
Selfcoincidences and roots in Nielsen theory

Ulrich Koschorke

Abstract. Given two maps f1 and f2 from the sphere Sm to an n-manifold N ,
when are they loose, i.e. when can they be deformed away from one another?
We study the geometry of their (generic) coincidence locus and its Nielsen
decomposition. On one hand the resulting bordism class of coincidence data
and the corresponding Nielsen numbers are strong looseness obstructions. On
the other hand the values which these invariants may possibly assume turn
out to satisfy severe restrictions, e.g. the Nielsen numbers can only take the
values 0, 1 or the cardinality of the fundamental group of N . In order to show
this we compare different Nielsen classes in the root case (where f1 or f2

is constant) and we use the fact that all but possibly one Nielsen class are
inessential in the selfcoincidence case (where f1 = f2). Also we deduce strong
vanishing results.
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1. Introduction

This work is dedicated to Albrecht Dold whose enormous influence on the de-
velopment of topology continues to this very day. In fact, it was his stimulating
paper [DG] (written jointly with Daciberg Gonçalves) which got me interested in
coincidences of maps and which inspired me to introduce a related obstruction
theory (cf. [K2]–[K7]). Here we apply it to the special case where the domain is a
sphere.

Throughout this paper let f1, f2 : Sm → N be two (continuous) maps into
the n-dimensional smooth connected manifold N without boundary. We will also
assume that m,n ≥ 2 (the remaining cases being well understood).
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We want to make the coincidence locus

(1.1) C(f1, f2) = {x ∈ M | f1(x) = f2(x)}
as small as possible (in some sense) by deforming f1 and f2.

Definition 1.2. (compare [DG], p. 293–296 and [GR2], §1, where a different termi-
nology is used for the same concepts; see also [K7], 5.3).

(i) The pair (f1, f2) is called loose if there exist maps f ′i homotopic to fi,
i = 1, 2, whose coincidence locus C(f ′1, f

′
2) is empty (i.e. “f1 and f2 can be deformed

away from one another”).
(ii) In the special case f1 = f2 =: f we have a refined notion: the pair (f, f)

is loose by small deformation if for every metric on N and for every ε > 0 there
exists an ε-approximation f̄ of f such that f̄(x) 6= f(x) for all x ∈ Sm.

Proposition 1.3. All pairs of maps f1, f2 : Sm → N are loose if at least one of the
following conditions hold:

(i) m < n; or
(ii) N is not compact; or
(iii) the fundamental group π1(N) is not finite; or
(iv) N is the total space of a Serre fibration with a section and with strictly

positive dimensions of the fiber and base (e.g. if N is the product of such spaces).

Proposition 1.4. Assume that
(v) N is noncompact or has trivial Euler characteristic χ(N) (this holds e.g.

when n is odd), or
(vi) πm−1(Sn−1) = 0.
Then for all maps f : Sm → N the pair (f, f) is loose by small deformation.

Example 1.5 (surfaces). Let n = 2 and m ≥ 1. Then all such pairs (f, f) are loose
by small deformation except when m = 2 and N = S2 or RP(2).

It is not hard to verify the looseness claims in 1.3, 1.4 and 1.5 by elemen-
tary considerations (see section 2 below). However, in general a deeper analysis is
needed and the following approach has proved to be fruitful.

For every pair of (base point preserving) maps f1, f2 : Sm → N we defined
(in [K6]) an invariant

(1.6) ω#(f1, f2) ∈ πm

(
Sn ∧ (ΩN)+

)

which reflects the geometry of a (generic) coincidence submanifold C ⊂ Sm, its
normal bundle as well as certain path space data (for details see [K6] or section 3
below). ω#(f1, f2) depends only on the (base point preserving) homotopy classes
of f1, f2 and must vanish if (f1, f2) is loose (and, in particular, in all cases listed
in proposition 1.3). The converse holds in a “stable” dimension range.

Theorem 1.7. (compare [K4], 1.10 and [K2], 2.2). Assume m < 2n − 2. Then a
pair (f1, f2) is loose precisely if ω#(f1, f2) = 0. In the special case f1 = f2 =: f
the pair (f, f) is loose by small deformation precisely if ω#(f, f) = 0.
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Our looseness obstruction is always compatible with additions in homotopy
groups:

(1.8) ω#(f1 + f ′1, f2 + f ′2) = ω#(f1, f2) + ω#(f ′1, f
′
2)

for all [fi], [f ′i ] ∈ πm(N), i = 1, 2.
There is also a canonical involution inv on the group πm(Sn ∧ (ΩN)+). It

plays a rôle e.g. in the symmetry relation

(1.9) ω#(f2, f1) = inv
(
ω#(f1, f2)

)
.

Two special settings are very central in coincidence theory.

I. The root case: f2 = y0 (where the fixed value y0 ∈ N is given).
Here our invariant yields the degree homomorphism

(1.10) deg# := ω#(−, y0) : πm(N) → πm(Sn ∧ (ΩN)+).

(For a purely homotopy theoretical interpretation in terms of an enriched Hopf-
Ganea invariant see theorem 7.2 in [K6].)

Clearly deg# vanishes on i∗(πm(N \ {∗})) where i : N \ {∗} ↪→ N denotes
the inclusion of the complement of a point ∗ in N . It turns out that the resulting
sequence

(1.11) πm(N \ {∗}) i∗−→ πm(N)
deg#

−→ πm(Sn ∧ (ΩN)+)

is very often exact, e.g. when m ≤ 2n − 3 or n ≤ 2 or N is a sphere or a (real,
complex or quaternionic) projective space of arbitrary dimension (cf. [K6], (6.5)).
Thus in these cases deg#(f) is the complete looseness obstruction for the pair
(f, y0).

Question 1.12. Is the sequence (1.11) always exact?

The degree deg# can be considered to be our basic coincidence invariant since
(in view of (1.8) and (1.9))

(1.13)
ω#(f1, f2) = ω#(f1, y0) + ω#(y0, f2)

= deg#(f1) + inv(deg#(f2))

for all [f1], [f2] ∈ πm(N, y0).

II. The selfcoincidence case: f1 = f2 =: f .
Consider the bundle ST (N) of unit tangent vectors over N (with respect to

some metric) and the resulting exact (horizontal) homotopy sequence as well as
the Freudenthal suspension homomorphism E:

(1.14) . . . // πm(ST (N)) // πm(N) ∂ // πm−1(Sn−1) //

E

²²

. . .

πm(Sn) .
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Theorem 1.15. Given [f ] ∈ πm(N), we have the following logical implications:

(i) ∂([f ]) ∈ πm−1(Sn−1) vanishes;
m
(ii) (f, f) is loose by small deformation;

⇓ (m if N = RP(n))

(iii) (f, f) is loose (by any deformation);

⇓ (m if N = Sn)

(iv) ω#(f, f) = 0;
m

(v) E(∂([f ]) = 0.

Thus ω#(f, f) is just “one desuspension short” of being the complete loose-
ness obstruction.

The equivalence of (i) and (ii) was already noted by Dold and Gonçalves
in [DG].

Observe also that all conditions (i)–(v) in 1.15 except (iii) are compatible
with covering projections p : Ñ → N (compare [K7],1.22).

Corollary 1.16. The conditions (i), . . . ,(v) in 1.15 are all equivalent if the suspen-
sion homomorphism E, when restricted to ∂(πm(N)) (cf. (1.14)), is injective and,
in particular, if m ≤ n+3 or if m = n+4 6= 10 or in the stable dimensional range
m ≤ 2n− 3.

Indeed, in these three dimension settings E is injective whenever n ≡ 0(2).
Clearly conditions (i)–(v) in 1.15 are automatically satisfied under the assumptions
of proposition 1.4.

Example 1.17 (N = RP(n) or Sn). If m ≤ n+4, then the five conditions in 1.15 are
equivalent for all maps f : Sm → RP(n) and f̃ : Sm → Sn (even in the exceptional
case m = n + 4 = 10 since π10(S6) = 0).

However, this is no longer true for m = n + 5 = 11. Indeed, according to [T]
and [P] we have in (1.14)

1
2
H : π11(S6)

∼=−→ Z; π10(S5) ∼= Z2; π10(V7,2) = 0

where H denotes the Hopf invariant. Thus ∂ is onto, but E and hence E◦∂ is trivial
here. Therefore, given any map f : S11 → RP(6) and a lifting f̃ : S11 → S6 of it,
the invariants ω#(f, f) and ω#(f̃ , f̃) vanish and the pair (f̃ , f̃) is loose (see [K6],
1.12; compare also [GW]). But (f, f) is loose and, equivalently, (f̃ , f̃) is loose by
small deformation only (and precisely) if [f ] ∈ 2 · π11(RP(6)) or, equivalently,
if H(f̃) ≡ 0(4) (compare [GR1] and [K7], 1.19; the delicate difference between
conditions (ii) and (iii) in 1.15 is further illustrated e.g. in [GR2] and [K7], 1.22).
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For simple examples of nontrivial ω#-values consider the case m = n. If a
map f̃ : Sn → Sn has (standard) mapping degree d, then

±ω#(f̃ , f̃) = E ◦ ∂(f̃) = (1 + (−1)n) d

in πn(Sn ∧ (ΩSn)+) ∼= πn(Sn) ∼= Z. Assume that n is even. Then (f̃ , f̃) is loose if
and only if f̃ is nullhomotopic; the same holds for maps from Sn into RP(n). This
shows that the exception made in example 1.5 is indeed necessary. ¤

In previous work (cf. [K6]) we simplified our ω#-invariant by assuming that
f1 or f2, say f2, is “not coincidence producing” (cf. [BS]), i.e.

(1.18) (f̄2, f2) is loose for some map f̄2 : Sm → N.

Then (f1, f2) and (f1 − f̄2, (f2 − f2) ∼ y0) have a similar coincidence behaviour
and

(1.19) ω#(f1, f2) = deg#(f1 − f̄2).

In this paper we start from the decomposition (up to homotopy)

(f1, f2) ∼ (f1 − f2, y0) + (f2, f2)

which is always available without any assumption. In view of (1.8) this implies the
basic equation

(1.20) ω#(f1, f2) = deg#(f1 − f2) + ω#(f2, f2).

Vanishing results concerning the second (“selfcoincidence”) summand are not only
interesting in view of theorem 1.15, but they also allow us to reduce our analysis to
studying the degree homomorphism deg# or, equivalently, Hopf-Ganea invariants
(cf. [K6], 7.2).

It turns out that the cardinality #π1(N) ∈ Z∪{∞} of the fundamental group
of N plays a crucial rôle.

Theorem 1.21. Assume that
(i) #π1(N) > 2 and N is orientable or not; or
(ii) #π1(N) ≥ 2 and N is orientable.
Then ω#(f, f) = 0 for all f : Sm → N .
In particular

ω#(f1, f2) = deg#(f1 − f2)
for all [f1], [f2] ∈ πm(N).

Also the set of all possible values of our ω#-invariant is restricted by the
relation

{ω#(f1, f2)} = im(deg#) ⊂ ker(id + inv)
where id = identity and inv denotes the canonical involution of πm(Sn∧(ΩN)+)
(cf. (1.9) and (1.13)).

If in addition m < 2n− 2 or m ≤ n+3, then the pair (f, f) is loose by small
deformation for every map f : Sm → N .
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On one hand, the proof (given in section 4 below) compares the contributions
of the pathcomponents of the loop space ΩN to ω#(f, f); on the other hand, it
uses the fact that at most one such pathcomponent can contribute nontrivially to
our selfcoincidence invariant.

Example 1.22. As an application consider the case where m = n and N is an
orientable n-manifold with π1(N) = Z2. Then

inv = (−1)nid on πn(Sn ∧ (ΩN)+) ∼= Z⊕ Z.

If n is even then ker(id + inv) = 0; therefore each pair of maps f1, f2 : Sm → N
is loose (since ω#(f1, f2) = 0).

Example 1.23 (real Grassmann manifolds). Consider the manifold Gr,k (or G̃r,k,
resp.) of nonoriented (or oriented, resp.) k-planes in Rr, 0 < k < r. If r is even,
then Gr,k is orientable, π1(Gr,k) 6= {0} and hence ω#(f, f) = 0 for all maps from
Sm, m ≥ 1, to Gr,k or G̃r,k. This does not seem to follow from 1.3 or 1.4; indeed,
the Euler characteristic of Gr,k is strictly positive if both r and k are even (see 4.3
below; compare also our example 2.2).

A further vanishing result (quoted from [K6],1.9; compare also [K7], 5.4) is
of interest here.

Proposition 1.24. Assume π1(N) 6= 0. Given [f ] ∈ πm(N), m ≥ 2, if j∗ ◦ ∂([f ])
vanishes then so does ω#(f, f).

Here j : Sn−1 ↪→ N \ {∗} denotes the inclusion of the boundary sphere of a
small n-ball in N centered at a point ∗ ∈ N . According to [K7], 5.4, the condition
j∗ ◦ ∂([f ]) = 0 just means that f is not coincidence producing (cf. (1.18)). ¤

Let us summarize: although our selfcoincidence invariant ω#(f, f) is “only
one desuspension short” of being a complete looseness obstruction, it vanishes for
a great number of maps f defined on spheres (in contrast, in [K2] ω#(f, f) was
shown to be highly nontrivial in many examples where the domain of f is a general
closed manifold M).

Corollary 1.25. Assume π1(N) 6= 0 and n ≥ 1. If ω#(f, f) 6= 0 for a map f : Sm →
N then the following restrictions must all be satisfied:

a) n is even and m ≥ n ≥ 4, or else m = 2 and N = RP(2); and
b) N is closed and nonorientable, π1(N) = Z2, χ(N) 6= 0; moreover the

homomorphism i∗ : πm(N \ {∗}, y0) → πm(N, y0) (induced by the inclusion of N ,
punctured at some point ∗ 6= y0) is not onto; furthermore, N does not allow a free
smooth action by a nontrivial finite group; and

c) E ◦ ∂([f ]) 6= 0 and j∗ ◦ ∂([f ]) 6= 0 (compare (1.14) and 1.21).

Thus an obvious place where to look for nontrivial values of ω#(f, f) are
even-dimensional real projective spaces (cf. already example 1.17).
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Example 1.26. If n = 4, 8, 12, 14, 16 or 20, then there exist infinitely many homo-
topy classes [f ] ∈ π2n−1(RP(n)) such that ω#(f, f) 6= 0.

We see this with the help of the weaker invariant ω(f, f) ∈ πS
m−n (cf. (3.15)

below and [K2], 2.1), which stabilizes and simplifies ω#(f, f) and is more easily
computable.

However, for many maps f, f1, f2 from Sm into a nonorientable n-manifold
N this approach does not yield nontrivial ω-values. Indeed, ω(f, f) = 0 whenever
2 ·πS

m−n = 0, e.g. when m−n = 1, 2, 4, 5, 6, 8, 9, 12, 14, 16 or 17 (cf. [T]). Moreover,
for all m and n

(1.27) (χ(N)− 1) ω(f1, f2) = 0

where χ(N) stands for the Euler characteristic of N .

Example 1.28 (N = G5,2; compare 1.23). The invariant ω(f1, f2) vanishes for all
maps f1, f2 : Sm → G5,2, m ≥ 1. In particular, the induced homomorphism

coll∗ : πm(G5,2) → πm(S6)

is trivial for m ≤ 10 where coll denotes the degree one map which collapses all
but an open topdimensional ball into a point. (Note that e.g. for m = 6, 7 or 8,
resp., πm(G5,2) ∼= πm(V5,2) is isomorphic to Z2, Z⊕Z2 and Z2, resp.; cf. [P]). ¤

In section 4 below we will deduce the vanishing theorem 1.21 and relations
such as (1.27) and 1.28 from a careful analysis of the root case in section 3.

While our looseness obstructions lie in complicated groups which are usually
hard to compute, they give rise to simple numerical invariants (defined in section 5
below). These generalize the Nielsen numbers which have played such a central rôle
in topological fixed point theory (cf. e.g. [B] and [K6], 1.12 (iv)). In analogy to
the classical procedure, our Nielsen numbers N#(f1, f2) ≥ N(f1, f2) count those
“Reidemeister classes” A ∈ π0(ΩN) = π1(N) which make an essential contribution
to ω#(f1, f2) and ω̃(f1, f2), resp.

Theorem 1.29. (cf. [K6], 1.2). For every pair (f ′1, f
′
2) of maps homotopic to (f1, f2)

the number of pathcomponents of the coincidence subspace C(f ′1, f
′
2) ⊂ Sm is at

least N#(f1, f2).

There are quite a few sample settings where N#(f1, f2) is the best possible
such lower bound (see e.g. the “Wecken theorems” in [K6], 1.3, 1.12, 1.13, 1.14, . . .).

Theorem 1.30. For all maps f1, f2 : Sm → N we have:

N#(f1, f2) = 0 if and only if ω#(f1, f2) = 0 ;
N(f1, f2) = 0 if and only if ω̃(f1, f2) = 0.

We call this the norm property of our Nielsen numbers: they decide whether
elements in the image group of our ω-invariants are zero, just like norms of vectors
do. (Recall, in addition, analogues of the triangular inequality, cf. [K6], 6.2.)

By definition N#(f1, f2) is among the integers between 0 and #π1(N). But
few of these occur actually as Nielsen numbers.
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Theorem 1.31. Let k ∈ Z ∪ {∞} be the number of elements in π1(N). Then for
each pair of maps f1, f2 : Sm → N the Nielsen numbers N#(f1, f2) and N(f1, f2)
may assume only the two values 0 or k or, if k = 2 and N is an even-dimensional,
closed, nonorientable manifold with nontrivial Euler characteristic, also 1 as a
third possible value.

Here again (as also already in [K7]) the case N = RP(n) turns out to be
particularly interesting. E.g. assume that m = n is even and let p : Sn → RP(n)
be the canonical covering map. Then N#(f1, f2) = N(f1, f2) equals 0, 1 and 2,
resp., when (f1, f2) = (y0, y0), (p, p) and (p, y0), resp. (cf. the end of section 4
below).

Remark 1.32. It will be convenient to consider base point preserving maps and
homotopies in sections 3–5 below. Recall, however, that looseness and Nielsen
numbers depend only on free homotopy classes and so does the vanishing of our
ω-invariants (see e.g. [K6], 1.2, 2.1 and the appendix there).

Remark 1.33. Our approach can also be extended to the setting of fibre preserving
maps between smooth fibrations. The resulting coincidence invariants are closely
related to A. Dold’s fixed point index which was defined and studied in [D].

Conventions and Notations. Throughout this paper N denotes a smooth con-
nected manifold without boundary (Hausdorff and having a countable basis). Our
notation will often not distinguish between a constant map and its value.

Acknowledgment

It is a pleasure to thank D. Gonçalves and E. Kudryavtseva for stimulating dis-
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2. Looseness

In this section we use rather elementary techniques to establish the looseness
results in propositions 1.3 and 1.4 as well as example 1.5.

Lemma 2.1. Let y1 6= y2 be different points in N and assume that the homomor-
phism i∗ : πm(N \ {y1}, y2) → πm(N, y2) induced by the inclusion map is onto.
Then for all maps f1, f2 : Sm → N the pair (f1, f2) is loose.

Proof. Let Sm
+ and Sm

− denote the halfspheres defined by x1 ≥ 0 and x1 ≤ 0,
resp., x = (x1, . . . , xm+1) ∈ Sm. Then f2 is homotopic to a map f ′2 such that
f ′2(S

m
+ ) ⊂ N \ {y1} and f ′2|Sm

− ≡ y2. Similarly, f1 ∼ f ′1 such that f ′1|Sm
+
≡ y1 and

f ′1(S
m
− ) ⊂ N \ {y2}. Clearly the pair (f ′1, f

′
2) is coincidence free. ¤

Proposition 1.3 follows as a corollary since each of the conditions (i) through (iv)
imply that i∗ is onto. If m < n, this is seen by making a map f : Sm → N trans-
verse to {y1}. If N is not compact, deform f by an isotopy along a smoothly
embedded path which starts in N \ f(Sm), ends in y1 and avoids y2.
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If the universal covering space p : Ñ → N has infinitely many layers, consider
a lifting f̃ : Sm → Ñ of f . Apply an isotopy along suitable disjoint paths in Ñ
which start in Ñ \ f̃(Sm) and end in the finitely many points of f̃(Sm)∩p−1({y1}).
The corresponding homotopy in N deforms f into N \ {y1}.

Finally, in case (iv) of proposition 1.3 the exact homotopy sequence of the
fibration splits. Thus f can be deformed into the union of the fibre and the image
of the section. ¤

Example 2.2. For r = 2r′ > 2 and m ≥ 1 every pair of maps f1, f2 : Sm → Gr,2

(into the Grassmann manifold of 2-planes in Rr) is loose.
Indeed, due to the complex structure on Rr = Cr′ , the fibration Sr−2 ↪→

Vr,2 → Sr−1 (of the Stiefel manifold of 2-frames in Rr) has a canonical section;
hence

πm(Vr,2) ∼= πm(Sr−2)⊕ πm(Sr−1).

For m ≥ 3 this group is also isomorphic to πm(Gr,2), and the summands correspond
to the subspaces

A := {2-planes containing the base vector er}
and

B := {complex lines in Cr′}.
Since A ∪B $ Gr,2, our claim follows from lemma 2.1. ¤

Proof of proposition 1.4. A homotopy lifting argument shows that (f, f) is loose
by small deformation if and only if the pulled back bundle f∗(TN) has a nowhere
vanishing section over Sm (compare [DG]). If N is noncompact or χ(N) = 0, then
the tangent bundle TN itself has a nonzero section over f(Sm) which we can pull
back. In any case every n-plane bundle over Sm allows a section with a single
zero; it can be removed if its “index map” q : Sm−1 → Sn−1 (compare [Wy] or
also [K6], (28)) is nullhomotopic. ¤

The claim in example 1.5 follows since πm−1(S1) = 0 except when m = 2.
Furthermore π2(N) = 0 for every surface other than N = S2 or RP(2).

3. Looseness obstructions

In this section we recall the definitions of the various versions of the ω-invariants.
(For more details we refer to [K6]; see also [K4] and [K2].) Moreover we compare
the Nielsen components of ω# in the root case (in 3.12). This will be needed to
establish our main results.

Unless specified otherwise we will assume that m,n ≥ 2. Fix basepoints
x0 ∈ Sm and y0 ∈ N , and a local orientation of N at y0. Throughout the remainder
of this paper we consider (continuous) maps f1, f2, f, . . . : (Sm, x0) → (N, y0). Our
notation will not distinguish between a constant map and its value.
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After a suitable approximation we may assume that (f1, f2) : Sm → N ×N
is smooth and transverse to the diagonal

∆ = {(y, y) ∈ N ×N | y ∈ N}.
Then the coincidence set

(3.1) C = C(f1, f2) = (f1, f2)−1(∆) = {x ∈ Sm | f1(x) = f2(x)}
is a smooth closed n-codimensional submanifold of Sm. The map (f1, f2) induces
an isomorphism of (normal) vector bundles

(3.2) ν(C, Sm) ∼= (f1, f2)∗(ν(∆, N ×N)) ∼= f∗1 (TN)|C .

Now pick a homotopy G : C × I → Sm which deforms the inclusion map g : C ↪→
Sm to the constant map with value x0. (Such a contraction exists and is unique
up to homotopy rel (0, 1) since n ≥ 2 and the complement of any point in Sm

allows “linear” homotopies.) Then G induces a vector bundle isomorphism from
f∗1 (TN)|C = g∗(f∗1 (TN)) to C × Ty0(N). Composing this with (3.2) and using
our choice of a local orientation of N at y0, we get a framing

(3.3) ḡ# : ν(C, Sm)
∼=−→ C × Rn.

Furthermore we obtain the map

(3.4) g̃ : C → Ω(N, y0) =: ΩN

which assigns the (concatenated) loop

(3.5) y0 = f1(x0)
(f1◦G(x,−))−1

`̀ `̀ `̀ `̀ → f1(x) = f2(x)
f2◦G(x,−)

`̀ `̀ `̀ `̀ → f2(x0) = y0

to x ∈ C.
The resulting bordism class

(3.6) ω#(f1, f2) = [C, ḡ#, g̃]

of the framed compact submanifold C ⊂ Sm (cf. (3.1); (3.3)) together with the map
g̃ (cf. (3.4)) depends only on the homotopy classes [fi] ∈ πm(N, y0), i = 1, 2. Via
the Pontryagin-Thom procedure, ω#(f1, f2) can also be interpreted as an element
in the m-th homotopy group of the Thom space Sn∧ (ΩN)+ of the trivial n-plane
bundle over the loop space ΩN . (Here “+” stands for a disjointly added point.
Note that the bordism theories of submanifolds in Sn and Rn are equivalent in
codimensions n ≥ 2; thus it is not necessary that f1(x0) 6= f2(x0), as was assumed
in [K6].)

If we ignore the map g̃ we obtain the simpler invariant

(3.7) ω#(f1, f2) = [C, ḡ#] ∈ πm(Sn).

However, often this means a considerable loss of information. Indeed, in general
the loop space ΩN has a very rich topology and, in particular, can be highly dis-
connected. Already its decomposition into pathcomponents leads to the important
“Nielsen decomposition” of coincidence sets, as follows.
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Given a pathcomponent A ∈ π0(ΩN) = π1(N, y0), restrict your attention to
the corresponding partial coincidence manifold

CA := CA(f1, f2) := g̃−1(A) ⊂ C(f1, f2)

which is again a closed n-codimensional submanifold of Sn and endowed with the
restricted framing ḡ#

A = ḡ#| and the map g̃A = g̃| : CA → A ⊂ ΩN . This leads to
the invariants

(3.8) ω#
A (f1, f2) = [CA, ḡ#

A , g̃A] ∈ πm(Sn ∧A+)

and

(3.9) ω#
A(f1, f2) = [CA, ḡ#

A ] ∈ πm(Sn).

Example 3.10. For all [f ] ∈ πm(N, y0) we have ω#(y0, f) = coll∗([f ]). Here

coll : N → N/(N \
◦

Bn) = Bn/∂Bn = Sn

is the map which collapses the complement of a small ball Bn near y0 ∈ ∂Bn to a
point and preserves the local orientation of N . ¤

In the root case we will now compare the various Nielsen components of ω#.
Note the there are two canonical isomorphisms

(3.11) %A∗, λA∗ : πm(Sn ∧A+
0 )

∼=−→ πm(Sn ∧A+)

(compare (3.8)) where A0 denotes the pathcomponent of ΩN containing the con-
stant loop. They are induced by the homotopy equivalences %A, λA : A0 → A which
compose each loop ` ∈ A0 to the right (or left, resp.) with a fixed loop `A ∈ A;
e.g. %A(`) travels first along ` and then along `A.

To simplify notations we will write ω#
0 for ω#

A0
.

Proposition 3.12. Given a map f : (Sm, x0) → (N, y0) and A ∈ π1(N), we have

ω#
A (f, y0) = %A∗

(
ω#

0 (f, y0)
)

and ω#
A(f, y0) = ω#

0 (f, y0)

as well as

ω#
A (y0, f) = ιA∗ ◦ λA∗

(
ω#

0 (f, y0)
)

and ω#
A(y0, f) = ιA∗

(
ω#

0 (y0, f)
)

where ιA∗ composes the framing with an orientation preserving (or reversing) auto-
morphism of Rn according as A is (or not) orientation preserving, i.e. the tangent
bundle of N , when pulled by `A : S1 → N , [`A] = A, becomes trivial or, equiva-
lently, A lies in the kernel of the composed homomorphism

w1(N) : π1(N, y0) → H1(N) → Z2

which evaluates the first Stiefel-Whitney class of N .
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Proof (for some of the following arguments compare also the proof of theorem 4.3
in [K6]).

In view of proposition 1.3 (iii) we need to consider only the case when π1(N)
is finite. Thus the fibre p−1({y0}) in the universal covering space p : Ñ → N
consists of points {ỹ1, . . . , ỹk} which all lie in a suitable embedded n-ball V in
Ñ . Now lift f to a map f̃ : Sm → Ñ . After a suitable homotopy we may assume
that f̃ is smooth, with regular value ỹ1, and agrees on a tubular neighbourhood
U ∼= C̃ × V ⊂ Sm of C̃ := f̃−1({ỹ1}) with the projection to V ⊂ Ñ . Then

C(f, y0) = C(y0, f) = f−1({y0}) = f̃−1({ỹ1, . . . , ỹk})
consists of the “parallel” copies

C̃i := C̃ × {ỹi} ⊂ U, i = 1, . . . , k.

Note that the straight path γij joining ỹi to ỹj in the ball V yields an isotopy which
moves C̃i to C̃j in U ⊂ Sm, 1 ≤ i, j ≤ k. We can compose it with a contraction
G|C̃j×I of C̃j in order to get the required contraction of C̃i in Sm. This extra
part of the contraction induces a concatenation of the path in (3.5) with the loop
p ◦ γ∓1

ij . On the other hand the isotopy is compatible with the framings of C̃i and
C̃j if p ◦ γij preserves the local orientation of N or in case we are dealing with
ω#(f, y0) since then

ν(C̃t, S
n) ∼= C̃t × TV ∼= f∗(TN)|C̃t

,

0 ≤ t ≤ 1, throughout the isotopy. Thus let us consider ω#(y0, f). Here C̃i and C̃j

are framed via the orientations of Tỹi
Ñ and Tỹj

Ñ , resp., induced by p from the
given orientation of N at y0. If p◦γij reverses it, then the two framings correspond
to opposite orientations of V , and the isotopy does not change this. ¤

Next let us recall how the involution inv in (1.9) is defined (cf. [K6], p. 632).
Given [C, ḡ#, g̃] ∈ πm(Sn ∧ (ΩN)+), inv retains the submanifold C ⊂ Sm but
changes its framing by (−1)n · α where the vector bundle automorphism α of the
trivial bundle C ×Rn is determined by TN and the homotopy C × I → N which
evaluates g̃ (cf. [K4], 3.1). In addition, we have to compose g̃ with the selfmap of
ΩN which inverts the direction of loops.

Example 3.13 (m = n ≡ 0(2), N orientable). Here the framings (=coorientations)
of the (isolated) points x ∈ C remain unchanged, but we have to travel backwards
along each loop g̃(x).

Warning. In general the symmetry relation (1.9) does not necessarily extend to
ω#: the weaker invariant ω#(f2, f1) may depend on more than just its weak coun-
terpart ω#(f1, f2).

A weaker version of our looseness obstruction ω#(f1, f2) is often much easier
to handle and to compare. If we forget about embeddings of coincidence manifolds
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into Sm and if we keep track only of stabilized normal bundles we obtain the
invariants ω̃A(f1, f2), A ∈ π1(N), and

(3.14) ω̃(f1, f2) ∈ Ωfr
m−n(ΩN) ∼= πm+q(Sn+q ∧ (ΩN)+), q À 0,

which lie in the (m− n)-dimensional framed bordism group of the loop space ΩN
of N (cf. [K4]). Similarly

(3.15) ω(f1, f2) := ω̃(f1, f2), ω̃A(f1, f2) ∈ Ωfr
m−n = πS

m−n

(compare [K2], 1.4) are the stabilized versions of ω#(f1, f2) and ω#
A(f1, f2).

In general this stabilization procedure leads to a loss of information; not so,
however, in the dimension range m < 2n− 2 where ω̃(f1, f2) is just as strong as
ω#(f1, f2) and, in fact, is the complete looseness obstruction for the pair (f1, f2)
(cf. [K6], (16) and [K4], theorem 1.10).

4. Selfcoincidences

In this section we prove theorem 1.21 and further vanishing results and discuss
their consequences.

Given any map f : (Sm, x0) → (N, y0) let us look at the coincidence data
of the pair (f, f). Clearly the map g̃ (cf. (3.4)) is canonically nullhomotopic since
f1 = f2 = f in (3.5). For small generic approximations of (f, f) the partial coin-
cidence manifolds CA are empty (and hence nullbordant) whenever A ∈ π1(N) is
nontrivial.

We conclude that

(4.1) ω#(f, f) = s∗(ω
#
0 (f, f))

where
s∗ : πm(Sn) → πm(Sn ∧ (ΩN)+)

is induced by the inclusion of the constant loop into ΩN (recall also the notation
of 3.12).

Proof of theorem 1.21. We base our argument on the identity

(4.2) ω#
A(f, f) = ω#

A(f, y0) + ω#
A(y0, f)

(valid for all A ∈ π1(N); cf. (1.13)) and on proposition 3.12. The assumptions
in 1.21 just mean that the homomorphism w1 : π1(N) → Z2 (cf. 3.12) is not
injective. In other words, there exists an element A of π1(N) which is both non-
trivial and orientation preserving. Then on one hand ω#

A(f, f) = 0. On the other
hand 3.12 and (4.2) combine to show that ω#

A(f, f) = ω#
0 (f, f). Thus in view

of (4.1) the full ω#-invariant of the pair (f, f) – and of every pair freely homo-
topic to it (cf. remark 1.32) – vanishes.

To complete the proof of theorem 1.21 note that

ω#(f, f) = ω#(f, y0) + ω#(y0, f) = (id + inv)(deg#(f))

(cf. (1.8), (1.9) and (1.10)). Recall also corollary 1.16. ¤
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Corollary 1.25 follows now from 1.3, 1.4, (1.11), (1.13), 1.15 (to be dis-
cussed below), 1.21, 1.24 and the compatibility of ω(f, f) with covering maps
(compare (4.1)).

As for the conclusion of example 1.22 see also 3.13. Similarly, the statement
in example 1.23 is a consequence of theorem 1.21 and the following wellknown

Fact 4.3 (real Grassmann manifolds). Given integers 0 < k < r, the manifold Gr,k

of all k-dimensional linear subspaces of Rr enjoys the following properties:
1. π1(Gr,k) ∼= Z2 if r > 2;
2. Gr,k is orientable if and only if r is even;
3. dim(Gr,k) = k(r − k);
4. the Euler characteristic vanishes if k 6≡ r ≡ 0(2) and equals the binomial

coefficient

χ(Gr,k) =
(

[r/2]
[k/2]

)
> 0

in all other cases.

Question 4.4. What about ω#(f, f) for maps into Gr,k or G̃r,k when r is odd and
k > 2?

Proof of theorem 1.15. A homotopy lifting argument shows that (f, f) is loose
by small deformation precisely if the pulled back vector bundle f∗(TN) has a
nowhere vanishing section over Sm (cf. [DG] or [K7], 5.3) or, equivalently, if f lifts
to ST (N) (cf. (1.14)). Thus (i) ⇐⇒ (ii).

Recall also from [K7], 5.7 that ±E(∂[f ]) equals the invariant ω#(f, f) which
is just as strong as ω#(f, f) (cf. (4.1)).

Next compare the fibre homotopy sequence of ST (N) and of the configuration
space C̃2(N) = N × N \ ∆ (cf. [K7], 5.4). We see that (iii) =⇒ (i) provided
the induced homomorphism j∗ (cf. 1.24) is injective. This is the case e.g. when
N = RP(n).

Finally recall that (iv) implies (iii) when N = Sn; this is a special case
of [K6], 1.12. ¤

Next we prove corollary 1.16. Clearly E (cf. (1.14)) is injective if m = n or
m ≤ 2n−3 or n = 2 (since πm−1(S1) = 0 for m > 2). Moreover ∂(πm(N)) = 0 if n
is odd since then the fibration ST (N) → N allows a section over each compactum
(compare (1.14)). Thus our corollary follows from

Proposition 4.5. Consider the suspension homomorphism

E : πm−1(Sn−1) → πm(Sn)

and
E∞ : πm−1(Sn−1) → πS

m−n

and assume that n is even. If m ≤ n + 3 or if m = n + 4 6= 8, 10 then E and E∞

are injective. If m = 8 and n = 4, then E is injective, but E∞ is not.
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Proof. We will use Toda’s tables [T]. Since E∞ : π5(S3) ∼= Z2 → πS
2
∼= Z2 is onto

and hence bijective, it remains only to study the (nonstable) cases where n = 4
and m = 7 or 8. The groups in the exact EHP-sequence

π7(S3) E−→ π8(S4) H−→ π8(S7) P−→ π6(S3) E−→ π7(S4) −→ . . .

(cf. [W], XII, 2.3) have order 2, 4, 2 and 12, resp.; hence both homomorphisms E
are injective here. Moreover the kernel of

E∞ : π7(S4) ∼= Z⊕ Z12 → πS
3
∼= Z24

is generated by [ι4, ι4] and has a trivial intersection with E(π6(S3)) = {0} ⊕
Z12. Our claim follows for (m,n) = (7, 4) and similarly for (m,n) = (8, 4) (since
π7(S3) 6= 0 = πS

4 ). ¤

Corollary 4.6. There exists a map f : S8 → RP(4) such that ω#(f, f) 6= 0 but
ω̃(f, f) = 0. Of course the corresponding liftings f̃ : S8 → S4 have the same
property.

Proof. Indeed the groups in the exact sequence

π8(ST (S4)) → π8(S4) ∂−→ π7(S3)

(cf. (1.14)) have order 2 (cf. [P]), 4 and 2, resp.; thus there is an element [f̃ ] ∈
π8(S4) such that ∂([f̃ ]) and hence ω#(f̃ , f̃) = E(∂[f̃ ]) is nontrivial, but ω(f̃ , f̃) =
ω̃(f̃ , f̃) ∈ πS

4 = 0 (compare also (4.1)). ¤
Next we want to explore the fact that it is often easier to compute the sta-

bilized versions of our ω-invariants. Indeed they just sum up the contributions of
the partial coincidence manifolds CA (not registering their linkings); also we just
multiply a given bordism class with −1 if we compose the framing with a reflection
of Rn.

Proposition 4.7. Given [f ] ∈ πm(N), the stabilized invariant ω̃(f, f) is determined
by ω̃(f, f), i.e. by

ω(f, f) = χ(N) ω(f, y0) = ω(f, y0) + E∞(coll∗([f ])) = ±E∞ ◦ ∂([f ]).

(Here χ(N) denotes the Euler characteristic of N ; for coll∗ see 3.10.) If the
stable suspension homomorphism E∞ : πm−1(Sn−1) → πS

m−n is injective (or if
m ≤ n + 3) then the conditions (i)–(v) in theorem 1.15 are all equivalent to

(vi) ω(f, f) = 0.

Proof. The first identity was already established in [K2], 2.2; the corresponding
claim for ω#(f, f) (see [K6], 5.1) is more complicated and not so easy to use in
calculations.

The second identity follows from (1.13) and 3.10. Furthermore note that
ω(f, f) = ω̃(f, f) is the stable suspension of ω#(f, f) = ±E(∂([f ])) (cf. [K7], 5.7).

If m ≤ n + 3 and n is even, then E∞ is injective (cf. 4.5). If n is odd, all
conditions (i)–(vi) hold automatically. ¤
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Proposition 4.8. Assume that k := #π1(N) ≥ 2. Consider arbitrary maps
f, f1, f2 : (Sm, x0) → (N, y0).

If N is orientable, then

χ(N) · ω(f1, f2) = 0 (cf. (3.14))

and in particular
χ(N) · E∞(coll∗([f ])) = 0 (cf. 3.10).

If N is not orientable then E∞(coll∗([f ])) = 0 and

(χ(N)− 1) ω(f1, f2) = 0 ;

if in addition k > 2, then ω(f1, f2) = 0.

Proof. Note that ω(y0, f) = E∞(coll∗([f ])) (cf. 3.10). If N is orientable, then

(4.9) 0 = ω(f, f) = ω(f, y0) + ω(y0, f) = χ(N) · ω(f, y0)

(cf. 1.21, (1.13) and 4.7). Thus multiplication with the Euler characteristic anni-
hilates also ω(y0, f) = −ω(f, y0) and hence ω(f1, f2) (by (1.13)).

If N is not orientable, then it follows from proposition 3.12 that

(4.10) ω̃A(f, y0) = ω̃0(f, y0) and ω̃A(y0, f) = εA · ω̃0(y0, f)

for every A ∈ π1(N) where εA = +1 or −1 according as A is orientation preserving
or reversing. Thus

ω(y0, f) =
∑

A

ω̃A(y0, f) = 0.

Moreover
ω̃A(f, f) = ω̃A(f, y0) + ω̃A(y0, f) = 0

whenever A 6= 0 (cf. (1.13) and (4.1)). If in addition k > 2 then there exist both
orientation preserving and reversing A 6= 0 so that ω̃0(f, y0) = −εA ·ω̃0(y0, f) both
for εA = +1 and εA = −1; hence ω(f, y0), being an even multiple of an element
of order 2, vanishes, and so does ω(f1, f2), again by (1.13). If π1(N) consists only
of 0 and A 6= 0, then

(4.11) ω̃0(f, y0) = ω̃A(f, y0) = −ω̃A(y0, f) = ω̃0(y0, f)

and

(4.12) ω(f, y0) = 2ω̃0(f, y0) = ω(f, f) = χ(N) ω(f, y0)

(cf. 4.7), so that multiplication with χ(N)− 1 annihilates ω(f, y0) and hence also
ω(f1, f2) = ω(f1, y0) (cf. (4.10)). ¤

Given a map f : (Sm, x0) → (N, y0), consider a lifting f̃ : (Sm, x0) → (Ñ , ỹ0)
to the universal covering space p : Ñ → N .

Lemma 4.13. We have

ω̃0(f, y0) = ω(f̃ , ỹ0) and ω̃0(y0, f) = ω(ỹ0, f̃).
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Proof. Indeed, in the Nielsen decomposition

f−1({y0}) = f̃−1(p−1({y0})) = f̃−1({Aỹ0 | A ∈ π1(N)})
of the relevant coincidence manifold, f̃−1({ỹ0}) is the component indexed by A =
0. ¤

Let us apply this to the special case Ñ = Sn and N = RP(n), n even. Then

ω(f, f) = 2ω̃0(y0, f) = 2ω(ỹ0, f̃) = 2E∞([f̃ ])

(cf. (4.12), 4.13, 3.10 and (3.15)). This establishes the claim which follows theo-
rem 1.31. Also if m = 2n − 1 and e.g. n = 4, 8, 12, 14, 16 or 20, then kerE∞ ∼= Z
and E∞ maps πm(Sn) onto the stable stem πS

n−1 which contains elements of order
greater than 2 (cf. [T]). This proves the statement in example 1.26.

Similarly, (4.12) shows also (together with theorem 1.21) that ω(f, f) ∈
2 · πS

m−n whenever N is not simply connected. This (together with 4.8) estab-
lishes (1.27).

Finally let us discuss example 1.28. According to fact 4.3 the Grassmann
manifold G5,2 is not orientable, 6-dimensional and its Euler characteristic equals 2.
Our claim follows from proposition 4.8 and the Freudenthal suspension theorem.

5. Nielsen numbers

Definition 5.1. Given f1, f2 : Sm → N , the “strong” Nielsen number N#(f1, f2)
(and its stabilized analogue N(f1, f2), resp.) is the number of elements A ∈ π1(N)
such that ω#

A (f1, f2) (and ω̃A(f1, f2), resp.) does not vanish (cf. (3.8) and (3.14)).

Since generic coincidence manifolds are compact these Nielsen numbers are
always finite.

Proof of theorem 1.30. If ω#(f1, f2) (or ω̃(f1, f2), resp.) vanishes, then so do
all the partial invariants ω#

A (f1, f2) (or ω̃A(f1, f2), resp.), A ∈ π1(N), as well as
the corresponding Nielsen number. The converse is also obvious in the stabilized
setting. However, ω#(f1, f2) keeps track also of embeddings and of possible linking
phenomena among the partial coincidence submanifolds CA(f1, f2) in Sm.

Assume that N#(f1, f2) = 0. Then all triples (CA(f1, f2), ḡ
#
A , g̃A) (cf. (3.8))

admit individual nullbordisms in Sm × I. Conceivably these can not be fitted
together disjointly to yield the full embedded nullbordism required to show that
ω#(f1, f2) vanishes. In fact, it is an open question whether the first claim in 1.30
still holds when the common domain of f1 and f2 is not a sphere.

But here we can use the additive structure of homotopy groups. As in (1.8)
we have for all A ∈ π1(N)

(5.2) 0 = ω#
A (f1, f2) = ω#

A (f1, f1) + ω#
A (y0, f2 − f1).

The claim of our theorem is obvious when π1(N) = 0 or in the selfcoincidence
case since only A = 0 plays a rôle there (cf. (4.1)). If A 6= 0 then ω#

A (f1, f1) = 0
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and hence ω#
A (y0, f2 − f1) = 0 (cf. (5.2)). This implies – in this special root

case – that the full invariant ω#(y0, f2 − f1) vanishes; indeed, a nullbordism of
CA(y0, f2−f1) gives rise to disjoint “parallel” nullbordisms of all the other partial
coincidence manifolds CA′(y0, f2 − f1), A′ ∈ π1(N) (compare the proof of 3.12 or
also [K6], 4.3). Thus in turn ω#(f1, f2) = ω#(f1, f1) (cf. (1.8)) and we are back
in the selfcoincidence case. ¤

Proof of theorem 1.31. If k = #π1(N) is infinite, then all pairs (f1, f2) are
loose and hence all Nielsen numbers vanish (cf. (3.1)). If k > 2 or if k = 2 and
N is orientable, then always ω#(f1, f1) = 0 (cf. 1.21); therefore ω#(f1, f2) =
ω#(y0, f2 − f1) (cf. (5.2)) and ω̃(f1, f2) = ω̃(y0, f2 − f1). Again 3.12 implies that
the corresponding Nielsen numbers can assume only the values 0 and k in this root
case. For the remaining cases compare corollary 1.25. ¤

Remark 5.3. Consider the split exact sequence

0 → ker(forg) ↪→ πm(Sn ∧ (ΩN)+)
forg−→

⊕

A∈π1(N)

πm(Sn ∧A+) → 0 ;

here, given any element ω# = [C, ḡ#, g̃] ∈ πm(Sn ∧ (ΩN)+), forg(ω#) keeps track
only of the individual A-components [CA = g̃−1(A), ḡ#|, g̃|] and forgets about
possible linkings. As we will see below the kernel of forg can be highly nontrivial
if #π1(N) > 1.

Consider also the function N# which counts the nontrivial A-components.
Clearly it vanishes on ker(forg) and, in addition, can often assume all integer
values between 0 and #π1(N). This shows that theorems 1.30 and 1.31 impose
strong restrictions on those ω#-values which can actually be realized by pairs
(f1, f2) of maps.

Example 5.4 (real projective spaces). Consider N = RP(n) and its double cover
Ñ = Sn. There is a wellknown isomorphism

πm(Sn ∧ (ΩN)+) ∼= πm(Sn
1 ∨ Sn

2 ∨ Ñ , Ñ)

(cf. e.g. [K6], (61)), and the forgetful map forg (cf. 5.3) corresponds to the
homomorphism

πm(
2∨

Sn ∨ Ñ) →
2⊕

i=1

πm(Sn
i ∨ Ñ)

which is induced by the obvious projections. Let ι1, ι2 and ι0 be represented by
the inclusions of the three spheres into their wedge. Then the summands of

ker(forg) ∼= πm(S2n−1)⊕ (πm(S3n−2))4 ⊕ . . .

in the Hilton decomposition of πm(Sn
1 ∨ Sn

2 ∨ Ñ) (cf. [W], XI, 6) corresponds
precisely to those basic products which involve both ι1 and ι2.
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