Universität Siegen Fakultät IV, Department Mathematik AG Geomathematik Univ.-Prof. Dr. V. Michel M. Sc. K. Seibert

Übungen zur Vorlesung

Konstruktive Approximation: Fourier-, Spline- und Waveletverfahren

Sommersemester 2017 Blatt 6

Abgabe zu Beginn der Vorlesung am Montag, den 19. Juni 2017.

Aufgabe 21: (4 Punkte)

Zeigen Sie, dass für den Oberflächenrotationsgradienten L^* folgendes gilt:

$$L^* \cdot L^* = \Delta^*,$$

wobei Δ^* der Beltrami-Operator ist.

Aufgabe 22: (4 Punkte)

a) Beweisen Sie:

$$\left(\Delta_{\eta}^* - (\Delta^*)^{\wedge}(n)\right) K_{\operatorname{Harm}_n(\Omega)}(\xi, \eta) = 0, \quad \eta \in \Omega,$$

für alle $\xi \in \Omega$.

b) Zeigen Sie, dass $K_{\operatorname{Harm}_n(\Omega)}$ der einzige Reprokern von $\operatorname{Harm}_n(\Omega)$ ist.

Aufgabe 23: (4 Punkte)

Sei $n \in \mathbb{N}_0$ gegeben und $Y_n \in \operatorname{Harm}_n(\Omega)$ eine beliebige Kugelflächenfunktion. Zeigen Sie, dass die Funktionen $H_n : \mathbb{R}^3 \to \mathbb{R}$ und $H_{-n-1} : \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}$, welche definiert sind durch

$$H_n(x) := r^n Y_n(\xi), \quad x = r\xi \in \mathbb{R}^3,$$

 $H_{-n-1}(x) := r^{-n-1} Y_n(\xi), \quad x = r\xi \in \mathbb{R}^3 \setminus \{0\},$

beide harmonisch sind.

Aufgabe 24: (4 Punkte)

Sei $(H,\langle\cdot,\cdot\rangle)$ ein beliebiger Hilbertraum.

a) Beweisen Sie die Cauchy–Schwarz'sche Ungleichung:

$$|\langle x, y \rangle| \le ||x|| ||y||$$

für alle $x, y \in H$.

b) Eine Folge $(x_n)_{n\in\mathbb{N}_0}$, die gegen $x\in H$ in der $\langle\cdot,\cdot\rangle$ -Topologie konvergiert, nennt man stark konvergent. Beweisen Sie, dass die starke Konvergenz stets die schwache Konvergenz impliziert, d.h. es gilt:

$$\langle y, x_n \rangle \underset{n \to \infty}{\longrightarrow} \langle y, x \rangle \quad \forall y \in H.$$