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Abstract

The Amazon area is the largest water shed on Earth. Thus, it is of
great importance to observe the water levels regularly. The satellite mis-
sion Gravity Recovery and Climate Experiment (GRACE) allows, since
its launch in 2002, a monthly global overview of the water distribution
on Earth, in particular floods and droughts. In recent years, the Amazon
area has experienced a number of extreme weather situations in late sum-
mer (July through October), explicitly a drought in 2005 and one in 2010.
Furthermore, one can identify the remains of a flood in spring 2009 in the
summer season of 2009 as well. Here we present corresponding results with
respect to a new localized method called the RFMP that can be applied
to ill-posed inverse problems. In comparison to the usual processing of
GRACE data as well as other data types (i.e. the volumetric soil moisture
content given by the NOAA-CIRES Twentieth Century Global Reanalysis
Version II and the average layer 1 soil moisture given by the GLDAS Noah
Land Surface Model L4), we gain an improved spatial resolution with the
novel method.

1 Introduction

The GRACE gravity mission (Gravity Recovery and Climate Experiment, see
[17]), which was launched in 2002, has allowed the recovery and exploration of
estimates of regional and temporal variations of water masses in the form of
ground water, soil water, surface water, and snow pack for the first time. More-
over, the data is given as monthly potentials of the whole surface of the Earth.
Thus, we may use time-scales from one month to several years. Currently, there
are 9 years of useful and comparable data to analyze interannual (e.g. seasonal)
and long-term (e.g. the mass loss in Greenland over the last six years) changes
in our climate system that allow for a better understanding of the global wa-
ter cycle, and especially of droughts and floods. However, for direct data on a
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supraregional or global scale we still rely on simulations from hydrology models
which are only given in a poor resolution.
The combination of these hydrology models with constraints from the GRACE
gravity mission results in a better resolution (see [25, 28, 29]). Furthermore, the
monthly gravity maps of GRACE were improved by using more sophisticated
background geophysical models and data processing techniques, which leads to
a resolution better than 300 km in the reprocessed GRACE release 4 used in this
work (see [5, 7]). Because of these improvements of the resolution it was possible
to resolve, e.g., the Amazon watershed from smaller systems in the north when
researching seasonal mass changes in South America (see, e.g., [14, 28]).
While other major river systems have been analyzed as well including the Congo
basin [9], the Mississippi river basin [26], the Yangtze river basin [18], and the
Zambezi river basin [30], we can record a concentration on the Amazon river
(see, e.g., [4, 7, 8, 10, 27, 28]), which was observed for different periods of time
with different techniques. The Amazon area is the largest water shed on Earth
and, thus, has a major influence on the global climate, sea levels, and tem-
peratures. Extreme weather events like floods and droughts do not only have
an enormous impact on the population in the Amazon area but on the whole
water cycle. For this reason, a detailed and consecutive investigation of such
phenomena is of great importance. We use here a novel technique called the
RFMP to locate and analyze extreme weather events of the late summer months
of six successive years starting with 2005 in the Amazon area, where the novel
method allows for a much better localization and resolution of these effects than
the usual methods or hydrological data.
After a short introduction of the used data set and the RFMP, we concentrate
on localizing extreme weather conditions in inverted GRACE potentials. Here,
we invert for the density distribution, since it represents large-scale floods and
droughts very clearly. A comparison with other methods and other data sets
shows the superiority of the novel method in combination with satellite gravity
data with respect to the resolution and location of such extreme weather events.

2 Preliminaries

The Euclidean space Rl is equipped with the usual dot product

〈x, y〉Rl :=
l∑

j=1

xjyj , x, y ∈ Rl,

and its induced norm
||x||Rl :=

√
〈x, x〉Rl .

Furthermore, the closed ball with radius a > 0 is denoted by B := {x ∈ R3| |x| ≤
a}. Moreover, L2(B) denotes the space of all square-integrable scalar functions
on B, i.e. all F : B → R with

||F ||L2(B) :=

(∫
B
[F (x)]2dx

)1/2

<∞.
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The inner product for L2(B) is defined by

〈F,G〉L2(B) :=

∫
B
F (x)G(x)dx, F,G ∈ L2(B).

2.1 The Problem: Inverse Gravimetry

Gaining information about the distribution of, e.g., water masses in the up-
per layer of the Earth out of satellite data involves solving Newton’s law of
gravitation

V (x) = γ

∫
B

ρ(y)

|x− y|
dy, x ∈ R3 \ B,

for the density distribution ρ, where γ is the gravitational constant and V is
the gravitational potential. This problem is ill-posed for several reasons: The
solution is not unique. One possible model assumption for a unique solution
is a harmonicity constraint on ρ. This a-priori condition (as all other known
possibilities) lacks a physical interpretation but has a mathematical justifica-
tion (see the survey article [24] for further details). Moreover, the (harmonic)
solution ρ discontinuously depends on V , i.e. it is unstable. Thus, we need to
use a regularization method to get a stable approximation for ρ.
In the following, we represent the relation between the density and the gravita-
tional potential by functionals Fk, i.e.

Fk ρ :=

∫
B

ρ(y)

|xk − y|
dy ∈ R

where ρ ∈ L2(B) and xk ∈ R3 \ B (see [22] for a series representation).

2.2 The Data: GRACE Release 4

GRACE data has been provided by different research groups. In this work, we
will use the monthly data provided by the Jet Propulsion Laboratory (JPL,
see [19], Release 04), which is given in spherical harmonics coefficients up to
degree and order 60. To analyze the temporal variations, we observe the mean
potentials Va of the late summer months (July to October) for each of the years
a = 2005, . . . , 2010, where we denoise the potentials with Freeden wavelets of
the cp type (see below). Since we want to reconstruct the mass variations di-
rectly, we subtract the mean potential Vmean (the mean value of all Va) from
each potential Va and use this difference as an input to our novel algorithm to
detect local changes in the masses on Earth.
However, it is well-known that the higher degrees and orders of the GRACE
potentials contain noise that needs to be removed by some kind of smoothing.
Note that smoothing also attenuates the real signal such that we have to expect
a change in magnitudes. In [28], a smoothing function with an effective Gaus-
sian radius was suggested. Furthermore, in [20, 21] a probabilistic decorrelation
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a) input for J = 4 b) input for J = ln 25
ln 2 c) input for J = 5
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Figure 1: Input V2010 − Vmean (top row) at scales J = 4, J = ln 25
ln 2 , and J = 5

as well as the cubic polynomial filter functions ψJ(n) for J = 4, J = ln 25
ln 2 , and

J = 5 in the bottom row

method is developed to remove correlated and resolution dependent noise in the
data coefficients (i.e. GRACE striping). Such filter coefficients are given for
three different degrees of smoothing.
For our investigations, we prefer spherical wavelets (see [15, 16]) to analyze vari-
ations in the gravitational potential of the Earth. For this particular application,
this can easily be implemented by calculating the filtered expansion

√
4π

γM

a

En∑
n=3

n∑
j=−n

ψJ(n)Ṽn,jYn,j

(
x

|x|

)

to reconstruct the data from the given spherical harmonics coefficients Ṽn,j ,
where M is the Earth’s mass and En is the maximal degree of the coefficients.
Here, Yn,j represents the (fully normalized) real spherical harmonics.
As suggested in [10], we use the P-wavelet

ψJ(n) =
√
(ϕJ+1(n)2)− (ϕJ(n))2

corresponding to the cubic polynomial scaling function ϕJ(n) defined as

ϕJ(n) =

{
(1− 2−Jn)2(1 + 2−J+1n) , 0 ≤ n < 2J

0 , n ≥ 2J

as a filter (see also [15]). It controls up to which degree and to what extent the
coefficients of the spherical harmonics are considered (see the bottom row of
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a) input for J = ln 23
ln 2 b) difference of a) to the input for

J = ln 25
ln 2

Figure 2: Input V2007 − Vmean at scale J = ln 23
ln 2 and difference to the input

V2007 − Vmean at scale J = ln 25
ln 2

figure 1). Both low and high coefficients are weighted less than the coefficients
in between. Nonetheless, an increasing scale J admits more detail information.
However, it bears the risk to include errors or artefacts like satellite tracks as
well. Thus, it has to be investigated carefully which filter yields a realistic and
useful viable input. In [10], scale J = 4 (no coefficients above degree 31 are
considered) was suggested, since J = 5 (no coefficients above degree 63 are
considered) is already contaminated with noise (see a) and c) in figure 1). We
believe that a good compromise can be achieved by choosing the scale J = ln 25

ln 2
(see figure 1 b) and e)), where the coefficients up to degree 49 are taken into
account. Now we expect that there are enough details included to recover the
desired effects where the contained noise is still suppressed sufficiently.
However, this choice is only applicable if we invert a potential with a large
signal to noise ratio. In the years 2006 to 2008 there are no extreme weather
situations to be recovered. Thus, the signal to noise ratio decreases and we
recover the infamous stripes of GRACE data (confer figure 6). As a consequence,
we filter the data more strongly by using the cubic polynomial wavelet filter with
parameter J = ln 23

ln 2 which corresponds to a weighted use of all coefficients up

to degree 45. In figure 2, we display the used potential for J = ln 23
ln 2 (see figure

2 a)) as well as the difference to the potential filtered with a wavelet filter with
J = ln 25

ln 2 (see figure 2 b)) in the case of summer 2007. Clearly, we lose some of
the stripes in the potential and gain a signal with a better signal to noise ratio
as an input to our inversion.
Subsequently, we use scale J = ln 25

ln 2 to filter the input of the years 2005, 2009,
and 2010, which are the years with large signals in the GRACE potential that
dominate the noise. The years 2006 to 2008 are filtered with scale J = ln 23

ln 2 to
gain an input, where the signal is not disturbed by stripes.
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2.3 The Method: Regularized Functional Matching Pur-
suit (RFMP)

Since we want to recover the mass density distribution ρ out of the gravitational
potential given by GRACE data (which corresponds to ρ and is measured at
a particular point xi outside the Earth), we have to solve an inverse problem,
where the data is given in terms of a (linear) functional F i applied to the target
function ρ, i.e. the data are yi = F iρ, i = 1, . . . , l, where ρ is unknown.
The main idea is to find a representation for ρ in terms of all kinds of different
trial functions to best match the signal Fρ, where we collect all functionals in
the operator Fρ := (F1ρ, . . . ,F lρ). All the available trial functions are collected
in a set called the dictionary D. Now in every step, the iterative method chooses
that trial function d out of D and the corresponding coefficient α ∈ R that fits
the data best, where we measure this fit by the norm of the residual, i.e. the
squared difference between the approximation and the data. As a first step, we
get ρ1 = α1d1 consisting of a trial function d1 ∈ D and a coefficient α1 ∈ R
which are chosen such that the data misfit

∑l
i=1(yi − F i(α1d1))

2 is minimal.
Then d2 and α2 are selected such that the residual is further minimized, i.e.

l∑
i=1

[(yi −F i(α1d1))−F i(α2d2)]
2

= min
α∈R,d∈D

l∑
i=1

[(yi −F i(α1d1))−F i(αd)]2.

Generally, in every step the algorithm chooses dn and αn such that the norm of
the residual

||Rn||2Rl = ||y −Fρn||2Rl =
l∑

i=1

(yi −F iρn)
2

is minimized, where ρn =
∑n

k=1 αkdk.
Since the inverse gravimetric problem is ill-posed, we need to use a regularization
technique to get results that are stable with respect to noisy data. Here, we
use a Tikhonov regularization, where the penalty term is concerned with the
smoothness of the solution, i.e. we try to achieve a trade-off between fitting the
data and reducing the L2(B)-norm of the solution. The regularization parameter
λ correlates both terms. Thus, in step n we need to find the trial function dn+1

and the corresponding coefficient αn+1 such that they minimize

||Rn − αn+1Fdn+1||2Rl + λ||ρn + αn+1dn+1||2L2(B),

where λ > 0 is the regularization parameter.
The Regularized Functional Matching Pursuit (RFMP) starts with ρ0 = 0 (or
some model), where the algorithm iteratively appends trial functions to the ap-
proximation of the unknown solution while trying to reduce the residual com-
bined with some penalty term at each stage:
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Algorithm 2.1 (RFMP)
Start with ρ0 := 0 (or some model) and R0 = y.
Given ρn.
Build ρn+1 := ρn + αn+1dn+1 such that

dn+1 maximizes

∣∣∣∣∣∣ 〈R
n,Fd〉Rl − λ〈ρn, d〉L2(B)√
||Fd||2Rl + λ||d||2L2(B)

∣∣∣∣∣∣ and

αn+1 =
〈Rn,Fdn+1〉Rl − λ〈ρn, dn+1〉L2(B)

||Fdn+1||2Rl + λ||dn+1||2L2(B)

.

Set Rn+1 = Rn − αn+1Fdn+1.

Code optimization and parallelization now allow a fast and competitive inversion
of the data (see [13]). Note that the choice of the dictionary strongly affects
the convergence rate of the method (see [12, 14] for further details). Thus, it is
advantageous to choose a well-matched dictionary with respect to the structure
of the solution. For our problem, we have some idea about the structure of the
target function and impose this information on the choice of the dictionary.

2.4 The Dictionary

The algorithm chooses between four different types of trial functions: To recon-
struct global trends it may use the polynomials GI

0,n,j . Note that there are two

known systems of global orthonormal basis functions on B, namely GI
m,n,j and

GII
m,n,j (see, e.g., [23] and the references therein), where we decide to use the

inner harmonics

GI
0,n,j(x) :=

√
2n+ 3

a3

(
|x|
a

)n

Yn,j

(
x

|x|

)
, x ∈ B,

where n ∈ N0 and j = −n, . . . , n, since we only aim to recover the harmonic
part of the density distribution.
The localized trial functions (wavelet-based scaling functions) KI

h(·, x) based
on [1, 2, 3, 11, 23] for three different parameters h are, however, a very good
choice to recover detail structures of the density distribution. Here, we use the
parameter-dependent kernels

K̃I
h(y, x) :=

En∑
n=0

n∑
j=−n

hnGI
0,n,j(x)G

I
0,n,j(y), x, y ∈ B,

where every fixed h ∈]0, 1[ yields one particular kernel. The hat-width of such a
kernel decreases for h getting closer to 1 (see figure 3). The peak of y 7→ K̃h(y, x)
is centred at x.
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a) h = 0.5 b) h = 0.8

Figure 3: Kernel function KI
h(·, x) on the surface of the ball B with h = 0.5 and

h = 0.8

In the following, we will always consider normalized kernel functions and denote
them with KI

h(·, x), i.e.

KI
h(·, x) :=

K̃I
h(·, x)

||K̃I
h(·, x)||L2(B)

.

Explicitly, the dictionary is now given as

D :=
{
KI

h(·, x)
∣∣ h ∈ {0.95, 0.96, 0.97}, x ∈ grid(B)

}
∪

{
GI

0,n,j

∣∣ n = 3, . . . , 11; j = −n, . . . , n
}
,

where grid(B) is a nearly quadratic grid, which is equiangular each in longitude
and latitude. After the restriction to a spherical rectangle covering the Amazon
area we are left with 39 800 grid points. Furthermore, we will stop the summa-
tion in the kernel functions after 100 summations, i.e. we set En := 100. This
dictionary now contains approximately 120 000 elements of four different types.

3 Localizing extreme weather conditions in the
Amazon area

We aim to invert the gravitational potential given by GRACE data for mass
anomalies in the uppermost layer of the Earth. We may connect these mass
redistributions with water mass transports close to the surface, i.e. with changes
in the levels of ground, soil, or surface water, and snow packs. In this study, we
observe the late sommer months of six consecutive years starting with 2005 in
the Amazon area, where a large part is covered with rain forest. Thus, we do
not convert the densities to, e.g., equivalent water heights.
To solve the inverse gravimetric problem with algorithm 2.1 (RFMP), we need
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to apply the functionals Fk to the different types of trial functions:

FkGI
m,n,j = δm0

4π
2n+1

√
a3

2n+3

(
a

|xk|

)n
1

|xk| Yn,j

(
xk

|xk|

)
and

FkKI
h(·, x) =

1

||K̃I
h(·, x)||L2(B)

FkK̃I
h(·, x)

FkK̃I
h(·, x) =

En∑
n=0

hn
(

|x|
|xk|

)n
1

|xk|
Pn

(
x

|x|
· xk
|xk|

)

||K̃I
h(·, x)||L2(B) =

En∑
n=0

h2n
2n+ 3

a3
2n+ 1

4π

(
|x|
a

)2n

.

We use the dictionary D, where the series in the kernel functions is terminated
at degree 100. Moreover, we stop algorithm 2.1 (RFMP) after 20 000 iterations.
We invert the potential values yi = Va(xi) − Vmean(xi) at 23 350 data points
xi, where Va is the mean potential of the summer months (July to October) for
each of the years a = 2005, . . . , 2010 denoised with a cubic polynomial (cp) filter
ψJ , where J is chosen as suggested in section 2.2, and Vmean is the mean value
of all these Va. The data grid is similarly structured like grid(B) but is located
7 km above the Earth’s surface. Numerical tests suggested λ = 10 to be a good
regularization parameter, that allows for a smooth reconstruction of the signal
without a too large attenuation. We use the same regularization parameter for
all months to keep comparability. Note that we resolve the solution on a grid of
approximately 0.15 degrees latitude times 0.2 degrees longitude, which is a very
high resolution. Furthermore, we solve for the density in g/cm3, since GRACE
data is of limited value in the Amazon area when forming quantitative estimates
(e.g. in mm).
In figure 4, we display the resulting density deviations for summer 2005 to
summer 2010. The colour blue denotes that the humidity is higher than in the
mean, i.e. the surface and ground water levels are higher than in the mean, while
red denotes that the humidity is lower than in the mean. We clearly observe
the extreme weather events of these six years in our results, i.e. the droughts
in 2005 and 2010 and the remainders of the flood in spring 2009. Furthermore,
we can locate these events much more accurately than before (confer sections 4
and 5). The main signal in 2005 is located on a stream bifurcation, where the
Negro river meets the main stream. In 2010 the main signal is located exactly
on the Xingu river and the main stream. In 2009, we clearly see the remainders
of the flood in spring in the area of the main stream of the Amazon. Moreover,
we already see the beginnings of the drought in Venezuela, especially in the area
of the Orinoco river in the north of South America, which lead to major energy
problems in the following winter. Such a level of resolution for extreme weather
conditions in the case of inverted satellite data alone is a direct consequence
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a) 2005 b) 2006

c) 2007 d) 2008

e) 2009 f) 2010

Figure 4: Density deviations for late summer of the years 2005 to 2010 computed
with the RFMP out of 25 440 data points for the filtered GRACE gravity potential
(as discussed in section 2.2) and a regularization parameter λ = 10. For each of the
six computations, the RFMP was stopped after 20 000 iterations. The resolution is
0.15 degrees latitude times 0.2 degrees longitude. The consequences of the droughts
in 2005 and 2010 and the flood in 2009 are clearly visible and localized.
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Figure 5: Centre points x of the chosen localized trial functions KI
h(·, x) computed

with the RFMP out of 25 440 data points for late summer 2010 in the case of the
inversion of the filtered GRACE gravity potential and a regularization parameter λ =
10. The RFMP was stopped after 20 000 iterations. The choice of the centres is
automatically correlated with the main structures in the solution.

Figure 6: Density deviation for late summer of the years 2007 computed with the
RFMP out of 25 440 data points for the filtered GRACE gravity potential and a
regularization parameter λ = 10. The data is filtered with a too large parameter
J = ln 25

ln 2
. The RFMP was stopped after 20 000 iterations.

of using the novel method introduced in this work and involving localized trial
functions. As an example, we display the centres x of the chosen localized kernel
functions Kh(·, x) for summer 2009 in figure 5. Clearly, the expansion functions
are primarily chosen where the detail density of the solution is highest (confer
figure 4 f)). For more information about the theoretical properties of algorithm
2.1 (RFMP) and further numerical case studies on the mass transports in the
Amazon area derived from GRACE data as well as the density distribution in
the area of South America or the Himalayas out of the EGM2008, we refer to
[12, 13, 14].
As discussed in section 2.2, we filter the input with respect to the signal to
noise ratio of the data. Let us, as an example, display the consequences of this
decision on the solution of the year 2007. Note that we already discussed the
input of this particular year (see figure 2). In figure 6, we display the solution
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of the inversion of an input filtered with the too large parameter J = ln 25
ln 2 .

Clearly, we recover mostly stripes that are noise in form of the satellite tracks
of the GRACE satellites. In comparison, the solution corresponding to an input
filtered with J = ln 23

ln 2 (see figure 4 c)) gives a result that is not disturbed by
this kind of noise.

4 Comparison to Traditional Filtering of GRACE
Data

Let us compare our results to results gained with other methods. In [7], the
drought of 2005 was observed in a series of six consecutive years starting with
2002 out of the same data that we use here for the months August and September
of each of these years. After two steps of filtering (removing correlated noise
and smoothing with a 500-km Gaussian filter, see [6] as well) and removing the
mean of these months, one gets the variations of the gravity field, expressed
in equivalent water heights in cm on a grid of 1×1 degrees. In figure 1 in [7]
mass changes are displayed over South America for August/September of the
years 2002 to 2007. Thus, we may compare the results of the years 2005 to 2007
qualitatively to our results. Note that in [7] the colour bar is inverted, i.e. blue
denotes that the humidity is lower than in the mean while red denotes that the
humidity is higher than in the mean. Although in both time series the drought
of 2005 can be identified, it is much more localized when using the RFMP.

5 Comparison to Other Data

First, we want to compare our results to the NOAA-CIRES Twentieth Century
Global Reanalysis Version II data provided by the NOAA/OAR/ESRL PSD,
Boulder, Colorado, USA, on their Web site at http://www. esrl.noaa.gov/psd.
The data is given from the year 1948 until present and assimilates only surface
observations of synoptic pressure, monthly sea surface temperature, and sea ice
distribution. The volumetric soil moisture content in the first 100 cm is given
on a grid of approximately 2 degrees latitude times 2 degrees longitude.
Secondly, we compare our results to the average layer 1 soil moisture given by
the monthly gridded GLDAS Noah Land Surface Model L4 Monthly 0.25 x 0.25
degree which contains a series of land surface parameters simulated from the
Noah 2.7.1 model in the Global Land Data Assimilation System (GLDAS) in
0.25 degree resolution ranging from 2000 to the present (confer [25]). The data
consists of monthly averaged densities in kg/m2 of the top 100 cm. Note that
the data is based on a model.
In figures 7 (volumetric soil moisture content) and 8 (average layer 1 soil mois-
ture for the top 100 cm), we display the results of both for the late summer
months (July to October) of the years 2005 to 2010 as a difference to the re-
spective mean of all these months (as was done for the GRACE data before).
Note that the resolution of the volumetric soil moisture content is relatively low
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Figure 7: The volumetric soil moisture content in the first 100 cm for late summer
of the years 2005 to 2010 as given by the 20th Century Reanalysis V2 data. The
resolution is 2 degrees latitude times 2 degrees longitude.

a) 2005 b) 2006 c) 2007

d) 2008 e) 2009 f) 2010

Figure 8: The average layer soil moisture for the top 100 cm for late summer of the
years 2005 to 2010 as given by the GLDAS/NOAH data. The resolution is 0.25 degrees
latitude times 0.25 degrees longitude.
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(2 × 2 degrees both in latitude and longitude) while the average layer 1 soil
moisture is given on a grid of 0.25 degrees latitude times 0.25 degrees longitude.
However, the second one is a model and not given by measured data.
Nonetheless, we detect the same climate phenomena as in the results from the
inversion of GRACE data. In 2005 and 2010, we can observe a drought while we
see in 2009 the remainders of a flood in spring 2009 and the beginnings of the
drought in winter 2009 in the Orinoco basin. Both data sets do not show any
large signals in 2006. However, the volumetric soil moisture content appears
to overestimate the climate situations in 2007 (there seems to be a drought)
and 2008 (there seems to be a flood) both. Neither the results from inverted
GRACE data nor the average layer 1 soil moisture (or any other media) report
such events.
The average layer 1 soil moisture appears to illustrate the weather situation in
the Amazon area in late summer more accurately and with a better resolution
than the volumetric soil moisture content given by measured data. However,
although the inverted GRACE data as well as the soil moisture model show the
same events very clearly, the mass anomalies inverted from GRACE data show
a much better resolution and seem to locate the events far better (see the main
signal of the drought in 2005 located on a stream bifurcation or the beginnings
of the 2009 drought in the Orinoco area).
Note that a comparison of GRACE data and hydrological data in [6] also discov-
ered the poor quality of the hydrological data with respect to extreme weather
events. However, there are still no means to directly validate the GRACE data.

6 Conclusions and Outlook

We presented a novel method called the RFMP to locate climate effects like
droughts or floods in inverted satellite data. This method allows the inversion
of noisy data with a very good spatial resolution by mixing different types of
trial functions, e.g., functions with a global character as well as localized func-
tions. Furthermore, in [12, 13, 14] it was shown that the method is well-matched
to invert heterogeneous data as well as large data sets.
Here we presented a study of the extreme weather conditions in the late summer
months in the Amazon area in recent years. The RFMP clearly reconstructs the
droughts 2005 and 2010 as well as the remainders of a flood in spring 2009. Fur-
thermore, we can, for example, locate the origin of a dry spot close to a stream
bifurcation, which is very plausible. Thus, in comparison to other methods and
data, we reach a new level of resolution of these effects.
Moreover, the method showed great potential in analyzing ecologically relevant
problems. We expect it to be applicable to the analysis of similar mass trans-
ports such as the deglaciation as well. Furthermore, the characteristics of the
RFMP promise a great potential in the combination of satellite data and Earth-
bound data to get an approximation with even higher accuracy and resolution.
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