Universität Siegen Department Mathematik AG Geomathematik Prof. Dr. V. Michel B. Kretz, M.Sc.

Übungen zur Vorlesung

Konstruktive Approximation: Fourier-, Spline- und Waveletverfahren

Sommersemester 2021 Blatt 3

Abgabe bis Donnerstag, den 06. Mai 2021, 12 Uhr per E-Mail.

Aufgabe 9: (4 Punkte)

Sei $h_0 \in [0, 1]$ fest. Für alle $h \in [-h_0, h_0]$ und alle $t \in [-1, 1]$ definieren wir

$$\Phi(h) := \sum_{n=0}^{\infty} P_n(t)h^n. \tag{1}$$

- a) Zeigen Sie, dass die Reihe in (1) absolut und gleichmäßig (bezüglich t und h) konvergiert.
- b) Zeigen Sie, dass Φ die Differentialgleichung

$$(1 + h^2 - 2ht) \Phi'(h) = (t - h)\Phi(h).$$

erfüllt.

Aufgabe 10: (4 Punkte)

Zeigen Sie, dass

$$\frac{1}{\sqrt{1+h^2-2ht}} = \sum_{n=0}^{\infty} P_n(t)h^n$$

für alle $t \in [-1, 1]$ und alle $h \in]-1, 1[$ gilt.

Aufgabe 11: (4 Punkte)

Zeigen Sie, dass

$$\frac{1 - h^2}{(1 + h^2 - 2ht)^{3/2}} = \sum_{n=0}^{\infty} (2n + 1)h^n P_n(t)$$

für alle $t \in [-1, 1]$ und alle $h \in]-1, 1[$ gilt.

Aufgabe 12: (4 Punkte)

Verwenden Sie den Clenshaw-Algorithmus, um die Funktion

$$F_h(t) := \sum_{n=0}^{1000} P_n(t)h^n, \quad t \in [-1, 1],$$

auf einem äquidistanten Gitter von 400 Punkten für $h \in \{0.1, 0.5, 0.99\}$ zu plotten. Berechnen Sie ferner $F_h(t) - \frac{1}{\sqrt{1+h^2-2ht}}$ auf dem gleichen Gitter in allen drei Fällen.