Universität Siegen Department Mathematik AG Geomathematik Univ.-Prof. Dr. V. Michel Bianca Kretz, M.Sc.

Übungen zur Vorlesung

Gewöhnliche Differentialgleichungen

Sommersemester 2020 Blatt 7

Abgabe bis Donnerstag, den 18. Juni 2020, 12 Uhr per E-Mail.

Aufgabe 25:

Lösen Sie das Anfangswertproblem

$$y^{(5)} - 6y^{(4)} + 16y^{(3)} - 32y'' + 48y' - 32y = 0,$$

$$y(0) = 1, y'(0) = y''(0) = y^{(3)}(0) = y^{(4)}(0) = 0$$

- a) als reelles Problem,
- b) als komplexes Problem.

Aufgabe 26: (4 Punkte) ABGABE

Zeigen Sie: Ist $I \subset \mathbb{R}$ ein Intervall und $s \in \mathrm{C}^{(\infty)}(I)$, so ist jede Lösung $y \in \mathrm{C}^{(n)}(I)$ von

$$y^{(n)} + \sum_{j=0}^{n-1} a_j y^{(j)} = s(x);$$

 $a_0, \dots, a_{n-1} \in \mathbb{R}$ konstant; in $C^{(\infty)}(I)$.

Aufgabe 27:

Zeigen Sie: Hat in der Differentialgleichung

$$y^{(n)} + \sum_{j=0}^{n-1} a_j y^{(j)} = s(x)$$
 (1)

die Störfunktion die Gestalt

$$s(x) = P(x)e^{\alpha x}$$

für eine Konstante $\alpha \in \mathbb{C}$ und ein Polynom P vom Grad $m \in \mathbb{N}_0$ mit komplexen Koeffizienten, so führt der Ansatz

$$y(x) = x^{\nu} Q(x) e^{\alpha x},$$

wobei Q ein Polynom vom Grad $\leq m$ und ν die Vielfachkeit von α als Nullstelle des charakteristischen Polynoms zu (1) ist ($\nu=0$, falls α keine Nullstelle ist), stets zu einer partikulären Lösung von (1). (Die Koeffizienten von Q erhält man hierbei durch Koeffizientenvergleich.)

Aufgabe 28: (4 Punkte) ABGABE

Bestimmen Sie die allgemeine reelle Lösung von

$$y''' - y'' + y' - y = 2e^{\omega x},$$

wobei $\omega \in \mathbb{R}$ konstant ist.