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Abstract

In this article, we introduce a class of differential operators for two com-
plete orthonormal systems in L2(B), where B is a ball in R

3, such that these
orthonormal systems are eigenfunctions. We study further properties of these
operators. It turns out, for instance, that the Sobolev norm, which is used
for a spline interpolation method on B, can be interpreted as the L2(B)-norm
of the image of a (pseudo-)differential operator.
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1 Introduction

The approximation of functions on a 3d-ball has a series of important applications
at present. In particular, such methods play an essential role in tomography
problems of geophysics and medical imaging, see for example the survey article
[24]. Since the structures to be determined usually consist of layers with (almost)
spherical boundaries, the use of Euclidean approximation methods (restricted from
R
3 to the ball) are inappropriate. Therefore, functions based on a radial-angular

decomposition are more useful. Classical approximation methods use a truncated
singular value decomposition which requires an orthonormal basis for the relevant
function space (e.g. L2(B), where B is a ball with center at 0 and radius R > 0).
Typically, orthogonal/orthonormal polynomials are chosen as such a basis. For
intervals on the real line, such polynomials are well known and have already been
investigated in detail for many decades (see for example, [28]). For instance, the
Legendre polynomials represent a famous system of orthogonal polynomials on
[−1, 1]. Moreover, for the unit sphere Ω in R

3, the system of spherical harmonics
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{Yn,j}n=0,1,...;j=−n,...n is also an established function system which is widely used
and has many known properties (see, for instance, [13, 15, 27]). For the ball B,
the following two orthonormal basis systems are known:

GI
m,n,j(x) :=

√
4m+ 2n+ 3

R3
P (0,n+1/2)
m

(
2
|x|2
R2

− 1

)( |x|
R

)n

Yn,j

(
x

|x|
)
, (1)

x ∈ B,m, n ∈ N0; j = −n, ..., n (see [6, 10, 14, 19]) as well as

GII
m,n,j(x) :=

√
2m+ 3

R3
P (0,2)
m

(
2
|x|
R

− 1

)
Yn,j

(
x

|x|
)
, (2)

x ∈ B\{0},m, n ∈ N0; j = −n, ..., n (see [29]). Here, P
(a,b)
m is a Jacobi polynomial

of degree m corresponding to the parameters (a, b). Note that the system of type
II is not an algebraic polynomial in x1, x2, x3 and is discontinuous in x = 0 for
n > 0. Both systems have their advantages and disadvantages as discussed in
[24]. Based on the systems, advanced approximation methods such as spline and
wavelet methods were developed in view of different applications, which are inverse
gravimetry [11, 18, 19, 20, 21, 23, 25, 26], travel-time tomography [4, 5], normal
mode tomography (in combination with inverse gravimetry) [7, 8, 9], MEG-EEG
tomography [12] and seismic wave interpolation [17, 22], where in the latter two
cases different orthonormal bases were used. Further, locally supported approxi-
mating structures on the unit ball were introduced in [1, 2, 3].
Unfortunately, the present knowledge about the orthonormal basis (1) and (2) is
poor. Only a few properties such as a rough estimate of the maximum norm (see
[14, 24]) are known. Since these systems represent the foundation for the named
spline and wavelet methods, the derivation of further properties would improve the
understanding of these tools and would open possibilities to prove further proper-
ties of the splines and wavelets. Moreover, the numerical implementation is still
connected to some problems which have not been solved completely, yet. These
problems are partially caused by the different behavior of type I in comparison to
type II. For example, type II shows (expected) strong oscillations near the origin
in combination with the discontinuity. A quantification of these phenomena would
allow a better adaptation of the spline and wavelet kernels in the future.
As a contribution to the quest for a better understanding of the basis functions
on B, this paper addresses the problem of representing these functions as eigen-
functions of a differential operator. Such operators are known for 1D orthogonal
polynomials (such as Jacobi polynomials) and for spherical orthogonal polynomials
(the spherical harmonics are eigenfunctions of the Beltrami operator). It will be
shown here that differential operators can be derived for which GI

m,n,j and GII
m,n,j

are eigenfunctions. Further properties of these differential operators are proved.
Another result of these investigations is a way to interpret particular Sobolev norms
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on the ball. This is important for the understanding of the smoothing properties
of a spline method used in geomathematics.

2 Derivation of a Differential Operator for the Or-

thonormal Systems of Type I and Type II

Jacobi polynomials in general and Legendre polynomials in particular are known
to be eigenfunctions of associated univariate differential operators (see, for exam-
ple, [28]). Analogously, the spherical harmonics are eigenfunctions of the Beltrami
operator, which is a spherical differential operator (see, for instance, [13]). This
property already proved to be helpful to derive further properties of Jacobi poly-
nomials and spherical harmonics, respectively. In this section, we will determine
certain three-dimensional differential operators for which type I and type II, respec-
tively, are eigenfunctions. The differential operators themselves shall be examined
further.
First we find the differential operator for which the system of type I is an eigen-

function. The differential equation of the Jacobi polynomials y = P
(a,b)
m is given

by (see [28])

(1− x2)
d2

dx2
P (a,b)
m (x) + (b− a− (a+ b+ 2)x)

d

dx
P (a,b)
m (x)

+m(m+ a+ b+ 1)P (a,b)
m (x) = 0. (3)

Putting a = 0, b = n+ 1
2 , x = u, in the equation given above, we have

(
1− u2

) d2

du2
P

(0,n+ 1
2
)

m (u) +

(
n+

1

2
−
(
n+

5

2

)
u

)
d

du
P

(0,n+ 1
2
)

m (u)

+m

(
m+ n+

3

2

)
P

(0,n+ 1
2
)

m (u) = 0. (4)

Substituting u = 2r2

R2 − 1, i.e. r = R
√

u+1
2 where r ∈ [0, R], and using the chain

rule for differentiation, equation (4) becomes

(
R2 − r2

) d2

dr2
P

(0,n+ 1
2
)

m

(
2r2

R2
− 1

)
+ 2

(
n

(
1− r2

R2

)
+ 1− 2r2

R2

)
R2

r

× d

dr
P

(0,n+ 1
2
)

m

(
2r2

R2
− 1

)
+ 4m

(
m+ n+

3

2

)
P

(0,n+ 1
2
)

m

(
2r2

R2
− 1

)
= 0.
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This is equivalent to(
(R2 − r2)

d2

dr2
+ 2

(
n

(
1− r2

R2

)
+ 1− 2r2

R2

)
R2

r

d

dr

)
P

(0,n+ 1
2
)

m

(
2r2

R2
− 1

)

= −4m

(
m+ n+

3

2

)
P

(0,n+ 1
2
)

m

(
2r2

R2
− 1

)
. (5)

Now, letting Y (r) := P
(0,n+ 1

2
)

m

(
2r2

R2 − 1
) (

r
R

)n
and g(r) := P

(0,n+ 1
2
)

m

(
2r2

R2 − 1
)
, we

get

Y = g
rn

Rn
. (6)

Differentiating with respect to r, we have

Y ′ = g′
rn

Rn
+ n

rn−1

Rn
g

= g′
rn

Rn
+

n

r
Y. (7)

Again differentiating equation (7) with respect to r, we have,

Y ′′ = g′′
rn

Rn
+ 2n

rn−1

Rn
g′ + n(n− 1)

rn−2

Rn
g.

Using equations (6) and (7), we reformulate the equation given above as

Y ′′ = g′′
rn

Rn
+

2n

r

(
Y ′ − n

r
Y
)
+

n(n− 1)

r2
Y

= g′′
rn

Rn
+

2n

r
Y ′ − n(n+ 1)

r2
Y.

Now multiplying the equation given above by R2 − r2, we have

(R2 − r2)Y ′′ = (R2 − r2)g′′
rn

Rn
+ (R2 − r2)

2n

r
Y ′ − (R2 − r2)

n(n+ 1)

r2
Y. (8)

Putting the value of (R2 − r2)g′′ taken from (5) in (8) we get

(R2 − r2)Y ′′ = −2

(
n

(
1− r2

R2

)
+ 1− 2r2

R2

)
g′
R2

r

rn

Rn
− 4m

(
m+ n+

3

2

)
g
rn

Rn

+(R2 − r2)
2n

r
Y ′ − (R2 − r2)

n(n+ 1)

r2
Y.
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Now using (6) and (7) in the equation above, we have,

(R2 − r2)Y ′′ = −2

(
n

(
1− r2

R2

)
+ 1− 2r2

R2

)
R2

r

(
Y ′ − n

r
Y
)

−4m

(
m+ n+

3

2

)
Y + (R2 − r2)

2n

r
Y ′ − (R2 − r2)

n(n+ 1)

r2
Y

= −2

(
n

(
1− r2

R2

)
+ 1− 2r2

R2

)
R2

r
Y ′ + 2

(
n

(
1− r2

R2

)
+ 1− 2r2

R2

)

×R2

r

n

r
Y − 4m

(
m+ n+

3

2

)
Y + (R2 − r2)

2n

r
Y ′ − (R2 − r2)

n(n+ 1)

r2
Y

=

(
−2R2

r
+ 4r

)
Y ′ +

(
n2R2

r2
+

nR2

r2
− n2 − 3n− 4m

(
m+ n+

3

2

))
Y

= −2

(
1− 2r2

R2

)
R2

r
Y ′ +

(
n(n+ 1)

R2

r2
− n(n+ 3)− 4m

(
m+ n+

3

2

))
Y.

This gives

(R2 − r2)Y ′′ + 2

(
1− 2r2

R2

)
R2

r
Y ′ − n(n+ 1)

R2

r2
Y

= −
(
n(n+ 3) + 4m

(
m+ n+

3

2

))
Y.

Finally, we have(
(R2 − r2)

d2

dr2
+ 2

(
1− 2r2

R2

)
R2

r

d

dr
− n(n+ 1)

R2

r2

)
Y

= −
(
n(n+ 3) + 4m

(
m+ n+

3

2

))
Y. (9)

This shows that

DI
r := (R2 − r2)

d2

dr2
+ 2

(
1− 2r2

R2

)
R2

r

d

dr
− n(n+ 1)

R2

r2

is a differential operator with eigenfunction Y (r) = P
(0,n+ 1

2
)

m

(
2r2

R2 − 1
) (

r
R

)n
, r =

|x|, r ∈ [0, R] and the corresponding eigenvalue is − (n(n+ 3) + 4m(m+ n+ 3
2 )
)
.

Let us define another operator ∗ΔI by

∗ΔI
x := DI

|x| ◦Δ∗
x
|x|
,

where Δ∗ is the Beltrami operator, for which the spherical harmonics Yn of degree
n are the eigenfunctions corresponding to the eigenvalue −n(n + 1) (for further
details see [13]), i.e.

Δ∗Yn,j = −n(n+ 1)Yn,j .
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Now, it is easy to show that ∗ΔI is a differential operator for which the basis
functions GI

m,n,j are eigenfunctions and the corresponding eigenvalues are

n(n+ 1)

(
n(n+ 3) + 4m

(
m+ n+

3

2

))
.

Theorem 2.1 The basis function GI
m,n,jis an eigenfunction of the differential op-

erator ∗ΔI defined above corresponding to the eigenvalue

n(n+ 1)

(
n(n+ 3) + 4m

(
m+ n+

3

2

))
,

i.e.,

∗ΔI
x

(
GI

m,n,j(x)
)
=
(
DI

|x| ◦Δ∗
x
|x|

) (
GI

m,n,j(x)
)

= DI
|x| ◦Δ∗

x
|x|

(√
4m+ 2n+ 3

R3
P

(0,n+ 1
2
)

m

(
2|x|2
R2

− 1

)( |x|
R

)n

Yn,j

(
x

|x|
))

= n(n+ 1)

(
n(n+ 3) + 4m

(
m+ n+

3

2

))(
GI

m,n,j(x)
)
, x ∈ B.

Note that the differential operator depends on the degree of the used spherical
harmonic, such that a reference to n would actually be necessary in the notation.
We omit this, however, for the sake of a better readability. We, therefore, do not
have one fixed differential operator for which all basis functions are eigenfunctions.
Now, we derive the differential operator for the system of type II. If we put a = 0,
b = 2 and x = u in equation (3), we get a differential equation for the Jacobi

polynomials P
(0,2)
m as follows(

(1− u2)
d2

du2
+ (2− 4u)

d

du

)
P (0,2)
m (u) +m(m+ 3)P (0,2)

m (u) = 0. (10)

Now substituting u = 2r
R − 1, i.e., r = R(u+1)

2 in (10) and using the chain rule we
get(
rR
(
1− r

R

) d2

dr2
+ (3R− 4r)

d

dr

)
P (0,2)
m

(
2r

R
− 1

)
=−m(m+3)P (0,2)

m

(
2r

R
− 1

)
.

This implies that rR
(
1− r

R

)
d2

dr2
+(3R− 4r) d

dr is a differential operator for which

P
(0,2)
m

(
2r
R − 1

)
is an eigenfunction with the corresponding eigenvalue −m(m+ 3),

where r ∈ [0, R].

Let us denote the differential operator of P
(0,2)
m

(
2r
R − 1

)
by DII

r , i.e.,

DII
r := rR

(
1− r

R

) d2

dr2
+ (3R − 4r)

d

dr
.
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Now, we define another operator by ∗ΔII
x := DII

|x| ◦ Δ∗
x
|x|
. Also here it is easy to

show that ∗ΔII is a differential operator for which GII
m,n,j is an eigenfunction and

the corresponding eigenvalue is n(n+ 1)m(m+ 3).

Theorem 2.2 The basis functions GII
m,n,j are eigenfunctions of the differential

operator ∗ΔII, where GII
m,n,j corresponds to the eigenvalue m(m+ 3)n(n + 1), i.e.

∗ΔII
x

(
GII

m,n,j(x)
)
= m(m+ 3)n(n + 1)GII

m,n,j(x), x ∈ B.

3 Some properties of the differential operators ∗ΔI
x and

∗ΔII
x

We denote the eigenvalues of P
(0,n+ 1

2
)

m

(
2r2

R2 − 1
) (

r
R

)n
corresponding to DI

r by

DI∧(m,n) := −
(
n(n+ 3) + 4m

(
m+ n+

3

2

))
.

We can observe that DI∧(0, 0) = 0. This shows that DI is not invertible. As a
consequence, ∗ΔI

x = DI
|x| ◦Δ∗

x
|x|

with the eigenvalues

(∗ΔI
)∧

(m,n) := n(n+ 1)

(
n(n+ 3) + 4m

(
m+ n+

3

2

))

is also not invertible. Similarly, we set
(∗ΔII

)∧
(m,n) := mn(n+1)(m+3), which

also shows that ∗ΔII is not invertible, because(∗ΔII
)∧

(m, 0) =
(∗ΔII

)∧
(0, n) = 0.

Next, with the help of the differential operators given above, we find two new
operators which are invertible. Note that there exist similar results for spherical
(pseudo-)differential operators (see [13]).

Theorem 3.1 The differential operators ∗∗ΔI
x := (−DI

|x| +
9
4) ◦ (Δ∗

x
|x|

+ 1
4) and

∗∗ΔII
x := (−DII

|x| +
9
4) ◦ (Δ∗

x
|x|

+ 1
4) as well as the iterated operators (∗∗ΔI)l and

(∗∗ΔII)l, l ∈ N, are invertible. Moreover, for any l ∈ N, their eigenvalues corre-
sponding to GI

m,n,j and GII
m,n,j, respectively, satisfy

((∗∗ΔI
)l)∧

(m,n) =

((
n+

1

2

)(
n+ 2m+

3

2

))2l

,

((∗∗ΔII
)l)∧

(m,n) =

((
n+

1

2

)(
m+

3

2

))2l

.
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Proof. The differential operator (−DI + 9
4) has the symbol (i.e. the eigenvalues)

(
−DI +

9

4

)∧
(m,n) =

(
n+ 2m+

3

2

)2

,

since equation (9) yields(
−DI

r +
9

4

)(
P

(0,n+ 1
2
)

m

(
2r2

R2
− 1

)( r

R

)n)

= −DI
r

(
P

(0,n+ 1
2
)

m

(
2r2

R2
− 1

)( r

R

)n)
+

9

4

(
P

(0,n+ 1
2
)

m

(
2r2

R2
− 1

)( r

R

)n)

=

(
n(n+ 3) + 4m

(
m+ n+

3

2

))
·
(
P

(0,n+ 1
2
)

m

(
2r2

R2
− 1

)( r

R

)n)

+
9

4

(
P

(0,n+ 1
2
)

m

(
2r2

R2
− 1

)( r

R

)n)

=

(
n+ 2m+

3

2

)2(
P

(0,n+ 1
2
)

m

(
2r2

R2
− 1

)( r

R

)n)
.

Hence, we conclude that (−DI + 9
4 )

∧(m,n) =
(
n+ 2m+ 3

2

)2 �= 0 for all m,n ∈ N0.
This shows that (−DI + 9

4) is invertible. By applying induction, we have

((
−DI +

9

4

)l
)∧

(m,n) =

(
n+ 2m+

3

2

)2l

.

Furthermore, the operator −Δ∗ + 1
4 has the eigenvalues

(
−Δ∗ +

1

4

)∧
(n) =

(
n+

1

2

)2

where n = 0, 1, . . . , and hence has an inverse (−Δ∗ + 1
4 )

−1 which is a rational
pseudo-differential operator of order -2 (for further details see [13]). More gener-
ally, (−Δ∗ + 1

4)
l is a rational pseudo-differential operator of order 2l and has the

spherical symbol (i.e. the eigenvalues)((
−Δ∗ +

1

4

)l
)∧

(n) =

(
n+

1

2

)2l

, n = 0, 1, . . . . (11)

Therefore, from the discussion given above, we can conclude that

∗∗ΔI
x =

(
−DI

|x| +
9

4

)
◦
(
−Δ∗

x
|x|

+
1

4

)

8



is invertible and the eigenvalues corresponding to GI
m,n,j are

((∗∗ΔI
)l)∧

(m,n) =

((
−DI +

9

4

)l
)∧

(m,n)

((
−Δ∗ +

1

4

)l
)∧

(n)

=

((
n+

1

2

)(
n+ 2m+

3

2

))2l

for all m,n ∈ N0 and all j = −n, ..., n.
Similarly, −DII + 9

4 has the eigenvalues(
−DII +

9

4

)∧
(m) =

(
m+

3

2

)2

, m = 0, 1, . . . ,

since(
−DII +

9

4

)
P (0,2)
m

(
2r

R
− 1

)
= −DII

(
P (0,2)
m

(
2r

R
− 1

))
+

9

4
P (0,2)
m

(
2r

R
− 1

)

= m(m+ 3)

(
P (0,2)
m

(
2r

R
− 1

))
+

9

4
P (0,2)
m

(
2r

R
− 1

)

=

(
m+

3

2

)2

P (0,2)
m

(
2r

R
− 1

)
.

By induction, we obtain((
−DII +

9

4

)l
)∧

(m) =

(
m+

3

2

)2l

, m = 0, 1 . . . . (12)

From (12), one can conclude that (−DII + 9
4) is invertible.

As −Δ∗ + 1
4 and −DII + 9

4 both are invertible, the combined operator

∗∗ΔII =

(
−DII +

9

4

)
◦
(
Δ∗ +

1

4

)

is also invertible. Therefore, using equations (11) and (12), we finally have the

eigenvalues of
(∗∗ΔII

)l
corresponding to GII

m,n,j ,

((∗∗ΔII
)l)∧

(m,n) =

(((
−DII +

9

4

)
◦
(
−Δ∗ +

1

4

))l
)∧

(m,n)

=

((
n+

1

2

)(
m+

3

2

))2l

.
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Definition 3.2 For any s ∈ R, we define the operators (∗∗ΔI)s and (∗∗ΔII)s by
their eigenvalues

((∗∗ΔI
)s)∧

(m,n) :=

((
n+

1

2

)(
n+ 2m+

3

2

))2s

((∗∗ΔII
)s)∧

(m,n) :=

((
n+

1

2

)(
m+

3

2

))2s

corresponding to GI
m,n,j and GII

m,n,j , respectively.

Note that all eigenvalues are independent of the order j of the chosen spherical
harmonic Yn,j, i.e. the operators are isotropic.

4 Further Properties of the Operators

We first summarize the introduction of Sobolev spaces on B from [24].

Definition 4.1 A sequence (Am,n)m,n∈N0
satisfies the summability condition of

type I if

∞∑
m,n=0

A2
m,nn(2m+ n)

(
n+m+ 1

2

)2m
(m!)2

< +∞,

where as the summability condition of type II is given by

∞∑
m,n=0

A2
m,nnm

5 < +∞.

If a sequence satisfies the summability condition of type I or II, respectively, we
say that the sequence is I- or II- summable, respectively.

Definition 4.2 Let the sequence (Am,n)m,n∈N0
be bounded and X ∈ {I, II} be

given. Then the space H := H ((Am,n),X,B) contains all F ∈ L2(B) such that
〈F,GX

m,n,j〉L2(B) = 0 for all (m,n, j) with Am,n = 0 and

∞∑
m,n=0

Am,n �=0

A−2
m,n

2n+1∑
j=1

〈
F,GX

m,n,j

〉2
L2(B) < +∞.

Moreover, H is equipped with the inner product

〈F1, F2〉H :=
∞∑

m,n=0
Am,n �=0

A−2
m,n

2n+1∑
j=1

〈
F1, G

X
m,n,j

〉2
L2(B)

〈
F2, G

X
m,n,j

〉2
L2(B) .
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Theorem 4.3 The spaces H := H ((Am,n),X,B), which we defined in Definition
4.2, are reproducing kernel Hilbert spaces with the unique reproducing kernel

KH (x, y) =
∞∑

m,n=0

∞∑
j=1

A2
m,nG

X
m,n,j(x)G

X
m,n,j(y); x, y ∈ B,

if the sequence (Am,n)m,n∈N0 is X-summable.

Based on these Sobolev spaces, we can now clarify the domain of the operators
∗∗ΔI and ∗∗ΔII.

Definition 4.4 For any s ∈ R
+
0 , we define the spaces

HI
s(B) := H

(((
n+ 2m+

3

2

)−s(
n+

1

2

)−s
)
, I,B

)

and

HII
s (B) := H

(((
m+

3

2

)−s(
n+

1

2

)−s
)
, II,B

)
.

Obviously, HX
s1(B) ⊂ HX

s2(B) for s1 ≥ s2 and X ∈ {I, II}. Furthermore, HI
0(B) =

HII
0 (B) = L2(B).

We can now reformulate Definition 3.2 more precisely.

Definition 4.5 Let s, t ∈ R
+
0 with s ≥ 2t. Then we formally define the operators

(∗∗ΔI
)t

: HI
s(B) → HI

s−2t(B)

and (∗∗ΔII
)t

: HII
s (B) → HII

s−2t(B)
by

(∗∗ΔI
)t
F1 =

∞∑
m,n=0

2n+1∑
j=1

((
n+

1

2

)(
n+ 2m+

3

2

))2t 〈
F1, G

I
m,n,j

〉
L2(B)G

I
m,n,j ,

(∗∗ΔII
)t
F2 =

∞∑
m,n=0

2n+1∑
j=1

((
n+

1

2

)(
m+

3

2

))2t 〈
F2, G

II
m,n,j

〉
L2(B)G

II
m,n,j

for F1 ∈ HI
s(B) and F2 ∈ HII

s (B).
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To verify that the operators are well-defined, we show that

∥∥∥(∗∗ΔI
)t
F1

∥∥∥2
HI

s−2t(B)
=

∞∑
m,n=0

2n+1∑
j=1

(
n+

1

2

)2s−4t(
n+ 2m+

3

2

)2s−4t

×
〈(∗∗ΔI

)t
F1, G

I
m,n,j

〉2
L2(B)

=

∞∑
m,n=0

2n+1∑
j=1

(
n+

1

2

)2s(
n+ 2m+

3

2

)2s 〈
F1, G

I
m,n,j

〉2
L2(B)

= ‖F1‖2HI
s(B) < +∞.

Analogous considerations can be made for type II. This also yields the following
result.

Theorem 4.6 Let s, t ∈ R
+
0 with s ≥ 2t. If F1 ∈ HI

s(B) and F2 ∈ HII
s (B), then∥∥∥(∗∗ΔI

)t
F1

∥∥∥
HI

s−2t(B)
= ‖F1‖HI

s(B),

∥∥∥(∗∗ΔII
)t
F2

∥∥∥
HII

s−2t(B)
= ‖F2‖HII

s (B).

In particular, ∥∥∥(∗∗ΔI
)s/2

F1

∥∥∥
L2(B)

= ‖F1‖HI
s(B),

∥∥∥(∗∗ΔII
)s/2

F2

∥∥∥
L2(B)

= ‖F2‖HII
s (B).

Therefore, the Sobolev norms ‖ · ‖HI
s(B) and ‖ · ‖HII

s (B) can be interpreted as

the L2(B)-norms of certain generalized derivatives (i.e. in the sense of pseudo-
differential operators). This is an important new result, since norms of this kind
are used to measure the non-smoothness of interpolating functions on B, where
it is known that the interpolating spline minimizes the Sobolev norm among all
interpolants (see [4, 5, 7, 8, 9, 24] for further details). Hence, this minimum prop-
erty can, indeed, be considered as an analogue of corresponding results on the real
line (see [16, Theorem 2.3.3]) and the sphere (see [13, Lemma 6.1.4]).
Moreover, since we defined that〈(∗∗ΔX

)t
F,GX

m,n,j

〉
L2(B)

=
((∗∗ΔX

)∧
(m,n)

)t 〈
F,GX

m,n,j

〉
L2(B)

for X ∈ {I, II}, F ∈ HX
s (B), s ≥ 2t, m, n ∈ N0, j = 1, ..., 2n + 1, we immediately

get the following result.
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Theorem 4.7 The operators (∗∗ΔI)t and (∗∗ΔII)t are self-adjoint in the sense
that 〈(∗∗ΔX

)t
F1, F2

〉
L2(B)

=
〈
F1,
(∗∗ΔX

)t
F2

〉
L2(B)

for all F1, F2 ∈ HX
s (B) with X ∈ {I, II}.
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