Prof. Dr. V. Michel S. Orzlowski, M. Sc. 16. April 2015

Funktionalanalysis II: Inverse Probleme Übungen Sommersemester 2015 2. Blatt

Abgabe bis Donnerstag, 23. April 2015, vor Beginn der Vorlesung.

Aufgabe 5: (4 Punkte)

Sei $(X, \|\cdot\|)$ ein normierter Raum und $Y \subset X$ ein linearer Teilraum. Beweisen Sie: Wenn $B \in \mathcal{L}(Y, \ell^{\infty})$, dann existiert ein Operator $A \in \mathcal{L}(X, \ell^{\infty})$, so dass $A|_Y = B$ und $\|A\| = \|B\|$, d. h. A ist eine stetige Fortsetzung von B.

Aufgabe 6: (4 Punkte)

Beweisen Sie das Lemma von Auerbach.

<u>Hinweis:</u> Wählen Sie beliebige lineare Elemente $z_1, \ldots, z_n \in Y$ und untersuchen Sie die Abbildung $F: M^n \to \mathbb{R}$ mit

$$M := \{g \in Y^* : ||g|| \le 1\}, \qquad F(g_1, \dots, g_n) := |\det(g_i(z_j))_{i,j=1,\dots,n}|.$$

Erinnern Sie sich an Resultate aus Analysis und lineare Algebra und benutzen Sie anschließend den Satz von Hahn-Banach.

Aufgabe 7: (4 Punkte)

Beweisen Sie folgende Aussagen.

- a) Sei X ein Vektorraum über \mathbb{K} und $M \subset X$ eine beliebige Teilmenge. M ist genau dann absolut konvex, wenn M kreisförmig und konvex ist.
- b) Sei X ein Vektorraum über \mathbb{K} und $M \subset X$ eine absorbierende und absolut konvexe Teilmenge, dann ist das Minkowski-Funktional P_M eine Halbnorm auf X.

Aufgabe 8: (4 Punkte)

Seien X,Y normierte Räume, $D\subset X$ ein linearer Teilraum von X und $T\colon D\to Y$ eine lineare Abbildung. Beweisen Sie:

- a) Wenn T eine stetige Abbildung und D eine abgeschlossene Menge ist, dann ist T eine abgeschlossene Abbildung.
- b) Wenn T eine stetige und abgeschlossene Abbildung ist und Y vollständig ist, dann ist D eine abgeschlossene Menge.
- c) Die Identität $I \colon D \to D$ ist stetig. Sie ist abgeschlossen genau dann, wenn D abgeschlossen ist.