Universität Siegen Department Mathematik AG Geomathematik Prof. Dr. V. Michel B. Kretz, M.Sc.

Übungen zur Vorlesung

Konstruktive Approximation: Fourier-, Spline- und Waveletverfahren

Sommersemester 2022 Blatt 11

Abgabe zu Beginn der Vorlesung am Dienstag, den 05. Juli 2022

Aufgabe 41: (4 Punkte)

Zeigen Sie, dass die cp-Skalierungsfunktion die Voraussetzungen einer Skalierungsfunktion erfüllt.

Aufgabe 42: (4 Punkte)

Seien $G, H \in L^2[-1, 1]$ beliebig. Zeigen Sie, dass die Faltung G * H in der Tat auch eine zonale Funktion ist.

Aufgabe 43: (4 Punkte)

Sei φ_0 eine Erzeugende einer Skalierungsfunktion. Für alle $J \in \mathbb{N}_0$ sei die Funktion $b_J : [0, \infty[\to \mathbb{R}$ definiert durch

$$b_J(x) := (\varphi_{J+1}(x))^2 - (\varphi_J(x))^2, \quad x \in \mathbb{R}_0^+.$$

Bestimmen Sie für die Shannon-, die rationale und die Abel-Poisson-Skalierungsfunktion jene x, für die b_J jeweils maximal ist.

Aufgabe 44: (4 Punkte)

Plotten Sie $\Phi_j(\cos \vartheta)$, $\vartheta \in [-\pi, \pi]$, $j \in \{0, \dots, 3\}$, für die Shannon-, die cp-, die Abel-Poisson- und die Gauß-Weierstraß-Skalierungsfunktion. Verwenden Sie je Skalierungsfunktion ein Bild.