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1 Introduction

A long standing subject of research in the planetary sciences has been the
study of the interior dynamics of gas-giant-atmospheres, like those of Jupiter
and Saturn. The surfaces of these planets can be observed by telescope —
which has been going on since Galilei observed Jupiter and Saturn in the
early 17th century — and today by spacecraft. They display a clearly visible
banded structure which is caused by surface winds in the eastward and west-
ward directions (see Figure 2 in Section 8.1 of this thesis for some pictures).
These wind fields are called zonal winds. The questions which many scien-
tists have been trying to answer is if these banded structures in the wind
field extend into the planetary interior, and if they do, in which manner and
how far they extend down into the planet, as well as how strong these winds
are at a specified depth (see for example [13, 17, 18]). To attempt to answer
these questions further data related to the interior of Jupiter and Saturn is
required. This data was provided by the Juno mission around Jupiter, which
arrived in orbit around the planet in 2016, and the Cassini Grand Finale,
which took place in 2017, for Saturn. These spacecrafts measured the gravi-
tational field of their respective target planets, with the hope being that this
data would provide information about mass transport caused by wind fields
in the planetary interior. This would enable conclusions about the structure
of the atmosphere and wind fields.

The problem of reconstructing planetary interiors from gravitational data
has also been studied for Earth, where it is known as inverse gravimetry. Al-
though the knowledge of the gravitational field is much more detailed in the
case of Earth, it is known that the reconstruction of the mass density of a
planet purely from this data is not possible, because the solutions of this
inverse problem are not unique. See [8] for a discussion of this. The aim
of this thesis is to examine the mathematical methods used in the study of
atmospherical dynamics based on gravitational data of gas giants and formu-
late them in a mathematically rigorous way. This will involve orthonormal
bases for spaces of square-integrable functions, so we will start with some
fundamental mathematics necessary in the study of these objects. After that
we will examine some mathematical properties of the gravitational potential
and of solutions to the Helmholtz equation. This preparation then allows
us to describe the mathematical models which connect the zonal wind and
the gravitational field. Finally we examine how this model can be used to
formulate an inverse problem.
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2 Mathematical Background

2.1 Basic Definitions

In this whole thesis N will refer to the natural numbers without zero and
N0 := N ∪ {0} will refer to the natural numbers with zero.
We begin by introducing some basic mathematical definitions about spherical
geometry and regular surfaces. These definitions and theorems are taken from
[11, 20], Chapter 2 in both books:

Definition 2.1.1. For some R > 0, let BR(0) denote the open ball of radius
R around 0 in R3, meaning

BR(0) := {x ∈ R3 | |x| < R} ⊆ R3.

Here | · | denotes the euclidean norm in R3. We also define the unit sphere
S2 := ∂B1(0), specifically

S2 := {x ∈ R3 | |x| = 1}.

Finally it should be noted that every x ∈ R3 \ {0} can be uniquely decom-
posed as x = rξ, where r := |x| ∈ R and ξ := x

|x| ∈ S2.

Definition 2.1.2. Let Σ ⊆ R3 be a surface. Σ is called a regular surface
if the following conditions are satisfied:

I. Σ subdivides R3 into a bounded region Σint (the interior) and an un-
bounded region Σext (the exterior), such that R3 can be written as the
disjoint union R3 = Σext ∪̇Σ ∪̇Σint.

II. Σ is a closed (as in ∂Σ = 0) and compact surface, which is free of
double points.

III. There exists a C2-parametrization of Σ such that the Jacobian matrix
of the parametrization has maximal rank(= 2) in the interior of the
parameter range.

Definition 2.1.3. We define the standard basis vectors εi ∈ R3 for i ∈
{1, 2, 3} by their components:

(εi)j = δij for j ∈ {1, 2, 3}.

Here δij is the Kronecker delta.
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Definition 2.1.4. Every x ∈ R3 can be written in spherical coordinates
as

x =

r sin(θ) cos(φ)r sin(θ) sin(φ)
r cos(θ)


for r = |x| ≥ 0, θ ∈ [0, π] and φ ∈ [0, 2π). Alternatively one can write

r =

r√1− t2 cos(φ)

r
√
1− t2 sin(φ)

rt


with r and φ as above and t(= cos(θ)) ∈ [−1, 1]. We will prefer the second
representation.

Definition 2.1.5. The vectors

εr :=

√
1− t2 cos(φ)√
1− t2 sin(φ)

t

 , εφ :=

− sin(φ)
cos(φ)

0

 and εt :=

−t cos(φ)
−t sin(φ)√

1− t2


with φ and t as above form a local orthonormal basis of R3, such that εr ×
εφ = εt. They will be referred to as spherical basis vectors. Also εr = ξ
with the ξ from Definition 2.1.1.

Definition 2.1.6. For a function f ∈ C1(D), where D ⊆ R3 is open, we
define the surface gradient ∇∗ of f as the tangential part of the gradient,
so

∇∗f(rξ(φ, t)) =

(√
1− t2εt∂t +

1√
1− t2

εφ∂φ

)
f(rξ(φ, t))

in spherical coordinates. We also sometimes write ∇∗
ξ to emphasize that this

operator only includes derivatives tangential to the unit sphere.

Definition 2.1.7. For a function f ∈ C1(D), where D ⊆ R3 is open, we
define the surface curl gradient L∗ of f as

L∗f(rξ(φ, t)) := ξ ×∇∗f(rξ(φ, t))

=

(
−
√
1− t2εφ∂t +

1√
1− t2

εt∂φ

)
f(rξ(φ, t)).

Lemma 2.1.8. Let f ∈ C1(D), where D ⊆ R3 is open. Then the gradient
of f at D ∋ x ̸= 0 can be decomposed as

∇xf(x) =

(
ξ∂r +

1

r
∇∗

ξ

)
f(rξ).
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Lemma 2.1.9. For an open set D ⊆ R3 and a function f ∈ C1(D), which is
independent of the azimuthal angle φ in spherical coordinates (meaning that
∂φf(rξ(φ, t)) = 0) the surface curl gradient L∗ can be expressed as

L∗f(rξ(φ, t)) = −
√
1− t2εφ∂tf(rξ(φ, t)).

This means L∗ is proportional to εφ.

Proof. Just use the fact that ∂φf = 0 and plug this into Definition 2.1.7.

Definition 2.1.10. ∆ will refer to the well-known Laplace operator. For
a twice continuously differentiable function F it admits the following decom-
position

∆F (x) = ∂2rF (rξ) +
2

r
∂rF (rξ) +

1

r2
∆∗F (rξ) for every x ̸= 0.

Here ∆∗ is the Laplace-Beltrami operator which only acts on the coordi-
nate ξ ∈ S2. See Theorem 4.5 in [11] for further information.

We also need some L2-function spaces.

Definition 2.1.11. For an open set D ⊆ R3 and two measurable functions
f, g : D → R we define the relation

f ∼ g :⇔ f(x) = g(x) for all x ∈ D \N,

where N ⊆ D satisfies λ(N) = 0 (it has Lebesgue measure 0). The relation ∼
is obviously an equivalence relation and thus we refer to the equivalence
class of the function f as [f ].

Remark 2.1.12. If D ⊆ R3 is open and f : D → R is (Lebesgue-)integrable,
then for any g ∈ [f ], the function g is also integrable and∫

D

f(x) dx =

∫
D

g(x) dx.

Definition 2.1.13. For D ⊆ R3 open, we define the space of square-
integrable functions on D as the following set of equivalence classes of
functions

L2(D) := {[f ] | f : D → R is measurable and ∥f∥L2(D) <∞},

where the norm ∥ · ∥L2(D) is induced by the inner product

⟨[f ], [g]⟩L2(D) :=

∫
D

f(x)g(x) dx.
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It is well-known that this space is a Hilbert space. The inner product is
independent of the representative of the equivalence class by Remark 2.1.12,
therefore we will omit the equivalence class brackets from now on. The
Hilbert space L2(S2) is defined completely analogously but here the inner
product is

⟨f, g⟩L2(S2) :=

∫
S2
f(ξ)g(ξ) dω(ξ),

where dω denotes the surface measure on S2 induced by the Lebesgue mea-
sure. We will also need weighted L2-spaces on an interval (a, b) ̸= ∅ for a
weight function w, which is positive on (a, b) and continuous on [a, b]. This
space is defined analogously to the ones above but our inner product is

⟨u, v⟩L2
w(a,b) =

∫ b

a

w(r)u(r)v(r) dr.

We will refer to this space by L2
w(a, b).

2.2 Spherical Harmonics

This section is adapted from [11] Chapter 5, the proofs for the theorems and
lemmata stated here can be found in this book.

Definition 2.2.1. The Legendre polynomials Pn for n ∈ N0 form the
unique sequence of polynomials on [−1, 1], such that

1. deg(Pn) = n for all n ∈ N0,

2. If n ̸= m we have
∫ 1

−1
Pn(t)Pm(t) dt = 0 and

3. Pn(1) = 1 for all n ∈ N0.

It can be shown that these three conditions determine the sequence (Pn)n
exactly (see for example [11] Theorem 3.9 and Definition 3.10).

Definition 2.2.2. For n ∈ N0 and m ∈ {0, . . . , n}, we define

Pn,m(t) := (1− t2)m/2 dm

dtm
Pn(t) for t ∈ [−1, 1]

as the associated Legendre functions. Note that Pn,0(t) = Pn(t).
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Definition 2.2.3. A polynomial in R3 of the form

P (x) =
∑
|α|=m

Cαx
α,

where α ∈ N3
0 and not all of the coefficients Cα ∈ R are zero, is called

homogeneous of degree m ∈ N0. For a fixed value of m, the space of all these
polynomials in addition to the 0-polynomial is called Homm(R3). The space
of homogeneous polynomials which are also harmonic is denoted as

Harmm(R3) := {P ∈ Homm(R3) |∆P = 0 on R3}.

Definition 2.2.4. We define the space of spherical harmonics of fixed
degree n ∈ N0 as

Harmn(S2) := {P |S2 |P ∈ Harmn(R3)}.

The elements Yn ∈ Harmn(S2) are called spherical harmonics. It is known
that dim(Harmn(S2)) = 2n+1 (see [11] Theorem 5.6), so we will denote any
L2(S2)-orthonormal basis of Harmn(S2) by (Yn,j)j=−n,...,n.

Lemma 2.2.5. For a fixed but arbitrary n ∈ N0, every Yn ∈ Harmn(S2)
satisfies

∆∗Yn(ξ) = −n(n+ 1)Yn(ξ) for every ξ ∈ S2.

Lemma 2.2.6. For m, k ∈ N0 with m ̸= k and Ym ∈ Harmm(S2) as well as
Yk ∈ Harmk(S2), we have

⟨Ym, Yk⟩L2(S2) = 0.

Theorem 2.2.7. For any L2(S2)-orthonormal system (Yn,j)j=−n,...,n of
Harmn(S2) (here n ∈ N0 is fixed), the addition theorem

n∑
j=−n

Yn,j(ξ)Yn,j(ζ) =
2n+ 1

4π
Pn(ξ · ζ) for any ξ, ζ ∈ S2

holds, where Pn is the n-th Legendre polynomial.

Lemma 2.2.8. Every Yn ∈ Harmn(S2) satisfies

∥Yn∥C(S2) ≤
√

2n+ 1

4π
∥Yn∥L2(S2).
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Theorem 2.2.9. A L2(S2)-orthonormal system (Yn,j)n,j (where n ∈ N0 and
j ∈ {−n, . . . , n}) of spherical harmonics is complete in L2(S2), meaning that
for any F ∈ L2(S2), we have∥∥∥∥∥F −

N∑
n=0

n∑
j=−n

⟨F, Yn,j⟩L2(S2)Yn,j

∥∥∥∥∥
L2(S2)

−−−→
N→∞

0.

Definition 2.2.10. For a vector ξ(φ, t) ∈ S2, given in spherical coordinates,
we define the fully normalized spherical harmonics Yn,j : S2 → R as

Yn,j(ξ(φ, t)) :=

√
(2n+ 1)(n− |j|)!(2− δj0)

4π(n+ |j|)!
Pn,|j|(t)

{
sin(jφ) for j > 0

cos(jφ) for j ≤ 0,

where n ∈ N0 and j ∈ {−n, . . . , n}. Here δj0 denotes the usual Kronecker
delta. The name is justified because these functions are indeed in Harmn(S2)
and L2(S2)-orthonormal, thus all the properties of the above section apply
(see chapter 5.2 in [11]). From now on Yn,j will refer to the fully normalized
spherical harmonics.

2.3 The Newton Kernel and Gravitational Potential

For the problem of inverse gravimetry we need to define and study the prop-
erties of the Newton kernel.

Definition 2.3.1. For x,y ∈ R3 with x ̸= y we define the Newton kernel
as

N(x− y) :=
1

|x− y|
.

Definition 2.3.2. Let Σ be a regular surface, B := Σint and F ∈ C2(B) a
mass density. We define the gravitational potential V caused by F as

V (x) := −G
∫
B

F (y)

|x− y|
dy

for any x ∈ R3. G is the gravitational constant (G ≈ 6.67× 10−11Nm2kg−2).

Definition 2.3.3. A function V ∈ C2(R3 \ B), where B is the interior of
some regular surface, is called regular at infinity if

|V (y)| = O
(
|y|−1

)
for |y| → ∞ and

|∇V (y)| = O
(
|y|−2

)
for |y| → ∞.
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We now summarize some basic facts about the gravitational potential as
defined above (For proofs of these statements see the summary at the end of
Chapter 3.1 in [20]):

I. V exists on all of R3, is bounded, continuous and partially differentiable
everywhere. We can also exchange integration and differentiation.

II. V ∈ C2(R3 \ B) and satisfies ∆V = 0 on R3 \ B. V is also regular at
infinity.

III. V ∈ C2(B) and satisfies ∆V = 4πGF on B.

It is also worth noting that V is continuously differentiable everywhere. Al-
though this is not proven in [20], a proof of this is easily adapted from
Theorem 3.1.2 in [20], using Corollary 3.1.4 in the same book. Finally we
note one important property of the Newton kernel.

Theorem 2.3.4. For any x,y ∈ R3 with |x| < |y|, the identity

1

|x− y|
=

∞∑
n=0

|x|n

|y|n+1
Pn

(
x

|x|
· y

|y|

)
holds.

Proof. See Corollary 3.4.18 in [20].
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3 Further Development of Solutions

We model our gas giant as an open set B ⊆ R3, where B := Σint is the
interior of a regular surface Σ. The origin of our coordinate system is the
center of mass of the planet. The simplest model is B = BR(0), with the
equatorial radius R > 0.

3.1 Assumptions and Simplifications

Assumption 3.1.1. By observation of gas giants like Jupiter and Saturn,
it is clear that these planets are symmetric under rotation about the axis
of rotation [15, 16]. This means all ocurring physical quantities Q can-
not depend on the azimuthal angle φ in spherical coordinates, so
∂φQ(rξ(φ, t)) = 0 for all r, φ and t.

This simplification allows us to state the following lemma.

Lemma 3.1.2. For n ∈ N, j ∈ {−n, . . . , n} with j ̸= 0 and a mass density
F ∈ C2(B) satisfying Assumption 3.1.1, we have∫

B

|x|nYn,j
(

x

|x|

)
F (x) dx = 0.

Proof. If we use spherical coordinates to calculate the above integral, then
because F does not depend on φ, the integrals over the coordinate φ look
like ∫ 2π

0

sin(jφ) dφ or

∫ 2π

0

cos(jφ) dφ,

which both vanish because j ̸= 0. This means that the whole integral must
vanish.

Lemma 3.1.3. Let F ∈ C2(B) be the mass density of our planet B with
total mass M :=

∫
B
F (x) dx > 0. Then the center of mass is

xM :=
1

M

∫
B

xF (x) dx

and we can conlcude that ∫
B

x3F (x) dx = 0.

Proof. xM = 0, since the center of mass is at the origin. Then the integral
is just the third component of MxM = 0.
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3.2 Expansion of the Gravitational Potential

We now have every tool to expand the gravitational potential of a planet
modeled as B = BR(0) on R3 \B into spherical harmonics.

Theorem 3.2.1. If F ∈ C2(BR(0)) is a mass density satisfying Assumption
3.1.1, then its corresponding gravitational potential can be written as

V (rξ(φ, t)) = −GM
r

(
1−

∞∑
n=2

Jn

(
R

r

)n

Pn(ξ3)

)

= −GM
r

(
1−

∞∑
n=2

Jn

(
R

r

)n

Pn(t)

)
,

if r > R. The coefficients Jn are defined as

Jn := − 1

MRn

∫ R

0

∫
S2
rn+2F (rξ)Pn(ξ3) dω(ξ) dr for n ≥ 2.

Proof. The first steps are to use Theorem 2.3.4 on the Newton kernel in the
integral (which we can do because we assume r > R), then interchange series
and integral, which is justified by the convergence of the integral in L2(B),
and lastly use Theorem 2.2.7.

V (rξ) =−G

∫
BR(0)

F (y)

|rξ − y|
dy = −G

∫
S2

∫ R

0

F (sζ)

|sζ − rξ|
s2 ds dω(ζ)

=−G
∞∑
n=0

∫
S2

∫ R

0

sn

rn+1
F (sζ)Pn (ζ · ξ) s2 ds dω(ζ)

=−G

∞∑
n=0

n∑
j=−n

r−n−1

√
4π

2n+ 1
Yn,j(ξ)

×
∫
S2

∫ R

0

sn+2

√
4π

2n+ 1
Yn,j(ζ)F (sζ) ds dω(ζ).

Now we define the coefficients Vn,j for n ∈ N0 and j ∈ {−n, . . . , n} by

Vn,j :=

√
4π

2n+ 1

∫ R

0

∫
S2
rn+2Yn,j(ξ)F (rξ) dr dω(ξ)

=

√
4π

2n+ 1

∫
B

|x|nYn,j
(

x

|x|

)
F (x) dx.
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Since F satisfies Assumption 3.1.1, we conclude by Lemma 3.1.2 that Vn,j = 0
for n ∈ N and j ̸= 0. If we look at Definition 2.2.10, we see that

Yn,0(ξ) =

√
2n+ 1

4π
Pn(ξ3)

(ξ3 = t in spherical coordinates). Since P0(t) = 1 and P1(t) = t we have

V0,0 =

∫
B

F (x) dx =M ,

V1,0 =

∫
B

x3F (x) dx = 0 by Lemma 3.1.3 and

Vn,0 = −MRnJn for n ≥ 2.

Now we can plug this all back into the expansion of V .

V (rξ) = −G
∞∑
n=0

Vn,0r
−n−1Pn(ξ3)

= −GM
r

(
1 +

∞∑
n=2

(
R

r

)n
1

MRn
Vn,0Pn(ξ3)

)

= −GM
r

(
1−

∞∑
n=2

Jn

(
R

r

)n

Pn(ξ3)

)
.

This expansion is common in the literature and the coefficients Jn, calcu-
lated from the observed data, are available for computations. See for example
[21], for a table containing the coefficients J2 to J40.

3.3 Solutions to the Helmholtz Equation

In this thesis we will sometimes derive a Helmholtz equation(
∆+ γ2

)
h(x) = 0 on B ⊆ R3 (3.1)

for some quantity h ∈ C2(B) (which will either be a mass density or a
potential) and γ > 0. We require that B is a bounded and open set, such
that 0 ∈ B. In the following Γ will refer to the well-known gamma-function.
The basic definitions are from [2] 9.1.10 and 10.1.1, the rest of the chapter is
adapted from [1] pages 82-83.

Definition 3.3.1. The Bessel function Jν of the first kind and of order
ν ∈ R is defined via the following power series. For x ∈ R we have

Jν(x) :=
∞∑

m=0

(−1)m

m! Γ(ν +m+ 1)

(x
2

)2m+ν

.
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Definition 3.3.2. The spherical Bessel functions of the first kind and of
order l ∈ Z are defined via

jl(x) :=

√
π

2x
Jl+ 1

2
(x) for x > 0.

Lemma 3.3.3. For any D > 0, the sequence(
2jn(x)Γ

(
n+ 3

2

)(
x
2

)n
Γ
(
1
2

) )
n∈N0

converges to 1 for n→ ∞, uniformly in x ∈ [0, D].
This means that the spherical Bessel functions jn(x) behave as

1

2

(x
2

)n Γ
(
1
2

)
Γ
(
n+ 3

2

)
asymptotically for n→ ∞, uniformly in x ∈ [0, D].

Proof. With the power series expression for Jn+ 1
2
and the definition of the

spherical Bessel functions we get a power series expression for jn(x), namely

jn(x) =
Γ
(
1
2

)
2

∞∑
m=0

(−1)m

m! Γ
(
m+ n+ 3

2

) (x
2

)2m+n

,

where we have used Γ
(
1
2

)
=

√
π. This means the sequence we want to look

at has the form

2jn(x)Γ
(
n+ 3

2

)(
x
2

)n
Γ
(
1
2

) =
∞∑

m=0

(−1)mΓ
(
n+ 3

2

)
m! Γ

(
m+ n+ 3

2

) (x
2

)2m
= 1 +

∞∑
m=1

(−1)mΓ
(
n+ 3

2

)
m! Γ

(
m+ n+ 3

2

) (x
2

)2m
.

Because Γ(z + 1) = zΓ(z) we can simplify in the denominator

Γ

(
m+ n+

3

2

)
= Γ

(
n+

3

2

)m−1∏
k=0

(
k + n+

3

2

)

=

(
n+

3

2

)
Γ

(
n+

3

2

)m−1∏
k=1

(
k + n+

3

2

)
.
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Therefore we can estimate a coefficient occuring in the above power series by

Γ
(
n+ 3

2

)
Γ
(
m+ n+ 3

2

) =
1

n+ 3
2

m−1∏
k=1

1

k + n+ 3
2

≤ 1

n+ 3
2

m−1∏
k=1

1

k

=
1

n+ 3
2

1

(m− 1)!
.

With this estimate we can calculate the error of the sequence we are looking
at ∣∣∣∣∣2jn(x)Γ

(
n+ 3

2

)(
x
2

)n
Γ
(
1
2

) − 1

∣∣∣∣∣ ≤ 1

n+ 3
2

∞∑
m=1

1

m! (m− 1)!

(x
2

)2m
≤ 1

n+ 3
2

∞∑
m=1

1

m! (m− 1)!

(
D

2

)2m

.

We can easily check that the series on the right-hand side converges, thus we
can estimate the error by C/n for some constant C > 0, which only depends
on D. This proves the uniform convergence.

We want to prove that we can express a solution h to the Helmholtz equa-
tion (3.1) as a series of spherical harmonics and spherical Bessel functions.
For this we need a couple of lemmata.

Lemma 3.3.4. If (Yn)n∈N0 ⊆ Harmn(S2), Cn > 0 with

C2
n :=

∫
S2
|Yn(ξ)|2 dω(ξ)

and the series

∞∑
n=0

|jn(γr0)|2C2
n

converges for some r0 > 0, then the series

∞∑
n=0

jn(γr)Yn(ξ)

converges for all 0 ≤ r < r0. This convergence is absolute and uniform in
every closed subset of Br0(0).
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Proof. The convergence of the series gets us

|jn(γr0)|2C2
n −−−→

n→∞
0,

meaning this sequence is bounded. Because of Lemma 3.3.3, there is aN0 ∈ N
such that jn(γr0) ̸= 0 for all n ≥ N0. These two facts imply that there is a
constant A > 0 (which depends on r0) and N1(r0) ∈ N with

C2
n ≤ A2

|jn(γr0)|2
for all n ≥ N1(r0).

Now Lemma 2.2.8 yields |Yn(ξ)| ≤
√

(2n+ 1)/(4π)Cn for all ξ ∈ S2, meaning

|jn(γr)Yn(ξ)| ≤ Cn|jn(γr)|
√

2n+ 1

4π
≤ A

√
2n+ 1

4π

∣∣∣∣ jn(γr)jn(γr0)

∣∣∣∣
for all n ≥ N2(r0) := max{N0, N1(r0)}. Using Lemma 3.3.3 once again gets
us that

lim
n→∞

rn0 jn(γr)

rnjn(γr0)
= 1 uniformly in r ∈ [0, r0].

Therefore there is a natural number N3(r0), such that |jn(γr)/jn(γr0)| ≤
2(r/r0)

n for every n ≥ N3(r0). Putting this all together, we gain the existence
of a natural number N4(r0) := max{N2(r0), N3(r0)}, such that for every
n ≥ N4(r0) we have

|jn(γr)Yn(ξ)| ≤ A

√
2n+ 1

π

(
r

r0

)n

.

So we have estimated the term we want to sum over by a geometric series.
This proves the statement.

Lemma 3.3.5. Let f, g : S2 → R such that f, g ∈ C2(S2). Then∫
S2
f(ξ)∆∗g(ξ) dω(ξ) =

∫
S2
g(ξ)∆∗f(ξ) dω(ξ).

Proof. We know that ∇∗ · ∇∗ = ∆∗ (see Theorem 4.7 in [11]). Then by the
product rule we have∫

S2
∇∗ · (f(ξ)∇∗g(ξ)) dω(ξ) =

∫
S2
∇∗f(ξ) · ∇∗g(ξ) dω(ξ)

+

∫
S2
f(ξ)∆∗g(ξ) dω(ξ).

15



We need to look at the left-hand side of this equation more carefully. For
this, let h : S2 → R3 be a C1-vector field on S2 and define the C1-vector field
H : B1(0) \ {0} → R3, rξ 7→ h(ξ). For every 0 < ε < 1 we can apply Gauß’s
Law to H on the set Dε := B1(0) \Bε(0) to get∫

Dε

∇ ·H(x) dx =

∫
∂Dε

n ·H(x) dS(x). (3.2)

The boundary of Dε consists of two disjoint sets, the sphere of radius 1 and
the sphere of radius ε around 0. On the first set, the outer normal is n = ξ
and on the second set the outer normal is n = −ξ. This is illustrated for the
two-dimensional case in Figure 1.

Figure 1: The domain of the integral in two dimensions with outer normals.

We can now evaluate the boundary integral in the limit ε→ 0 via∣∣∣∣∫
∂Dε

n ·H(x) dS(x)−
∫
S2
ξ ·H(ξ) dω(ξ)

∣∣∣∣ = ε2
∣∣∣∣∫

S2
ξ ·H(εξ) dω(ξ)

∣∣∣∣
≤ ε2

∫
S2
∥ |H| ∥C(Dε)

dω(ξ) = 4πε2∥ |h| ∥C(S2) −−→
ε→0

0.

Here |H| is the function which maps x to |H(x)|. We can also evaluate the
volume integral of Gauß’s Law for ε → 0, by noticing that ∂rH(rξ) = 0.

16



Therefore ∇ ·H(rξ) = ∇∗ · h(ξ)/r for every rξ ∈ Bε(0) and∣∣∣∣∫
Dε

∇ ·H(x) dx−
∫
B1(0)

∇ ·H(x) dx

∣∣∣∣ = ∣∣∣∣∫
Bε(0)

∇ ·H(x) dx

∣∣∣∣
=

∣∣∣∣∫ ε

0

r2
∫
S2

∇∗ · h(ξ)
r

dω(ξ) dr

∣∣∣∣ = ∣∣∣∣∫ ε

0

r dr

∣∣∣∣ ∣∣∣∣∫
S2
∇∗ · h(ξ) dω(ξ)

∣∣∣∣
≤ ε2

2

∫
S2
∥∇∗ · h∥C(S2) dω(ξ) = 2πε2∥∇∗ · h∥C(S2) −−→

ε→0
0.

Taking the limit ε→ 0 on both sides of Equation (3.2) has led us to∫
B1(0)

∇ ·H(x) dx =

∫
S2
ξ ·H(ξ) dω(ξ).

Applying ∇ · H(rξ) = ∇∗h(ξ)/r again and recognizing that H|S2 = h, the
previous equation is equivalent to∫ 1

0

r

∫
S2
∇∗ · h(ξ) dω(ξ) dr =

∫
S2
ξ · h(ξ) dω(ξ)

⇔
∫
S2
∇∗ · h(ξ) dω(ξ) = 2

∫
S2
ξ · h(ξ) dω(ξ).

Using this fact, we conclude that∫
S2
∇∗ · (f(ξ)∇∗g(ξ)) dω(ξ) = 2

∫
S2
f(ξ) (ξ · ∇∗g(ξ)) dω(ξ) = 0,

because ξ · ∇∗ = 0. Therefore∫
S2
f(ξ)∆∗g(ξ) dω(ξ) = −

∫
S2
∇∗f(ξ) · ∇∗g(ξ) dω(ξ).

If we now switch f and g then, because the right-hand side of the above
equation is symmetric in f and g, we get the desired relation.

Lemma 3.3.6. If h ∈ C2(BR(0)) satifies Equation (3.1), then the functions

Hn,j(r) :=

∫
S2
h(rξ)Yn,j(ξ) dω(ξ)

for r ∈ [0, R) and n ∈ N0, j ∈ {−n, . . . , n}

are in C2[0, R) and satisfy the differential equation

H ′′
n,j(r) +

2

r
H ′

n,j(r)−
n(n+ 1)

r2
Hn,j(r) = −γ2Hn,j(r)

17



on (0, R). This means that the Hn,j have the form

Hn,j(r) = cn,jjn(γr) for r ∈ [0, R) and n ∈ N0, j ∈ {−n, . . . , n},

where the cn,j are real constants.

Proof. Since h is in C2(BR(0)), the function Hn,j is twice continuously dif-
ferentiable on its domain as well. Also since the integrand which defines the
Hn,j is in C2 and the integration domain is compact, we can switch differen-
tiation with respect to r and integration. Because ∆ = ∂2r +2r−1∂r + r−2∆∗,
we have

−γ2Hn,j(r) =

∫
S2
Yn,j(ξ)(−γ2h(rξ)) dω(ξ) =

∫
S2
Yn,j(ξ)∆h(rξ) dω(ξ)

=

∫
S2
Yn,j(ξ)∂

2
rh(rξ) dω(ξ) +

2

r

∫
S2
Yn,j(ξ)∂rh(rξ) dω(ξ)

+
1

r2

∫
S2
Yn,j(ξ)∆

∗h(rξ) dω(ξ)

=H ′′
n,j(r) +

2

r
H ′

n,j(r) +
1

r2

∫
S2
h(rξ)∆∗Yn,j(ξ) dω(ξ),

where we have used Lemma 3.3.5 in the latter equation. The fact that
∆∗Yn,j(ξ) = −n(n + 1)Yn,j(ξ) proves the first part of the lemma. For the
second part of the lemma we need to prove that a function f ∈ C2[0, R)
which solves

f ′′(r) +
2

r
f ′(r)− n(n+ 1)

r2
f(r) = −γ2f(r) for r > 0

has the form f(r) = jn(γr). For this we subsitute f(r) =: G(γr) and t := γr.
If we multiply the differential equation for f with r2, we arrive at

r2f ′′(r) + 2rf ′(r) + (γ2r2 − n(n+ 1))f(r) = 0.

Plugging in t and G instead of r and f yields

t2G′′(t) + 2tG′(t) + (t2 − n(n+ 1))G(t) = 0.

This is the well known differential equation for the spherical Bessel functions
(see 10.1.1 in [2] on page 437), so the general solution has the form

G(t) = c1jn(t) + c2yn(t) for some constants c1, c2 ∈ R.

See 10.1.1 on page 437 in [2] for a definition of the functions yn. Since the
function f is continuous at 0, so is G. This means that c2 = 0, because the
funtions yn all have a singularity at 0. We conclude that f(r) = c1jn(γr). So
our functions Hn,j must have the required form.
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Theorem 3.3.7. If h ∈ C2(BR(0)) satisfies the Helmholtz equation with
parameter γ > 0, then it has the form

h(rξ) =
∞∑
n=0

n∑
j=−n

cn,jjn(γr)Yn,j(ξ),

where the convergence is absolute and uniform in every closed proper subset
of BR(0).

Proof. We know by Lemma 3.3.6 that the functions

Hn,j(r) :=

∫
S2
h(rξ)Yn,j(ξ) dω(ξ)

satisfy Hn,j(r) = cn,jjn(γr) for some constants cn,j ∈ R. We then write
Yn(ξ) :=

∑n
j=−n cn,jYn,j(ξ) and define numbers Cn > 0 by

C2
n :=

∫
S2
|Yn(ξ)|2 dω(ξ) =

n∑
j=−n

|cn,j|2,

which holds because the Yn,j form an orthonormal basis of L2(S2). Now for
every r0 < R the function ξ 7→ h(r0ξ) is in L2(S2), so

∞ >

∫
S2
|h(r0ξ)|2 dω(ξ) =

∞∑
n=0

n∑
j=−n

|cn,j|2|jn(γr0)|2 =
∞∑
n=0

|jn(γr0)|2C2
n.

Here we have used the fact that Hn,j(r0) = ⟨h(r0 ·), Yn,j⟩L2(S2). The above
equation implies that the series

∑∞
n=0 |jn(γr0)|2C2

n converges. So we can use
Lemma 3.3.4 to conclude that the function

ψ(rξ) :=
∞∑
n=0

n∑
j=−n

cn,jjn(γr)Yn,j(ξ)

converges uniformly in every closed subset of BR(0). In particular this means
it is continuous in ξ for every fixed r. Applying Lemma 2.2.9 together with

⟨h(r·)− ψ(r·), Yn,j⟩L2(S2) = 0

for every n, j and fixed r proves that h(rξ) = ψ(rξ).
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4 Modelling the Wind inside the Planet

If we want to model the wind within a gas giant, the Euler equations in
a rotating reference frame together with mass conservation are the right
choice [17, 18].

∂tu+ (u · ∇)u+ 2Ω× u+Ω× (Ω× x) = − 1

F
∇p+ g for x ∈ B, (4.1)

∂tF +∇ · (Fu) = 0 for x ∈ B. (4.2)

The quantities that these equations relate are:

• u = u(x, t) ∈ C2(B × R+,R3) is the velocity of the wind,

• Ω = Ωε3 is the constant angular rotation rate of the planet,

• F = F (x, t) ∈ C2(B×R+) is the mass density from Chapter 3 satisfying
Assumption 3.1.1,

• p = p(x, t) ∈ C2(B × R+) is the pressure and

• g = g(x, t) is the gravitational acceleration.

Here x ∈ R3 represents location and t ≥ 0 is the time. B is the interior of
a regular surface Σ ⊆ R3. The terms of Equation (4.1) have the following
physical interpretations:

• ∂tu is the acceleration of the fluid (the wind),

• (u · ∇)u corresponds to the inertial acceleration, the first two terms
together form the material derivative of the wind velocity,

• The next two terms are caused by fictious forces due to rotation, the
first one is the Coriolis acceleration 2Ω× u and

• Ω× (Ω× x) is the centrifugal acceleration.

• On the right hand side we find the acceleration due to the pressure
gradient − 1

F
∇p and

• the gravitational acceleration g which is caused by the gravitational
potential V from Definition 2.3.2, so g = −∇V .

It is worth noting that we know the wind field on the surface of the planet and
will assume that this quantity and its derivatives up to order 2 are continuous
on ∂B (See for example [9, 14]). Equation (4.1) is nonlinear in u and thus
too hard to solve so we need some further simplifications.

20



4.1 Simplifying the Euler Equation

Assumption 4.1.1. We assume that Equations (4.1) and (4.2) are time
independent. In particular, this means that ∂tu = 0 and ∂tF = 0 on
B×R+. We will omit the time argument in all physical quantities from now
on.

Assumption 4.1.2. We assume that the system has a small Rossby num-
ber. The Rossby number is the ratio between the inertial and the Coriolis
acceleration. If it is small, then the Coriolis term in Equation (4.1) is domi-
nant and we can neglect the inertial term, meaning that (u · ∇)u ≈ 0.

We can further simplify Equation (4.1) by writing the centrifugal accel-
eration as a gradient field.

Definition 4.1.3. The centrifugal potential VΩ is defined as

VΩ(x) := −1

2
Ω2
(
x21 + x22

)
.

Lemma 4.1.4. The centrifugal acceleration is a potential field, specifically

∇VΩ(x) = Ω× (Ω× x).

Proof. We simply calculate the right-hand side of the above equation:

Ω× (Ω× x) = Ω2ε3 × (ε3 × (x1ε
1 + x2ε

2 + x3ε
3))

= Ω2(ε3 × (x1ε
2 − x2ε

1))

= −Ω2(x1ε
1 + x2ε

2)

= ∇VΩ(x).

With these simplifications we can restate Equation (4.1) to make it easier
to solve.

Theorem 4.1.5 (unperturbed thermal wind equation). If Equation
(4.1) as well as Assumptions 4.1.1 and 4.1.2 are satisfied, then the following
equations also (approximately) hold.

2Ω× (Fu) = −∇p− F∇(V + VΩ) on B and (4.3)

2(Ω · ∇)(Fu) = ∇F ×∇(V + VΩ) on B. (4.4)

Of course mass conservation (4.2) holds as well.
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Proof. With the above assumptions and Definition 4.1.3, Equation (4.1) be-
comes

2Ω× (Fu) + F∇VΩ = −∇p− F∇V
⇔ 2Ω× (Fu) = −∇p− F∇(V + VΩ).

For the second equation, we take the curl of Equation (4.3). For the right-
hand side of course ∇×∇p = 0 and by the product rule
∇× (F∇(V + VΩ)) = ∇F ×∇(V + VΩ), because ∇×∇(V + VΩ) = 0. For
the left-hand side it is easy to check that

∇× (Ω× (Fu)) = Ω∇ · (Fu)− (Ω · ∇)(Fu)

= −(Ω · ∇)(Fu),

where the last equality is due to mass conservation (4.2). Using these two
results the curl of Equation (4.3) is

2(Ω · ∇)(Fu) = ∇F ×∇(V + VΩ).

The partial differential equation from above is still too complicated, be-
cause the right-hand side is nonlinear in F (V also depends on F ). To have
a chance to solve this equation, we need to linearize it around some static
solution.

4.2 Perturbation of the Thermal Wind Equation

We now want to simplify further by using a perturbation approach on Equa-
tions (4.3) and (4.4).

Definition 4.2.1. We define the background or static quantities F0,p0 ∈
C2(B) and V0 (caused by F0 as in Definition 2.3.2) as those physical quantities
which solve Equation (4.3) (and therefore Equation (4.4)) for u = 0, meaning

0 = −∇p0 − F0∇(V0 + VΩ) and as a consequence

0 = ∇F0 ×∇(V0 + VΩ) are both satisfied on B.

Definition 4.2.2. We define the dynamical quantities or perturbations
F ′, V ′ and p′ as

F ′(x) := F (x)− F0(x)

V ′(x) := V (x)− V0(x)

p′(x) := p(x)− p0(x).

Here F , V and p satisfy Theorem 4.1.5. The interpretation is that F ′, V ′

and p′ are purely caused by the wind field u. Because of the linearity of the
gravitational potential, V ′ and F ′ satisfy the relation in Definition 2.3.2.
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With these definitions we can simplify the equations from the previous
subsection.

Theorem 4.2.3 (perturbed thermal wind equation). If we neglect the
second order of the perturbations in Equation (4.4), then we get a linear
partial differential equation in the quantities F ′, V ′ and u. We have

2(Ω · ∇)(F0u) = ∇F ′ ×∇(V0 + VΩ)−∇V ′ ×∇F0 on B. (4.5)

This is the most general form of the perturbed thermal wind equation.

Proof. We plug the expansions F = F0 + F ′ and V = V ′ + V0 into Equation
(4.4) and neglect the terms of second order in F ′, V ′, p′ and u.

2(Ω · ∇)((F0 + F ′)u) =∇(F0 + F ′)×∇(V0 + V ′ + VΩ)

⇔ 2(Ω · ∇)(F0u) + 2(Ω · ∇)(F ′u) =∇F0 ×∇(V0 + VΩ) +∇F0 ×∇V ′

+∇F ′ ×∇(V0 + VΩ) +∇F ′ ×∇V ′

⇔ 2(Ω · ∇)(F0u) + 2(Ω · ∇)(F ′u) =∇F0 ×∇V ′ +∇F ′ ×∇(V0 + VΩ)

+∇F ′ ×∇V ′

⇒ 2(Ω · ∇)(F0u) =∇F0 ×∇V ′ +∇F ′ ×∇(V0 + VΩ)

⇔ 2(Ω · ∇)(F0u) =∇F ′ ×∇(V0 + VΩ)−∇V ′ ×∇F0.

We have used 0 = ∇F0×∇(V0+VΩ) from Definition 4.2.1 in the second step
and neglected the terms involving F ′u and ∇F ′ ×∇V ′, which are quadratic
in the perturbations, in the third step.

We have now split up the problem into two smaller problems: First we
need to determine the static quantities F0, V0 and p0 from the equations in
Definition 4.2.1. For this an appropiate model for a rigidly rotating gas giant
is needed. Having determined the static quantities, we can plug these into
the equations in Theorem 4.2.3 and try to determine F ′ from u.
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5 The Static Model

The static quantities p0, F0 ∈ C2(B) and V0, as defined in the previous sec-
tion, are the solutions to the hydrostatic equilibrium (see Definition 4.2.1)

∇p0 = −F0∇(V0 + VΩ) on B. (5.1)

The approach we take here considers a simple model for the relationship
between pressure and density.

5.1 Polytrope of Index Unity

Assumption 5.1.1. In the following we will assume that the static density
and pressure obey a polytrope of index unity, which means that there
exists some constant K > 0 such that

p0 = KF 2
0 on B.

In general a polytrope of index n ∈ N refers to the relation p0 = KF
1+1/n
0 .

Theorem 5.1.2. If the static quantities from Definition 4.2.1 (these func-
tions are the solutions to Equation (5.1)) satisfy Assumption 5.1.1, then the
density satisfies the inhomogeneous Helmholtz equation(

∆+
2πG

K

)
F0 =

Ω2

K
on B.

Proof. Assumption 5.1.1 lets us compute the pressure gradient in terms of
the density.

∇p0 = K∇F 2
0 = 2KF0∇F0 on B.

Therefore Equation (5.1) implies that

2KF0∇F0 = −F0∇(V0 + VΩ)

⇒ 2K∇F0 = −∇(V0 + VΩ) = −∇U on B,

where U(x) := V0(x) + VΩ(x). We now take the divergence on both sides of
the above equation. Because of the properties of the gravitational potential
we summarized after Definition 2.3.2, the equality ∆V0 = 4πGF0 holds on
B. It is also easy to check that ∆VΩ = −2Ω2, such that ∆U = 4πGF0−2Ω2.
Plugging this all into the above equation, we get

2K∆F0 = −∆U = −4πGF0 + 2Ω2

⇔ 2K∆F0 + 4πGF0 = 2Ω2

⇔
(
∆+

2πG

K

)
F0 =

Ω2

K
on B,

so the specified Helmholtz equation is indeed satisfied.
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Theorem 5.1.3. Under the same conditions as in Theorem 5.1.2 and if
B = BR(0), the static density F0 has the form

F0(rξ) = F

(
2q

3
+

∞∑
n=0

bnjn

(απ
R
r
)
Pn(ξ3)

)
.

Here F := 3M/(4πR3) is the mean density of the planet, q := Ω2R3/(GM)
and α :=

√
2GR2/(πK). The bn form a sequence of real numbers, such that

the convergence of the series is uniform in every closed proper subset of B.

Proof. First we define the function f0 by

f0 : B → R+
0 , x 7→ F0(x)

F
.

Then because 2πG
K

= α2π2

R2 and Ω2

K
= F

R2α
2π2 2q

3
the Helmholtz equation from

Theorem 5.1.2 becomes(
∆+

α2π2

R2

)
f0(x) =

α2π2

R2

2q

3
for every x ∈ B.

If we define the function h(x) := f0(x)− 2q
3
, then this function satisfies(

∆+
(απ
R

)2)
h = 0 on B.

Since h ∈ C2(B), we can apply Theorem 3.3.7 to conclude that

h(rξ) =
∞∑
n=0

n∑
j=−n

cn,jjn

(απr
R

)
Yn,j(ξ),

where the convergence is uniform in closed proper subsets of B. We now fix
an arbitrarym ∈ N0 and choose a number r0 < R such that jm(απr0/R) ̸= 0.
Then we can calculate the coefficients cm,k by∫

S2
h(r0ξ)Ym,k(ξ) dω(ξ) =

∞∑
n=0

n∑
j=−n

cn,jjn

(απr0
R

)
δn,mδj,k

⇔
∫
S2 h(r0ξ)Ym,k(ξ) dω(ξ)

jm
(
απr0
R

) = cm,k,

where we used the uniform convergence of the series and the orthonormality
of the spherical harmonics. Since F0 does not depend on φ by Assumption
3.1.1, f0 and h do not depend on φ as well. So integrals of the form∫

S2
h(rξ)Yn,j(ξ) dω(ξ)
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include a factor ∫ 2π

0

sin(jφ) dφ or

∫ 2π

0

cos(jφ) dφ,

when using spherical coordinates. Both of these integrals vanish if j ̸= 0.

This means that cn,j = 0 if j ̸= 0, so if we define bn :=
√

2n+1
4π

cn,0, then

h(rξ) =
∞∑
n=0

bnjn

(απr
R

)
Pn(ξ3)

⇒ F0(rξ) = F

(
2q

3
+

∞∑
n=0

bnjn

(απ
R
r
)
Pn(ξ3)

)
.

We now present a way to calculate the potential gradient if the density
is known.

Lemma 5.1.4. If p0, F0, V0 and VΩ satisfy Equation (5.1) and Assumption
5.1.1, then we can calculate the potential gradient by

∇(V0 + VΩ) = −2K∇F0 on B.

Proof. As before we use the fact that ∇p0 = 2KF0∇F0 and plug this into
Equation (5.1). We arrive at

2KF0∇F0 = −F0∇(V0 + VΩ)

⇒ 2K∇F0 = −∇(V0 + VΩ).

This proves the desired relation.

The parameters α and (bn)n∈N0 , which are necessary to fully determine
the functions F0 and ∇V0 can be computed using the methods presented in
[5, 13]. We now present the simplest possible case, which assumes radial
symmetry.

5.2 The Case of Radial Symmetry

In the following we will assume that Assumption 5.1.1 holds. Additionally,
we assume

Assumption 5.2.1. The mass density F0 only depends on |x| or r in spher-
ical coordinates.

This allows us the simplify the result of Theorem 5.1.3.
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Theorem 5.2.2. If the static mass density F0 satisfies the prerequisites of
Theorem 5.1.3 as well as Assumption 5.2.1, then

F0(x) = F0(rξ) = F

(
2q

3
+ b0j0

(απ
R
r
))

with the same notation as in Theorem 5.1.3.

Proof. Of course we use Theorem 5.1.3 to start with the expression

F0(rξ) = F

(
2q

3
+

∞∑
n=0

bnjn

(απ
R
r
)
Pn(ξ3)

)
.

Since the convergence of this series is uniform in balls which are proper
subsets of B, we can switch series and integral in the following term which
uses spherical coordinates.

2m+ 1

2

∫ 1

−1

F0(rξ(φ, t))Pm(t) dt

=
2m+ 1

2
F

(
2q

3

∫ 1

−1

Pm(t) dt+
∞∑
n=0

bnjn

(απ
R
r
)∫ 1

−1

Pn(t)Pm(t) dt

)

=F

(
2q

3
δm,0 + bmjm

(απ
R
r
))

.

On the other hand, since F0 only depends on r by Assumption 5.2.1 we can
pull it out of the integral and get

2m+ 1

2

∫ 1

−1

F0(rξ(φ, t))Pm(t) dt = F0(rξ(φ, t))δm,0.

So if m ̸= 0, we conclude that

0 = bmjm

(απ
R
r
)
,

where this equation holds for every r ∈ (0, R). Since the spherical Bessel
functions do not vanish identically, we conclude that bm = 0 for every number
m ∈ N.

Lemma 5.2.3. If the static mass density F0 satisfies the prerequisites of
Theorem 5.1.3 as well as Assumption 5.2.1, then

rξ 7→ ∂F0(rξ)

r

is continuous and does not vanish at r = 0.
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Proof. First we calculate the radial derivative of F0. Since

j0(x) =
sin(x)

x
and j1(x) =

sin(x)− x cos(x)

x2
,

we have j′0(x) = −j1(x). With an application of the chain rule we arrive at

∂rF0(rξ) = −Fb0
απ

R
j1

(απ
R
r
)
.

To notice that the quantities F0, ∂rF0 and ∂rF0/r are defined at r = 0
requires knowledge of some basic limits.

sin(x) = x− x3

6
+O(x5) and cos(x) = 1− x2

2
+O(x4) as x→ 0,

which implies that

j0(x) = 1 +O(x2) and j1(x) =
x

3
+O(x3) as x→ 0.

This allows us to conclude the proof by noting that j1(x)/x → 1
3
as x →

0.

Remark 5.2.4. We know that ∂rF0 vanishes if and only if j1((απ/R)r) van-
ishes and that the smallest positive zero of j1, called x1 in this remark, is
greather than 4

3
π (see Table 10.6 on page 467 of [2]). So ∂rF0 would have

a zero if α > x1

π
> 4

3
. But as we will see in Remark 5.2.5, |1 − α| < 1/20

holds for both Jupiter and Saturn, meaning that the quotient ∂rF0/r does
not vanish on all of B = BR(0).

In the radially symmetric case we have seen that the static density only
depends on two unknown parameters, α and b0 (see Theorem 5.2.2). To
determine these numbers, we impose some conditions on F0, the first one is
simply the formula for the total mass∫

B

F0(x) dx =M. (5.2)

The second condition is also given in [5, 6] and states that

F0(x) = 0 for every x ∈ ∂B. (5.3)

Of course in our case B = BR(0), so we can plug in the expression for F0

from Theorem 5.2.2 and compute the integral over BR(0) in Equation (5.2)
using spherical coordinates. A bit of algebra gets us the two equations

0 =
2q

3
− 1 +

3b0
α3π3

(sin(απ)− απ cos(απ)) (5.4)

0 =
2q

3
πα + b0 sin(απ). (5.5)

We can solve these equations for the solution with the smallest non-zero α.
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Remark 5.2.5. The solutions to Equations (5.4) and (5.5) with the smallest
non-zero α are

• For Jupiter α ≈ 1.0185 and b0 ≈ 3.2748.

• For Saturn α ≈ 1.0327 and b0 ≈ 3.2667.

These values were calculated by first transforming Equations (5.4) and (5.5)
into a single equation which has α as the only unknown. Then the value
q = Ω2R3/(GM) was calculated for the respective planet using the data
from [22] and [23]. Here R is the equatorial radius. Plugging in the values
of q then allows α to be determined. Finally we calculate b0 from the value
of α.
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6 The simplest Form of the Thermal Wind

Equation

One model commonly used in the literature (in [17, 21]) makes some addi-
tional assumptions. In this chapter we will model the planet as B = BR(0).

Assumption 6.1. We assume that the static density F0 is spherically sym-
metric, meaning it only depends on the radial distance r in spherical coor-
dinates. We further assume that the static quantities F0, V0 and p0 satisfy a
polytrope of index unity (see Chapter 5).

Assumption 6.2. In this chapter we also assume that the gravitational
acceleration caused by the wind-induced density is neglible. This means that

∇V ′ ≈ 0 on B.

Lemma 6.3. If Assumptions and 6.1 and 6.2 hold, then the wind induced
density F ′ satisfies

2(Ω · ∇)(F0(rξ)uφ(rξ)) = 2K
∂rF0(rξ)

r
(εφ · L∗)F ′(rξ) (6.1)

for every rξ ∈ B \ {0}. Here uφ(rξ) := εφ · u(rξ).

Proof. Using Assumption 6.2, Equation (4.5) becomes

2(Ω · ∇)(F0u) = ∇F ′ ×∇(V0 + VΩ) on B.

Applying Lemma 5.1.4, which is valid because of Assumption 6.1, the equa-
tion is transformed into

2(Ω · ∇)(F0u) = 2K∇F0 ×∇F ′ on B.

Now we use Assumption 6.1 to simplify the gradient of F0. ∇F0 = ξ∂rF0

and because ξ ×∇ = 1
r
L∗ we get the relation

2(Ω · ∇)(F0(rξ)u(rξ)) = 2K
∂rF0(rξ)

r
L∗F ′(rξ).

We note that because of Lemma 2.1.9 the operator L∗ only has a component
in the direction of εφ. That is why we will take the inner product with εφ

on both sides, yielding

[2(Ω · ∇)(F0(rξ)u(rξ))] · εφ = 2K
∂rF0(rξ)

r
(εφ · L∗)F ′(rξ).

Since Ω = Ωε3 we get Ω · ∇ = Ω∂3. Combined with ∂3ε
φ = 0 this means

that we can pull the inner product into the differential operator and get the
desired result.
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To explicitly calculate the wind-induced density F ′ we define a related
quantity that will also be used in the next chapter.

Definition 6.4. We define the thermal-wind source term Gu as the func-
tion

Gu(rξ(φ, t)) := −4πG

K

r

∂rF0(rξ(φ, t))

∫ t

−1

(Ω · ∇)(F0uφ)(rξ(φ, τ))√
1− τ 2

dτ,

where r ∈ [0, R], φ ∈ [0, 2π) and t ∈ [−1, 1] are spherical coordinates.

Remark 6.5. The function Gu from Definition 6.4 is well defined on B =
BR(0) in the case of a radially symmetric polytropic model, as presented in
Section 5.2. This fact is based on two observations. The first one involves
the quotient

r 7→ r

∂rF0(rξ)
,

which only depends on r since we assume the static model is radially sym-
metric. We have proven that this quotient is well-defined at r = 0 in Lemma
5.2.3. In Remark 5.2.4 we also saw that ∂rF0 has no zeros on B. So in this
case the above quotient is well-defined on all of B. The second observation
involves the integral ∫ t

−1

(Ω · ∇)(F0uφ)(rξ(φ, τ))√
1− τ 2

dτ.

We assumed that both F0 and u are twice continuously differentiable on B.
This means that the function

rξ 7→ (Ω · ∇)(F0(rξ)uφ(rξ))

is bounded on B. In particular, the function

t 7→ (Ω · ∇)(F0(rξ(φ, t))uφ(rξ(φ, t)))

is then bounded on [−1, 1] for every r ∈ [0, R] (it is independent of φ by
Assumption 3.1.1). If we combine this with the fact that the function

τ 7→ (1− τ 2)−1/2

is integrable on [−1, 1], then we conclude that

τ 7→ (Ω · ∇)(F0uφ)(rξ(φ, τ))√
1− τ 2

is integrable over [−1, 1] for every r ∈ [0, R] and φ ∈ [0, 2π) in spherical
coordinates. This proves that Gu on the whole is well-defined on B. We can
also conclude that it is continuous on this set.
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Theorem 6.6. Under Assumptions 6.1 and 6.2 we can calculate the latitu-
dinal derivative of F ′ by

∂tF
′(rξ(φ, t)) = − r

K∂rF0(rξ(φ, t))

(Ω · ∇)(F0uφ)(rξ(φ, t))√
1− t2

.

Here 0 ≤ r < R, φ ∈ [0, 2π) and t ∈ (−1, 1) (although all the quantities
are of course independent of φ by Assumption 3.1.1). This means we can
determine the wind-induced density F ′ up to an additive function which only
depends on r – called η(r) – by the following formula.

F ′(rξ(φ, t)) =
Gu(rξ(φ, t))

4πG
+ η(r)

Proof. For the first formula we use Lemma 6.3 and divide by 2K∂rF0/r. We
can do this because of Lemma 5.2.3 and Remark 5.2.4. So we arrive at

r

K∂rF0(rξ(φ, t))
(Ω · ∇)(F0uφ)(rξ(φ, t)) = (εφ · L∗)F ′(rξ(φ, t)).

By Lemma 2.1.9, we know that L∗F ′ = εφ(εφ · L∗)F ′ and therefore

εφ · L∗F ′(rξ(φ, t)) = −
√
1− t2∂tF

′(rξ(φ, t)).

Now we just need to plug this into our equation and divide by −
√
1− t2,

which is possible for t ∈ (−1, 1). This gets us the first equation we wanted to
derive. For the second equation, we just need to integrate the first one with
respect to the latitude t and notice that the coefficient r/(K∂rF0) does not
depend on t. This means we can pull this factor out of the integral and are
then left with the quantity Gu/(4πG) . Of course we also get a constant of
integration which will depend on the remaining coordinates r and φ. Since
we assume φ-independence, this constant will only depend on r and we name
it as η(r).
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7 The Thermo-Gravitational Wind Equation

Another model which has been considered in the literature (by [18]) is the
thermo-gravitational wind equation. It is based on deriving a Helmholtz
equation for the wind-induced gravitational potential V ′. This model also
presumes B = BR(0).

7.1 Derivation of the Helmholtz Equation

We first present the necessary assumptions we need to make this model work.

Assumption 7.1.1. We assume that the static density F0 is spherically
symmetric, meaning it only depends on the radial distance r in spherical
coordinates. We further assume that the static quantities F0, V0 and p0 satisfy
a polytrope of index unity (see Chapter 5).

The main difference in this modelling to the previous one is that we do
not neglect the contribution of the wind-induced gravitational potential V ′

to the force balance.

Lemma 7.1.2. If Assumption 7.1.1 holds, then the wind-induced density F ′

and the corresponding gravitational potential V ′ satisfy

2(Ω · ∇)(F0(r)uφ(rξ)) =
∂rF0(rξ)

r
(εφ · L∗) (2KF ′(rξ) + V ′(rξ)) (7.1)

for every rξ ∈ B.

Proof. We start out with the perturbed thermal wind equation (4.5) and
substitute −2K∇F0 for ∇(V0+VΩ) (Lemma 5.1.4), just as in the last section.

2(Ω · ∇)(F0(rξ)u(rξ)) = 2K∇F0(rξ)×∇F ′(rξ) +∇F0(rξ)×∇V ′(rξ)

⇔ 2(Ω · ∇)(F0(rξ)u(rξ)) = ∇F0(rξ)×∇(2KF ′(rξ) + V ′(rξ)).

Using the fact that F0 only depends on r, we derive ∇F0 = ξ∂rF0 and
therefore

2(Ω · ∇)(F0(rξ)u(rξ)) =
∂rF0(r)

r
L∗(2KF ′(rξ) + V ′(rξ)).

Again because of Lemma 2.1.9 we take the inner product with εφ on both
sides and arrive at the statement we wanted to prove, exactly as in Lemma
6.3.
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Lemma 7.1.3. The wind-induced potential satifies the Helmholtz equation

∆V ′(rξ) +
2πG

K
V ′(rξ) = Gu(rξ) + η(r) for all rξ ∈ BR(0). (7.2)

Here η(r) is an undetermined function which only depends on r. For every
rξ ∈ R3 \BR(0) the wind induced potential satisfies the Laplace equation

∆V ′(rξ) = 0.

Proof. The wind-induced potential V ′ is caused by the wind-induced density
F ′ as in Definition 2.3.2, meaning that ∆V ′ = 4πGF ′ in BR(0) and ∆V ′ = 0
on R3 \ BR(0). This proves the second equation of the lemma. For the
first equation, we assume rξ ∈ BR(0), then the derivation is very similar
to the proof of Theorem 6.6. We start with Equation (7.1) and notice that
(εφ · L∗)F ′ = −

√
1− t2∂tF

′ by Lemma 2.1.9. So we can manipulate the
equation in exactly the same way as in the proof of Theorem 6.6 arriving at

− 2r

∂rF0(rξ(φ, t))

(Ω · ∇)(F0uφ)(rξ(φ, t))√
1− t2

= ∂t(2KF
′(rξ(φ, t)) + V ′(rξ(φ, t)))

for every 0 ≤ r < R, 0 ≤ φ < 2π and −1 < t < 1. Again we integrate
both sides with respect to t, then the coefficient −2r/∂rF0 on the left-hand
side does not depend on the integration variable. Also we get a constant of
integration c which only depends on r. With Definition 6.4 this results in

K

2πG
Gu(rξ(φ, t)) + c(r) = 2KF ′(rξ(φ, t)) + V ′(rξ(φ, t)).

Now since ∆V ′ = 4πGF ′ is satisfied on BR(0) we get

K

2πG
∆V ′(rξ) + V ′(rξ) =

K

2πG
Gu(rξ) + c(r)

⇔
(
∆+

2πG

K

)
V ′(rξ) = Gu(rξ) + η(r),

where η(r) := 2πGc(r)/K. This proves the lemma.

To proceed further we need to develop the theory of solutions to an in-
homogeneous Helmholtz equation as in Equation (7.2).

7.2 An Orthonormal Basis for the Gravitational Po-
tential

In this chapter B will refer to the set BR(0) ⊆ R3 for some radius R > 0.
The problem we want to solve can be stated as follows.
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Definition 7.2.1. For a given source term f ∈ C2(B) and constant β ≥ 0
we want to solve an equation of the form

∆V (x) + β2V (x) = f(x) for every x ∈ B,

where the solution V ∈ C2(B) ∩ C1(R3) ∩ C2(R3 \ B) is a gravitational
potential, which implies V is regular at infinity and solves ∆V = 0 in R3 \B.

We will solve this equation by developing an orthonormal basis of L2(B)
which is in some sense ”similar” to the gravitational potential. By this
we mean that our basis functions should fufill some boundary conditions
that are motivated by the gravitational potential. As we will show now the
gravitational potential is actually fully determined on the outside of B once
we know the value on the boundary ∂B.

Theorem 7.2.2. The gravitational potential V ∈ C2(R3 \B) which satisfies

∆V (x) = 0 for every x ∈ R3 \B

and is regular at infinity is determined by the formula

V (rξ) =
∞∑
n=0

n∑
j=−n

⟨V (R ·), Yn,j⟩L2(S2)

(
R

r

)n+1

Yn,j(ξ)

for every r > R.

Proof. The proof of this is easily adapted from the explanations in [20],
Chapter 3.4 (see page 136 for the formula).

To further proceed, we derive some boundary conditions for V on ∂B,
which will motivate the boundary conditions for our basis, as previously
stated.

Lemma 7.2.3. If the gravitational potential V satisfies all the conditions of
Theorem 7.2.2 as well as V ∈ C1(R3), then in the sense of L2(S2) we have

V (Rξ) =
∞∑
n=0

n∑
j=−n

⟨V (R ·), Yn,j⟩L2(S2)Yn,j(ξ) and

∂rV (rξ)
∣∣
r=R

= −
∞∑
n=0

n∑
j=−n

n+ 1

R
⟨V (R ·), Yn,j⟩L2(S2)Yn,j(ξ).
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Proof. The first equation follows directly because V ∈ C1(R3) ⇒ V (R ·) ∈
C1(S2) ⊆ L2(S2). For the second equation we need to prove first that we
can differentiate the series termwise with respect to r. This is possible if the
series over the differentiated terms converges uniformly and the series itself
converges at least at one point (see Theorem 104.6 on page 554 of [7]). To
prove this we take a fixed, but arbitrary r0 > R and note first that for every
r > r0 and any large N ∈ N we have∣∣∣∣∣

∞∑
n=N+1

n∑
j=−n

⟨V (R ·), Yn,j⟩L2(S2)

(
R

r

)n+1

Yn,j(ξ)

∣∣∣∣∣
≤

∞∑
n=N+1

n∑
j=−n

∣∣⟨V (R ·), Yn,j⟩L2(S2)
∣∣ ∣∣∣∣Rr

∣∣∣∣n+1

|Yn,j(ξ)|

≤
∞∑

n=N+1

n∑
j=−n

∥V (R ·)∥L2(S2)

∣∣∣∣Rr
∣∣∣∣n+1

√
2n+ 1

4π

≤
∥V (R ·)∥L2(S2)√

4π

∞∑
n=N+1

(2n+ 1)3/2
∣∣∣∣Rr0
∣∣∣∣n+1

→ 0 for N → ∞,

where the convergence to 0 is independent of r and ξ. In the second inequality
we used the Cauchy-Schwarz inequality and Lemma 2.2.8. This shows the
uniform convergence of the series representing V on R3 \Br0(0), so this series
converges pointwise on this set. The argument for the differentiated series is
almost the same, because for r > r0 and large N ∈ N we have∣∣∣∣∣

∞∑
n=N+1

n∑
j=−n

⟨V (R ·), Yn,j⟩L2(S2)∂r

(
R

r

)n+1

Yn,j(ξ)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

n=N+1

n∑
j=−n

n+ 1

R
⟨V (R ·), Yn,j⟩L2(S2)

(
R

r

)n+2

Yn,j(ξ)

∣∣∣∣∣
≤

∞∑
n=N+1

n∑
j=−n

n+ 1

R
∥V (R ·)∥L2(S2)

∣∣∣∣Rr
∣∣∣∣n+2

√
2n+ 1

4π

≤
∥V (R ·)∥L2(S2)√

4πR2

∞∑
n=N+1

(2n+ 1)5/2
∣∣∣∣Rr0
∣∣∣∣n+2

→ 0 for N → ∞.

Again the convergence is independent of r and ξ, so this series converges uni-
formly for every x ∈ R3 with |x| > r0. This proves that we can differentiate
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every term in the series seperately, implying

∂rV (rξ) =
∞∑
n=0

n∑
j=−n

⟨V (R ·), Yn,j⟩L2(S2)∂r

(
R

r

)n+1

Yn,j(ξ)

= −
∞∑
n=0

n∑
j=−n

n+ 1

R
⟨V (R ·), Yn,j⟩L2(S2)

(
R

r

)n+2

Yn,j(ξ).

Since ∂rV (r ·) ∈ C(S2) ⊆ L2(S2) for every r ≥ R, we conclude that

⟨∂rV (r ·), Yn,j⟩L2(S2) = −n+ 1

R

(
R

r

)n+2

⟨V (R ·), Yn,j⟩L2(S2)

for every n ∈ N0 and j ∈ {−n, . . . , n}. Because the function

r 7→ ⟨∂rV (r ·), Yn,j⟩L2(S2)

is continuous on [R,∞) for every valid index n and j, we can take the limit
r → R in the above equation to get

⟨∂rV (r ·), Yn,j⟩L2(S2)
∣∣
r=R

= −n+ 1

R
⟨V (R ·), Yn,j⟩L2(S2).

The lemma we just proved will give some motivation for the orthonormal
basis we are about to construct. Because of the symmetry of the underlying
space we can decompose the inner product of L2(B). If u, v ∈ L2(B), we
have

⟨u, v⟩L2(B) =

∫
B

u(x)v(x) dx =

∫ R

0

r2
∫
S2
u(rξ)v(rξ) dω(ξ) dr.

This suggests that we should decompose our orthonormal basis similarly,
meaning any basis function u should have the form

u(x) = u(rξ) = F (r)Yn,j(ξ),

where the Yn,j are the fully normalized spherical harmonics, which form
an orthonormal basis of L2(S2). Two basis functions u ̸= v with u(rξ) =
F (r)Yn,j(ξ) and v(rξ) = G(r)Yn,j(ξ) must then satisfy∫ R

0

r2F (r)G(r) dr = 0 and∫ R

0

r2F 2(r) dr = 1.
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This means we have to construct an orthonormal basis of the weighted L2-
space L2

w(0, R), where the basis functions are twice continuously differentiable
and the weight is w(r) := r2. Since we want some similarity to the gravi-
tational potential, we demand a boundary condition motivated by Lemma
7.2.3:
The function F which forms the radial part of one of our basis functions u
satisfies F ∈ C2[0, R] and

F ′(R) = −n+ 1

R
F (R). (7.3)

Since we want to develop a gravitational potential into this basis and we often
encounter Laplacians when dealing with potentials, we also demand that our
basis functions are eigenfunctions of the Laplacian on B. This means any
basis function u should satisfy

∆u = −λu on B. (7.4)

At first we only demand λ ∈ C but we will restrict this later.

Lemma 7.2.4. If u ∈ C2(B\{0}) is of the form u(x) = u(rξ) = F (r)Yn,j(ξ)
for some n ∈ N0 and j ∈ {−n, . . . , n}, then the following statements are
equivalent:

1. ∆u(rξ) = −λu(rξ) for every rξ ∈ B.

2. LF (r) = −λw(r)F (r) for every r ∈ (0, R), where w(r) := r2 and

LF (r) :=
d

dr

(
r2

d

dr
F (r)

)
− n(n+ 1)F (r).

Proof. Since ∆ = ∂2r + 2
r
∂r +

1
r2
∆∗ and ∆∗Yn,j(ξ) = −n(n + 1)Yn,j(ξ) for

every valid index n and j and finally w(r) = r2 > 0 on (0, R), the following
equivalences hold for every r ∈ (0, R) and ξ ∈ S2

LF (r) = −λw(r)F (r)

⇔
(

d

dr

(
r2

d

dr
F (r)

)
− n(n+ 1)F (r)

)
Yn,j(ξ) = −λr2F (r)Yn,j(ξ)

⇔
(
r2F ′′(r) + 2rF ′(r)− n(n+ 1)F (r)

)
Yn,j(ξ) = −λr2F (r)Yn,j(ξ)

⇔
(
F ′′(r) +

2

r
F ′(r)− n(n+ 1)

r2
F (r)

)
Yn,j(ξ) = −λF (r)Yn,j(ξ)

⇔ ∆u(rξ) = −λu(rξ),

where the multiplication by the Yn,j preserves the equivalence since they are
not identically zero.
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We are now ready to define the eigenvalue problem which the radial parts
F of our basis are supposed to satisfy.

Definition 7.2.5. For any of our basis functions u(rξ) = F (r)Yn,j(ξ), where
n ∈ N0 and j ∈ {−n, . . . , n}, the functions F ∈ C2[0, R] must satisfy the
eigenvalue problem LF (r) = −λw(r)F (r) for every r ∈ (0, R) and some
λ ∈ C. Here

LF (r) :=
d

dr

(
r2

d

dr
F (r)

)
− n(n+ 1)F (r), (7.5)

with the weight function w(r) := r2. We also impose the boundary conditions

δn,0F
′(0) + (1− δn,0)F (0) = 0 and (7.6)

F ′(R) +
n+ 1

R
F (R) = 0. (7.7)

Here the second boundary condition is motivated by our examination of
the gravitational potential and the first one is imposed to provide unique
solvability. We will call λ the eigenvalue of the problem and F the eigenfunc-
tion. Of course we get a different boundary value problem for every n ∈ N0,
but we will suppress this in the notation for now.
Now we need to find every eigenvalue and -function of the problem defined
in Definition 7.2.5. First we will prove some general properties of the eigen-
values λ.

Theorem 7.2.6. If the function F ∈ C2[0, R] satisfies the eigenvalue problem
stated in Definition 7.2.5 for some n ∈ N0, then the eigenvalue λ is a real
number and we can choose the eigenfunctions F as real functions.

Proof. First we define the vector space V ⊆ C2[0, R] as

V := {h ∈ C2[0, R] |h satisfies (7.6) and (7.7)}.

Since the boundary conditions are linear with respect to the function we
apply them to, this is indeed a vector space. For F,G ∈ V we define the
inner product

⟨F,G⟩V :=

∫ R

0

F (r)G(r) dr.
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Then we can use integration by parts twice to show that the differential
operator L is self-adjoint in (V, ⟨·, ·⟩V ).

⟨LF,G⟩V =

∫ R

0

d

dr

(
r2

d

dr
F (r)

)
G(r) dr − n(n+ 1)⟨F,G⟩V

=
[
r2F ′(r)G(r)

]R
0
−
∫ R

0

F ′(r)r2G′(r) dr − n(n+ 1)⟨F,G⟩V

=
[
r2
(
F ′(r)G(r)− F (r)G′(r)

)]R
0
+ ⟨F,LG⟩V

= R2
(
F ′(R)G(R)− F (R)G′(R)

)
+ ⟨F,LG⟩V .

Since both F and G are in V , the boundary term satisfies

R2
(
F ′(R)G(R)− F (R)G′(R)

)
=−R(n+ 1)F (R)G(R) +R(n+ 1)F (R)G(R) = 0,

which proves that the operator L is self-adjoint on V . If F is a solution
of the eigenvalue problem stated in Definition 7.2.5, we have F ∈ V and
LF = −λwF on (0, R). Then

−λ⟨wF, F ⟩V = ⟨LF, F ⟩V = ⟨F,LF ⟩V = −λ⟨F,wF ⟩V
⇔

(
λ− λ

)
⟨wF, F ⟩V = 0.

Here the equivalence holds because w is a real function. Since we do not allow
F to be identically zero and w > 0 on (0, R), the term ⟨wF, F ⟩V is positive
meaning that λ = λ, so λ ∈ R. Since L is a real differential operator, if F is
a (potentially complex) solution to LF = −λwF , so is Re(F ), meaning we
can choose real eigenfunctions.

Remark 7.2.7. Using the notation of the last theorem, we have seen that for
F,G ∈ V

⟨LF,G⟩V = ⟨F,LG⟩V

holds. This means that for two eigenfunctions LF = −λwF and L = −µwG,
where λ ̸= µ, we can conclude that

−λ⟨wF,G⟩V = ⟨LF,G⟩V = ⟨F,LG⟩V = −µ⟨F,wG⟩V = −µ⟨wF,G⟩V .

We used the fact that w and the eigenvalues only take real values. Rearrang-
ing this equation we get

(λ− µ)⟨wF,G⟩V = 0.
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Because of (λ−µ) ̸= 0, the inner product must be zero. Since the eigenfunc-
tions can also be chosen as real functions such that

0 = ⟨wF,G⟩V =

∫ R

0

r2F (r)G(r) dr = ⟨F,G⟩L2
w(0,R),

the eigenfunctions for different eigenvalues are orthogonal in L2
w(0, R).

Theorem 7.2.8. If the function F ∈ C2[0, R] satisfies the eigenvalue problem
stated in Definition 7.2.5 for some n ∈ N0, then the eigenvalue λ is non-
negative.

Proof. We again use the vector space V from the previous theorem

V := {h ∈ C2[0, R] |h satisfies (7.6) and (7.7)}

and almost the same inner product on this space

⟨F,G⟩V :=

∫ R

0

F (r)G(r) dr.

We have neglected the complex conjugate in the inner product since we
already know that all occuring quantities are real. Integrating by parts once
and using F ∈ V we get

⟨LF, F ⟩V =

∫ R

0

d

dr

(
r2

d

dr
F (r)

)
F (r) dr − n(n+ 1)⟨F, F ⟩V

=
[
r2F ′(r)F (r)

]R
0
−
∫ R

0

r2 (F ′(r))
2
dr − n(n+ 1)⟨F, F ⟩V

= R2F ′(R)F (R)− ⟨wF ′, F ′⟩V − n(n+ 1)⟨F, F ⟩V .

Since F is in V , it satisfies Equation (7.7). This implies that

R2F ′(R)F (R) = −R2n+ 1

R
F 2(R) = −(n+ 1)RF 2(R) ≤ 0.

If we define the function q(r) := r, then q2 = w and

⟨LF, F ⟩V = −
(
(n+ 1)RF 2(R) + ∥qF ′∥2V + n(n+ 1)∥F∥2V

)
≤ 0.

Now if LF = −λwF for any F ∈ V and λ ∈ R, then

−λ∥qF∥2V = ⟨LF, F ⟩V ≤ 0

⇒ λ ≥ 0.
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In the following we will use the notation λ = γ2, where γ ≥ 0 is some
real number, for the eigenvalue λ from Definition 7.2.5. We are now ready
to solve the eigenvalue problem presented in Definition 7.2.5.

Theorem 7.2.9. The solutions F ∈ C2[0, R] to the eigenvalue problem for
in Definition 7.2.5 are

F (r) := Fm,n(r) := cm,njn(γn,mr) for n ∈ N0 and m ∈ N,

where the cm,n are some real constants and the γn,m are the positive solutions
of

jn−1(γn,mR) = 0 for n ∈ N0 and m ∈ N.

The eigenvalues λ corresponding to F = Fm,n are λ = γ2n,m and these values
are distinct for every n ∈ N0 and m ∈ N.

Proof. We first consider the case γ = 0 for an arbitrary n ∈ N0. In this case
the differential equation for F becomes

r2F ′′(r) + 2rF ′(r)− n(n+ 1)F (r) = 0 for every r ∈ (0, R).

This is an Euler differential equation, which can be solved with the substi-
tution F (r) =: G(ln(r)). Then our solution is

F (r) = c1r
n + c2r

−n−1.

Now applying boundary condition (7.6) yields c2 = 0, since for every n ∈ N0

our solution has to be continuously differentiable at r = 0. The second
boundary condition (7.7) can be simplified to

c1(2n+ 1)Rn−1 = 0,

which can only be true if c1 = 0, so we conclude that F (r) = 0 for every
r ∈ (0, R). This means the case γ = 0 only admits the trivial solution F = 0
for every n ∈ N0 and will not be considered further. Now for the more
interesting case γ > 0, for an arbitrary n ∈ N0. Our differential equation in
this case is

r2F ′′(r) + 2rF ′(r)− n(n+ 1)F (r) + γ2r2F (r) = 0,

which can be transformed into the differential equation for the spherical
Bessel functions of order n by the transformation F (r) =: G(γr) and s := γr.
Our general solution is

F (r) = c1jn(γr) + c2yn(γr)
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(see 10.1.1 in [2] for example). Boundary condition (7.6) is either F ′(0) = 0
in the case n = 0 or F (0) = 0 in the case n ∈ N. The functions jn satisfy
these conditions automatically, but the functions yn are singular at r = 0,
so we conclude that c2 = 0. For the second boundary condition we use the
recurrence relation found in 10.1.21 in [2]

jn−1(x) = j′n(x) +
n+ 1

x
jn(x) for every n ∈ N0 and x > 0.

Condition (7.7) is thus equivalent to

F ′(R) +
n+ 1

R
F (R) = 0

⇔ c1γj
′
n(γR) + c1

n+ 1

R
jn(γR) = 0

⇔ c1γ

(
j′n(γR) +

n+ 1

γR
jn(γR)

)
= 0

⇔ c1γjn−1(γR) = 0

⇔ c1jn−1(γR) = 0.

Since the trivial solution F = 0 is uninteresting, we conclude that c1 ̸= 0 and
therefore γ > 0 must satisfy jn−1(γR) = 0. This equation is satisfied if and
only if Jn−1/2(γR) = 0, which has a countable number of ascending solutions
γn,m. These solutions are distinct for every n,m ∈ N (this follows from 9.5.2
from [2] as well as 15.21, 15.22 and the fifth paragraph in 15.28 from [3]).

Lemma 7.2.10. The solutions Fm,n from Theorem 7.2.9 satisfy

∥Fm,n∥2L2
w(0,R) =

∫ R

0

r2j2n(γn,mr) dr =
R3j2n(γn,mR)

2
,

if cm,n = 1. This implies that the functions

r 7→

√
2

R3j2n(γn,mR)
jn(γn,mr)

are normalized in L2
w(0, R) for every n ∈ N0 and m ∈ N.

Proof. If we define λn,m := γn,mR, then these coefficients satisfy jn−1(λn,m) =
0 for every m ∈ N and n ∈ N0. Therefore using the substitution s := r/R
implies ∫ R

0

r2j2n(γn,mr) dr = R3

∫ 1

0

s2j2n(λn,ms) ds,
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meaning we need to calculate the coefficients

dn,m :=R3

∫ 1

0

s2j2n(λn,ms) ds, where

0 = jn−1(λn,m) for every n ∈ N0 and m ∈ N.

Now since jn(x) =
√

π
2x
Jn+1/2(x)

dn,m =
πR3

2λn,m

∫ 1

0

sJ2
n+1/2(λn,ms) ds, where

0 = Jn−1/2(λn,m) for every n ∈ N0 and m ∈ N.

Using Lemma B.1, we conclude that the λn,m are the positive solutions to
the equation

J ′
n+1/2(x) +

n+ 1/2

x
Jn+1/2(x) = 0 ⇔

(
n+

1

2

)
Jn+1/2(x) + xJ ′

n+1/2(x) = 0,

which means we can apply Theorem B.2 to conclude that

dn,m =
πR3

4λn,m
J2
n+1/2(λn,m) =

R3

2
j2n(λn,m) =

R3

2
j2n(γn,mR).

Theorem 7.2.11. For a fixed but arbitrary n ∈ N0 and with the definitions
from Theorem 7.2.9, the sequence of functions

Gm,n(r) :=

√
2

R3j2n(γn,mR)
jn(γn,mr),

where m ∈ N, forms an orthonormal basis of L2
w(0, R).

Proof. We have seen in Theorem 7.2.9 that the functions Gm,n are eigen-
functions of the Problem 7.2.5 for eigenvalues γ2n,m, which are all distinct.
Therefore we apply Remark 7.2.7 to conclude that (Gm,n)m∈N is an orthog-
onal sequence in L2

w(0, R). This sequence is also orthonormal by Lemma
7.2.10. What remains to be proven is the completeness in L2

w(0, R). To do
this, we first take an arbitrary F ∈ C2

c(0, R) ⊆ L2
w(0, R) (functions which are

twice continuously differentiable and have compact support in (0, R)) and
show that the partial Fourier sum

FM(r) :=
M∑

m=1

⟨F,Gm,n⟩L2
w(0,R)Gm,n(r)
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converges to F in L2
w(0, R) as M → ∞. We want to use Theorem B.3, so

we need to transform from spherical to ordinary Bessel functions and from
the interval (0, R) to (0, 1). For the second transformation we substitute
s := r/R and λn,m := γn,mR. We have seen in the proof of Lemma 7.2.10
that these numbers are the positive solutions of(

n+
1

2

)
Jn+1/2(x) + xJ ′

n+1/2(x) = 0.

We also define

f(s) := F (Rs) and

fM(s) :=
M∑

m=1

⟨F,Gm,n⟩L2
w(0,R)Gm,n(Rs)

for every s ∈ [0, 1] and M ∈ N. Then we have

Gm,n(Rs) =

√
2

R3j2n(λn,m)
jn(λn,ms) =

1√
s

√
2

R3J2
n+1/2(λn,m)

Jn+1/2(λn,ms).

With the substitution s = r/R we can also transform the Fourier coefficients.

⟨F,Gm,n⟩L2
w(0,R) = R3

∫ 1

0

s2F (Rs)Gm,n(Rs) ds

=R3/2

√
2

J2
n+1/2(λn,m)

∫ 1

0

s
(√

sf(s)
)
Jn+1/2(λn,ms) ds.

For ease of notation we define

cm :=

∫ 1

0

s
(√

sf(s)
)
Jn+1/2(λn,ms) ds for every m ∈ N.

Plugging this all into the expression for fM(s) yields

√
sfM(s) =

M∑
m=1

2

J2
n+1/2(λn,m)

cmJn+1/2(λn,ms),

which looks like the Dini-Bessel series from Theorem B.3. It is easy to see that
the function f is in C2

c(0, 1). If we define g(s) :=
√
sf(s), then this function

vanishes in a neighborhood of s = 0, since supp(g) = supp(f) ⊊ (0, 1). We
conclude that g ∈ C1[0, 1], so we can apply Theorem B.3, which proves that
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√
sfM(s) →

√
sf(s) as M → ∞ for every s ∈ (0, 1). It is then obvious that

FM(r) → F (r) as M → ∞ for every r ∈ (0, R). We will now show that the
sequence FM is also convergent in L2

w(0, R), which means that the pointwise
and the L2

w(0, R)-limit must be equal. We can quantify the decay of the
Fourier coefficients using Theorem B.7, because f ∈ C1[0, 1] and

⟨F,Gm,n⟩L2
w(0,R) = R3

∫ 1

0

s2F (Rs)Gm,n(Rs) ds

= R3/2

√
2

j2n(λn,m)

∫ 1

0

s2f(s)jn(λn,ms) ds,

where we used the substitution s = r/R again. Therefore a natural number
K and a constant C > 0 exist, such that∣∣⟨F,Gm,n⟩L2

w(0,R)

∣∣ ≤ C

m− 3/4
for every m ≥ K.

Now, for two natural numbers N > M ≥ K, we use the orthonormality of
the Gm,n to conclude that

∥FN − FM∥2L2
w(0,R) =

∥∥∥∥∥
N∑

m=M+1

⟨F,Gm,n⟩L2
w(0,R)Gm,n

∥∥∥∥∥
2

L2
w(0,R)

=
N∑

m=M+1

∣∣⟨F,Gm,n⟩L2
w(0,R)

∣∣2 ≤ N∑
m=M+1

C2

(m− 3/4)2
−−−−−→
N,M→∞

0.

We have proven that (FM)M∈N is a Cauchy sequence in L2
w(0, R), meaning

the limit

∞∑
m=1

⟨F,Gm,n⟩L2
w(0,R)Gm,n

exists as a L2
w(0, R)-function. It is well known that there will be a subse-

quence which converges pointwise almost everywhere to this L2
w(0, R)-limit.

But this subsequence will also converge to F pointwise, as we have previ-
ously seen. So we conclude that F is indeed the L2

w(0, R)-limit of the se-
quence (FM)M∈N. If we now take an arbitrary F ∈ L2

w(0, R) and ε > 0, then
since C2

c(0, R) is dense in L2
w(0, R), we can find a G ∈ C2

c(0, R) such that
∥F − G∥L2

w(0,R) ≤ ε/3. Let FM and GM represent the M -th partial Fourier
sum of F and G, respectively. Then we can choose a natural number N ∈ N
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such that ∥G−GM∥L2
w(0,R) ≤ ε/3 for everyM ≥ N , since G ∈ C2

c(0, R). This
means that

∥F − FM∥L2
w(0,R) ≤ ∥F −G∥L2

w(0,R) + ∥G−GM∥L2
w(0,R) + ∥GM − FM∥L2

w(0,R)

≤ 2ε

3
+ ∥F −G∥L2

w(0,R) ≤ ε

for every M ≥ N . We used Bessel’s inequality in the last line to estimate

∥GM − FM∥2L2
w(0,R) =

M∑
m=1

∣∣⟨G− F,Gm,n⟩L2
w(0,R)

∣∣2 ≤ ∥F −G∥2L2
w(0,R)

This shows the completeness of the orthonormal set (Gm,n)m∈N.

Theorem 7.2.12. With the definitions from Theorem 7.2.11, the functions

um,n,j(x) := um,n,j(rξ) := Gm,n(r)Yn,j(ξ)

for m ∈ N, n ∈ N0 and j ∈ {−n, . . . , n} form an orthonormal basis of L2(B).
These functions satisfy

∆um,n,j(rξ) = −γ2n,mum,n,j(rξ)

for every valid index m,n, j and rξ ∈ B.

Proof. The eigenvalue property for the Laplacian is clear from Definition
7.2.5 and Lemma 7.2.4. The normalization of these functions is given because∫

B

u2m,n,j(x) dx =

∫ R

0

r2G2
n,m(r) dr

∫
S2
Y 2
n,j(ξ) dω(ξ) = 1.

The orthogonality is derived similarly using the orthogonality of the Yn,j and
the Gm,n in their respective L2-spaces. If (m,n, j) ̸= (k, l, i)

⟨um,n,j, uk,l,i⟩L2(B) =

∫ R

0

r2Gm,n(r)Gk,l(r) dr

∫
S2
Yn,j(ξ)Yl,i(ξ) dω(ξ).

Now if n ̸= l or j ̸= i, the integral over S2 vanishes and if n = l and
j = i, then m ̸= k must hold. This implies that the integral over the radial
functions must vanish, which proves the orthogonality of the um,n,j. Now for
the completeness of the L2(B)-orthonormal set (um,n,j)m,n,j, we start with an
arbitrary function V ∈ L2(B) which satisfies ⟨V, um,n,j⟩L2(B) = 0 for every
m ∈ N, n ∈ N0 and j ∈ {−n, . . . , n}. Because of Fubini’s theorem and

∞ > ∥V ∥2L2(B) =

∫ R

0

∫
S2
r2V 2(rξ) dω(ξ) dr
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the function ξ 7→ rV (rξ) is in L2(S2) for almost every r ∈ (0, R), meaning
that ξ 7→ V (rξ) is also in L2(S2) for almost every r ∈ (0, R). We can then
expand it into the fully normalized spherical harmonics

V (r ·) =
∞∑
n=0

n∑
j=−n

⟨V (r ·), Yn,j⟩L2(S2)Yn,j.

Defining Vn,j(r) := ⟨V (r ·), Yn,j⟩L2(S2) for every n ∈ N0 and j ∈ {−n, . . . , n},
an application of the Cauchy-Schwarz inequality and the fact that the Yn,j
are normalized shows that∫ R

0

r2V 2
n,j(r) dr ≤

∫ R

0

r2∥V (r ·)∥2L2(S2) dr =

∫
B

V 2(x) dx = ∥V ∥2L2(B) <∞.

Therefore we can expand Vn,j into the basis functions Gm,n, so

Vn,j =
∞∑

m=1

⟨Vn,j, Gm,n⟩L2
w(0,R)Gm,n.

The coefficients in this series have the form

⟨Vn,j, Gm,n⟩L2
w(0,R) =

∫ R

0

r2Vn,j(r)Gm,n(r) dr

=

∫ R

0

r2
∫
S2
Gm,n(r)Yn,j(ξ)V (rξ) dω(ξ) dr

=

∫
B

um,n,j(x)V (x) dx = ⟨V, um,n,j⟩L2(B) = 0

for every valid indexm,n and j. Thus every single one of the functions Vn,j is
equal to 0 almost everywhere. Since these functions are also the coefficients in
the expansion of V (r ·) into spherical harmonics we conclude that V (rξ) = 0
for almost every r ∈ (0, R) and ξ ∈ S2. This shows that V = 0 in L2(B), so
the functions um,n,j indeed form a complete system in this space.

Finally we present a lemma which illustrates the use of our basis for
expanding a gravitational potential.

Lemma 7.2.13. If V ∈ C2(B) is a gravitational potential as in Definition
2.3.2, then ∆V ∈ L2(B) and we have

⟨∆V, um,n,j⟩L2(B) = −γ2n,m⟨V, um,n,j⟩L2(B)

for every m ∈ N, n ∈ N0 and j ∈ {−n, . . . , n}.
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Proof. We have ∆V = 4πGF , where F ∈ C2(B) ⊆ L2(B). This proves that
∆V ∈ L2(B), so the inner products we want to calculate do exist. Now we
examine the integral

⟨∆V, um,n,j⟩L2(B) − ⟨V,∆u,m,n,j⟩L2(B)

=

∫
B

um,n,j(x)∆V (x)− V (x)∆um,n,j(x) dx.

We want to apply Green’s second identity, but since we defined the basis
functions in terms of the decomposition x = rξ, which is only valid for
x ̸= 0, we can not include the point 0 ∈ B in our integration domain. We
will now use an argument very similar to that made in the proof of Lemma
3.3.5. This means we define the set Dε := B \ Bε(0) for every ε > 0 (see
Figure 1), then um,n,j, V ∈ C2(Dε) ∩ C1(Dε), so we can use Green’s second
identity to conclude that∫

Dε

um,n,j(x)∆V (x)− V (x)∆um,n,j(x) dx

=

∫
∂Dε

um,n,j(x)
∂V

∂n
(x)− V (x)

∂um,n,j

∂n
(x) dS(x)

for every ε > 0. We will refer to the volume integral by Lm,n,j(ε) and to the
surface integral by Rm,n,j(ε). Then by the definition of Dε we have∣∣∣∣∫

B

um,n,j(x)∆V (x)− V (x)∆um,n,j(x) dx− Lm,n,j(ε)

∣∣∣∣
≤
∫
Bε(0)

|um,n,j(x)∆V (x)− V (x)∆um,n,j(x)| dx

=

∫
Bε(0)

∣∣4πGum,n,j(x)F (x) + γ2n,mum,n,j(x)V (x)
∣∣ dx.

Since both V and F are continuous on B, these functions are bounded. If

x ̸= 0, then |um,n,j(x)| = |um,n,j(rξ)| ≤
√

2n+1
4π

∥Gm,n∥C[0,R] =: Cn,m by

Lemma 2.2.8. We conclude that the integrand from above is bounded by
Cn,m(4πG∥F∥C(B) + γ2n,m∥V ∥C(B)), meaning that the integral as a whole has

Kε3 as an upper bound, where K > 0 is some constant. This shows that

Lm,n,j(ε) −−→
ε→0

∫
B

um,n,j(x)∆V (x)− V (x)∆um,n,j(x) dx.
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We proceed similarly with Rm,n,j(ε). Since ∂Dε is the disjoint union of
∂BR(0) = ∂B and ∂Bε(0), we can estimate∣∣∣∣∫

∂B

um,n,j(x)
∂V

∂n
(x)− V (x)

∂um,n,j

∂n
(x) dS(x)−Rm,n,j(ε)

∣∣∣∣
≤
∫
∂Bε(0)

∣∣∣∣um,n,j(x)
∂V

∂n
(x)− V (x)

∂um,n,j

∂n
(x)

∣∣∣∣ dS(x).
On ∂Bε(0), the outer normal is given as n = −ξ ∈ S2, so the normal deriva-
tive is −∂r. Also x = εξ for every x ∈ ∂Bε(0). This implies the integrand
from above has an upper bound independent of the integration variable.∣∣∣∣um,n,j(x)

∂V

∂n
(x)− V (x)

∂um,n,j

∂n
(x)

∣∣∣∣
≤Cn,m∥ |∇V | ∥C(B) + ∥V ∥C(B)Dn,m,

where Dn,m :=
√

2n+1
4π

∥G′
m,n∥C[0,R] (Here Lemma 2.2.8 was used again). The

whole integral can then be estimated by Dε2 for some constant D > 0, which
proves that

Rm,n,j(ε) −−→
ε→0

∫
∂B

um,n,j(x)
∂V

∂n
(x)− V (x)

∂um,n,j

∂n
(x) dS(x).

Green’s second identity thus also holds on B, if we take the limit ε→ 0, so

⟨∆V, um,n,j⟩L2(B) − ⟨V,∆um,n,j⟩L2(B)

=

∫
∂B

um,n,j(x)
∂V

∂n
(x)− V (x)

∂um,n,j

∂n
(x) dω(x).

The first boundary integral is calculated by

R2

∫
S2
um,n,j(Rξ)

∂V

∂n
(Rξ) dω(ξ)

=R2Gm,n(R)

∫
S2
Yn,j(ξ) (∂rV (rξ))

∣∣
r=R

dω(ξ)

=−R2n+ 1

R
Gm,n(R)⟨V (R ·), Yn,j⟩L2(S2),

where we used Lemma 7.2.3 in the last equality. The other boundary integral
can be calculated similarly, so

R2

∫
S2
V (Rξ)

∂um,n,j

∂n
(Rξ) dω(ξ)

=R2

∫
S2
V (Rξ) (∂rum,n,j(rξ))

∣∣
r=R

dω(ξ)

=R2G′
m,n(R)⟨V (R ·), Yn,j⟩L2(S2).
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Now since our radial functions Gm,n satisfy boundary condition (7.7), we
conclude that these two terms are actually equal, implying that

⟨∆V, um,n,j⟩L2(B) = ⟨V,∆um,n,j⟩L2(B) = −γ2n,m⟨V, um,n,j⟩L2(B),

by Theorem 7.2.12, which proves the statement.

7.3 Determining the Wind-Induced Density

We now return to the determination of the wind-induced potential V ′ on B.
Of course the quantity we really want to get is F ′, but once we know V ′ we
can calculate F ′ via

∆V ′(x) = 4πGF ′(x) for every x ∈ B.

As we have seen in Lemma 7.1.3, the wind-induced potential satisfies Equa-
tion (7.2) in B. We solve it by expanding both sides into the basis of L2(B)
from chapter 7.2.

Lemma 7.3.1. Equation (7.2) is equivalent to the set of equations((απ
R

)2
− γ2n,m

)
⟨V ′, um,n,j⟩L2(B) = ⟨Gu, um,n,j⟩L2(B) + ηmδn,0δj,0

for every m ∈ N, n ∈ N0 and j ∈ {−n, . . . , n}. Here the ηm are constants
defined by the undetermined function η from Lemma 7.1.3 via

ηm :=
√
4π⟨η,Gm,0⟩L2

w(0,R).

The constant α is the same as in Theorem 5.1.3.

Proof. As stated above, we start from Equation (7.2), then V ′ satisfies

V ′ =
∞∑

m=1

∞∑
n=0

n∑
j=−n

⟨V ′, um,n,j⟩L2(B)um,n,j

in the sense of L2(B). Since ∆V ′ = 4πGF ′ on B, where F ′ ∈ C2(B) ⊆ L2(B),
we know that ∆V ′ ∈ L2(B). We can then develop this quantity into the basis
um,n,j as well and use Lemma 7.2.13 to get

∆V ′ =
∞∑

m=1

∞∑
n=0

n∑
j=−n

⟨∆V ′, um,n,j⟩L2(B)um,n,j

= −
∞∑

m=1

∞∑
n=0

n∑
j=−n

γ2n,m⟨V ′, um,n,j⟩L2(B)um,n,j,
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again in the sense of L2(B). With this the left-hand side of Equation (7.2)
becomes

∞∑
m=1

∞∑
n=0

n∑
j=−n

((απ
R

)2
− γ2n,m

)
⟨V ′, um,n,j⟩L2(B)um,n,j,

since 2πG/K = α2π2/R2 (see the proof of Theorem 5.1.3). On the right-
hand side, we know that Gu ∈ C(B) ⊆ L2(B) as the antiderivative of an
integrable function, see Remark 6.5. Then Equation (7.2) yields that η is
also square-integrable over B. Using the expansion into the um,n,j, we have

Gu + η =
∞∑

m=1

∞∑
n=0

n∑
j=−n

⟨Gu, um,n,j⟩L2(B)um,n,j

+
∞∑

m=1

∞∑
n=0

n∑
j=−n

⟨η, um,n,j⟩L2(B)um,n,j

in L2(B). Comparing coefficients produces the set of equations((απ
R

)2
− γ2n,m

)
⟨V ′, um,n,j⟩L2(B) = ⟨Gu, um,n,j⟩L2(B) + ⟨η, um,n,j⟩L2(B)

for every valid index m,n and j. Now we just simplify the inner product of
η with um,n,j. If n ̸= 0, then

⟨η, um,n,j⟩L2(B) =

∫ R

0

r2Gm,n(r)η(r)

∫
S2
Yn,j(ξ) dω(ξ) dr

=
√
4π

∫ R

0

r2Gm,n(r)η(r)

∫
S2
Yn,j(ξ)Y0,0(ξ) dω(ξ) dr = 0,

because the integral over S2 vanishes. On the other hand if n = j = 0, we
have

⟨η, um,n,j⟩L2(B) = ⟨η, um,0,0⟩L2(B) =

∫ R

0

r2Gm,0(r)η(r)

∫
S2
Y0,0(ξ) dω(ξ) dr

=
√
4π

∫ R

0

r2Gm,0(r)η(r) dr =
√
4π⟨η,Gm,0⟩L2

w(0,R).

To proceed further and calculate V ′ we need to determine the coefficients
⟨V ′, um,n,j⟩L2(B) via Lemma 7.3.1. Obviously another assumption is necessary,
namely
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Assumption 7.3.2. In the following, we assume that the polytropic constant
K > 0 (and thus α =

√
2GR2/(πK)) satisfies√

2πG

K
= α

π

R
̸= γn,m

for every n ∈ N0 and m ∈ N.

Remark 7.3.3. Assumption 7.3.2 is especially important in the case n = m =
1. This is because γ1,1 is the smallest positive zero of

x 7→ sin(xR)

xR
,

meaning that γ1,1 = π/R. For the simplest radially symmetric model we
expect α ≈ 1 (see Remark 5.2.5), implying απ/R ≈ γ1,1. Instead of Assump-
tion 7.3.2, it would then also be reasonable to demand that the coefficient
⟨V ′, u1,1,j⟩L2(B) vanishes, if α is so close to 1 that no other γn,m can be equal
to απ/R.

If we just wanted to use V ′ or F ′ for calculating the exterior gravitational
coefficients Jn (see Theorem 3.2.1), for example in an inverse problem, then
the radial indeterminancy η(r) would not matter (see Lemma 8.2.3). But
if we want to uniquely determine V ′ and F ′, then we need an additional
assumption, which we will specify now.

Theorem 7.3.4. If the wind-induced potential V ′ satisfies Equation (7.2) in
B and Assumption 7.3.2, then it is uniquely determined on this set under the
additional assumption∫

S2
V ′(rξ) dω(ξ) = 0 for every r ∈ (0, R). (7.8)

In this case V ′ is given as

V ′ =
∞∑

m=1

∞∑
n=1

n∑
j=−n

⟨Gu, um,n,j⟩L2(B)(
απ
R

)2 − γ2n,m
um,n,j (7.9)

in the sense of L2(B).

Proof. The functions (Gm,0)m∈N form an orthonormal basis of L2
w(0, R). Thus

Equation (7.8) is equivalent to∫ R

0

r2Gm,0(r)

∫
S2
V ′(rξ) dω(ξ) dr = 0 for every m ∈ N.
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Since Y0,0 is constant on S2 and um,0,0(rξ) = Gm,0(r)Y0,0(ξ), we can rewrite
this as

⟨V ′, um,0,0⟩L2(B) = 0 for every m ∈ N.

Now we can use Lemma 7.3.1 together with Assumption 7.3.2, which implies
that

⟨V ′, um,n,j⟩L2(B) =
⟨Gu, um,n,j⟩L2(B)(

απ
R

)2 − γ2n,m

for every m,n ∈ N and j ∈ {−n, . . . , n}. Combining this with

⟨V ′, um,0,0⟩L2(B) = 0

for every m ∈ N, the function V ′ ∈ L2(B) is then uniquely determined, since
all of the coefficients ⟨V ′, um,n,j⟩L2(B) are known.

There is one more relatively obvious simplification we can make. This is
because V ′ satisfies Assumption 3.1.1, as all the physical quantities in this
thesis do. This leads to the conclusion that in integrals of the form∫

S2
V ′(rξ)Yn,j(ξ) dω(ξ),

the integral over the φ-coordinate (in spherical coordinates) can be written
as ∫ 2π

0

sin(jφ) dφ or

∫ 2π

0

cos(jφ) dφ.

Both of these vanish if j ̸= 0. Since the coefficients ⟨V ′, um,n,j⟩L2(B) involve
integrals of this kind, they vanish if j ̸= 0, so in the situation of Theorem
7.3.4 we have

V ′ =
∞∑

m=1

∞∑
n=1

n∑
j=−n

⟨Gu, um,n,j⟩L2(B)(
απ
R

)2 − γ2n,m
um,n,j =

∞∑
m=1

∞∑
n=1

⟨Gu, um,n,0⟩L2(B)(
απ
R

)2 − γ2n,m
um,n,0.

Remark 7.3.5. Since Yn,0(ξ) =
√

2n+1
4π

Pn(ξ3) and Gm,n(r) = cm,njn(γn,mr),

we have

um,n,0(x) = um,n,0(rξ) =

√
2n+ 1

4π

√
2

R3j2n(γn,mR)
jn(γn,mr)Pn(ξ3)

=

√
n+ 1/2

πR3

jn(γn,mr)

|jn(γn,mR)|
Pn(ξ3)

for every n,m ∈ N.
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8 An Inverse Problem

In this chapter, we will see how to formulate the relationship between the
wind field and the gravitational data as an inverse problem for some param-
eters of the wind field.

8.1 Structure of the Wind Field

We need to specify the structure of the zonal wind field uφ a bit more, to be
able to determine some relevant physical parameters of it. One way to do
this, which is common in the literature [17, 21] but presents some problems
from a mathematical point of view (see Remark 8.1.4), will be defined now.
These models are based on projecting the wind field on the surface of the
planet, which is known from direct observation (for Saturn and Jupiter see
[9] and [14] respectively), into the planet along some axis of symmetry. To
illustrate the surface wind, some pictures and graphs are helpful, see Figure
2. We will refer to the surface wind field as a function of t = cos(θ) (in
spherical coordinates) as usurf : [−1, 1] → R, t 7→ usurf(t).

Definition 8.1.1. We define the cylindrically projected wind as the
function

uprojc : BR(0) \ {0} → R, rξ 7→ usurf

(
sign(ξ3)

√
1− r2

R2
(1− ξ23)

)
.

In spherical coordinates this would be

uprojc (rξ(φ, t)) = usurf

(
sign(t)

√
1− r2

R2
(1− t2)

)
.

Definition 8.1.2. We define the spherically or radially projected wind
as the function

uprojs : BR(0) \ {0} → R, rξ 7→ usurf(ξ3)

or in spherical coordinates

uprojs (rξ(φ, t)) = usurf(t).
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Jupiter as seen by Cassini

Image credit: NASA/JPL/Univer-
sity of Arizona

Saturn as seen by Cassini

Image credit: NASA/JPL/Space Sci-
ence Institute

Both pictures are from https://photojournal.jpl.nasa.gov/

Surface wind on Jupiter (from [14]) Surface wind on Saturn (from [9])

Figure 2: The surface wind on Jupiter and Saturn visible from space and as
functions of the latitude t = cos(θ)

.

Remark 8.1.3. The definition of uprojc is justified by the geometric considera-
tion in Figure 3. We imagine the planetary surface as a sphere of radius R
around 0 and use spherical coordinates (r, φ, t). We know the wind on the
surface, which is given by usurf(t). Since the quantities involved are indepen-
dent of φ, the problem becomes two-dimensional, so if we want to determine
the value of uprojc (rξ(φ, t)) at some interior point (r, cos(θ)) we continue along
a line parallel to the ε3-axis until we reach the closest point on the sphere.
This point will have coordinates (R, cos(θ′)). Then we demand

uprojc (rξ(φ, t)) = usurf(cos(θ′)).

We need a relationship between (r, cos(θ)) and cos(θ′), so we define the dis-
tance between the ε3−axis (also the rotation axis) and the line through
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the points defined by (r, cos(θ)) and (R, cos(θ′)) as d ≥ 0. Then by the
Pythagorean theorem

R2 = d2 +R2 cos2(θ′) and r2 = d2 + r2 cos2(θ),

which implies cos2(θ′) = 1 − (r/R)2(1 − cos2(θ)). Depending on the sign of
cos(θ), the closest point on the sphere is either above or below the xy-plane,
so if we substitute t = cos(θ) and t′ = cos(θ′), then

t′ = sign(t)

√
1− r2

R2
(1− t2).

This justifies the definition of uprojc .

Figure 3: Calculating uprojc from usurf

Remark 8.1.4. The definition of the cylindrically projected wind presents a
mathematical problem, namely a discontinuity at the equatorial plane. This
arises because the surface wind field is not symmetrical with respect to the
equator. Thus projecting the wind field inward parallel to the axis of rotation
leads to different values of uprojc when approaching the equatorial plane from
the North and the South. This discontinuity is illustrated in Figures 4a
and 4b in the plane x2 = 0. This fact contradicts our assumption that
u ∈ C2(B,R3), which we made at the beginning of Chapter 4. Since the
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formulas we derived for calculating F ′ (or equivalently V ′) all include a term
which includes a spatial derivative of u or εφ ·u = uφ, see Equations (6.1) and
(7.1), this is especially problematic. These facts have also been discussed in
the literature [12] and the discontinuity will contribute a significant amount
to the calculation of the coefficients Jn even when some smoothing is applied
along the discontinuity (also [12]). Therefore this approach is less coherent
from a mathematical point of view.

(a) Cylindrically projected wind for
Jupiter

(b) Cylindrically projected wind for
Saturn

Figure 4: Both plots show the plane x2 = 0 of the planet. The axes are
scaled with 1/R. The data is taken from [14] for Jupiter and [9] for Saturn.

The projected wind fields are then usually multiplied by a function Qp,
which characterizes the decrease of the wind field in the interior of the planet
(see [17, 21]). These functions are dependent on parameters p ∈ D ⊆ Rd and
can have the following forms.

Example 8.1.5. Let D := (0, 1] and for every p ∈ D

Qp : BR(0) → [0, 1], x 7→ exp

(
|x|/R− 1

p

)
.

Example 8.1.6. Let D := (0, 1]× [0, 1]× R+ and for every p ∈ D

Qp : BR(0) → [0, 1], x 7→p2 exp

(
|x|/R− 1

p1

)

+ (1− p2)
tanh

(
|x|/R+p1−1

p3

)
+ 1

tanh
(

p1
p3

)
+ 1

.
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These functions all satisfy Qp(x) = 1 for all p ∈ D and x ∈ ∂BR(0).
To summarize, the azimuthal component of the wind field uφ can be decom-
posed as

uφ(x) = Qp(x)u
proj(x)

where uproj is one of the projected wind fields from above and Qp is a function
dependent on parameters p ∈ D, satisfying

Qp(x) = 1 for every x ∈ ∂BR(0) and

0 ≤ Qp(x) ≤ 1 for every x ∈ BR(0).

8.2 An Inverse Problem Involving the Jn

We will first recapitulate the definition of the gravitational coefficients Jn,
which first occurred in Theorem 3.2.1.

Definition 8.2.1. For a mass density F ∈ C2(BR(0)) satisfying Assumption
3.1.1 we define the (tesseral) gravitational coefficients caused by F as

Jn := − 1

MRn

∫
BR(0)

|x|nPn

(
x3
|x|

)
F (x) dx

for every n ∈ N with n ≥ 2.

Since these coefficients first occurred, we have split up the density F into
two terms F0 and F ′, corresponding to a perturbation approach. We can
thus split up the Jn in the same way.

Definition 8.2.2. For the mass density F0 ∈ C2(BR(0)) from Definition
4.2.1 we define the static gravitational coefficients as

J0
n := − 1

MRn

∫
BR(0)

|x|nPn

(
x3
|x|

)
F0(x) dx.

For the dynamic or wind-induced density F ′ ∈ C2(BR(0)) from Definition
4.2.2 we define the dynamic gravitational coefficients as

δJn := − 1

MRn

∫
BR(0)

|x|nPn

(
x3
|x|

)
F ′(x) dx.

For both of these terms n ∈ N with n ≥ 2.

One important property of these coefficients is their invariance under the
addition of purely radial functions.
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Lemma 8.2.3. If the density F ∈ C2(BR(0)) is a radial function, meaning
that F (x) = f(|x|) for all x ∈ BR(0) and some f ∈ C2(R+

0 ), then

Jn = 0 for all n ∈ N and n ≥ 2.

Proof. For any n ∈ N with n ≥ 2 we use the decomposition x = rξ intro-
duced in the first chapter and get

Jn = − 1

MRn

∫ R

0

∫
S2
rn+2Pn(ξ3)f(r) dω(ξ) dr

= − 1

MRn

∫ R

0

rn+2f(r) dr

∫
S2
Pn(ξ3) dω(ξ).

We use spherical coordinates to further simplify the second integral, so∫
S2
Pn(ξ3) =

∫ 2π

0

∫ 1

−1

Pn(t) dt dφ

= 2π

∫ 1

−1

Pn(t) dt = 4πδn0,

since the Legendre polynomials are orthogonal and P0(t) = 1. Finally, since
we assumed that n ≥ 2, δn,0 = 0 and thus Jn must vanish as well.

As stated in previous chapters, the gravitational coefficients Jn of the gas
giants Jupiter and Saturn have been measured by the Juno and the Cassini
missions respectively and are known up to J10 , see [15, 16, 17] (more recently
these coefficients have been determined up to J40, see [21]).
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Table 1: The gravitational coefficients of Jupiter. The first column represents
the values measured by Juno. The second column contains averages from an
ensemble of interior models, see [17].

Entries ×10−6 Measured value Interior model value

J2 14 696.572 14 696.572
J3 −0.042 0.0
J4 −586.609 −586.609
J5 −0.069 0.0
J6 34.198 34.188
J7 0.124 0.0
J8 −2.426 −2.461
J9 −0.106 0.0
J10 0.172 0.202

Table 2: The gravitational coefficients of Saturn. The first column represents
the values measured by Cassini. The second column contains averages from
an ensemble of interior models, see [17].

Entries ×10−6 Measured value Interior model value

J2 16 290.573 16 300.0
J3 0.059 0.0
J4 −935.314 −925.76
J5 −0.224 0.0
J6 86.34 82.326
J7 0.108 0.0
J8 −14.624 −9.226
J9 0.369 0.0
J10 4.672 1.188

Definition 8.2.4. For a natural number N ≥ 2 we define J := (Jn)n=2,...,N ∈
RN−1 as the measured gravitational coefficients (corresponding to the
first columns in Tables 1 and 2).
The vector J0 := (J0

n)n=2,...,N ∈ RN−1 contains the gravitational coeffi-
cients of the interior models (corresponding to the second columns in
Tables 1 and 2).

In the previous chapters we have seen how to calculate the wind-induced
density F ′ from the zonal wind field uφ, with an indeterminancy consisting
of an additive function η which only depends on the radial coordinate r. By
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Lemma 8.2.3, this means we can determine the coefficients δJn uniquely if
we know the wind field. As we have discussed, the wind field is dependent on
a vector of parameters p ∈ Rd and the coefficients δJn depend on the wind
field. We will write δJn = δJn(p) to emphasize this dependency.

Definition 8.2.5. Our inverse problem is this. Given the vectors J, J0 ∈
RN−1 for some natural number N ≥ 2, we define the vector field

δJ : D → RN−1, p 7→ (δJn(p))n=2,...,N ,

where D ⊆ Rd is the set of all valid parameters p. Then we want to find the
minimum of the functional

L : D → R+
0 , p 7→ (J − (J0 + δJ(p)))TW (J − (J0 + δJ(p))),

where W ∈ R(N−1)×(N−1) is a fixed symmetric and positive definite matrix.
Often W = I is chosen, such that L(p) = ∥J − (J0 + δJ(p))∥22.
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9 Conclusion

This thesis provides a mathematically rigorous framework for the develop-
ment of solutions of two models (those examined in Sections 6 and 7), which
describe the relationship between the gravitational potential and the wind
field in the atmosphere of a gas giant, like Jupiter or Saturn. It also pro-
vides some simple criteria which, when applied, provide unique wind-induced
densities or potentials in the interior of the planet.

That being said, this thesis is far from a complete overview of the subject,
so we will now discuss some shortcomings of this work. One problem is
the choice of static model. We assumed that our model was spherically
symmetric, meaning we could describe our planet as a ball of radius R >
0. This is also done for Earth, for example in the well known preliminary
reference Earth model PREM from [4], but the gas giants Jupiter and Saturn
deviate from a spherical shape far more than Earth. In fact, while Earth’s
ellipticity (1 − b/a, where a is the equatorial and b is the polar radius) is
0.00335, for Jupiter and Saturn these values are at 0.06487 and 0.09796 [22,
23]. Since these numbers are an order of magnitude greater than Earth’s, we
need to be careful about applying a spherically symmetric model.

The other choice we made was to use a polytrope of index unity to de-
scribe the relation between pressure and density. This choice allowed us to
express the static density as a smooth function, which is advantageous from
a mathematical point of view. But there are other approaches, such as the
CMS model (described in [10]), which uses a series of concentric Maclaurin
spheroids of constant density. The polytropic model can also be used to gen-
erate a non-spherical planetary boundary, this is described in [5]. These two
methods have been compared in [13] as well.

It is worth noting that the uniqueness condition we derived in Theorem
7.3.4 has no physical justification so far. Another problem we have discussed
previously is the nature of the function uprojc , defined in Definition 8.1.1.
This function has a jump discontinuity at the equatorial plane, which is
inconsistent with the previous modelling, which assumed that the wind field
is twice continuously differentiable. This problem is further discussed in [12]
and [19].

Nonetheless this thesis provides a structured and detailed introduction to
the subject of inverse gravimetry on gas giants for the purpose of determining
atmospheric structure.
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A Calculating the δJn

The solution we presented in Chapter 6 calculated F ′ directly, but in Chapter
7 we derived a formula for V ′ depending on the wind field instead. Since we
defined the wind-induced gravitational coefficients δJn in terms of F ′, we
need some way to connect these coefficients to the wind-induced potential V ′

from Chapter 7. We recapitulate the properties of V ′ we will need throughout
this chapter in the following remark.

Remark A.1. The wind-induced gravitational potential V ′ satisfies V ′ ∈
C2(B) ∩ C2(R3 \B) ∩ C1(R3), is regular at infinity and

∆V ′(x) = 0 for every x ∈ R3 \B.

On B, the potential satisfies

∆V ′ = 4πGF ′,

where F ′ ∈ C2(B) is the wind-induced density.

Lemma A.2. If V ′ satisfies the properties in Remark A.1, then we can
express the coefficients δJn via

δJn =
2n+ 1

4π

R

GM

∫
S2
V ′(Rξ)Pn(ξ3) dω(ξ)

for every n ≥ 2.

Proof. For n ≥ 2 we define the functions Hn(x) := |x|nPn(x3/|x|) for x ̸= 0
and Hn(0) = 0. These functions are harmonic on B. Then if we use the fact
that ∆V ′ = 4πGF ′ on B, we remind ourselves of Definition 8.2.4 and get

δJn = − 1

MRn

∫
B

Hn(x)F
′(x) dx

= − 1

4πGMRn

(∫
B

Hn(x)∆V
′(x) dx−

∫
B

V ′(x)∆Hn(x) dx

)
.

The last term admits the use of Green’s second identity, since both Hn and
V ′ are contained in C2(B) ∩ C1(B). Thus we obtain∫

B

Hn(x)∆V
′(x)− V ′(x)∆Hn(x) dx

=

∫
∂B

Hn(x)
∂V ′

∂n
(x)− V ′(x)

∂Hn

∂n
(x) dS(x).
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Now, since ∂B is just the 2-sphere with radius R around 0, the surface
element is dS = R2 dω and the normal derivative has the form ∂

∂n
= ∂r.

Because Hn(rξ) = rnPn(ξ3) and ∂rHn(rξ) = nrn−1Pn(ξ3) we have∫
B

Hn(x)∆V
′(x) dx

=Rn+2

∫
S2
Pn(ξ3) (∂rV

′(rξ))
∣∣
r=R

dω(ξ)− nRn+1

∫
S2
Pn(ξ3)V

′(Rξ) dω(ξ)

=

√
4π

2n+ 1

(
Rn+2⟨∂rV ′(r ·), Yn,0⟩L2(S2)

∣∣
r=R

− nRn+1⟨V ′(R ·), Yn,0⟩L2(S2)
)
.

We know that V ′ satisfies Lemma 7.2.3, so

⟨∂rV ′(r ·), Yn,0⟩L2(S2)
∣∣
r=R

= −n+ 1

R
⟨V ′(R ·), Yn,0⟩L2(S2)

holds. This realization allows us to write

δJn =
(2n+ 1)R

4πGM

√
4π

2n+ 1
⟨V ′(R ·), Yn,0⟩L2(S2)

=
2n+ 1

4π

R

GM

∫
S2
Pn(ξ3)V

′(Rξ) dω(ξ).

Having proven this lemma, we can relate the δJn to the coefficients of V ′

in the basis um,n,j we constructed in Section 7.2.

Theorem A.3. If V ′ satisfies the properties in Remark A.1, we can calculate
the δJn via

δJn =

√
2n+ 1

4π

R

GM

∞∑
m=1

⟨V ′, um,n,0⟩L2(B)Gm,n(R)

for every n ≥ 2.

Proof. For n ∈ N0 with n ≥ 2 we define the function fn by

fn : [0, R] → R, r 7→ fn(r) :=

∫
S2
V ′(rξ)Pn(ξ3) dω(ξ),

then since V ′ ∈ C1(B), this function is in C1[0, R] as well. By Lemma A.2
we have δJn = 2n+1

4π
R

GM
fn(R). The M -th partial Fourier sum of fn in terms

of the basis (Gm,n)m∈N is

FM,n(r) :=
M∑

m=1

⟨fn, Gm,n⟩L2
w(0,R)Gm,n(r).

65



By exactly the same transformation as in the proof of Theorem 7.2.11, we
see that

√
sFM,n(Rs) =

M∑
m=1

2

J2
n+1/2(λn,m)

cm,nJn+1/2(λn,ms),

where s := r/R, λn,m := γn,mR and

cn,m :=

∫ 1

0

s(
√
sfn(Rs))Jn+1/2(λn,ms) ds

for every m ∈ N. Since the λn,m are the positive solutions to

xJ ′
n+1/2(x) +

(
n+

1

2

)
Jn+1/2(x) = 0,

this sum has the form of a Dini-Bessel series as in the proof of Theorem B.3.
So we can use the theory developed in chapter 18 of [3] to examine this series.
Specifically, 18.34 in [3] allows the conclusion that FM,n(R) → fn(R) for
M → ∞, since the function s 7→

√
sfn(Rs) is continuously differentiable and

thus of bounded variation in intervals of the form [ε, 1] for every ε between
0 and 1. This means that

fn(R) =
∞∑

m=1

⟨fn, Gm,n⟩L2
w(0,R)Gm,n(R).

Plugging

⟨fn, Gm,n⟩L2
w(0,R) =

∫ R

0

r2
∫
S2
V ′(rξ)Pn(ξ3) dω(ξ)Gm,n(r) dr

=

√
4π

2n+ 1

∫ R

0

r2
∫
S2
V ′(rξ)Gm,n(r)Yn,0(ξ) dω(ξ) dr

=

√
4π

2n+ 1
⟨V ′, um,n,0⟩L2(B)

into the expansion means that

δJn =
2n+ 1

4π

R

GM
fn(R) =

√
2n+ 1

4π

R

GM

∞∑
m=1

⟨V ′, um,n,0⟩L2(B)Gm,n(R),

which proves the theorem.
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B Further Properties of Bessel functions

This section summarizes the theorems and methods in [2, 3] that are needed
to prove that the functions Gm,n from chapter 7.2 form an orthonormal basis
of L2

w(0, R). Here w(r) := r2 and R > 0.

Lemma B.1. For every ν ≥ 1
2
and x ∈ R we have

J ′
ν(x) = Jν−1(x)−

ν

x
Jν(x). (B.1)

Proof. The proof is omitted, but this is stated at 9.1.27 on page 361 in [2].

Theorem B.2. If n ∈ N0 is fixed, but arbitrary and the sequence (λn,m)m∈N
is made up of all the positive solutions of

xJ ′
n+1/2(x) +

(
n+

1

2

)
Jn+1/2(x) = 0,

then we can calculate the following integral as∫ 1

0

sJ2
n+1/2(λn,ms) ds =

J2
n+1/2(λn,m)

2
.

Proof. We apply 11.4.5 on page 485 in [2]. In the notation of [2] we have
ν = n+ 1

2
, a = n+ 1

2
and b = 1. Thus we get∫ 1

0

sJ2
n+1/2(λn,ms) ds =

1

2λ2n,m

(
a2

b2
+ λ2n,m −

(
n+

1

2

)2
)
J2
n+1/2(λn,m)

=
J2
n+1/2(λn,m)

2
.

Theorem B.3. If f is continuously differentiable on [0, 1], n ∈ N0 is fixed
but arbitrary and the sequence (λn,m)m∈N is made up of every positive solution
of the equation

xJ ′
n+1/2(x) +

(
n+

1

2

)
Jn+1/2(x) = 0, (B.2)

then we can write f as the Dini-Bessel series

f(s) =
∞∑

m=1

cm
2

J2
n+1/2(λn,m)

Jn+1/2(λn,ms). (B.3)

The convergence of the series is uniform in [ε, 1− ε] for every 0 < ε < 1 and
the coefficients cm are given by

cm :=

∫ 1

0

sf(s)Jn+1/2(λn,ms) ds. (B.4)

67



Proof. Since f ∈ C1[0, 1], it is of bounded variation and continuous on [0, 1].
This together with the fact that the λn,m satisfy Equation (B.2) means we
can apply 18.33 on pages 600-602 from [3] (with ν = n+ 1/2) and conclude
that

f(s) = B0(s) +
∞∑

m=1

bmJn+1/2(λn,ms),

where the convergence is uniform on [ε, 1 − ε] for every 0 < ε < 1. The
notation is taken from [3]. In our case the function B0 is identically 0, since
the sum of the coefficients in front of Jn+1/2 and the order of the involved
Bessel functions in Equation (B.2) is n + 1

2
+ n + 1

2
= 2n + 1 > 0 (see page

597 in 18.3 of [3] for a definition of B0). The coefficients bm are given by the
equation

bm

∫ 1

0

sJ2
n+1/2(λn,ms) ds =

∫ 1

0

sf(s)Jn+1/2(λn,ms) ds,

which is taken from page 597 in [3]. The integral on the left-hand side of the
above equation can be calculated with Theorem B.2, yielding

bm =
2

J2
n+1/2(λn,m)

∫ 1

0

sf(s)Jn+1/2(λn,ms) ds =
2

J2
n+1/2(λn,m)

cm.

Lemma B.4. If n ∈ N0 and f is a function such that s 7→
√
sf(s) is

continuously differentiable on [0, 1], we have∫ 1

0

sf(s)Jn+1/2(λs) ds = O
(
λ−3/2

)
as λ→ ∞.

Proof. If s 7→
√
sf(s) is continuously differentiable on [0, 1], it is of bounded

variation on [0, 1]. This means we can apply the lemma proven in 18.27 on
page 595 in [3].

Lemma B.5. For every n ∈ N0 the asymptotic expansion

Jn+1/2(x) =

(
2

πx

)1/2(
cos

(
x− π

n+ 1

2

)
+O

(
1

x

))
holds as x→ ∞.

Proof. This is Theorem 7.21 from page 199 in [3] applied for ν = n+1/2.
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Lemma B.6. Let n ∈ N0 be fixed, but arbitrary and (λn,m)m∈N the positive
solutions to Jn−1/2(x) = 0. Then the asymptotic expansion

λn,m =

(
m+

n− 1

2

)
π +O

(
1

m

)
holds as m→ ∞.

Proof. We use 15.53 on pages 505-507 in [3] with ν = n − 1/2. This fact is
also stated in 9.5.12 on page 371 in [2].

With the three preceeding lemmata we can now prove a result about the
decay of the Fourier coefficients from Chapter 7.2.

Theorem B.7. For a fixed, but arbitrary n ∈ N0 and a function f ∈ C1[0, 1],
let (λn,m)m∈N be the positive solutions to Equation (B.2). Then there exists
a natural number M ∈ N and a constant C > 0 (both of which may depend
on f and n), such that for every m ≥M we have∣∣∣∣∣

√
2

j2n(λn,m)

∫ 1

0

s2f(s)jn(λn,ms) ds

∣∣∣∣∣ ≤ C

m− 3/4
.

Proof. We define

dm :=

∫ 1

0

s2f(s)jn(λn,ms) ds,

then∣∣∣∣∣
√

2

j2n(λn,m)
dm

∣∣∣∣∣ =
√

π

2λn,m

√
2

|jn(λn,m)|

∣∣∣∣∫ 1

0

s
(
s1/2f(s)

)
Jn+1/2(λn,ms) ds

∣∣∣∣
=

√
2

|Jn+1/2(λn,m)|

∣∣∣∣∫ 1

0

s
(
s1/2f(s)

)
Jn+1/2(λn,ms) ds

∣∣∣∣ .
By Lemma B.6 we know that λn,m → ∞ for m → ∞. We want to apply
Lemma B.4 to the function g(s) :=

√
sf(s). For this s 7→

√
sg(s) = sf(s)

has to be continuously differentiable on [0, 1], but this is obviously true. So
we conclude that there is a natural number M1 ∈ N and a constant C1 > 0
(both of which can depend on f and n) such that∣∣∣∣∫ 1

0

s
(
s1/2f(s)

)
Jn+1/2(λn,ms) ds

∣∣∣∣ ≤ C1λ
−3/2
n,m
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for every m ≥M1. The other factor can be estimated with an application of
Lemma B.6. We choose a natural number M2 ∈ N such that

λn,m ∈
((

m+
n− 1

2

)
π − π

4
,

(
m+

n− 1

2

)
π +

π

4

)
for every m ≥M2 (M2 may depend on n), which means∣∣∣∣cos(λn,m − π

n+ 1

2

)∣∣∣∣ ≥ 1√
2
.

Now we use Lemma B.5 and the reverse triangle inequality to derive the
lower bound

|Jn+1/2(λn,m)| ≥
∣∣∣∣ 2

πλn,m

∣∣∣∣1/2 ∣∣∣∣∣∣∣∣cos(λn,m − π
n+ 1

2

)∣∣∣∣− ∣∣∣∣O( 1

λn,m

)∣∣∣∣∣∣∣∣ .
Since the term O(λ−1

n,m) gets arbitrarily small for large m by Lemma B.6, we
can find a natural numberM3 ∈ N (dependent on n ∈ N), such that the term
O(λ−1

n,m) is smaller than 1/
√
8 for every m ≥ M3. This means that if m is

greater than both M2 and M3, then

|Jn+1/2(λn,m)| ≥
(

2

πλn,m

)1/2(
1√
2
− 1√

8

)
=

1

2

(
1

πλn,m

)1/2

.

Putting this all together, if we define M := max{M1,M2,M3} then∣∣∣∣∣
√

2

j2n(λn,m)
dm

∣∣∣∣∣ ≤ 2C1
(2πλn,m)

1/2

λ
3/2
n,m

=
C2

λn,m

for every m ≥M , where C2 :=
√
8πC1 > 0. We also know that

λn,m ≥
(
m+

n− 1

2

)
π − π

4
= mπ +

n

2
π − 3π

4
≥ π

(
m− 3

4

)
for every m ≥M . If we now define C := C2

π
, this implies∣∣∣∣∣

√
2

j2n(λn,m)
dm

∣∣∣∣∣ ≤ C

m− 3/4
.
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