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We investigate the null space of Fredholm integral operators of the first
kind with TD :=

∫
BD(x)k(x, ·) dx, where B is a ball, the integral kernel

satisfies k(x, y) = ∑∞
n=0 cn

|x|ln
|y|n−2+qP

(q)
n ( x

|x| ·
y
|y|), and the P

(q)
n are Gegen-

bauer polynomials. We first discuss the case of B ⊂ R3 in detail, where
the P (3)

n = Pn are Legendre polynomials, and then derive generalizations for
the Rq. The discussed class includes some tomographic inverse problems in
the geosciences and in medical imaging. Amongst others, uniqueness con-
straints are proposed and compared. One result is that information on the
radial dependence of D is lost in TD. We are also able to generalize a famous
result on the null space of Newton’s gravitational potential operator to the
Rq. Moreover, we characterize the orthonormal basis of the derived singular
value decomposition of T as eigenfunctions of a differential operator and as
basis functions of a particular Sobolev space.
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1 Introduction
A classical inverse problem with many applications is given by the Fredholm integral
equation of the first kind, see, for example, [Fredholm, 1903] or [Yosida, 1960]. This par-
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ticular inverse problem has several applications in geoscience, e.g. the inverse gravimet-
ric problem, see [Stokes, 1867, Stromeyer and Ballani, 1984, Barzaghi and Sansò, 1986,
Anger, 1990, Ballani and Stromeyer, 1992], and in medical imaging, for example, the
inversion of magnetoencephalography data, see, e.g., [Sarvas, 1987, Fokas et al., 1996,
Dassios et al., 2005, Fokas, 2009, Supek and Aine, 2014], and in many other fields.
The inverse gravimetric and the inverse magnetic problem have the non-uniqueness

of the solution in common. Hence, in both cases, a study of the null space of the Fred-
holm operator is necessary. This study is important, since the operator is compact and
possesses a singular value decomposition. For this purpose, an appropriate orthonormal
basis is needed.
In this article, we consider a general class of Fredholm integral equations of the first

kind with a ball-shaped domain, such that the inverse gravimetric and inverse magnetic
problem are contained as particular cases. For this general case, we derive a singular
value decomposition of the Fredholm operator and we deduce a basis of the null space.
We also prove that these basis functions are eigenfunctions of a particular differential
operator. In addition, we formulate certain uniqueness constraints for the general setting.
We also consider a generalization to the Rq and prove that known statements for the

inverse gravimetric problem in R3 can be generalized to the Rq.
Comparing such integral equations has turned out to enable the transfer of insights and

solution methods from one problem to the other. This was also done in
[Fokas and Michel, 2008] and [Fokas et al., 2012]. With this publication, we hope to
foster and support further investigations on this subject.
Our paper is structured as follows. In Section 2, we formulate the Fredholm equation

of the first kind and the kind of integral kernels under consideration, and we analyze the
corresponding forward problem. In Section 3, we give a characterization of the null space
of the Fredholm operator. For this purpose, we construct a tailor-made orthonormal basis
system for the problem and calculate the corresponding singular system. In Section 4,
we discuss certain uniqueness constraints, for example, the minimum norm solution, a
generalization of the harmonicity constraint, and the layer density. In Section 5, we
generalize certain results of the null space to higher dimension, i.e. the Rq. In Section 6,
we derive a differential operator whose eigenfunctions are the orthonormal basis functions
defined in Section 3. In Section 7, we sum up our results.

Notations
In this work, the set of positive integers is denoted byN, whereN0 := N∪{0}. Moreover,
R presents the set of real numbers. Furthermore, the sphere with radius R is denoted
by ΩR and the corresponding closed ball is denoted by B. For R = 1, we often use
the abbreviation Ω := Ω1. A function F : ΩR → R possessing k continuous derivatives
on the sphere ΩR is of class C(k)(ΩR), for 0 ≤ k ≤ ∞. L2(ΩR) is the Hilbert space
of (equivalence classes of almost everywhere identical) square-integrable scalar-valued
functions F : ΩR → R with the inner product

〈F,G〉L2(ΩR) :=
∫

ΩR

F (x)G(x) dω(x), F,G ∈ L2(ΩR).
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It is well-known that an orthonormal basis of L2(Ω) can be constructed by some poly-
nomials which are called spherical harmonics and are denoted by {Yn,j}n∈N0,j=1,...,2n+1,
where the degree of Yn,j is n. It is easy to verify that { 1

RYn,j
( ·
R

)}n∈N0,j=1,...,2n+1 is,
consequently, an orthonormal basis of L2(ΩR). For details on spherical harmonics, see
e.g. [Müller, 1966] and [Freeden et al., 1998]. Besides this, the volume integral over B
is denoted by

∫
B f(x) dx, the surface integral over Ω by

∫
Ω f(x) dω(x), and a standard

integral is denoted by
∫ b
a f(x) dx. Often, we use the abbreviation r := |x| for the radial

part.

2 Inverse Problem
2.1 Formulation of the Problem
Within this paper, we consider a class of inverse problems which are given by a Fredholm
integral operator of the first kind

T : D 7→
∫
B
D(x)k(x, y) dx = V (y) y ∈ Bext, (1)

with a kernel

k : B × Bext → R,

a given right-hand side V , a ball B with radius R, and the outer space Bext := R3\B. It
is the aim to reconstruct D in B from knowledge of V outside of B. This kind of integral
equation arises in many areas, two examples are given below.
Example 2.1. For the inverse gravimetric problem, the kernel and the integral operator
are given by

kG(x, y) := γ

|x− y| = γ
∞∑
k=0

|x|k

|y|k+1Pk

(
x

|x| ·
y

|y|

)
, x ∈ B, y ∈ Bext, |x| < |y| ,

TG : D 7→
∫
B
D(x)kG(x, ·) dx,

where Pk denotes the Legendre polynomial of degree k and γ is the gravitational constant.
This problem first occurs in the works of Stokes in 1867 [Stokes, 1867]. It is concerned
with the recovery of mass anomalies of the Earth from data of the gravitational potential.
It is of particular importance, for example, for the detection of mass transports out
of time series of potential models as they are provided by the GRACE mission, see
[GRACE, 2002].
Example 2.2. For the inverse magnetic problem (as we call the problem here), the
kernel and the integral operator are given by

kM(x, y) := 1
4π

∞∑
k=0

|x|k−1

|y|k+1 (k + 1)
Pk

(
x

|x| ·
y

|y|

)
, x ∈ B, y ∈ Bext, 0 < |x| < |y| , (2)

TM : D 7→
∫
B
D(x)kM(x, ·) dx. (3)
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In this case, we want to recover a particular component of the electric current inside
B (which could be the Earth (in particular the outer core) or a human brain). More
precisely, the vectorial current j, for example a neuronal current, inside B can be de-
composed via two scalar-valued, up to an additional constant unique, functions F and G
and a scalar-valued unique function Jr (see e.g. [Fokas et al., 2012]) as follows:

j(rξ) = 1
r
∇∗ξG(rξ)− 1

r
L∗ξ F (rξ) + Jrξ.

Here, B \ {0} 3 x = rξ with ξ ∈ Ω and r = |x|, ∇∗ξ is the surface gradient and L∗ξ the
surface curl operator on the unit sphere. Due to [Sarvas, 1987] and the above decom-
position, the relation between the current and the magnetic potential V in a spherical
model can be described by

V (y) = 1
4π

∫
B
∇x · (j(x)∧x)

∞∑
k=0

|x|k

|y|k+1 (k + 1)
Pk

(
x

|x| ·
y

|y|

)
dx,

= 1
4π

∫
B

∆∗x
|x|
F (x)

∞∑
k=0

|x|k−1

|y|k+1 (k + 1)
Pk

(
x

|x| ·
y

|y|

)
dx,

where ∆∗x
|x|

denotes the Beltrami operator and ∧ the vector product. Hence, only the func-
tion F and therefore only a tangential component of the current can be reconstructed.
With the abbreviation D(x) := ∆∗x

|x|
F (x) we get (3). Note that data from magnetoen-

cephalography (MEG) can be used to obtain data for V in the case where a neuronal
current is sought.

Now, we generalize these two problems and analyze the integral kernel

k(x, y) :=
∞∑
k=0

ck
|x|lk
|y|k+1Pk

(
x

|x| ·
y

|y|

)
, (x, y) ∈ dom(k)

dom(k) :=
{

(x, y) ∈ B × Bext : |x| < |y| , x 6= 0 if there exists n ∈ N0 with ln < 0
}
,

where (ck)k∈N0 is a bounded sequence (i.e. supk∈N0 |ck| ≤ c) and lk is an exponent which
also depends on k and fulfils lk ≥ −1 for all k ∈ N0, i.e. lk = k, ck = γ for the inverse
gravimetric problem and lk = k − 1, ck = 1

4π(k+1) for the inverse magnetic problem.
In general, we assume that the integral in (1) exists. We will later see that this is

achieved if a summation condition is fulfilled and the integration over the radial part
exists.
The problem of the non-uniqueness for the above mentioned problems has been dis-

cussed extensively in literature, starting with the paper [Stokes, 1867] for the inverse
gravimetric problem. Other references are, for example, [Stromeyer and Ballani, 1984,
Barzaghi and Sansò, 1986, Anger, 1990, Ballani and Stromeyer, 1992]. For a survey ar-
ticle on this topic, see [Fokas and Michel, 2008]. For the inverse magnetic problem, see
[Sarvas, 1987, Fokas et al., 1996, Fokas et al., 2004, Dassios et al., 2005, Fokas, 2009],
and [Dassios and Fokas, 2009, Fokas and Kurylev, 2012, Dassios and Fokas, 2013].
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2.2 Forward Problem
In order to derive a relation between the spherical harmonics coefficients of the given
and the unknown function, we first consider the forward problem. See, for a similar
theorem for the inverse gravimetric problem, [Fokas and Michel, 2008].

Lemma 2.3. Let the function D ∈ L2(B) be given. We assume that this function is
expandable in spherical harmonics

D(x) =
∞∑
n=0

2n+1∑
j=1

Dn,j(|x|)Yn,j
(
x

|x|

)
(4)

and that this series converges in L2(B). Then the integral

V =
∫
B
D(x)k(x, ·) dx

with the kernel

k(x, y) =
∞∑
k=0

ck
|x|lk
|y|k+1Pk

(
x

|x| ·
y

|y|

)
, (x, y) ∈ dom(k) (5)

is given for |y| > R pointwise and for |y| = R in the sense of L2(ΩR) by

V (y) =
∞∑
n=0

2n+1∑
j=1

(∫ R

0
rln+2Dn,j(r) dr

)
4πcn

2n+ 1 |y|
−n−1 Yn,j

(
y

|y|

)
, (6)

if ln fulfils the conditions supn∈N0 R
ln−n <∞ (i.e. supn∈N0(ln − n) <∞, if R > 1, and

supn∈N0(n− ln) <∞, if R < 1) and infn∈N0 ln ≥ −1.

Proof. Substituting the representation (4) of D and (5) of the kernel k in (1), we obtain
(y = |y| η, x = rξ; η, ξ ∈ Ω)

V (y) =
∞∑
n=0

2n+1∑
j=1

∞∑
k=0

∫ R

0
r2Dn,j(r)

ckr
lk

|y|k+1 dr
∫

Ω
Pk (ξ · η)Yn,j (ξ) dω(ξ)

=
∞∑
n=0

2n+1∑
j=1

∞∑
k=0

ck

|y|k+1

∫ R

0
rlk+2Dn,j(r) dr 4π

2n+ 1 δk,nYn,j (η)

=
∞∑
n=0

2n+1∑
j=1

(∫ R

0
rln+2Dn,j(r) dr

)
4πcn

(2n+ 1) |y|n+1Yn,j (η) ,

since 2n+1
4π Pn is the reproducing kernel for the spherical harmonics of degree n, i.e. for

an arbitrary η ∈ Ω it holds that
〈

2n+1
4π Pn(·η), Yn,j

〉
L2(Ω)

= Yn,j(η).
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However, we have to check if we were allowed to interchange the limits of both series
with the integration over B. The argument concerning the series over n is simple. Due
to the strong convergence in L2(B) of the series in (4), we obtain the weak convergence

∞∑
n=0

2n+1∑
j=1

〈
Dn,j(|·|)Yn,j

( ·
|·|

)
, F

〉
L2(B)

= 〈D,F 〉L2(B) for all F ∈ L2(B).

Finally, the kernel k(·, y) ∈ L2(B) satisfies, for each fixed y ∈ Bext and r := |x|,∫
B

( ∞∑
k=N

ck
|x|lk
|y|k+1Pk

(
x

|x| ·
y

|y|

))2

dx

≤ c2
∫
B

( ∞∑
k=N

|x|lk
|y|k+1

)2

dx = 4πc2
∫ R

0
r2
( ∞∑
k=N

rlk

|y|k+1

)2

dr

= 4πc2
∫ R

0

( ∞∑
k=N

rlk+1

|y|k+1

)2

dr ≤ 4πRc2
(

sup
n∈N

Rln−n
)2( ∞∑

k=N

Rk+1

|y|k+1

)2

→ 0 (N →∞),

due to the conditions on lk, the inequality R
|y| < 1, and the fact that |Pk(t)| ≤ 1 for all

k ∈ N and all t ∈ [−1, 1]. Hence, we have also here a strong convergence. This justifies
the interchanging procedure above.
If the conditions on ln are satisfied, then V |ΩR

∈ L2(ΩR) due to the Cauchy-Schwarz-
inequality and the Parseval identity:

‖V |ΩR
‖2L2(ΩR) =

∞∑
n=0

2n+1∑
j=1

(∫ R

0
rln+2Dn,j(r) dr

)2 ( 4πcn
(2n+ 1)Rn

)2

≤
∞∑
n=0

2n+1∑
j=1

(∫ R

0

r2ln+2

R2n dr
)(∫ R

0
r2(Dn,j(r))2 dr

)( 4πc
2n+ 1

)2

≤ 16π2c2
∞∑
n=0

2n+1∑
j=1

R2ln+3−2n

2ln + 3

(∫ R

0
r2(Dn,j(r))2 dr

)

≤ 16π2c2R3 sup
n∈N0

R2ln−2n

2ln + 3 ‖D‖
2
L2(B) <∞.

The argumentation concerning the pointwise convergence of (6) for |y| > R is based on
the estimate (note that maxξ∈Ω |Yn,j(ξ)| ≤

√
2n+1

4π for all n ∈ N0)∣∣∣∣∣
∫ R

0
rln+2Dn,j(r) dr 4πcn

2n+ 1 |y|
−n−1Yn,j

(
y

|y|

)∣∣∣∣∣
≤
(
R2ln+3

2ln + 3

∫ R

0
r2 (Dn,j(r))2 dr

)1/2 4πc
2n+ 1 |y|

−n−1
√

2n+ 1
4π

≤ c
(

R2ln+3

R2n+2(2ln + 3)

∫ R

0
r2 (Dn,j(r))2 dr 4π

2n+ 1

)1/2 (
R

|y|

)n+1
.
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The square root is bounded over all n, due to the conditions on ln and the fact that the
Parseval identity of D ∈ L2(B) must converge. Hence, the series (6) is dominated by a
geometric series for |y| > R.

Assumption 2.4. From now on, we assume that supn∈N0 R
ln−n <∞ (i.e. supn∈N0(ln−

n) <∞, if R > 1, and supn∈N0(n− ln) <∞, if R < 1) and infn∈N0 ln ≥ −1.

For both, the inverse magnetic problem and the inverse gravimetric problem, the
conditions of Assumption 2.4 are fulfilled.
We also remark that the existence of the integral in (1) only depends on the existence

of the integral of the radial part and the convergence of the series in (6).
Obviously, (6) yields〈

V |ΩR
,

1
R
Yn,j

( ·
R

)〉
L2(ΩR)

=
(∫ R

0
rln+2Dn,j(r) dr

)
4πcn

(2n+ 1)Rn .

Using the abbreviation

Vn,j :=
〈
V |ΩR

,
1
R
Yn,j

( ·
R

)〉
L2(ΩR)

,

we get

(2n+ 1)Rn
4πcn

Vn,j =
∫ R

0
rln+2Dn,j(r) dr. (7)

This relation allows an infinite number of choices for Dn,j and, hence, the solution of the
inverse problem in (1) is not unique, see also [Fokas and Michel, 2008]. For the inverse
gravimetric problem, the last relation is well-known, see for example [Pizzetti, 1910,
Rubincam, 1979], or [Moritz, 1990] and for the inverse magnetic problem, see for instance
[Fokas et al., 1996].

3 Characterization of the Null Space
For the characterization of the null space of the Fredholm integral operator of the first
kind considered so far, an appropriate basis for L2(B) is needed. We use the following
orthonormal basis for L2(B) which is given by

Gm,n,j(x) = γm,nP
(0,ln+1/2)
m

(
2 |x|

2

R2 − 1
)
|x|ln
Rln

Yn,j

(
x

|x|

)
, x ∈ B \ {0}, (8)

m,n ∈ N0, j = 1, . . . , 2n + 1, where
{
P

(α,β)
m

}
m∈N0

are the Jacobi polynomials (see, for
example, [Szegö, 1975]) and γm,n are normalization constants

γm,n :=
√

4m+ 2ln + 3
R3 .
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If the exponents ln are non-negative, we can extend our functions Gm,n,j for all x ∈ B.
Note that the Jacobi polynomials P (α,β)

m , where α, β > −1, are uniquely determined by
the requirements that

1. each P (α,β)
m is a polynomial of degree m,

2. for all m, n ∈ N0 with m 6= n,∫ 1

−1
(1− x)α(1 + x)βP (α,β)

m (x)P (α,β)
n (x) dx = 0,

and

3. for each m ∈ N0, we set P (α,β)
m (1) =

(m+α
m

)
.

Theorem 3.1. The set of functions {Gm,n,j}m,n∈N0,j=1,...,2n+1 given in (8) is an or-
thonormal basis for L2(B).

Proof. First, we need to calculate the inner products. Using the L2(Ω)-orthonormality
of the spherical harmonics and the substitution r = R

√
1+z

2 , we obtain〈
Gm,n,j , Gm̃,ñ,j̃

〉
L2(B)

= γm,nγm̃,ñδñ,nδj̃,j

∫ R

0

r2ln+2

R2ln P (0,ln+1/2)
m

(
2 r

2

R2 − 1
)
P

(0,ln+1/2)
m̃

(
2 r

2

R2 − 1
)

dr

= γm,nγm̃,nδñ,nδj̃,j
R3

2ln+5/2

∫ 1

−1
(1 + z)ln+1/2P (0,ln+1/2)

m (z)P (0,ln+1/2)
m̃ (z) dz

= γm,nγm̃,nδñ,nδj̃,j
R3

2ln+5/2
2ln+3/2

2m+ ln + 3/2δm̃,m

= γ2
m,nδñ,nδj̃,j

R3

4m+ 2ln + 3δm̃,m

= δm̃,mδñ,nδj̃,j ,

where the formula for the integral over the Jacobi polynomials is given in
[Nikiforov and Uvarov, 1988]. Thus, the set {Gm,n,j}m,n∈N0,j=1,...,2n+1 is L2(B)-ortho-
normal. Due to the completeness of the spherical harmonics and the Jacobi polynomials,
it is a basis for L2(B).

There are many known approaches for the construction of basis systems on the sphere,
see e.g. [Dufour, 1977, Ballani et al., 1993, Tscherning, 1996], or [Michel, 2013]. The
orthonormal system used here is a generalization of the system which was introduced
in [Dufour, 1977] and [Ballani et al., 1993]. It was called GI

m,n,j in [Michel, 2005] and
[Michel, 2013] in the case of ln = n (remember that this setting corresponds to the
inverse gravimetric problem). Some of the functions from the system GI

m,n,j are shown
in Figure 1. A selection of the functions corresponding to the inverse magnetic problem,
where ln = n− 1, is shown in Figure 2.
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Figure 1: The functions Gm,n,j in the case ln = n (also called GI
m,n,j) for different pa-

rameters m,n, j are plotted at the plane through the origin with normal vector
(1, 1,−1)T. For the particular parameters, see the headline of each plot. The
maximum is always red and the minimum is blue.
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Figure 2: The functions Gm,n,j in the case ln = n− 1 for different parameters m,n, j are
plotted at the plane through the origin with normal vector (1, 1,−1)T. For the
particular parameters, see the headline of each plot. The maximum is always
red and the minimum is blue.
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With this orthonormal basis, the functions Dn,j in (4) have the representation

Dn,j(r) = rln

Rln

∞∑
m=0

dm,n,jγm,nP
(0,ln+1/2)
m

(
2 r

2

R2 − 1
)
, n ∈ N0, j = 1, . . . , 2n+ 1,

where dm,n,j := 〈D,Gm,n,j〉L2(B).
Using this representation in (6), by means of the orthogonality of the Jacobi polyno-

mials, we get
(
again with the substitution r = R

√
1+z

2 , dr = R
4

(
2

1+z

)1/2
dz
)

V (y) =
∞∑
n=0

2n+1∑
j=1

(∫ R

0
rln+2Dn,j(r) dr

)
4πcn

(2n+ 1) |y|n+1Yn,j

(
y

|y|

)

=
∞∑
n=0

2n+1∑
j=1

(∫ R

0

r2ln+2

Rln

∞∑
m=0

dm,n,jγm,nP
(0,ln+1/2)
m

(
2 r

2

R2 − 1
)

dr
)

× 4πcn
(2n+ 1) |y|n+1Yn,j

(
y

|y|

)

=
∞∑
n=0

2n+1∑
j=1

R3+ln

2ln+5/2

(∫ 1

−1
(1 + z)ln+1/2

∞∑
m=0

dm,n,jγm,nP
(0,ln+1/2)
m (z) dz

)

× 4πcn
(2n+ 1) |y|n+1Yn,j

(
y

|y|

)

=
∞∑
n=0

2n+1∑
j=1

R3+ln

2ln+5/2d0,n,jγ0,n
2ln+3/2

ln + 3/2
4πcn

(2n+ 1) |y|n+1Yn,j

(
y

|y|

)

=
∞∑
n=0

2n+1∑
j=1

d0,n,jγ
−1
0,n

4πcnRln
(2n+ 1) |y|n+1Yn,j

(
y

|y|

)
.

This result allows a direct characterization of the null space of the Fredholm integral
operator of the first kind

kerT = span {Gm,n,j |m ≥ 1 or cn = 0}‖·‖L2(B) .

For the inverse gravimetric problem, this leads to the well-known result that the null
space is the set of all anharmonic functions, i.e. the orthogonal complement of the set
of all harmonic functions.

kerTG = span
{
GI
m,n,j

∣∣∣ m ≥ 1
}‖·‖L2(B)

=
{
F ∈ C(2)(B)

∣∣∣ ∆F = 0
}⊥L2(B)

.

Corollary 3.2 (Singular System). The singular system of the operator defined by the
Fredholm integral operator

T : D 7→
∫
B
D(x)

∞∑
k=0

ck |x|lk
|·|k+1 Pk

(
x

|x|
·
|·|

)
dx, (x, ·) ∈ dom(k),
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is given by the L2(B)−orthonormal set {G0,n,j}n∈N0,cn 6=0;j=1,...,2n+1 in the domain, the
set of L2(ΩR)-orthonormal outer harmonic functions { Rn

|·|n+1Yn,j
( ·
R

)}n∈N0,cn 6=0;j=1,...,2n+1

in the range, and the singular values
(

4πcnRln−n+3/2

(2n+1)(2ln+3)1/2

)
n∈N0

.

Obviously, the sequence of the singular values is a zero sequence, since the sequences
(cn)n∈N0 and (Rln−n)n∈N0 are bounded. Due to this condition, the operator T is a
compact operator and, hence, the problem in (1) is ill-posed.
In the case ln = n, the functions GI

0,n,j are inner harmonics and, therefore, form a
basis for the set of harmonic functions on a ball:

GI
0,n,j(x) =

√
2n+ 3
R

|x|n
Rn+1Yn,j

(
x

|x|

)
, x ∈ B.

4 Uniqueness Constraints
We discuss here examples of uniqueness constraints as generalizations of the results in
[Fokas and Michel, 2008].

4.1 Minimum Norm Solution
Now, for reconstructing the density, we need a relation between the function or Fourier
coefficients of the potential V and the density function D. Recall (7) which is repeated
below for convenience:

(2n+ 1)Rn
4πcn

Vn,j =
(∫ R

0
rln+2Dn,j(r) dr

)
.

As seen before, we need more assumptions in order to obtain a uniquely determined
solution. One approach is the minimum norm solution. The following theorem is a
generalization of the minimum norm solution of the inverse gravimetric problem, see
[Fokas and Michel, 2008].

Theorem 4.1 (Minimum Norm Solution). Let V : Bext → R be an arbitrary function
satisfying

• V |ΩR
∈ L2(ΩR),

• ∑∞n=0
n2(2ln+3)R2n−2ln

c2
n

∑2n+1
j=1 V 2

n,j <∞, and

• ∆V = 0 in Bext.

Then, among all D ∈ L2(B) with V =
∫
BD(x)k(x, ·) dx there is a unique minimizer of

the functional

F(D) :=
∫
B

(D(x))2 dx.
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This minimum norm solution is given in L2(B) by

D(x) =
∞∑
n=0

2n+1∑
j=1

(2ln + 3)2n+ 1
4πcn

Rn−ln−3Vn,j
|x|ln
Rln

Yn,j

(
x

|x|

)
, x ∈ B, (9)

provided that this series converges with respect to L2(B).

Proof. The solvability of the inverse problem is guaranteed by the conditions on V ,
where the second one is the Picard condition.
According to the calculations above, any solution solving the inverse problem can be

represented by the following series, which converges in L2(B):

D(x) =
∞∑
n=0

2n+1∑
j=1

Dn,j(|x|)Yn,j
(
x

|x|

)
,

where

(2n+ 1)Rn
4πcn

Vn,j =
(∫ R

0
rln+2Dn,j(r) dr

)
,

with Vn,j :=
〈
V |ΩR

, 1
RYn,j

〉
, such that

V (y) =
∞∑
n=0

2n+1∑
j=1

Vn,j
Rn

|y|n+1Yn,j

(
y

|y|

)
, y ∈ Bext.

Since

‖D‖2L2(B) =
∫
B

(D(x))2 dx =
∞∑
n=0

2n+1∑
j=1

∫ R

0
r2(Dn,j(r))2 dr,

we now have the following minimization problem for each n ∈ N0 and j = 1, . . . , 2n+ 1:

minimize
∫ R

0
r2(Dn,j(r))2 dr,

subject to
∫ R

0
rln+2Dn,j(r) dr = 2n+ 1

4πcn
RnVn,j .

Setting Fn,j(r) := rDn,j(r), the problem reduces to

minimize
∫ R

0
(Fn,j(r))2 dr,

subject to
∫ R

0
rln+1Fn,j(r) dr = 2n+ 1

4πcn
RnVn,j .
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We decompose Fn,j by Fn,j(r) = αn,jr
ln+1 + Hn,j(r), where Hn,j is L2[0, R]-orthogonal

to r 7→ rln+1. Then we have to solve

minimize α2
n,j

∫ R

0
r2ln+2 dr + ‖Hn,j‖2L2[0,R],

subject to αn,j

∫ R

0
r2ln+2 dr = 2n+ 1

4πcn
RnVn,j .

Obviously, Hn,j ≡ 0 and

αn,j = (2ln + 3)2n+ 1
4πcn

Rn

R2ln+3Vn,j .

In terms of the orthonormal basis functions, this yields

D(x) =
∞∑
n=0

2n+1∑
j=1

√
2ln + 3
R3

2n+ 1
4πcn

Rn−lnVn,jG0,n,j(x) (10)

in the sense of L2(B) for the minimum norm solution.

In the case of ln = n, it can be shown that the minimum norm solution is equivalent
to the harmonic solution, see [Fokas and Michel, 2008] i.e., if ln = n and cn = 1 for all
n ∈ N0, then

D(x) =
∞∑
n=0

2n+1∑
j=1

√
2n+ 3
R3

2n+ 1
4π Vn,jG

I
0,n,j(x)

represents the minimum norm solution of the inverse gravimetric problem.
It is wise to analyze the convergence of the solution in (9).

Theorem 4.2. Under Assumption 2.4, the series in (9) converges in L2(B) if and only
if

∞∑
n=0

n2(2ln + 3)
c2
nR

2(ln−n)

2n+1∑
j=1

V 2
n,j <∞. (11)

Proof. We need to calculate the L2(B)-norm of D. Using the orthonormality of the
Gm,n,j , we obtain from (10) that

‖D‖2L2(B) =
∞∑
n=0

2n+1∑
j=1

2ln + 3
R3

(2n+ 1
4πcn

)2
R2n−2lnV 2

n,j .

Obviously, this series converges if and only if (11) holds true.

Note that (11) is the Picard condition imposed in Theorem 4.1. Again, for the inverse
gravimetric problem, i.e. ln = n, cn = 1 for all n ∈ N0, this convergence condition is
satisfied, since the (empirical) Kaula’s rule of thumb holds:

2n+1∑
j=1
〈V |Ω, Yn,j〉2L2(Ω) = O(ϑn+1n−3), n→∞,

for a constant ϑ ∈]0, 1[, see, for example, [Kaula, 1966] or [Sansò and Rummel, 1997].
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4.2 A Generalization of the Harmonicity Constraint
An alternative approach to the minimum norm solution is to search for a solution D in
a subspace U ⊂ L2(B) with a given basis

{
|·|kn

Rkn+1Yn,j
(
·
|·|

)}
n∈N0,j=1,...,2n+1

and sequence

(kn)n∈N0 ⊂ R+
0 . In the case kn = n, the subspace U is the set of all harmonic functions.

In addition, we now need the condition 2kn + 3 > 0 added to the condition ln ≥ −1
for all n ∈ N0 for the existence of the integral over B. A short calculation shows that
the given basis functions are L2(B)-orthogonal. Setting Bn,j(x) := |x|kn

Rkn+1Yn,j
(
x
|x|

)
and

r = |x|, we have

〈
Bn,j , Bñ,j̃

〉
L2(B)

=
∫
B

|x|kn

Rkn+1Yn,j

(
x

|x|

) |x|kñ

Rkñ+1Yñ,j̃

(
x

|x|

)
dx

=
∫ R

0

r2kn+2

R2kn+2 dr δn,ñδj,j̃ = R2kn+3

(2kn + 3)R2kn+2 δn,ñδj,j̃

= R

2kn + 3 δn,ñδj,j̃ .

Hence, the density D can be represented by

D(x) =
∞∑
n=0

2n+1∑
j=1

dn,j

√
2kn + 3
R

|x|kn

Rkn+1Yn,j

(
x

|x|

)
, x ∈ B, (12)

in the sense of L2(B). In analogy to above, we set

Dn,j(r) = dn,j

√
2kn + 3
R

rkn

Rkn+1 .

Thus, (7) becomes

(2n+ 1)Rn
4πcn

Vn,j =
∫ R

0
dn,j

√
2kn + 3
R

rln+2+kn

Rkn+1 dr

= dn,j

√
2kn + 3
R

Rln+kn+3

(ln + kn + 3)Rkn+1

= dn,j

√
2kn + 3
R

Rln+2

(ln + kn + 3) . (13)

We can formulate the following theorem.

Theorem 4.3. Let V satisfy the following conditions

• V |ΩR
∈ L2(ΩR),

• ∑∞n=0
n2(ln+kn+3)2R2n−2ln

c2
n(2kn+3)

∑2n+1
j=1 V 2

n,j <∞, and
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• ∆V = 0 in Bext.

Let U be the subspace of L2(B) with the basis

Bn,j(x) := |x|kn

Rkn+1Yn,j

(
x

|x|

)
, n ∈ N0, j = 1, . . . , 2n+ 1,

where (kn)n∈N0 ⊂ R+
0 . Then the unique solution D ∈ U of∫

B
D(x)k(x, y) dx = V (y) in R3 \ B,

with (x, y) ∈ dom(x, y) is given by

D(x) =
∞∑
n=0

2n+ 1
4πcn

(ln + kn + 3)Rn−ln |x|
kn

Rkn+3

2n+1∑
j=1

Vn,jYn,j

(
x

|x|

)
,

in the sense of L2(B).

Proof. Again, the function D can be represented by

D(x) =
∞∑
n=0

2n+1∑
j=1

Dn,j(|x|)Yn,j
(
x

|x|

)
.

Using (12) and (13), we obtain

D(x) =
∞∑
n=0

2n+1∑
j=1

dn,j

√
2kn + 3
R

|x|kn

Rkn+1Yn,j

(
x

|x|

)

=
∞∑
n=0

2n+ 1
4πcn

(ln + kn + 3)Rn−ln |x|
kn

Rkn+3

2n+1∑
j=1

Vn,jYn,j

(
x

|x|

)

=
∞∑
n=0

2n+ 1
4πcn

(ln + kn + 3)Rn−ln−2
2n+1∑
j=1

Vn,jBn,j(x).

The convergence of the series is guaranteed by the conditions on V .

In the case ln = n and kn = n, this approach yields the harmonic solution of the
problem in (1) and in the case ln = n and kn = n + p, p ∈ R+

0 the quasi-harmonic
solution is obtained.
If the basis of U is given by the sum of two or more radial parts, i.e.{(∑K

i=1 |·|ki,n

)
Yn,j

(
·
|·|

)}
n∈N0,j=1,...,2n+1

for a fixed K ∈ N, then a unique solution can-
not be obtained. In this case, K − 1 additional pieces of information are needed. An
example of this situation is given in [Fokas and Michel, 2008, Theorem 6.1], where the
biharmonic solution for ln = n is discussed.
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4.3 Layer Density
In this section, a particular case of a non-radially dependent density is discussed. Let
the sought-after solution be given on a shell Ωτ

τ+ε with given τ > 0, ε > 0:

Ωτ
τ+ε :=

{
x ∈ R3 : τ ≤ |x| ≤ τ + ε ≤ R

}
.

Theorem 4.4. Let Ωτ
τ+ε be a given spherical shell. If D ∈ L2(B) has the form

D(x) =
∞∑
n=0

2n+1∑
j=1

Dn,j(|x|)Yn,j
(
x

|x|

)
,

Dn,j(|x|) := κdn,jχ[τ,τ+ε](|x|),

where the normalization constant κ is given by

κ =
√

3
(τ + ε)3 − τ3 ,

then the unique solution of (1) is given by

D(x) =
∞∑
n=0

2n+1∑
j=1

(2n+ 1)(ln + 3)
4πcn

Rn

(τ + ε)ln+3 − τ ln+3Vn,jχ[τ,τ+ε](|x|)Yn,j
(
x

|x|

)
, x ∈ B,

in the sense of L2(B).

Proof. Using (7), we have

(2n+ 1)Rn
4πcn

Vn,j =
∫ R

0
rln+2Dn,j(r) dr

= κ

∫ R

0
rln+2dn,jχ[τ,τ+ε](r) dr

= κdn,j
(τ + ε)ln+3 − τ ln+3

ln + 3 .

As a consequence,

κdn,j = (2n+ 1)Rn
4πcn

Vn,j
ln + 3

(τ + ε)ln+3 − τ ln+3 .

And hence,

D(x) =
∞∑
n=0

2n+1∑
j=1

dn,jκχ[τ,τ+ε](|x|)Yn,j
(
x

|x|

)
,

=
∞∑
n=0

2n+1∑
j=1

(2n+ 1)(ln + 3)
4πcn

Rn

(τ + ε)ln+3 − τ ln+3Vn,jχ[τ,τ+ε](|x|)Yn,j
(
x

|x|

)
.
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Under the conditions of the previous theorem, the corresponding potential V has the
representation

V (y) = κ
∞∑
n=0

4πcn
(2n+ 1)(ln + 3)((τ + ε)ln+3 − τ ln+3) |y|−n−1

2n+1∑
j=1

dn,jYn,j

(
y

|y|

)
.

This series converges pointwise for |y| > R, because (cn)n∈N0 is bounded and (ln)n∈N0

satisfies Assumption 2.4. Due to the square-integrability of Dn,j , this can be extended
to ΩR in the sense that we get a function in L2(ΩR):

‖V |ΩR
‖2L2(ΩR) = κ2

∞∑
n=0

( 4πcn
(2n+ 1)(ln + 3)((τ + ε)ln+3 − τ ln+3)

)2
R−2n

2n+1∑
j=1

d2
n,j

≤ 16π2c2κ2
∞∑
n=0

(
Rln+3 +Rln+3

)2

(2n+ 1)2(2ln + 3)3R2n

2n+1∑
j=1

d2
n,j

≤ 64π2c2κ2 sup
n∈N0

(
R2ln+6−2n

(2n+ 1)2(2ln + 3)2

) ∞∑
n=0

2n+1∑
j=1

d2
n,j <∞,

where the supremum is finite because of Assumption 2.4.
This kind of density is for example used in [Fokas et al., 2012] for the inverse MEG

problem.

5 Generalization to Higher Dimension
The results derived above can be further generalized to higher dimensions, if we consider
B to be the ball of radius R with centre 0 in Rq and use the spherical harmonics Y (q)

n,j

on Sq−1, i.e. the unit sphere in Rq. Note that, in our previous notation, B = B3 and
Ω = S2. From [Müller, 1966], we have the addition theorem

N(q,n)∑
j=1

Y
(q)
n,j (ξ)Y (q)

n,j (η) = N(q, n)
ωq

P (q)
n (ξ · η), ξ, η ∈ Sq−1

where {Y (q)
n,j }j=1,...,N(q,n) is an orthonormal basis of spherical harmonics of degree n on

Sq−1, ωq =
∫
Sq−1 1 dω, and the Gegenbauer polynomials {P (q)

n }n∈N0 are defined by

1. P (q)
n is a polynomial of degree n.

2. For n 6= m, ∫ 1

−1
P (q)
n (t)P (q)

m (t)(1− t2)(q−3)/2 dt = 0.

3. P (q)
n (1) = 1.
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Note that we use a slightly different notation here than in [Müller, 1966]. From
[Müller, 1966, Lemma 19], we also know that

|x− y|2−q =
∞∑
n=0

γn(q) |x|n
|y|n−2+qP

(q)
n

(
x

|x| ·
y

|y|

)
for all x, y ∈ Rq with |x| < |y|, where

γn(q) = Γ(n+ q − 2)
n! Γ(q − 2)

with Γ being the Gamma function. Accordingly, we can generalize the integral operator
in (1) to

Tq : D 7→
∫
Bq

D(x)k(x, y) dx = V (y), y ∈ Rq \ Bq =: Bext
q ,

with

k(x, y) :=
∞∑
n=0

cn
|x|ln
|y|n−2+qP

(q)
n

(
x

|x| ·
y

|y|

)

=
∞∑
n=0

cn
|x|ln
|y|n−2+q

ωq
N(q, n)

N(q,n)∑
j=1

Y
(q)
n,j

(
x

|x|

)
Y

(q)
n,j

(
y

|y|

)
and |x| 6= 0 if ln < 0 for a n ∈ N0. Since the Laplace operator in Rq is representable as
(see [Müller, 1966, p. 38])

∆q = ∂2

∂r2 + (q − 1)1
r

∂

∂r
+ 1
r2 ∆∗q , (14)

where

∆∗qY
(q)
n,j = −n(n+ q − 2)Y (q)

n,j , (15)

we observe that

∆q

(
|y|−n+2−qY

(q)
n,j

(
y

|y|

))
= [(−n+ 2− q)(−n+ 1− q) + (q − 1)(−n+ 2− q)− n(n+ q − 2)] |y|−n−qY (q)

n,j

(
y

|y|

)
=
(
n2 − 3n+ 2qn+ 2− 3q + q2 − qn+ 3q − q2 + n− 2− n2 − nq + 2n

)
× |y|−n−qY (q)

n,j

(
y

|y|

)
= 0.

As a consequence, the generalized operator Tq, again, produces functions TqD which are
harmonic in Bext

q . Furthermore, the ansatz

D(x) =
∞∑
n=0

N(q,n)∑
j=1

Dn,j(|x|)Y (q)
n,j

(
x

|x|

)
, x ∈ Bq,
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yields (in analogy to (6))

(TD)(y) =
∞∑
n=0

N(q,n)∑
j=1

cn

∫ R

0
rln+q−1Dn,j(r)dr

ωq
N(q, n)

1
|y|n−2+q Y

(q)
n,j

(
y

|y|

)

for y ∈ Bext
q under appropriate conditions for the convergence. Using the procedure in

Theorem 4.1, we find here that the minimum norm solution is characterized by

minimize
∫ R

0
rq−1(Dn,j(r))2 dr,

subject to given values
∫ R

0
rln+q−1Dn,j(r) dr.

With Fn,j(r) := r(q−1)/2Dn,j(r), the task becomes

minimize
∫ R

0
(Fn,j(r))2 dr,

subject to given values
∫ R

0
rln+ q−1

2 Fn,j(r) dr.

We then see, with the decomposition Fn,j(r) = αn,jr
ln+ q−1

2 + In,j(r), where In,j(r) is
L2[0, R]-orthogonal to r 7→ rln+ q−1

2 , that the minimum norm solution has the form

D(x) =
∞∑
n=0

N(q,n)∑
j=1

αn,j |x|lnY (q)
n,j

(
x

|x|

)
, x ∈ Bq,

in the sense of L2(Bq), where those αn,j for which cn 6= 0 can be obtained uniquely via
the constraint.

Theorem 5.1. If all cn 6= 0, then the orthogonal complement of the null space of Tq is
spanned by the basis

Hn,j(x) := |x|
ln

Rln
Y

(q)
n,j

(
x

|x|

)
, x ∈ Bq.

Results on the uniqueness constraints can analogously be derived for the case of q
dimensions. In particular, since a function

D(x) =
∞∑
n=0

N(q,n)∑
j=1

hn,jHn,j(x), x ∈ Bq,

is uniquely determined by its surface values

D(Rξ) =
∞∑
n=0

N(q,n)∑
j=1

hn,jY
(q)
n,j (ξ), ξ ∈ Sq−1,
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provided again that an appropriate convergence is given in both cases, we conclude that,
in all considered cases, the information of a radial dependence of the solutionD of TqD =
V is lost. In other words: given V , then the minimum norm solution D of TqD = V is
uniquely determined by its restriction D|

S
q−1
R

to the surface Sq−1
R := {x ∈ Rq

∣∣|x| = R}.
Furthermore, in the case of the (q-dimensional) inverse gravimetric problem (where

ln = n and cn = γn(q) 6= 0 for all n ∈ N0), the basis in Theorem 5.1 is harmonic since

∆q

(
|x|nY (q)

n,j

(
x

|x|

))
= [n(n− 1) + (q − 1)n− n(n+ q − 2)] |x|n−2Y

(q)
n,j

(
x

|x|

)
=
(
n2 − n+ qn− n− n2 − nq + 2n

)
|x|n−2Y

(q)
n,j

(
x

|x|

)
= 0.

Theorem 5.2. The null space of the inverse gravimetric problem in Rq, q ≥ 3, is given
by the orthogonal complement of the space of all harmonic functions, i.e.,

kerTG
q =

{
F ∈ C(2)(Bq)

∣∣∣∆qF = 0
}⊥L2(Bq)

,

where

TG
q D :=

∫
Bq

D(x)
|x− ·|q−2 dx, D ∈ L2(Bq).

We call the elements of kerTG
q the anharmonic functions on Bq in analogy to the nomen-

clature in R3 (see [Ballani et al., 1993]).

Proof. Since the inner Dirichlet problem for the Laplace equation is uniquely solvable
and the Y (q)

n,j represent a basis on the sphere Sq−1, the functions Hn,j in Theorem 5.1
with ln = n for all n ∈ N0 represent a basis for the harmonic functions on Bq. Further-
more, the space of all harmonic functions on Bq is closed in L2(Bq) (see [Mikhlin, 1970,
Theorem 11.9.2]). Finally, Theorem 5.1 yields the desired result.

6 A Differential Operator for the Orthonormal System on the
Ball

In order to characterize the orthonormal system on the ball {Gm,n,j}m,n∈N0,j=1,...,2n+1
which was introduced in Section 3 in further detail, it is useful to find a differential oper-
ator whose eigenfunctions are the functions Gm,n,j . In the case of the inverse gravimetric
problem this was done in [Akram et al., 2011]. Now, we generalize these results for the
orthonormal system given in Equation (8) for m,n ∈ N0, j = 1, . . . , 2n+ 1

Gm,n,j(rξ) = γm,nP
(0,ln+1/2)
m

(
2 r

2

R2 − 1
)
rln

Rln
Yn,j (ξ) .
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6.1 Derivation of a Differential Operator

Analogously to [Akram et al., 2011], we start with the Jacobi polynomials P (0,ln+1/2)
m .

It is well known (see [Szegö, 1975]) that they solve the following differential equation

0 = (1− u2) d2

du2P
(0,ln+1/2)
m (u) +

(
ln + 1

2 −
(
ln + 5

2

)
u

) d
duP

(0,ln+1/2)
m (u)

+m

(
m+ ln + 3

2

)
P (0,ln+1/2)
m (u).

Substituting u = 2r2

R2 − 1, i.e. r = R
√

u+1
2 , and using the chain rule for differentiation,

the differential equation becomes

(R2 − r2) d2

dr2P
(0,ln+1/2)
m

(
2r2

R2 − 1
)

+ 2
(
ln

(
1− r2

R2

)
− 2 r

2

R2 + 1
)
R2

r
×

d
drP

(0,ln+1/2)
m

(
2r2

R2 − 1
)

+ 4m
(
m+ ln + 3

2

)
P (0,ln+1/2)
m

(
2r2

R2 − 1
)

= 0

⇔
(

(R2 − r2) d2

dr2 + 2
(
ln

(
1− r2

R2

)
− 2 r

2

R2 + 1
)
R2

r

d
dr

)
P (0,ln+1/2)
m

(
2r2

R2 − 1
)

= −4m
(
m+ ln + 3

2

)
P (0,ln+1/2)
m

(
2r2

R2 − 1
)
. (16)

Now we define a new function Y (r) := P
(0,ln+1/2)
m

(
2r2

R2 − 1
) (

r
R

)ln , in order to derive a
differential equation for the radius part of the function Gm,n,j . In addition, we use the
abbreviation P (r) := P

(0,ln+1/2)
m

(
2r2

R2 − 1
)
. We get

Y (r) = P (r) r
ln

Rln
, Y ′(r) = P ′(r) r

ln

Rln
+ ln
r
Y (r),

Y ′′(r) = P ′′(r) r
ln

Rln
+ 2ln

rln−1

Rln
P ′(r) + ln(ln − 1)r

ln−2

Rln
P (r).

Using the same calculations as in [Akram et al., 2011], we can see that Y fulfils the
following differential equation

(R2 − r2)Y ′′ = (R2 − r2)P ′′ r
ln

Rln
+ (R2 − r2)2ln

r
Y ′ − (R2 − r2) ln(ln + 1)

r2 Y. (17)

Inserting the value of (R2 − r2)P ′′ from (16) in (17) we obtain

(R2 − r2)Y ′′ =− 2
(
ln

(
1− r2

R2

)
− 2 r

2

R2 + 1
)
R2

r

rln

Rln
P ′ − 4m

(
m+ ln + 3

2

)
rln

Rln
P

+ (R2 − r2)2ln
r
Y ′ − (R2 − r2) ln(ln + 1)

r2 Y.
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Using the identities Y = P rln

Rln
and Y ′ = rln

Rln
P ′+ ln

r Y we can simplify the above equation

(R2 − r2)Y ′′ =− 2
(
ln

(
1− r2

R2

)
− 2 r

2

R2 + 1
)
R2

r

(
Y ′ − ln

r
Y

)
− 4m

(
m+ ln + 3

2

)
Y

+ (R2 − r2)2ln
r
Y ′ − (R2 − r2) ln(ln + 1)

r2 Y

=− 2
(
ln
r

(
R2 − r2

)
−2r + R2

r
− (R2 − r2) ln

r

)
Y ′ − (R2 − r2) ln(ln + 1)

r2 Y

+
(

2
(
l2n
r2

(
R2 − r2

)
− 2ln + lnR

2

r2

)
− 4m

(
m+ ln + 3

2

))
Y

=
(
ln(ln − 1)

r2

(
R2 − r2

)
− 4ln + 2lnR2

r2 − 4m
(
m+ ln + 3

2

))
Y

+
(

4r − 2R2

r

)
Y ′

=
(

4r − 2R2

r

)
Y ′ +

(
ln(ln + 1)R

2

r2 − ln(ln + 3)− 4m
(
m+ ln + 3

2

))
Y.

It yields

(R2 − r2)Y ′′ −
(

4r − 2R2

r

)
Y ′ − ln(ln + 1)R

2

r2 Y

= −
(
ln(ln + 3) + 4m

(
m+ ln + 3

2

))
Y

⇔
(

(R2 − r2) d2

dr2 + 2
(

1− 2r2

R2

)
R2

r

d
dr − ln(ln + 1)R

2

r2

)
Y

= −
(
ln(ln + 3) + 4m

(
m+ ln + 3

2

))
Y. (18)

This proves that the differential operator Dr defined by

Dr := (R2 − r2) d2

dr2 + 2
(

1− 2r2

R2

)
R2

r

d
dr − ln(ln + 1)R

2

r2

has the eigenfunctions Y (r) = P
(0,ln+1/2)
m

(
2r2

R2 − 1
) (

r
R

)ln , r ∈ [0, R] for all m,n ∈ N0

and the corresponding eigenvalues −
(
ln(ln + 3) + 4m

(
m+ ln + 3

2

))
for all m,n ∈ N0.

Note that the differential operator Dr depends on the exponent ln of r, but for a better
readability, we omit this in our notation.
The angular part of our orthonormal function Gm,n,j is given by spherical harmonics

of degree n ∈ N0 and order j = 1, . . . , 2n + 1. Recall that the spherical harmonics are
eigenfunctions of the Beltrami operator ∆∗ with the corresponding eigenvalues −n(n+1)
for n ∈ N0, j = 1, . . . , 2n + 1 (for more details see e.g. [Freeden et al., 1998]). We sum
up this result in the following theorem.
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Theorem 6.1. The orthonormal basis functions Gm,n,j for m,n ∈ N0 are eigenfunctions
of the differential operator ∗∆x defined by

∗∆x := D|x| ◦∆∗x
|x|
.

with the corresponding eigenvalues

∗∆∧(m,n) :=
(
ln(ln + 3) + 4m

(
m+ ln + 3

2

))
n(n+ 1),

i.e.,

∗∆xGm,n,j(x) =
(
D|x| ◦∆∗x

|x|

)
Gm,n,j(x)

=
(
ln(ln + 3) + 4m

(
m+ ln + 3

2

))
n(n+ 1)Gm,n,j(x).

6.2 Properties of the Differential Operator ∗∗∆
If we have a closer look at the eigenvalues of the differential operator ∗∗∆ which is defined
by

∗∗∆x :=
(
−D|x| +

9
4

)
◦
(
−∆∗x

|x|
+ 1

4

)
,

we observe that ∗∗∆∧(m,n) is equal to zero if n = 0,m = − ln
2 , orm = −1

2(ln+3). Hence,
the differential operator is not invertible. But, with the help of the calculations from
the previous section, we are able to construct a similar operator which is invertible. For
this purpose, we use the same method as in [Akram et al., 2011]. Note that there exist
similar results for spherical differential operators, see, for example, [Freeden et al., 1998].

Theorem 6.2. The differential operator ∗∗∆x and its iterates ∗∗∆s
x, s ∈ N are invertible.

The corresponding eigenvalues have the representation

(∗∗∆s)∧ (m,n) =
((

n+ 1
2

)(
2m+ ln + 3

2

))2s
.

Proof. The proof is analogous to the one in [Akram et al., 2011] and it suffices to prove(
−D|x| +

9
4

)(
P (0,ln+1/2)
m

(
2 r

2

R2 − 1
)
rln

Rln

)
=
(

2m+ ln + 3
2

)2
P (0,ln+1/2)
m

(
2 r

2

R2 − 1
)
rln

Rln
,

since it is known from [Freeden et al., 1998] that (−∆∗x
|x|

+1
4)Yn,j( x

|x|) =
(
n+ 1

2

)2
Yn,j( x

|x|)
for all n ∈ N0 and j = 1, . . . , 2n + 1. Using (18) one gets, again with the abbreviation
Y (r) = P

(0,ln+1/2)
m

(
2 r2

R2 − 1
)
rln

Rln
,(

−Dr + 9
4

)
Y (r) =

(
ln(ln + 3) + 4m

(
m+ ln + 3

2

)
+ 9

4

)
Y (r)
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and, completing the square, we get(
ln(ln + 3) + 4m

(
m+ ln + 3

2

)
+ 9

4

)
=
(

2m+ ln + 3
2

)2
.

Due to Assumption 2.4, the inequality infn∈N0 ln ≥ −1 holds true and hence, for all
m,n ∈ N0 it yields

(
2m+ ln + 3

2

)2
6= 0, and the operator ∗∗∆x is invertible. In summary,

we obtain

(∗∗∆s
x)∧ (m,n) =

((
2m+ ln + 3

2

)(
n+ 1

2

))2s
.

In order to find a relation between the domain and the range of the differential operator
∗∗∆, we can construct particular Sobolev spaces. We define a Sobolev space correspond-
ing to the sequence (Am,n)m,n∈N0 and our orthonormal basis functions Gm,n,j for m,
n ∈ N0, j = 1, . . . , 2n+ 1 as follows:

Definition 6.3. Let (Am,n)m,n∈N0 be a given real sequence. Then the space E((Am,n),B)
consists of all F ∈ C(∞)(B) such that

〈F,Gm,n,j〉L2(B) = 0 for all (m,n, j) with Am,n = 0

and
∞∑

m,n=0

2n+1∑
j=1

A2
m,n 〈F,Gm,n,j〉2L2(B) <∞.

The space is equipped with the inner product

〈F1, F2〉H :=
∞∑

m,n=0

2n+1∑
j=1

A2
m,n 〈F1, Gm,n,j〉L2(B) 〈F2, Gm,n,j〉L2(B) ,

for F1, F2 ∈ E((Am,n),B). H((Am,n),B) is defined as the completion of E((Am,n),B)
with respect to 〈·, ·〉H and is called the Sobolev space on B with respect to (Am,n)m,n∈N0

This approach for a Sobolev space on the ball is also used in, e.g., [Akram et al., 2011]
and [Michel, 2013]. In order to classify some reproducing kernel Hilbert spaces on the
ball, we define the summability condition in this case.

Definition 6.4. A sequence (Am,n)m,n∈N0 satisfies the summability condition if
∞∑

m,n=0
Am,n 6=0

A−2
m,nn(2m+ ln)pm,n <∞,

with

pm,n =

(m+ln+ 1
2 )2m

(m!)2 , ln > −1
2

1, ln ≤ −1
2 .



6.2 Properties of the Differential Operator ∗∗∆ 26

We derive this definition in analogy to the summability condition in [Michel, 2013,
p. 267] in the case of the inverse gravimetric problem. Note that the parameter pm,n
comes from the supremum norm of the Jacobi polynomials.
Roughly speaking, we say that the sequence (Am,n)m,n∈N0 is summable. By means of

an approach from [Freeden et al., 1998] for constructing reproducing kernels and repro-
ducing kernel Hilbert spaces on the sphere, we can construct similar structures on the
ball. In the particular case for ln = n, this was also done in [Akram et al., 2011].

Theorem 6.5. The spaces H((Am,n),B), which are defined in Definition 6.3, are repro-
ducing kernel Hilbert spaces with the unique reproducing kernel

KH(x, y) :=
∞∑

m,n=0
Am,n 6=0

2n+1∑
j=1

A−2
m,nGm,n,j(x)Gm,n,j(y), x, y ∈ B,

if the sequence (Am,n)m,n∈N0 is summable.

Based on these Sobolev spaces, we can specify the domain and the range of our
differential operator ∗∗∆.

Definition 6.6. For any s ∈ R+
0 , we define the Sobolev spaces

Hs(B) := H
(((

2m+ ln + 3
2

)s (
n+ 1

2

)s)
,B
)
.

Obviously, Hs1(B) ⊂ Hs2(B) for s1 ≥ s2. In addition, H0(B) = L2(B). Now, we can
redefine the operator in Theorem 6.1.

Definition 6.7. Let s, t ∈ R+
0 with s > 2t. Then the operator

(∗∗∆)t : Hs(B)→ Hs−2t(B)

can be defined by

(∗∗∆)tF :=
∞∑

m,n=0

2n+1∑
j=1

(
2m+ ln + 3

2

)2t (
n+ 1

2

)2t
〈F,Gm,n,j〉L2(B)Gm,n,j

for F ∈ Hs(B).

Using the norm induced by the inner product of the Sobolev space Hs(B), we can
easily see that the following holds true.

Corollary 6.8. Let s, t ∈ R+
0 with s > 2t. If F ∈ Hs(B), then∥∥∥(∗∗∆)tF

∥∥∥
Hs−2t(B)

= ‖F‖Hs(B) <∞.
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7 Conclusions
In our paper, we considered a generalization of the inverse gravimetric and inverse mag-
netic problem. By analyzing the forward problem, we found a relation between the
Fourier coefficients of the given data and parts of the solution. In order to understand
this relation in further detail, we constructed a particular orthonormal system on the
ball. With this system, we characterized the null space of the Fredholm integral operator
and calculated the singular system. One interesting result is that, in all cases, most of
the radial information gets lost. In the particular case of the inverse gravimetric prob-
lem, our results coincide with the corresponding well-known results. Moreover, they also
approve some existing results for the inverse magnetic problem. Since the null space of
the operator is infinite-dimensional, the solution of the inverse problem is (in a severe
sense) not unique. However, we showed that, under additional assumptions, uniqueness
of the solution can be obtained. We generalized known results of the inverse gravimetric
problem, for example, regarding the harmonicity constraint. With this approach, a large
class of uniqueness constraints can be analyzed. We also discussed the case of a min-
imum norm constraint and generalized this ansatz for the inverse gravimetric problem
in the Rq, which yielded a generalization of a famous result for Newton’s gravitational
potential operator. Finally, a representation of a differential operator having the or-
thonormal basis functions as eigenfunctions was derived including an investigation of
associated reproducing kernel Hilbert spaces.
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