
of a normal bordism class, and µ denotes the Hurewicz homomorphism to homol-
ogy with coefficients which are twisted like the orientation line bundle of ϕ. The
detailed analysis of forg, given in § 9 of [Ko 1], yields computing techniques which
often permit to calculate obstructions in low dimensional normal bordism groups.

§ 3. Principal bundles

As a first example consider the projection p : M −→ N of a smooth principal
G–bundle (cf. [S], 8.1) over the closed manifold N , with G a compact Lie group.
A fixed choice of an orientation of G at its unit element equips G with a left
invariant framing (which we will drop from the notation); it also yields a (stable)
trivialization of the tangent bundle along the fibres of p and hence of the coefficient
bundle p∗(TN) − TM . Thus by theorem 2.2 our selfcoincidence invariant takes
the form

(3.1) ω(p) = χ(N) · [G, g = fibre inclusion] ∈ Ωfr
m−n(M) .

If we concentrate on the normal bundle information – which, in a way, represents
the highest order component of this obstruction – and neglect its g–part, we obtain
the weaker invariant

(3.2) ω′(p) := const∗(ω(p)) = χ(N)[G] ∈ Ωfr
m−n

which must also vanish whenever p is loose. In other words, the Euler number

χ(N) must be a multiple of the order of [G] in Ωfr
∗

∼= πS
∗
.

For i ≤ 6 the stable stem πS
i is generated by the class [G] of some compact

connected Lie group (e.g. πS
1 = Z2 · [S1] and πS

3 = Z24 · [SU(2)]). However, this
is not typical, and only the divisors of 72 (if not of 24) can be the order of such a
class (see [O], theorem 1.1; note also Ossa’s table 1).

As an illustration let us work out the details for the projections p and p̃ discussed
in the example of the introduction. We may assume r > k ≥ 1.

Let us first dispose of two elementary cases.

Case 1: k = 1. p : Sr−1 −→ RP r−1 and p̃ = idSr−1 are loose if and only if r
is even.
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This follows from 2.3 and 2.2.

Case 2: k = r − 1 or k ≡ r − 1 6≡ 0(2): both p and p̃ are loose.
Here p∗(TGr,k) ∼= p∗(Hom(γ, γ⊥)) ∼= ⊕kp∗(γ⊥) (cf. [MS], p. 70) has a nowhere

zero section, be it for orientation reasons or since Gr,k is odd–dimensional.

Next recall that in the general setting dim(Gr,k) = k(r−k); the fibre dimension
is given by

(3.3) d(k) := dim(S)O(k) =
1

2
k(k − 1) .

We have p∗(TGr,k) ∼= p̃∗(TG̃r,k) and hence ω(p) = ω(p̃). According to theorem
2.2 this is the only looseness obstruction if

(3.4) r ≥
3

2
k −

1

2
+

3

k
.

Clearly the fibre of p (or p̃) over the point (Rk ⊂ Rr) in the Grassmannian is
Vk,k = O(k) (or SO(k), resp.). Also, up to homotopy the fibre inclusion g factors
through Vk,` where ` := max{2k − r, 0} < k; this is seen by rotating the vectors
v`+1, . . . , vk of a k–frame in Rk into the standard basis vectors ek+1, . . . , e2k−`

in Rr. Except in situations which are already settled by the cases 1 and 2 above we
see that the dimension of the intermediate manifold Vk,` is strictly less (and often
considerably so) than the fibre dimension d(k) (cf. 3.3) so that the cohomological
primary obstruction detects nothing.

In particular, if r ≥ 2k then g is nulhomotopic and therefore all the information
contained in the (complete!) non-selfcoincidence obstruction is already given by

ω′(p̃) = 2 · χ(Gr,k)[SO(k)] ∈ Ωfr
d(k)

(cf. 3.2 and 3.3). The theorem of the introduction and its corollaries follow. (If
(r, k) = (3, 2), (4, 3), (6, 5) or (8, 5) refer to case 2 above; if (r, k) = (9, 5) the

bordism class a = [SO(5) ⊂ V9,5] ∈ Ωfr
10(V9,5) lies in the image of Ωfr

10(S4) ∼=
Z6 ⊕ Z2 and hence ω(f) = 12a = 0.)

§ 4. Sphere bundles

Let ξ be a (k + 1)–dimensional real vector bundle over a closed manifold Nn.
We want to study the coincidence question for the projection of the corresponding
sphere bundle

p : M := S(ξ) −→ N .

Decomposing the tangent bundle of M into a “horizontal” and a “vertical” part,
we obtain the canonical isomorphism

TM ⊕ R ∼= p∗(TN) ⊕ p∗(ξ) .

Thus the following commuting diagram of Gysin sequences (cf. [Sa], 5.3 or [Ko 1],
9.20) turns out to be relevant.
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Here the transverse intersection homomorphism t can also be defined by ap-
plying µ◦ forg (cf. 2.4) and then evaluating the (possibly twisted) Euler class e(ξ).
∂(1) is given by the inclusion of a typical fibre S(ξy0

), yo ∈ N , with boundary
framing induced from the compact unit ball in ξy0

; in other words, ∂(1) = deg(p)
(cf. 1.6). Thus ω(p) = ∂(χ(N)) (cf. theorem 2.2) vanishes if and only if

(4.2) χ(N) ∈ e(ξ) (µ ◦ forg(Ωk+1(N ;−ξ))) .

We also have the successively weaker necessary conditions that χ(N) lies in

the subgroups e(ξ)(µ(Ωk+1(N ;−ξ))) and e(ξ)(Hk+1(N ; Z̃ξ)) (compare 2.4).

Example 4.3. Let ξ be an oriented real plane bundle. Then according to [Ko
1], 9.3

µ ◦ forg(Ω2(N ;−ξ)) = ker(w2(ξ) : H2(N ; Z) −→ Z2) .

Thus ω(p) = 0 if and only if χ(N) ∈ e(ξ)(H2(N ; Z)) and χ(N) is even. For
all n ≥ 1 this is also the precise condition for p to be loose (if n = 2 it implies
– via a cohomology Gysin sequence – that e(p∗(TN)) = 0 ; therefore p∗(TN)
allows a nowhere vanishing section over the 2-skeleton and hence over all of M ,
since π2(S

1) = 0).
As an illustration let us consider the case when ξ is the r–th tensor power of

the canonical complex line bundle over CP (q), q > 1. Then p is loose if and
only if q + 1 ∈ rZ = e(ξ)(H1(CP (q); Z)) and q is odd. This last condition is
captured by normal bordism, but not by the weaker conditions (expressed in terms
of oriented bordism or homology) mentioned above (cf. 4.2; compare also theorem
2.2 in [DG]).

§ 5. Homotopy groups

Our last example deals with maps which are not fibre projections in general.
Choose a local orientation of N at a base point y0 ∈ N . Then our looseness
obstruction determines a group homomorphism

ω : πm(N ; y0) −→ Ωfr
m−n

as follows. If n = 1, then ω ≡ 0. So assume n ≥ 2 and let x0 and ∗ denote
the base point of Sm and its antipode. Given [f ] ∈ πm(N ; y0), the inclusions
{x0} ⊂ Sm − {∗} ⊂ Sm determine canonical isomorphisms (use transversality!)

Ωfr
m−n

∼=
−−→ Ωm−n(Sm − {∗}; f∗(TN))

∼=
−−→ Ωm−n(Sm; f∗(TN))
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which we apply to the obstruction ω(f). Clearly, we just obtain a multiple of a
similarly defined degree homomorphism (which in the case N = Sn is the stable
Freudenthal suspension). The relevant multiplying factor is the Euler number of
N (whether N is closed or not).

Appendix
Our approach yields also a short proof of the following result which is very useful

for calculations as in § 3.

Theorem of Becker and Schultz (cf. [BS], 4.5). Let B be a compact connected
Lie group and G ⊂ B a proper closed subgroup. Then

χ(B/G) · [G] = 0 in Ωfr
∗ .

Proof. The left hand term is the (weak) selfcoincidence invariant ω′(p) of the
projection p : B −→ B/G (cf. 3.2). But right multiplication with a path
in B from the unit to some element b0 6∈ G, when composed with p, yields a
deformation from p to a map p′ which has no coincidences with p. Thus p is
loose and ω′(p) = 0.

More directly: the left hand term is represented by the zero set of the pullback
(under p) of a generic section of T (B/G). But clearly p∗(T (B/G)) allows a (left
invariant) section with empty zero set, and the two zero sets are framed bordant.

Corollary. 2 · [SO(k)] = 0 for all even k ≥ 2.

Indeed, SO(k + 1)/SO(k) ∼= Sk has Euler number 2.
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