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THREE-DIMENSIONAL SIMULATION OF NONWOVEN
FABRICS USING A GREEDY APPROXIMATION OF THE

DISTRIBUTION OF FIBER DIRECTIONS

SIMONE GRAMSCH, MAX KONTAK, AND VOLKER MICHEL

Abstract. An elementary algorithm is used to simulate the industrial pro-
duction of a fiber of a 3-dimensional nonwoven fabric. The algorithm simu-
lates the fiber as a polyline where the direction of each segment is stochastically
drawn based on a given probability density function (PDF) on the unit sphere.
This PDF is obtained from data of directions of fiber fragments which origi-
nate from computer tomography scans of a real non-woven fabric. However,
the simulation algorithm requires numerous evaluations of the PDF. Since the
established technique of a kernel density estimator leads to very high compu-
tational costs, a novel greedy algorithm for estimating a sparse representation
of the PDF is introduced. Numerical tests for a synthetic and a real example
are presented. In a realistic scenario, the introduced sparsity ansatz leads to
a reduction of the computation time for 100 fibers from nearly 40 days to 41
minutes.

1. Introduction

According to EDANA, the European Disposables and Nonwovens Association,
a nonwoven is defined as “. . . a sheet of fibres, continuous filaments, or chopped
yarns of any nature or origin, that have been formed into a web by any means, and
bonded together by any means, with the exception of weaving or knitting.” (cited
in [30]). Their impact on our daily live is large due to their versatile properties.
Nonwovens can be absorbent, antistatic, breathable, conductive or non-conductive,
elastic, flame resistant, impermeable or permeable, smooth, and stiff to name but
a few. These properties are achieved by combining raw materials with specific
production processes.

There are three main nonwoven manufacturing processes: dry-lay processes, wet-
lay processes, and extrusion processes. In the following, we concentrate on a typical
extrusion process, the so-called spunbond process. A sketch of this process can be
found in Figure 1. In this production process, a polymer melt is extruded through
spinnerets. The fibers evolving from the spinnerets are cooled and stretched by
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2 THREE-DIMENSIONAL SIMULATION OF NONWOVEN FABRICS

Figure 1. Sketch of a nonwoven production process (spunbond)

air. Additionally, they are swirled around by turbulent air streams until they are
deposited on a perforated conveyor belt. By suction, they are fixed on the belt
to form a random web. In order to produce a nonwoven fabric, additional process
steps like bonding and finishing have to be implemented. For further details we
refer to [1].

The advantage of nonwovens to be specially designed to have specific properties
also has a drawback. The market of nonwovens demands more and more customized
products, so the development cycles are shortened accordingly. Hence, simulating
nonwoven production processes is a mathematical key technology that enables en-
gineers to design the processes with respect to customer-specific needs.

Several papers have already dealt with the mathematical modeling of this specific
production process. One model that is based on the description of the physical
process itself can be found in [25, 44], which is also used in the simulation software
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FIDYST (fiber dynamics simulation tool, cf. [19]). In principle, one has to deal
with a two-way coupling problem of the aerodynamic forces and the fiber dynamics,
which is not solvable to industrial scales due to the required resolution of the mesh
(cf. [31]). Therefore, the model only incorporates a one-way coupling by using an
air drag model. Up to now, this approach neglects the interaction of one filament
with itself or other filaments on the conveyor belt that have already been laid
down. Therefore, the simulated laydown of filaments on the conveyor belt is two-
dimensional.

Due to the high computational effort needed for simulating this model, a real
nonwoven consisting of thousands of fibers cannot be simulated in a reasonable
amount of time. Hence, in [21, 25] a different approach was developed. The two-
dimensional fiber laydown is described by a surrogate model based on a stochastic
differential equation. The parameters that arise in this equation can be estimated
from the FIDYST simulation of one single fiber. Then, a considerable number of
fibers representing the microstructure of a real nonwoven can be computed in a
short time using the stochastic differential equation model.

On the one hand, a two-dimensional simulated fabric still represents typical
nonwovens, which are very flat, in an excellent way. On the other hand, several
properties of nonwovens originate in the fact that the fibers are lying on top of
each other, which cannot be achieved by a two-dimensional simulation. Thus, a
three-dimensional model is desirable.

For that reason, in [26] the concept of the stochastic surrogate model was ex-
tended to a three-dimensional setting. Although possessing good theoretical prop-
erties, this model lacks the possibility of estimating the parameters directly using a
FIDYST simulation, since the output of the simulation is only two-dimensional. Pa-
rameter estimation for the three-dimensional model by combining two-dimensional
FIDYST data and three-dimensional data obtained by CT scans has been presented
in [20] under the restriction that a non-moving belt or negligible small belt speeds
are considered.

In section 2 of this paper, we will present an algorithm for the three-dimensional
simulation of nonwovens based on the analysis of fiber directions inside a real non-
woven. Our algorithm generates a polyline by sampling from a probability density
function, which has to be estimated first. This estimation is based on a data
set generated by image analysis techniques. Here, we use data obtained by 3D-
microtomography with a resolution of 1 µm to 70 µm voxel side length and a max-
imal size of the sample of 1 mm3 to 10 mm3. A reduced version of the data set
generated by the computer tomography (CT) scan is shown in Figure 2. Note that
in a post-processing step, the raw CT data are translated to filament directions.
Since directions in the three-dimensional space can be equivalently described as
points on the sphere, every data point on the sphere in Figure 2 corresponds to the
filament direction in one single voxel. For a more detailed description of the data
set that is used, consult section 5 of this paper. The resulting number of occurring
voxels is extremely large due to the high resolution. Hence, efficient strategies for
analyzing the data must be developed.

In section 3, we will point out that, in principle, a standard technique of nonpara-
metric statistics for the estimation of probability density functions, namely kernel
density estimators, can be used to implement the simulation algorithm. However,
it is not efficient to use these estimators for very large data sets as in our case.
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Figure 2. 2000 out of 9 600 558 points from a data set of directions
in a real nonwoven fabric

In particular, the fiber simulation requires numerous evaluations of the estimated
density.

Therefore, we will derive a greedy algorithm for the estimation of probability
density functions in section 4.

In section 5, we will first study the convergence of the greedy algorithm empir-
ically and will then show that the efficiency of our simulation algorithm can be
enhanced extremely by using the greedy algorithm to estimate the distribution of
fiber directions. We fill furthermore present first results about the validation of
fiber laydown simulation methods like FIDYST, which can be performed using the
presented greedy algorithm.

2. Mathematical setting and the algorithm

No matter if mathematically simulated fibers are considered or if CT-based data
of nonwoven fabrics are available, in each case we are confronted with a set of
N ∈ N directions in the plane (2D case) or the space (3D case). We will model these
data X1, . . . , XN as independent and identically distributed realizations of an Sd−1-
valued random variable X, where d = 2 or d = 3. By Sd−1 :=

{
ξ ∈ Rd

∣∣ |ξ| = 1
}
,

we denote the unit sphere in Rd. Moreover, the distribution of X shall be absolutely
continuous with respect to the surface measure ω on Sd−1, that is, there exists a
probability density function (PDF) f : Sd−1 → [0,∞), such that for every subset
A ⊆ Sd−1 we have

P(X ∈ A) =

∫
A

f(ξ) dω(ξ),

where P(X ∈ A) denotes the probability that the random variable X attains values
in the subset A. Note that we do not impose further assumptions on the PDF,
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especially not on any parametrization, such that the estimation of the PDF is a
problem in the field of nonparametric statistics.

In the following, we propose a data-driven algorithm for the simulation of non-
woven fabrics. The concept of the algorithm is to start at an arbitrary point in Rd
and to choose the next point of a fiber by sampling a direction from the estimated
PDF and moving into this direction by a given step width. By construction, the
resulting fiber approximately has the same distribution of directions as it occurs
inside the given data set used for estimating the PDF. This idea translates to an
algorithm as follows.

Algorithm 1. Let an estimate f̂ of the PDF f as well as a discretization parameter
s ∈ (0,∞) be given.

Generate a discretization (Zj)j=0,1,... ⊆ Rd of a fiber by the following iteration:

(1) Set j := 0 and choose an initial point Z0 ∈ Rd.
(2) Sample a direction Yj+1 ∈ Sd−1 from the estimated PDF f̂ .
(3) Set Zj+1 := Zj + sYj+1.
(4) If the desired number of points is reached: stop.

Otherwise: increase j by 1 and return to step 2.

Note the resemblance of the algorithm to the stochastic time discrete approxima-
tion of stochastic differential equations, in particular the Euler-Maruyama method,
where Gaussian pseudo-random numbers are used in a similar way if the stochastic
differential equation involves Brownian motion (cf. [28], chapter 9). However, it
is not trivial if there is an interpretation of our algorithm as an Euler-Maruyama
scheme for a certain stochastic differential equation and even if it was, it is com-
pletely unclear what such a stochastic equation or a stochastic process solving this
equation would look like.

Note that the approach for the fiber simulation presented here differs essentially
from other methods such as the one described in [25]. For example, we do not solve
a given stochastic differential equation which includes an explicit term for the belt
movement as it is done in other cases. However, in our numerical experiments in
section 5, we will use a PDF which is determined from data of a real nonwoven
and, thus, incorporates the non-uniform distribution of the fiber directions with a
dominance of the direction of the belt movement. In this respect, the belt movement
implicitly becomes an ingredient in our Algorithm 1.

A standard tool to solve the problem of estimation of PDFs is a so-called kernel
density estimator, which is briefly discussed in the following section.

3. Analysis of directions with kernel density estimators

Since their introduction in [36], kernel density estimators (KDEs) have been a
tool that has often been used for the estimation of PDFs based on given data sets
X1, . . . , XN . Being introduced on the real line, extensions to the multivariate case
(see [5]) were straight-forward, which made this method superior to older methods
like, for example, the finite difference approximation in [38]. In [22], KDEs were
transferred to the case of spherical data X1, . . . , XN ∈ Sd−1 for d ≥ 2, which is of
particular importance for the presented application and is, thus, the foundation of
the following considerations.

In analogy to the latter reference, in this paper a kernel is the member of a
family of integrable functions Kλ : [−1, 1] → [0,∞), which depend on a so-called
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concentration parameter λ ∈ (0,∞), and have the following properties, that have
also been considered in [14] to obtain approximate identities on the sphere:

(a) normalization: ∫ 1

−1
Kλ(t) dt = 1, (1)

(b) concentration at 1: for every c ∈ (−1, 1), we have

lim
λ→∞

∫ 1

c

Kλ(t) dt = 1. (2)

The latter is different from the definition of kernels on R, where a concentration at
0 is required, because for ξ, η ∈ Sd−1 the propositions |ξ − η| = 0 and ξ · η = 1 are
equivalent and the kernel will always be used in the form Kλ(ξ · η). Here, by x·y we
denote the Euclidean inner product of two vectors x, y ∈ Rd. Under certain further
assumptions on the family of kernels it was proved in [22] that the associated KDE,
which is defined as

f̂(ξ) :=
1

N

N∑
n=1

Kλ(Xn · ξ), (3)

is an asymptotically unbiased and consistent estimator of the PDF f if λ is chosen
properly in dependence of N .

We use the d-dimensional Abel-Poisson kernel Q(d)
h : [−1, 1]→ (0,∞),

Q
(d)
h (t) :=

1

ω(Sd−1)

1− h2

(1 + h2 − 2ht)
d/2

(4)

for d = 3 in the following to obtain a KDE for a given CT data set, which consists
of points on S2. The term ω

(
Sd−1

)
denotes the surface of the unit sphere Sd−1 in

Rd, which can be explicitly computed as

ω
(
Sd−1

)
=

2πd/2

Γ
(
d
2

) ,
which reduces to the well-known results ω

(
S1
)

= 2π and ω
(
S2
)

= 4π in the two-
and the three-dimensional case, respectively.

Note that the Abel-Poisson kernel fulfills the conditions (1) and (2) if we set

Kλ(t) := Q
(d)
1−1/λ(t).

For further properties of the Abel-Poisson kernel in the three-dimensional case, see
for example [32, Section 5.1].

In Figure 3, the KDE with respect to the CT data set is depicted on S2. The
parameter h = 0.9 is more or less arbitrarily chosen, since a rigorous method for
parameter selection is not known, whereas heuristics, which are available, could of
course be used to determine the parameter (for an overview on this subject, see
[24] and the references therein). The figure shows that there exists a dominant
direction of the fibers, which corresponds to the direction in which the belt moves
in the production process.

Concerning Algorithm 1, it turns out in numerical experiments that the use of
a KDE as estimator of the PDF inside this method is not practicable from the
computational point of view. The crucial point is step 2 of the algorithm, where
sampling from the estimated PDF f̂ is needed.
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Figure 3. Plot of the KDE obtained from the data set where the
Abel-Poisson kernel with parameter h = 0.9 was used as the kernel
in (3).

In our experiments—where we worked with a real CT data set on S2 with
N = 9 600 558 directions—we used the well-known acceptance-rejection method
(see, e. g., [7, Section II.3]) for sampling. Simpler sampling methods like inversion
sampling (see, e. g., [7, Section II.2]) are unfortunately not applicable on spherical
domains.

The acceptance-rejection method is based on the following idea (cf. [7, Theo-
rem II.3.1]): If (X,U) is a Sd−1 × R-valued random variable, which is uniformly
distributed on the set A =

{
(η, t)

∣∣ η ∈ Sd−1, 0 ≤ t ≤ f(η)
}
, then X has the den-

sity f . In practice, a sample (ξ, u) of (X,U) can be obtained by first generating a
sample (ξ̃, ũ) from a uniform distribution on Ã =

{
(η, t)

∣∣ η ∈ Sd−1, 0 ≤ t ≤ C
}
for

some upper bound C of f . If ũ ≤ f(ξ̃), the sample is accepted and (ξ, u) := (ξ̃, ũ)
is taken as a sample from the uniform distribution on A. On the other hand, if
ũ > f(ξ̃), the sample is rejected and the generated pair is not taken into account
for the samples from the uniform distribution on A. Since methods for generating
uniform distributions both on Sd−1 and on the interval [0, C] are well-known and
implemented in well-established software like the GNU Scientific Library [18], sam-
ples from a uniform distribution on Ã = Sd−1× [0, C] can easily be generated both
in theory and in practice.

Note that the efficiency of the acceptance-rejection method depends heavily on
the quality of the upper bound C of the PDF. When an estimation of the PDF is
given by a KDE, a simple and rigorous method to obtain an upper bound is the
application of the triangle inequality to the sum in (3). Unfortunately, it turns out
that this bound is by far too large and the computational effort is drastically high,
since a vast majority of points is rejected in the acceptance-rejection method (e. g.,
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204 evaluations of the KDE were needed for one sample in numerical experiments).
In the numerical experiments presented in this paper, the upper bound was obtained
by evaluation of the KDE on a equiangular grid with 10 000 points on the sphere and
multiplication of the result by 1.1 to bound maxima of the KDE, which may occur
between the grid points. This leads to an average of 2.4 evaluations of the KDE to
obtain one sample in our numerical experiments, which improves the computational
effort of the acceptance-rejection method in this case very much.

Note that for a single evaluation of the KDE in (3), the kernel has to be evaluated
N times, which affects the practicability of KDEs massively if N is large. Hence,
since N ≈ 107 is realistic in our application, the use of KDEs leads to very high
computational costs. In particular, in our numerical tests, approximately 2.4× 107

evaluations of the Abel-Poisson kernel were needed to obtain one single sample Yj
in step 2 of Algorithm 1. Additionally, by using the Abel-Poisson kernel, we already
have a kernel at hand that admits a closed representation, whereas other kernels on
the sphere (for examples, see [15, Chapter 7]) are given as a Legendre series and do
not permit such a representation. This increases the computational effort of this
method even further, if different kernels are chosen. Since a real nonwoven fabric
can consist of hundreds of fibers and, in principle, the fibers can be arbitrarily long,
we face a big problem in the practical realization of the method. Specific numbers
for computation times in comparison to the new method, which is developed in the
following section, can be found in Table 1 later in this article.

To reduce the number of kernel evaluations, we consider the concept of sparsity
as studied, for example, in the field of compressive sensing (cf. [12, Chapter 2]). This
means, in our case, that the aim is to estimate the PDF by a linear combination

N∑
n=1

αnKλ(Xn · ξ)

of kernels, where most of the coefficients αn are zero, or at least, very small. Al-
though the obtained result is technically not a kernel density estimator, we will call
such a representation a sparse kernel density estimator. Note that this representa-
tion shows certain similarities to the approximation of functions in Sobolev spaces
on the sphere with spherical splines (see [13]). In the literature, strategies to achieve
a sparse representation of a function include optimization methods, greedy meth-
ods, and thresholding-based methods (cf. [12, Chapter 3]). Sparse KDEs based on
optimization methods were studied in [2, 6, 23]. The arising optimization problems
for the N unknowns αn may also be difficult to handle in practice if N is large as
in the presented application. Greedy methods have only rarely been used in the
estimation of PDFs so far: a method for the parametric case with Gaussian kernels
on R is considered in [42], which can obviously not be applied to the presented
problem, since no parametrization of the PDF is assumed to be known. The non-
parametric case is the subject of [39] with an approach based on the linearization
and minimization of a so-called negative log-likelihood loss function. Although the
minimization of this specific loss function is a common method in statistics, apart
from the linearization, it brings with it the difficulty that optimization methods
have to be used in every iteration of the algorithm. Furthermore, in that approach
parts of the loss function have to be recalculated in every iteration, which demands
a high computational effort for a large number of points. These two difficulties do
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not arise with the new algorithm presented below, which can be interpreted as a
minimization of an L2-error.

4. Analysis of directions by means of a greedy approximation

Greedy algorithms have been a successful tool in the sparse approximation of
functions in Banach and Hilbert spaces (for a survey, see [41]). Several variants
of these algorithms have also been used in signal processing as matching pursuits
(cf. [29]) and in the solution of inverse problems as regularized functional matching
pursuits and its variants (cf. [9, 34, 35]). Note that greedy algorithms have also
been used in statistics before, but usually for regression problems (cf. [3, 16]). In
[17], density estimation in Rd was considered, relying heavily on the Euclidean
structure.

It is the aim of this section to transfer the basic concept of greedy algorithms to
the estimation of PDFs. The classical (or pure) greedy algorithm for the approxi-
mation of functions in Hilbert spaces reads as follows (cf. [41, Chapter 2]).

Algorithm 2 (Pure Greedy Algorithm, PGA). Let H be a Hilbert space with inner
product 〈·, ·〉 and norm ‖·‖. Choose a so-called dictionary D ⊆ { g ∈ H | ‖g‖ = 1 }.
To approximate an element f ∈ H, iteratively generate a sequence of approximations
(fk)k∈N0

in the following way:
(1) Set k := 0, choose an initial approximation f0 ∈ H.
(2) Find a dictionary element dk+1 ∈ D whose projection onto the subspace of
H, which is spanned by the current residual rk := f − fk, is maximal, in
other words

dk+1 = argmax
d∈D

|〈rk, d〉|. (5)

(3) Set

αk+1 := 〈rk, dk+1〉. (6)

(4) Set fk+1 := fk + αk+1dk+1.
(5) If a suitable stopping criterion is fulfilled: stop.

Otherwise: increase k by 1 and return to step 2.
The approximation after K steps is consequently given as fK = f0 +

∑K
k=1 αkdk.

Note that we use H = L2(Sd−1) from now on.
The difficulty in the implementation of greedy algorithms in the application

considered here lies in the computation of the inner products 〈rk, d〉 = 〈f, d〉−〈fk, d〉
for d ∈ D in (5) and (6), especially in the inner product 〈f, d〉, whereas the inner
product 〈fk, d〉 can be easily computed if the inner products 〈d, d′〉 and 〈f0, d〉 are
known for all d, d′ ∈ D. The reason for this difficulty is that f is unknown and
that neither values of f nor values of functionals evaluated at f are given, which
could be handled by a matching pursuit and a regularized functional matching
pursuit, respectively. Instead, realizations of the random variable X are given,
whose distribution possesses the density f .

To overcome this difficulty, we observe that by the definition of the inner product
and the expectation value of a random variable, we have

〈f, d〉 =

∫
Sd−1

d(ξ)f(ξ) dω(ξ) = Ef [d(X)] ,
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since the distribution of X possesses the density f . Moreover, we use the strong
law of large numbers (see, e. g., [27, Chapter 5.3]) to obtain the approximation

〈f, d〉 = Ef [d(X)] ≈ 1

N

N∑
n=1

d(Xn), (7)

which we insert into (5) and (6) to obtain the following algorithm.

Algorithm 3 (Greedy algorithm for the estimation of PDFs). Let f ∈ L2(Sd−1)
be an unknown PDF and X1, . . . , XN ∈ Sd−1 be a realization of a random variable
X, whose distribution possesses the density f . Let a dictionary D be given as in
Algorithm 2.

Generate a sequence (fk)k∈N0
of approximations of f iteratively according to the

following scheme:
(1) Set k := 0, choose an initial approximation f0 ∈ L2(Sd−1).
(2) Find a dictionary element dk+1 ∈ D fulfilling the maximization property

dk+1 = argmax
d∈D

∣∣∣∣∣ 1

N

N∑
n=1

d(Xn)− 〈fk, d〉

∣∣∣∣∣. (8)

(3) Set

αk+1 :=
1

N

N∑
n=1

dk+1(Xn)− 〈fk, dk+1〉. (9)

(4) Set fk+1 := fk + αk+1dk+1.
(5) If a suitable stopping criterion is fulfilled: stop.

Otherwise: increase k by 1 and return to step 2.

Note that one would expect, from the theoretical point of view, a condition on
the dictionary like spanD = H. However, from the computational point of view
this condition can never be fulfilled, unless H is finite-dimensional, since D would
have to be comprised of infinitely many elements, which cannot be realized on a
computer. The maximization in (8) can consequently be accomplished by evaluating
the term that has to be maximized for every dictionary element and choosing the
dictionary element with the maximal value. Note also that the maximizer in (8)
does not need to be unique. In this case, we choose one arbitrary maximizer among
all available maximizers.

By our motivation, the dictionary will consist of the kernels arising in the KDE
and is consequently given as

D := { ξ 7→ K(Xn · ξ) | n = 1, . . . , N }
for a given kernel K.

In this case, both in (8) and (9), the kernel has to be evaluated at least (N + 1)N/2
times, which—at the first sight—brings with it the same difficulties already dis-
cussed in Section 3 if N is large. Two arguments can be given which reduce this
difficulty in practice:

First, the greedy algorithm has to be applied only once per data set to obtain
a sparse estimation of the PDF. The coefficients αk and the dictionary elements
chosen by the greedy algorithm can be stored and reused, when an estimation of the
PDF is needed in other algorithms. On the contrary, when using a KDE itself, the
kernel has to be evaluated very often inside these other algorithms. This fact makes
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it possible to execute the greedy algorithm on a powerful and fast computer system,
for example a large cluster, to obtain a list of chosen coefficients and kernels, and
subsequently use a slower computer, for example an ordinary desktop computer,
for the further applications.

Secondly, the term

1

N

N∑
n=1

d(Xn) (10)

arising in (8) for every d ∈ D, which represents an empirical expectation value, does
not change in the course of the iteration. That is to say, (10) has to be computed
and stored only once in the beginning of the algorithm and does not need to be
recomputed in every iteration. The value computed prior to the iteration can then
also be used in (9). Additionally, the value of (10) for some d can be computed
independently from the other dictionary elements. Thus, this process is ideal for
parallelization, which improves the performance on those fast computer systems
mentioned before.

Note that, in principle, this method can be extended to other types of dictio-
nary elements apart from kernels, for example, spherical harmonics or wavelets,
which have not been implemented for the numerical experiments in this paper. It
would also be possible to use kernels with different concentration parameters for
the dictionary. The use of such overcomplete dictionaries turned out to be useful
for spherical inverse problems in the geosciences (see [4, 8, 9, 10, 11, 33, 34, 35, 40]).
Further note that greedy algorithms with dictionaries consisting of kernels also ap-
pear in a method called kernel matching pursuit in the field of machine learning
(cf. [43]).

5. Numerical experiments

The Abel-Poisson kernel as introduced in (4) was chosen with a parameter h =
0.9 for all of the following numerical experiments. Since Algorithm 3 uses the
approximation in (7), and convergence for the PGA is only known if the inner
product can be evaluated exactly, a synthetic example is presented first in this
section to empirically study the convergence of the algorithm. We proceed by a
more detailed description of the CT data set used for the following computations.
We continue by presenting simulation results using the greedy approximation of the
PDF and comparing computation times between the use of KDEs and the greedy
approximation. Finally, we conclude this section by presenting some first results
about the validation of fiber laydown models. For this purpose, we also use the
greedy algorithm.

5.1. A synthetic example. To create a synthetic example to test the convergence
of the greedy algorithm, we choose the PDF f(ξ) := Q

(3)
0.6

(
ξ · ε3

)
, where the Abel-

Poisson kernel is concentrated around ε3 = (0, 0, 1)
T and apply the acceptance-

rejection method (cf. section 3 of this paper) to sample a data set X1, . . . , XN

from this PDF, where N = 106. The PDF and 2000 points from the data set are
presented in Figure 4.
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Figure 4. Left: PDF from the synthetic example, an Abel-
Poisson kernel with parameter h = 0.6, centered at ε3 = (0, 0, 1)

T;
Right: 2000 of in total 106 data points sampled from that PDF
with the acceptance-rejection method.
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Figure 5. Semi-logarithmic plot of the relative L2(Sd−1)-error
‖f − fk‖/‖f‖ of the first 10 000 iterations of the greedy algorithm,
when applied to the synthetic example.

In this synthetic case, where the PDF is already known, it is possible to compute
the relative L2(Sd−1)-error ‖f − fk‖/‖f‖ explicitly due to properties of the Abel-
Poisson kernel. A semi-logarithmic plot of this relative error for 10 000 iterations
of the greedy algorithm can be found in Figure 5.

The algorithm shows a convergent behavior, at least in these first 10 000 it-
erations. Multiple performed experiments show that the number of data points
influences the convergence of the algorithm in the following way: the more itera-
tions are performed, the more data points are needed such that the algorithm shows
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Figure 6. Sparse estimation of the PDF of a real data set after
10 000 iterations of the greedy algorithm.

a convergent behavior. This is plausible, since, having reached a certain level of ac-
curacy, the approximation can only be improved with additional information on the
function to be approximated. The dependence of the convergence on the number
of data points is a subject of future research.

5.2. Description of the CT data set. We deal with a spunbond process of the
industrial company Oerlikon Neumag. After specifying several production param-
eters, the company produced samples of nonwovens which will be used for the
presented numerical experiments. The samples were analyzed by the department
Image Processing of the Fraunhofer ITWM with its 3D-microtomography scanner.
The CT scan of the real samples delivers a real-valued third-order tensor with so-
called gray values. The gray values are mapped to local fiber orientations at each
voxel with the help of an eigenvalue analysis of the Hessian matrix of the second
partial derivatives of the gray values. For more details, the reader is referred to [37].
As already mentioned in the introduction, the microtomography scanner possesses
a resolution of 1 µm to 70 µm while the sample size is 1 mm3 to 10 mm3. For the
data set that we use, this high resolution leads to N = 9 600 558 points on S2, which
will be the basis for our considerations.

5.3. Application of the greedy and simulation algorithms. We applied Al-
gorithm 3 on the CT data set which was described in the previous section. The
result is a sparse kernel density estimator, which is depicted in Figure 6.

Since the error of the estimation can no longer be explicitly computed, in Figure 7
the absolute values of the chosen coefficients |αk| are plotted, to get an impression
of the size of the corrections which the greedy algorithm performs in each of the first
10 000 iterations. This indicator for the size of corrections also shows a convergent
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Figure 7. Absolute values of the chosen coefficients in the first
10 000 iterations of the greedy algorithm, applied to the real data
set.

behavior, similarly to the synthetic example above.
Note that the KDE in Figure 3 and the sparse estimator in Figure 6 show a

clear qualitative similarity. Quantitatively, one recognizes certain differences both
in the values of the estimator (the maximum is 0.18 for the KDE and 0.22 for
the greedy approximation) and in the structure of the estimator (the structures
are rougher in the result of the greedy approximation). This is no contradiction,
since the greedy approximation and the KDE are both estimations of the PDF,
but the greedy approximation is no approximation of the KDE. Thus, depending
on the choice of parameters h both for the KDE and the dictionary of the greedy
algorithm, both estimations can be different while still estimating the same PDF.

Remember that our initial motivation for the development of a greedy algorithm
was the inefficiency of Algorithm 1 if the PDF is estimated by a kernel density
estimator. For this reason, we use the approximation f10 000 (generated by the
greedy algorithm above) for a 3D simulation of nonwoven fabrics. A discretized
fiber that has been generated this way is shown in Figure 8.

A comparison of computation times of the simulation algorithm is shown in
Table 1.

In this table, we compare the uses of the KDE and the sparse KDE as well as the
application of two different upper bounds for the PDF in the acceptance-rejection
method (see the considerations in section 3). The following raw data are listed
in the table: the number of samples Xj that have been generated, the number of
evaluations of the estimated PDF that were needed to generate these samples, and
the CPU time that was consumed. Note that there is a difference of the number of
samples between the four presented scenarios due to the high computational effort
that would be needed for the more inefficient methods. For that reason, to achieve
a better comparison, we add the average number of evaluations of the estimated
PDF per sample, the average CPU time per sample, and the time that would
be needed to simulate a nonwoven fabric with 100 fibers with 100 000 segments
each, to the table. One can see that the use of the greedy approximation makes
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Figure 8. Fiber, consisting of 100 000 points, simulated by Algo-
rithm 1 in conjunction with a greedy approximation of the PDF.

Table 1. Computation times for different estimates of the PDF
and different upper bounds for the estimated PDF. For the com-
parison “CPU time/nonwoven”, it has been assumed that a simu-
lated nonwoven consists of 100 fibers with 100 000 segments each.
The presented data show an enormous saving of computation time
when using the newly developed greedy algorithm.

KDE Greedy approximation
upper bound triangle ineq. evaluation triangle ineq. evaluation

samples 420 25 000 100 000 100 000
evaluations 85 607 59 894 258 022 166 128
CPU time 16 022 s 8637.3 s 37.543 s 24.903 s

eval./sample 204 2.40 2.58 1.66
CPU time/sample 3.81× 101 s 3.45× 10−1 s 3.75× 10−4 s 2.49× 10−4 s
CPU time/nonwoven 105 833 h 958 h 1.04 h 0.69 h

Algorithm 1 more efficient by multiple orders of magnitude. Moreover, it is clear
that the upper bound that is determined by applying the triangle inequality is much
worse for the KDE, since there are much more summands in the estimator, such
that a comparison of these numbers is not fair. Nevertheless, if the more efficient
variant by evaluation on a fine grid is used for both estimators, the results are
comparable. In that case, the simulation time for a nonwoven with 100 fibers with
100 000 line segments each, is reduced from 958 h to 0.69 h, thus from nearly 40
days to 41 minutes, a factor of nearly 1400.
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Unfortunately, as in the case of the other known simulation methods for nonwo-
vens (cf. the introduction), it is not trivial to validate the output of the simulation
algorithm. By construction of the method, the output will fulfill the validation
criterion introduced in the following section. Nevertheless, further research should
be conducted on the topic of evaluating the quality of the simulations.

5.4. Validation of fiber laydown models. Another problem that can be at-
tacked by using the developed greedy algorithm is the validation of a fiber laydown
model, which has been developed at Fraunhofer ITWM and which is implemented
in their simulation tool FIDYST (see [19]). For this purpose, we analyze the same
data set generated by CT scans of real nonwoven fabrics as above and the result of
a FIDYST simulation using the greedy algorithm introduced before.

As already mentioned before, the company Oerlikon Neumag has specified certain
production parameters, which were used for the fabrication of the samples. For
example, the belt speed was set to 38 m/min, the mean spinning speed is 79.4 m/s,
and the fibers are made of polypropylene with a fiber diameter of 1.2× 10−5 m.
All specified parameters are used as input to FIDYST, which simulates the air flow
and the fiber dynamics of this process—until the filaments are laid down on the
conveyor belt. We prescribed a total simulation time of 0.5 s. Due to the mean
spinning speed, we end up with a final filament length of 39.7 m. For the upcoming
analysis, we neglect the fiber parts in the air and restrict ourselves to the laid-
down parts on the conveyor belt. With a spatial discretization of the fibers of
2.5× 10−4 m this leads to approximately 150 000 points per simulated fiber.

Since FIDYST can only produce a two-dimensional output, we face the prob-
lem to compare a 2D data set from the simulation with a real 3D data gener-
ated by CT scans. Let X = {X1, . . . , XN } ⊆ S2 denote the CT data set and
Y = {Y1, . . . , YM } ⊆ S1 the FIDYST data set, where N,M ∈ N are the numbers of
data points for both types of data. It is known from the measurement process, that
the third component of the CT data set corresponds to the direction perpendicu-
lar to the moving belt in the production process. Consequently, we overcome the
challenge of comparing data sets in different dimensions by generating a 2D data
set X̃ = { X̃1, . . . , X̃N } ⊆ S1 by projection onto the first two components.

The data sets used in the following consist of N = 9 600 558 (CT data) and
M = 3 137 432 (FIDYST data) points, where we concatenated data from 10 distinct
simulations (all initialized with the same parameters), and symmetrized the data.
The application of the algorithm on X̃ and Y yields the results depicted in Figure 9.
A possible interpretation of Figure 9 is as follows: it can be seen that the distribution
of filament directions of the simulated fiber possesses maxima and minima at the
same angles as the real fibers. However, the variance of the directions is much
larger in the CT data set than in the FIDYST data set. Multiple calculations show
that this effect also arises with other process parameters. It seems to be the case
that the model used by FIDYST could be improved to better match the real world
data. Necessary modifications of the model are the subject of further research.

Note that, so far, there was no way to measure the consistency of the model with
reality. For the first time, the introduced method offers a possibility to do so.

6. Conclusions

In this paper, we dealt with the three-dimensional simulation of nonwovens. Us-
ing data from computer tomography scans of real nonwoven fabrics, we proposed
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Figure 9. Sparse KDEs of the CT data set X̃ (solid line) and the
FIDYST data set Y (dashed line). Two-dimensional Abel-Poisson
kernels with h = 0.9 were used in both cases. The sphere S1 is
identified with the interval [0, 2π) on the horizontal axis.

an algorithm for the simulation of nonwovens. The basis of this algorithm is an
estimate of the distribution of fiber directions inside the nonwoven, that is a prob-
ability density function. It turned out that using kernel density estimators, which
are a standard technique in nonparametric statistics, leads to a very high compu-
tational effort when applying the simulation algorithm due to the high amount of
available data. By introducing a greedy algorithm, which yields a sparse estimator
of the unknown probability density, the computation time of the fiber simulation
algorithm could be reduced by a factor of 1400, from more than a month to less
than an hour.

The results presented in the work at hand give rise to several other topics that
should be addressed in future research. First, the convergence of the greedy algo-
rithm should be analyzed theoretically, in particular the dependence of the con-
vergence on the number of data points. Secondly, in this paper, we restricted
ourselves to a dictionary consisting of Abel-Poisson kernels centered at the data
points in analogy to kernel density estimators. Of course, other functions could be
used, for example Abel-Poisson kernels with different parameters h, that may also
be centered at a regular grid instead of the data points. We could also add global
functions like spherical harmonics to the dictionary. Thirdly, the presented simu-
lation algorithm is not limited to the spunbond process. Several other production
processes for nonwovens or also other technical textiles could be simulated with
the given method, as long as directional CT data are available. Additionally, the
simulation algorithm could be extended to include different belt movements than
the one, which is already incorporated in the data set. Finally, the approach for
the validation of fiber laydown models should be pursued further. The reason for
the inconsistency of the distribution of fiber directions between the FIDYST model
and the CT data should be analyzed. Also other fiber laydown models, like the
stochastic surrogate model, could be analyzed with the given validation approach.
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Furthermore, different models, like the FIDYST and the surrogate model, could be
compared to each other, instead to the CT data, by our approach.
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