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Abstract

This contribution focuses on the development of an adaptive hierarchical FFT-based approach for the efficient solution
of microscale boundary value problems. To this end, the classic Moulinec-Suquet scheme is revisited and enhanced
by making use of wavelet analysis. Governing fields are represented in a wavelet basis and higher level stress approx-
imations in a nested set of approximation spaces are successively derived by making use of wavelet transforms. By
adaptively refining the computational grid based on the solution profile, localised features can be resolved accurately
while the overall number of material model evaluations is significantly reduced. The performance is demonstrated by a
detailed study of representative boundary value problems in one- and two-dimensional domains, whereby a reduction
in the number of material model evaluations of up to 95% has been achieved.

Keywords: Continuum Mechanics, Computational Multiscale Methods, Computational Homogenisation, Spectral
Solver, FFT, Wavelets, Adaptivity, Grid Refinement, Non-uniform Grid

1. Introduction

Computational homogenisation and multiscale methods are sophisticated approaches to predict the effective con-
stitutive response of complex multiphase microstructures in numerical simulations. To this end, detailed information
of the underlying microstructure is collected in representative volume elements (RVEs), for instance by geometrically
resolving microscale features such as individual grains, fibres or voids, and by taking sophisticated constitutive models
into account that have been developed at the level of individual phases [1].

Originating from the pioneering works [2, 3], first-order multiscale approaches are meanwhile well-established
in the continuum mechanics community to understand and predict the effective macroscale response of complex
material systems. This includes purely mechanical [4, 5, 6, 7, 8, 9], thermo-mechanical [10, 11, 12, 13, 14], and
electro-mechanical problems of electrical conductors [15, 16] and electro-active materials [17, 18, 19], respectively.
However, the repetitive solution of microscale boundary value problems that substitutes the evaluation of closed-
form constitutive models is associated with a significant increase in computational cost, both in terms of CPU-time
and memory requirements. This is particularly problematic when considering non-linear history-dependent material
behaviour, impeding the widespread application of computational multiscale methods.

Against this background, tailored solution techniques have been proposed that make use of the specific structure
of the underlying microscale problem. The geometry of the computational cell may be chosen arbitrarily as long as it
contains ”sufficient” information to be statistically representative for the particular microstructure under consideration.
For simplicity, these microscale boundary value problems are therefore generally formulated on rectangular domains
without loss of generality. Moreover, the unit cells are typically subjected to periodic boundary conditions in a
manner that is consistent with the Hill-Mandel energy equivalence condition, which has been shown to perform best
in predicting effective properties compared with affine displacement and uniform traction boundary conditions [20].
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Motivated by the specific structure of the microscale boundary value problem, FFT-based solution approaches
have been the focus of intense research, see [21, 22] for detailed reviews. These approaches originate from the
pioneering works [23, 24, 25] and rely on Fourier space representations of the governing fields and the Eshelby-Green
operator. More specifically, the microscale boundary value problem is reformulated as an integral equation that can
efficiently be evaluated in Fourier space and use is made of sophisticated implementations of the fast Fourier transform
(FFT) [26, 27] to map field quantities from the physical to the frequency space and vice versa. Being developed for
general, non-linear microscale material models, the so-called basic scheme proposed by Moulinec-Suquet stipulates
a fixed-point-type update procedure for the fluctuation strains [23, 24, 25]. However, the basic scheme is rather
slow compared to state of the art solution techniques [28, 21]. In particular, it is observed that the convergence rate
significantly depends on the material contrast and on the chosen reference material which resembles a tensor-valued
numerical tuning constant. Properly choosing the reference material for complex evolving microstructures that exhibit
non-linear history-dependent material behaviour poses a challenge, and a poor choice results in a significant increase
in computational costs. Likewise, the iteration count and hence the computational effort of the basic scheme becomes
excessive for large phase contrasts [28, 21]. Furthermore, it is noted that the classic Moulinec-Suquet discretisation
that manifests itself in the specific form of the Eshelby-Green operator is based on trigonometric polynomials which
allow for spurious Gibbs-type oscillations to occur when the physical fields under consideration are not sufficiently
smooth. Considering purely mechanical problems, this is typically the case when material interfaces, e.g. grain or
phase boundaries, occur in the solution domain which, in general, induce weak-singularities in the displacement field.
Finally, it is remarked that due to its reliance on efficient implementations of the fast Fourier transform, a regular
structured grid is assumed. This is a significant restriction when small-scale features occur in the solution domain
since the grid spacing is determined by the smallest feature to be resolved. Accordingly, the system size and the
number of material model evaluations significantly increase.

To address the drawbacks of the basic scheme, different solution approaches with their own merits and limitations
have been proposed [28, 21]. Consider for instance the conjugate gradient solver proposed in [29] that is fast but
limited to linear problems, the polarisation schemes suggested in [30, 31] which are computationally efficient when
applicable but exhibit only logarithmic convergence for infinite phase contrast, or the fast gradient method proposed
in [32] that is efficient compared to the basic scheme but requires twice the memory and a proper choice of numerical
tuning constants. Likewise, alternative discretisation schemes, different from the classic Moulinec-Suquet discretisa-
tion, have been proposed that increase the overall convergence rate, allow microstructures with infinite phase contrast
to be considered or resolve the spurious oscillations of the Moulinec-Suquet discretisation, e.g. [33, 34, 35].

In the light of the developments for fast and efficient FFT-based solution approaches the recently proposed
Barzilai-Borwein extended version of the basic scheme, cf. [28], which does not depend on numerical tuning con-
stants, which is not limited to linear relations and which is capable of treating microstructures with infinite phase
contrasts, is adopted in this work. The scheme is based on the interpretation of the basic scheme as a gradient descent
method and makes use of the well-established Barzilai-Borwein step size selection to be competitive with the fastest
solvers available. Addressing the regular grid spacing and the associated number of material model evaluations, the
scheme is extended in the present contribution by taking into account a wavelet-based discretisation. In this regard,
the multiresolution properties of wavelets are the key to construct an adaptive hierarchical FFT-based approach that
allows localised microscale features to be properly resolved while maintaining a rather coarse discretisation in the
rest of the solution domain. Regarding the irregular grid spacing, it is noted that the present approach shares simi-
larities with non-uniform fast Fourier transforms (NUFFTs) that allow for an efficient approximation of the discrete
Fourier transform (DFT) when using a reduced set of non-uniformly distributed sampling points. Similar to NUFFT
approaches, the function under consideration is only evaluated at certain selected grid points in the present approach.
These are determined by making use of the intrinsic adaptivity of wavelet-based approaches, whereas use is made of
the ”classic” FFT approach (unlike NUFFT) on the wavelet approximation of the respective function on the underlying
regular grid. To the authors best knowledge and in accordance with [36], it is observed that NUFFT-appraoches have
not yet been studied in the context of microscale boundary value problems. In addition, it is shown that the gain in
computational efficiency of the proposed wavelet-based approach depends on the particular form of the Eshelby-Green
operator and that a significant (additional) gain can be achieved by replacing the Eshelby-Green operator associated
with a Moulinec-Suquet discretisation with one that is consistent with the underlying wavelet discretisation.

Wavelet analysis has emerged in the early 1980s, driven by applications in seismic geology [37], electrical en-
gineering [38] and quantum science [39]. It is based on the fundamental concept of multiresolution analysis [40]
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and has been shown to be particularly useful in the study of physics problems that include characteristic features at
distinct length scales. Hence, it is often also referred to as the numerical microscope [41]. By providing a hierarchical
sequence of basis functions and by establishing transformation relations between the different resolution levels consid-
ered, wavelet-based approaches allow signals to be systematically analysed and compressed by successively ”peeling
off” high frequency components. Vice versa, compressed signals may be retrieved and detailed representations of a
signal may be reconstructed by making use of wavelet synthesis operations. In this regard, wavelet-based approaches
differ significantly from classic spectral approaches since wavelet basis functions have intrinsically good localisation
properties in both physical and spectral space. This allows to determine the frequency spectrum of a signal and the
locations in physical space at which particular frequencies occur [42], and to properly resolve localised features of
a signal by systematically adding/removing higher level wavelets in the respective wavelet expansion. Due to their
remarkable time-frequency decomposition characteristics, adaptive wavelet-based approaches for the solution of (par-
tial) differential equations have been subject of intense research, see [41] for a detailed review. These include wavelet
collocation [43, 44, 45], wavelet Galerkin [46, 47, 48] and wavelet finite element methods [49]. However, applications
to continuum mechanics problems have been rather limited and there are only few works that focus for instance on
the application of wavelets to structural optimisation problems [50] and the modelling of damage propagation [51], on
wavelet-enhanced finite element-based approaches for the efficient solution of microscale boundary value problems
[52, 53] or on adaptive wavelet-based reduced order models [54, 55].

Motivated by the promising properties of wavelet-based approaches in resolving localised features in the solu-
tion profile, the present contribution focuses on the research question ”Can adaptive hierarchical wavelet approaches
be used to increase the computational efficiency of FFT-based spectral solvers for microscale boundary value prob-
lems?”, with the main contributions being:

• The development of an adaptive hierarchical FFT-based approach for the efficient solution of microscale bound-
ary value problems that makes use of the multiresolution properties of wavelet discretisations and allows for
localised microscale features to be accurately resolved while maintaining a rather coarse discretisation in the
rest of the solution domain.

• The derivation of the specific explicit form of the Eshelby-Green operator in Fourier space, which is consistent
with the wavelet discretisation of the field variables.

The contribution is structured as follows: The fundamentals of wavelet analysis as a basis for the adaptive hi-
erarchical scheme to be developed are briefly recapitulated in Section 2. With these at hand, the classic FFT-based
Moulinec-Suquet solution approach to microscale boundary value problems is revisited in Section 3 and a particular
form of the Eshelby-Green operator that takes the underlying wavelet discretisation into account is derived. Section 4
addresses the combination of wavelet- and FFT-based spectral approaches before representative boundary value prob-
lems in one- and two-dimensional settings are studied in Section 5. The findings are summarised and concluding
remarks are drawn in Section 6.

1.1. Notations
Throughout the paper, we consistently use the following notation conventions. Let scalars be denoted by α, first

order tensors by ~α, second order tensors by α, vector-valued lists by α, matrix-valued list by α, and let ⊗ denote the

classic dyadic product. With these definitions at hand, single and double tensor contractions take the form
[
~α ⊗ ~β

]
·[

~γ ⊗ ~δ
]

=
[
~β · ~γ

] [
~α ⊗ ~δ

]
and

[
~α ⊗ ~β

]
:
[
~γ ⊗ ~δ

]
=

[
~α · ~δ

] [
~β · ~γ

]
, and the non-standard dyadic products ⊗ and ⊗ are

defined as
[
~α ⊗ ~β

]
⊗

[
~γ ⊗ ~δ

]
=

[
~α ⊗ ~γ

]
⊗

[
~β ⊗ ~δ

]
and

[
~α ⊗ ~β

]
⊗

[
~γ ⊗ ~δ

]
=

[
~α ⊗ ~γ

]
⊗

[
~δ ⊗ ~β

]
. The volume average of a

tensor-valued function on domain B is

〈α〉 =
1

vol (B)

∫
B

α
(
~x
)

dv , (1)

the L2-type inner product reads

〈α,β〉L2 =
1

vol (B)

∫
B

α
(
~x
)

: βt (~x )
dv , (2)
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and the L2-type norm follows as

‖α‖2L2 =
1

vol (B)

∫
B

α
(
~x
)

: αt (~x )
dv . (3)

Moreover, basis vectors ~ei, i ∈ {1, 2, 3}, refer to a Cartesian basis, I is the second order identity tensor and ∇•, ∇sym•,
and ∇ · • indicate (right-)gradient, symmetrised (right-)gradient and (right-)divergence operations, respectively.

2. Wavelets

This section focuses on the fundamentals of wavelet analysis and provides the basis for the development of
the adaptive hierarchical FFT-based solution approach in Section 4. Against this background, focus lies on a one-
dimensional setting in Section 2.1 before the general two-dimensional setting is discussed in Section 2.2. More
thorough introductions to wavelet analysis are for instance provided in text books [56, 57, 58, 59].

2.1. One-dimensional wavelet analysis
Wavelet analysis is based on the fundamental framework of multiresolution analysis and offers a systematic hi-

erarchical approach to analyse and approximate functions on different resolution levels. To this end, sequences of
nested approximation spaces

{
V j : j ∈ Z

}
and detail spaces

{
W j : j ∈ Z

}
with V j+1 = V j ⊕ W j are introduced.

Moreover, it is required that a given function f (x) : R → R in V0 is related to its integer translates according
to f (x) ∈ V0 ⇔ f (x − k) ∈ V0 ∀ k ∈ Z and that binary dilates belong to higher resolution levels according to
f (x) ∈ V0 ⇔ f

(
2 jx

)
∈ V j ∀ j ∈ Z. The approximation spaces are spanned by scaling functions

{
φ

j
k : k ∈ Z

}
,

whereas functions
{
ψ

j
k : k ∈ Z

}
that span the detail spaces are referred to as wavelets. It can be shown that scaling

functions and wavelets are related to mother scaling functions and mother wavelets according to

φ
j
k (x) = φ

(
2 jx − k

)
, (4a)

ψ
j
k (x) = ψ

(
2 jx − k

)
, (4b)

and that the refinement relations

φ
j
k (x) =

∑
l

hl φ
j+1
2k+l (x) , (5a)

ψ
j
k (x) =

∑
l

gl φ
j+1
2k+l (x) , (5b)

hold. Furthermore, it is observed that the filter coefficients hl and gl that appear in (5) uniquely define a particular
biorthogonal wavelet family together with the filter coefficients h̃l and g̃l that characterise the dual scaling functions

φ̃
j
k (x) = 2 j φ̃

(
2 jx − k

)
, φ̃

j
k (x) =

∑
l

h̃l φ̃
j+1
2k+l (x) , (6)

and the dual wavelets

ψ̃
j
k (x) = 2 j ψ̃

(
2 jx − k

)
, ψ̃

j
k (x) =

∑
l

g̃l φ̃
j+1
2k+l (x) , (7)

respectively, [57, 60].
In this contribution, Deslauriers-Dubuc wavelets [61] will be used. This wavelet family can be derived by means

of successive polynomial interpolation between 2 N support points. The Deslauriers-Dubuc mother scaling function
φ (x) is interpolating in the sense φ (k) = δ0k ∀ k ∈ Z, has compact support supp (φ) = [−2N + 1, 2N − 1] and it can be
shown that polynomials up to degree 2 N −1 can exactly be reproduced by linear combinations of φ j

k (x), see [43]. For
the particular choice N = 2 the filter coefficients are exemplarily provided in Table 1 and the mother scaling function
and wavelet are depicted in Figure 1. Their dual counterparts are not shown since they are defined in terms of delta
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distributions according to φ̃N=2 (x) = δ (x) and ψ̃N=2 (x) = 1
32δ (x − 2)− 9

32δ (x − 1) + 1
2δ

(
x − 1

2

)
− 9

32δ (x) + 1
32δ (x + 1).

In virtue of (5), it is noted that the Deslauriers-Dubuc wavelet is a scaled and translated version of the corresponding
scaling function, namely ψ (x) = 2 φ (2 x − 1).

With the nested approximation spaces V j at hand, a function f (x) may be approximated on different resolution
levels j according to

f (x) ≈ f j (x) =
∑

k

s j
k φ

j
k (x) =

∑
k

s0
k φ

0
k (x) +

j−1∑
i=0

∑
k

di
k ψ

i
k (x) (8)

where s j
k and di

k denote the scaling function and wavelet coefficients, respectively. Regarding (8), a representation
that is only based on scaling functions is referred to as a scaling function representation of function f (x), whereas
a representation both in terms of scaling functions and wavelets will be referred to as a wavelet representation. By
dropping wavelet coefficients smaller than a preset tolerance εd in the wavelet representation, the function may be
represented in a compressed form as

f j (x) ≈ f j
≥ (x) =

∑
k

s0
k φ

0
k (x) +

j−1∑
i=0

∑
k

|di
k | ≥ εd

di
k ψ

i
k (x) (9)

where higher-level wavelets are only activated when necessary. This is demonstrated in Figure 2 in terms of a wavelet-
discretised periodised Gaussian.

Due to the hierarchical character of the multiresolution analysis, the scaling function and wavelet coefficients on
different resolution levels are not independent but can be related to one another by making use of wavelet analysis
(forward wavelet transform)

s j
k =

∑
l

h̃l s j+1
2k+l , (10a)

d j
k =

∑
l

g̃l s j+1
2k+l , (10b)

and wavelet synthesis (backward wavelet transform)

s j+1
2k =

∑
l

h2l s j
k−l +

∑
l

g2l d j
k−l , (11a)

s j+1
2k+1 =

∑
l

h2l+1 s j
k−l +

∑
l

g2l+1 d j
k−l , (11b)

operations. The linear set of relations (10) and (11) can be compacted in a vector-matrix multiplication form according
to [

s j

d j

]
= F j

j+1
s j+1 , s j+1 = B j+1

j

[
s j

d j

]
. (12)

3

2

2

1

1

0

0
−1

−1−2−3
x in mm

φ
( x

) ,
ψ

( x
)

Figure 1: Deslauriers-Dubuc scaling function and wavelet (N = 2).

l -4 -3 -2 -1 0 1 2 3 4

hl 0 − 1
16 0 9

16 1 9
16 0 − 1

16 0
gl 0 0 0 0 0 2 0 0 0
h̃l 0 0 0 0 1 0 0 0 0
g̃l 0 0 1

32 0 − 9
32

1
2 − 9

32 0 1
32

cl 0 0 1
12 − 2

3 0 2
3 − 1

12 0 0

Table 1: Filter coefficients of Deslauriers-Dubuc wavelets (N = 2).
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Figure 2: Exemplary wavelet expansion and numbering of grid points and basis functions. a) One-dimensional periodised Gaussian g (x) =

[0.2 ∗ π]−0.5 exp
(
−5x2

)
with period 8 and level 4 wavelet expansion g4

≥ (x) using Deslauriers-Dubuc wavelets (N = 2, εd = 0.025). Active grid
points are indicated in black colour, inactive grid points in grey colour. b) Numbering of grid points and basis functions. Black colour is used for
grid points at the discretisation level where they occur for the first time, grey colour otherwise.

In view of (11) and by making use of φ̃N=2 (x) = δ (x) it is moreover observed that

f
(
x j+1

2k

)
= s j+1

2k = s j
k = f

(
x j

k

)
(13)

and

f
(
x j+1

2k+1

)
= s j+1

2k+1 = −
1
16

s j
k+2 +

9
16

s j
k+1 +

9
16

s j
k −

1
16

s j
k−1 + 2 d j

k

= −
1

16
f
(
x j

k+2

)
+

9
16

f
(
x j

k+1

)
+

9
16

f
(
x j

k

)
−

1
16

f
(
x j

k−1

)
+ 2 d j

k

, (14)

hold, for the Deslauriers-Dubuc wavelet family defined by the filter coefficients provided in Table 1. Relation (13)
implies that adding higher level wavelet contributions to the wavelet series (8) does not change the function values at
lower level grid points. Likewise, regarding (14), it is observed that the wavelet coefficients d j

k contain the missing
data that is required to pass from a level j to a level j + 1 representation of function f (x) and, in particular, to correct
the interpolation error at grid point x j+1

2k+1.
In order to calculate derivatives of wavelet-discretised functions, the derivative filter coefficients

ck =

∫
B

φ̃ (x)
d
dx

(φ (x − k)) dx (15)

are introduced. By making use of the refinement relations (5a) and (6), definition (15) stipulates an eigenvalue problem
from which the unknown derivative filter coefficients can be determined, see [57, 60]. The resulting filter coefficients
for the Deslauriers-Dubuc wavelet family with N = 2 on a regular grid with grid spacing η = 1 are provided in Table 1.
By additionally invoking (4a) and (6), it is moreover observed that

ck−l

η j =

∫
B

φ̃
j
l (x)

d
dx

(
φ

j
k (x)

)
dx , η j = x j

k+1 − x j
k , (16)

holds, which essentially adopts the filter to the grid-spacing η j at resolution level j. With (16) at hand, taking the
derivative of scaling function representation (8) and inserting (16) into the ensuing equation eventually results in

d f j (x)
dx

∣∣∣∣∣∣
x=x j

l

=

∫
B

φ̃
j
l (x)

d
dx

∑
k

s j
k φ

j
k (x)

 dx =
∑

k

ck−l

η j s j
k =

∑
k

ck

η j s j
k+l . (17)

Finally, it is remarked that periodicity constraints on the function f (x) can be accounted for by wrapping around
indices that are out of bounds in all filter based operations, see [57, 60].
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2.2. Two-dimensional wavelet analysis

The theoretical foundations presented in Section 2.1 can be generalised to a two-dimensional setting by making
use of a tensor product ansatz. To this end, a set of grid points at spatial positions

~x j
k;l = [x1] j

k ~e1 + [x2] j
l ~e2 (18)

is introduced that constitutes an hierarchical two-dimensional grid. In analogy with the one-dimensional setting, each
grid point is associated with a certain resolution level and (possibly multiple) basis functions, see Figure 3. In a
two-dimensional setting, the four different types of basis functions

0Z j
k;l

(
~x
)

= φ
j
k (x1) φ j

l (x2) , (19a)
1Z j

k;l
(
~x
)

= φ
j
k (x1) ψ j

l (x2) , (19b)
2Z j

k;l
(
~x
)

= ψ
j
k (x1) φ j

l (x2) , (19c)
3Z j

k;l
(
~x
)

= ψ
j
k (x1) ψ j

l (x2) , (19d)

exist. Whereas the two-dimensional scaling function spaces consist of functions 0Z j
k;l

(
~x
)
, three different types of

wavelets occur at each resolution level, namely, 1Z j
k;l

(
~x
)
, 2Z j

k;l
(
~x
)
, and 3Z j

k;l
(
~x
)
.

Similar to the one-dimensional setting, a scalar-valued function f
(
~x
)

can be expressed by using a scaling function
or wavelet representation on different resolution levels

f j (~x )
=

∑
k

∑
l

0S j
k;l

0Z j
k;l

(
~x
)

=
∑

k

∑
l

0S 0
k;l

0Z0
k;l

(
~x
)

+

j−1∑
i=0

∑
k

∑
l

3∑
m=1

mS i
k;l

mZi
k;l

(
~x
)

, (20)

and approximations f j
≥

(
~x
)

can be derived by dropping scaling function coefficient mS i
k;l,m ∈ {1, 2, 3} smaller than a

prescribed tolerance εd.
Finally, by collecting the coefficients mS j

k;l in matrices mS j and by successively applying (12) to each dimension
one arrives at a two-dimensional matrix-representation of the forward wavelet transform0S j 1S j

2S j 3S j

 = F j
j+1

0S j+1
[
F j

j+1

]t
(21)
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Figure 3: Numbering of grid points and basis functions in a two-dimensional setting. a) Hierarchical grid featuring 2×2 grid points at discretisation
level 0 and 4× 4 grid points at discretisation level 1. Black colour is used for level 0 grid points, grey colour for grid points that occur the first time
on discretisation level 1. b) Numbering of level 0 basis functions. Grid points associated with type 0 basis function are marked with ×, whereas •,
◦, and ⊗-symbols are used for type 1, type 2, and type 3 basis functions, respectively. c) Numbering of level 1 basis functions.
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and backward wavelet transform

0S j+1 = B j+1
j

0S j 1S j

2S j 3S j

 [
B j+1

j

]t
(22)

in a two-dimensional setting. For presentation purposes and without loss of generality, it was tacitly assumed in (21)
and (22) that the same number of grid points is used in both spatial directions, such that the same transformation
matrices are multiplied from the left and right, respectively. Wavelet transformations in dimensions higher than
two follow in analogy with the preceding relations by applying the one-dimensional wavelet transformation to each
dimension.

3. (FFT-based) spectral approach

This section focuses on the fundamentals of FFT-based spectral solvers. In particular, the derivation of the
Moulinec-Suquet basic scheme that relies on a discretisation by means trigonometric functions, and of the associ-
ated Eshelby-Green operator, are briefly recapitulated in Section 3.1. Based on these derivations, Section 3.2 focuses
on the derivation of the Eshelby-Green operator that is associated with a wavelet-based discretisation of the field vari-
ables. State of the art stabilisation schemes that significantly increase the convergence rate of the basic scheme are
summarised in Section 3.3 and the convergence criterion adopted is discussed in Section 3.4.

3.1. Eshelby-Green operator and basic scheme

In the seminal works [23, 24, 25] a solution approach for microscale boundary value problems has been proposed
that relies on Fourier space representations of the governing fields and solution operators, and that builds the basis for
state of the art solution techniques. Microscale boundary value problems with periodic boundary conditions of the
form

∇ · σ
(
~x
)

= ~0 ∀ ~x ∈ B , ~ω
(
~x−

)
= ~ω

(
~x +) , σ

(
~x−

)
· ~n

(
~x−

)
= −σ

(
~x +) · ~n (

~x−
)

, (23)

are considered, where ~x− and ~x + denote points at opposing parts of the boundary ∂B, see Figure 4. Based on thermo-
dynamic considerations, the stresses σ

(
~x
)

at each material point ~x of body B are assumed to be a function of strains
ε
(
~x
)
, material parameters and, possibly, internal variables that characterise the material state. The governing potential

of the strain field is the displacement field

~u
(
~x
)

= ~ω
(
~x
)

+ εM · ~x (24)

that is additively decomposed in an affine part in terms of macroscale strains εM and a fluctuation part ~ω
(
~x
)
. With

(24) at hand the strain field takes the form

ε
(
~x
)

= ε∗
(
~x
)

+ εM = ∇sym~u
(
~x
)

, ε∗
(
~x
)

= ∇sym~ω
(
~x
)

, εM =
〈
ε
(
~x
)〉

. (25)

x1

x2

ξB1

ξB2

L1

L
2

ξc
B1

ξc B
2

ε

(
~x
)
,σ
(
~x
)

ε̂

(
~ξB
)
, σ̂
(
~ξB
)

FFT

IFFT

BM B

σM · ~n

~uM

εM, . . .

σM, . . .

RVE

Figure 4: FFT-based solution approach for a periodic microscale boundary value problem.
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By introducing polarisation stresses

τ
(
~x
)

= σ
(
~x
)
− E0 : ε∗

(
~x
)

(26)

that correspond to a reference material with fourth order stiffness tensor E0, (23) gives rise to the Lippmann-
Schwinger-type equations

ε̂
(
~ξB

)
= −Γ̂0

(
~ξB

)
: τ̂

(
~ξB

)
∀ ~ξB , ~0 , ε̂

(
~0
)

= εM (27a)

ε
(
~x
)

= −Γ0 (
τ
(
~x
))

+ εM ∀ ~x ∈ B (27b)

where •̂ indicates the Fourier coefficients of the field variable • at angular frequencies ~ξB. Moreover, by inserting (26)
into (27) and by observing that

ε∗
(
~x
)

= Γ0
(
E0 : ε∗

(
~x
))

, (28)

holds, one arrives at the fixed-point-type basic scheme

n+1ε
(
~x
)

= nε
(
~x
)
− Γ0 ( nσ

(
~x
))

, (29)

where superscript n and n + 1 refer to the iteration, see [25] for a detailed derivation. In Fourier space, representations
of the Eshelby-Green operator Γ̂0

(
~ξB

)
are available and its application reduces to tensor contractions. In particular,

for the isotropic reference material

E0 = 2 µ0 Isym , Isym =
1
2

[
I⊗ I + I⊗ I

]
(30)

with Lamé constant µ0, Γ̂0
(
~ξB

)
takes the form

Γ̂0
(
~ξB

)
=

1
2 µ0

 I⊗
[
~ξB ⊗ ~ξB

]
+ I⊗

[
~ξB ⊗ ~ξB

]
+

[
~ξB ⊗ ~ξB

]
⊗I +

[
~ξB ⊗ ~ξB

]
⊗I

2 ‖~ξB‖2
−
~ξB ⊗ ~ξB ⊗ ~ξB ⊗ ~ξB

‖~ξB‖4

∀~ξB , ~0, (31a)

Γ̂0
(
~0
)

= 0 . (31b)

In a one-dimensional setting, (29) reduces to

n+1ε (x) = nε (x) − Γ0 ( nσ (x)) (32)

and the Eshelby-Green operator for a reference material with stiffness constant E0 takes the form

Γ̂0 (ξB) =
[
E0

]−1
∀ξB , 0 , Γ̂0 (0) = 0 , (33)

see Appendix A. In particular, it is observed that Γ̂0 (ξB) is constant (except for the origin) and that Γ̂0
(
~ξB

)
is constant

along lines in frequency space (except for the origin).
For rectangular RVEs that are in the focus of the present contribution, the frequency increments in Fourier space

are determined by the RVE edge lengths Li, see Figure 4. Likewise, the highest frequencies considered in the discrete
Fourier transform (DFT) are related to the number of grid points in each spatial direction ni that are used in the
discretisation of the microstructure. For an even number of grid points, the discrete frequency vectors take the form

~ξB =
∑

i

ξBi~ei , ξBi ∈

{
ξBi ∈ R | ξBi =

2 π k
Li

, k ∈ Z,−
ni

2
< k ≤

ni

2

}
(34)

and care needs to be taken at the Nyquist frequencies (ξc
Bi = π ni

Li
for some i) to ensure that the strain fields in (29) are

real-valued, see the discussion in [24, 21]. In this contribution, the particular choice Γ̂0
(
ξB1, ξ

c
B2

)
= Γ̂0

(
ξc
B1, ξB2

)
=[

E0
]−1

will be adopted that gives rise to real-valued strain updates in (29) and that forces the Fourier coefficients of
the stress tensor (in the converged state) at the Nyquist frequencies to be zero.
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3.2. Eshelby-Green operator for Deslauriers-Dubuc wavelet discretisations
In accordance with the developments of Eshelby-Green operators for discretisations based on finite difference

schemes [34], the representation of the Eshelby-Green operator for a discretisation based on Deslauriers-Dubuc
wavelets is derived in this section. In virtue of (17) and by using the symmetry properties of the derivative filter
for the interpolating wavelets considered (ck = −c−k, c0 = 0), it is observed that the gradient of the micro fluctuation
field at discretisation level j,

∇~ω j (~x )
=

∑
n

∑
k

ck

η
j
n

~ω
(
~x + k η j

n~en

)
⊗ ~en , (35)

has the Fourier space representation

∇̂~ω j
(
~ξB

)
=

∑
n

∑
k

ck

η
j
n

exp
(
i k η j

n ~ξB · ~en

)
~̂ω j

(
~ξB

)
⊗ ~en

=
∑

n

∑
k

ck

η
j
n

[
cos

(
k η j

n ~ξB · ~en

)
+ i sin

(
k η j

n ~ξB · ~en

)]
~̂ω j

(
~ξB

)
⊗ ~en = i ~̂ω j

(
~ξB

)
⊗ ~β j

(
~ξB

) (36)

with

~β j
(
~ξB

)
=

∑
n

∑
k

ck

η
j
n

sin
(
k η j

n ~ξB · ~en

)
~en . (37)

Likewise, the divergence of the wavelet-discretised stress field at level j,

∇ · σ j (~x )
=

∑
n

∑
k

ck

η
j
n

σ
(
~x + k η j

n~en

)
· ~en , (38)

can be represented in Fourier space as

∇̂ · σ j
(
~ξB

)
=

∑
n

∑
k

ck

η
j
n

exp
(
i k η j

n ~ξB · ~en

)
σ̂ j

(
~ξB

)
· ~en

=
∑

n

∑
k

ck

η
j
n

[
cos

(
k η j

n ~ξB · ~en

)
+ i sin

(
k η j

n ~ξB · ~en

)]
σ̂ j

(
~ξB

)
· ~en = i σ̂ j

(
~ξB

)
· ~β j

(
~ξB

) . (39)

By making use of the structural similarity between the wavelet-based representations (36) and (39), and their analytical
analogues

∇̂~ω
(
~ξB

)
= i ~̂ω

(
~ξB

)
⊗ ~ξB , (40a)

∇̂ · σ
(
~ξB

)
= i σ̂

(
~ξB

)
· ~ξB , (40b)

in the derivation of the Eshelby-Green operator, cf. [25], one eventually arrives at the Fourier space representation of
the wavelet discretisation-based Eshelby-Green operator

Γ̂ j0
(
~ξB

)
=

1
2 µ0

[ I⊗
[
~β j

(
~ξB

)
⊗ ~β j

(
~ξB

)]
+ I⊗

[
~β j

(
~ξB

)
⊗ ~β j

(
~ξB

)]
+

[
~β j

(
~ξB

)
⊗ ~β j

(
~ξB

)]
⊗I +

[
~β j

(
~ξB

)
⊗ ~β j

(
~ξB

)]
⊗I

2 ‖ ~β j
(
~ξB

)
‖2

−

~β j
(
~ξB

)
⊗ ~β j

(
~ξB

)
⊗ ~β j

(
~ξB

)
⊗ ~β j

(
~ξB

)
‖~β j

(
~ξB

)
‖4

]
∀~ξB with ~β j

(
~ξB

)
, ~0 . (41)

Restricting ourselves to a two-dimensional setting, it is observed that the Eshelby-Green operator Γ̂ j0
(
~ξB

)
is not

defined at the frequencies

~̃
ξB ∈

~0, π n
j
1

L1
~e1,

π n
j
2

L2
~e2,

π n
j
1

L1
~e1 +

π n
j
2

L2
~e2

 , (42)
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with n j
i denoting the number of grid points at discretisation level j in spatial direction ~ei, for

~β j
(
~̃
ξB

)
=

∑
n

∑
k

ck

η
j
n

sin
(
k η j

n
~̃
ξB · ~en

)
~en = ~0 , (43)

holds. In accordance with the developments on Eshelby-Green operators for finite difference-based discretisations,
the classic choices to remedy this problem consist of either enforcing the strains or the stresses (in the converged

state) at the critical frequencies ~̃
ξB (except for the origin) to vanish, see the discussion in, e.g., [34]. The first choice

amounts to setting Γ̂ j0
(
~̃
ξB

)
= 0 whereas the second choice can for instance be enforced by setting Γ̂ j0

(
~̃
ξB

)
=

[
E0

]−1

for all critical frequencies except for ~̃ξB = ~0 which corresponds to the prescribed average strain εM.
In contrast to the discussion at the end of Section 3.1 and the Eshelby-Green operator Γ̂0

(
~ξB

)
, it is also observed

that the Nyquist frequencies (except for those included in (42)) do not require special treatment for the strain fields in
(29) to be real-valued. To see this, consider for instance the Nyquist frequency pair

∗~ξ c
B

= ξB1~e1 + ξc
B2~e2 , •~ξ c

B
= −ξB1~e1 + ξc

B2~e2 , (44)

indicated by superscripts ∗ and •, and observe that

~β j
(
∗~ξ c
B

)
=

∑
k

ck

η
j
n

sin
(
k η j

n ~ξB · ~e1

)
~e1 = −~β j

(
•~ξ c
B

)
, (45)

holds. With (45) at hand, the evaluation of (41) eventually results in

Γ̂ j0
(
∗~ξ c
B

)
= Γ̂ j0

(
•~ξ c
B

)
. (46)

In particular, it is noted that Γ̂ j0
(
∗~ξ c
B

)
and Γ̂ j0

(
•~ξ c
B

)
are real-valued fourth order tensors such that the requirement of

Γ̂ j0
(
∗~ξ c
B

)
being the complex-conjugate of Γ̂ j0

(
•~ξ c
B

)
is fulfilled.

3.3. Barzilai-Borwein scheme

The Moulinec-Suquet basic scheme is rather slow compared to state of the art solution approaches [21] . In
particular, its convergence rate significantly depends on the chosen reference material and the scheme may fail to
converge for a poor choice – e.g. for a ”too” soft reference material. Against this background, an extended version
of the basic scheme that is competitive to the fastest solvers available was proposed in [28]. The scheme relies on
the interpretation of the basic scheme as a gradient decent method and makes use of the Barzilai-Borwein step size
control [62]. More specifically speaking, the update scheme

n+1ε
(
~x
)

= nε
(
~x
)
− nγΓ0 ( nσ

(
~x
))

, (47)

with the recursive update

nγ = n−1γ

1 −
〈
Γ0 ( nσ

(
~x
))
,Γ0

(
n−1σ

(
~x
))〉

L2

‖Γ0 ( n−1σ
(
~x
))
‖2L2


−1

, 0γ = 1 , (48)

for the Barzilai-Borwein step size γ, motivated by the incorporation of second-order information in gradient decent
methods, was proposed. In the light of (31) it is observed that the step size control, in essence, can be interpreted as
an adaptive adjustment of the reference material.
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3.4. Convergence criterion
In accordance with [28, 21], the convergence criterion

E0 ‖Γ
0 ( nσ (x)) ‖L2

| 〈 nσ (x)〉 |
< εF , one-dimensional setting (49a)

2 µ0 ‖Γ
0 ( nσ

(
~x
))
‖L2

‖
〈 nσ

(
~x
)〉
‖Fro

< εF , two-dimensional setting (49b)

is adopted in this contribution with εF denoting a preset convergence tolerance. In virtue of (29) and (47), (49) can be
interpreted as a condition on the (normalised) step size in strain space when neglecting the Barzilai-Borwein step size
control since

n+1ε
(
~x
)
− nε

(
~x
)

= −Γ0 ( nσ
(
~x
))

for nγ = 1.0 , (50)

holds.

4. Wavelet-enhanced FFT-based spectral solver

The fundamentals of the wavelet-enhanced adaptive hierarchical FFT-based approach proposed in this contribution
will be discussed in this section. The underlying key idea is to significantly reduce the number of material model
evaluations nmat by representing the stress field on a hierarchical wavelet basis. In other words, the material model
is only evaluated where deemed necessary and a wavelet-based approximation of the stress field is used otherwise.
Note that the wavelet-based discretisation naturally entails a refinement criterion: Additional higher-level grid points
are only activated (in the sense that the material model is evaluated) in regions where ”high” wavelet coefficients are
encountered. For the interpolating wavelet family considered in the present contribution, the occurrence of ”high”
wavelet coefficients implies, in the light of (14), a significant approximation error of the stresses at the corresponding
grid point, if the grid point would not be taken into consideration in the wavelet expansion of the stress field, i.e. in
relation (8).

By activating only a reduced set of grid points at each discretisation level and by successively progressing to higher
discretisation levels, the proposed approach is adaptive and, in particular, exploits the natural hierarchy associated with
wavelet discretisations. This is in striking contrast to established non-adaptive FFT-based spectral approaches in which
the material model is evaluated at every grid point of the underlying regular structured grid. Detailed information on
the proposed procedure in a one-dimensional setting is provided in Section 4.1. The two-dimensional extension is
discussed in Section 4.2 and the overall numerical effort of the method is analysed in Section 4.3.

4.1. One-dimensional approach
To calculate a wavelet-based approximation of the stress field in a one-dimensional setting the following steps, as

exemplified in Figure 5, are taken:

• Step 0: Assume the grid point values of the strain field, [nε] j
k = nε

(
x j

k

)
, in iteration n to be given.

• Step 1: Evaluate the material model for each grid point at discretisation level 0 and assign the scaling function
coefficients of the stress field by using the interpolating property of the wavelet family, i.e. set [sσ]0

k ← [nσ]0
k .

• Step 2: Define the index set of all grid points at discretisation level 1 where the material model is to be evaluated,
i.e.M1 =

{
k ∈ Z : the grid point at x1

k occurs for the first time at discretisation level 1
}

and set counter j = 0.

• Step 3: Evaluate the material model to determine the stresses [nσ] j+1
k for k ∈ M j+1.

• Step 4: Calculate a level j+1 approximation of the wavelet-discretised stress field by carrying out the backward
wavelet transform (12) with

[
dσ

] j
= 0, i.e.

[
sσ

] j+1
= B j+1

j

[sσ] j

0

 .
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Figure 5: Grid adaptation in a one-dimensional setting. a) Evaluation of material model at level 0 grid points (red-coloured). b) Definition of
index setM1 and evaluation of material model at level 1 grid points (red-coloured). c) Approximation of stress field at level 1 grid points (blue-
coloured) through wavelet synthesis. d) Determination of the set of critical grid points C1 (marked with 4). e) Definition of index set M2 and
evaluation of material model at level 2 grid points (red-coloured). f) Approximation of stress field at level 2 grid points (blue-coloured) by means
of wavelet synthesis. To highlight the reduction in the number of material model evaluations, grid points where the material model was evaluated
are additionally encircled.

• Step 5: Determine the index set of critical grid points at discretisation level j + 1 where the relative error in the

wavelet-approximated stress field exceeds the tolerance εW, i.e. C j+1 =

{
k ∈ M j+1 :

∣∣∣∣[sσ] j+1
k −[nσ] j+1

k

∣∣∣∣∣∣∣∣[nσ] j+1
k

∣∣∣∣ > εW

}
.

• Step 6: Take neighbouring grid points at the next higher resolution level into account. I.e. ac-
tivate material model evaluations at level j + 2 grid points defined by the index set M j+2 ={
k ∈ Z : (k = 2 n − 1) ∨ (k = 2 n + 1), n ∈ C j+1

}
when passing from level j + 1 to level j + 2.

• Step 7: Correct the wavelet approximated level j + 1 stress values [sσ] j+1
k by making use of the stress values

resulting from the material model evaluation [nσ] j+1
k , i.e. set [sσ] j+1

k ← [nσ] j+1
k for k ∈ M j+1.

• Step 8: If level j + 1 is the maximal discretisation level, use the wavelet-approximated stresses [sσ] j+1
k at the

grid points to carry out an FFT update step according to (32). Else, increase the level counter j ← j + 1 and
proceed with Step 3.

4.2. Two-dimensional approach

In analogy to the one-dimensional approach discussed in Section 4.1, the following steps, as exemplified in Fig-
ure 6, are taken in a two-dimensional setting to obtain a wavelet-approximation of the stress field:
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Figure 6: Grid adaptation in a two-dimensional setting. a) Evaluation of material model at level 0 grid points (red-coloured). b) Definition of
index setM1 and evaluation of material model at level 1 grid points (red-coloured). c) Approximation of stress field at level 1 grid points (blue-
coloured) through wavelet synthesis. d) Determination of the set of critical grid points C1 (marked with 4). e) Definition of index set M2 and
evaluation of material model at level 2 grid points (red-coloured). f) Approximation of stress field at level 2 grid points (blue-coloured) by means
of wavelet synthesis. To highlight the reduction in the number of material model evaluations, grid points where the material model was evaluated
are additionally encircled.
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• Step 0: Assume the grid point values of the strain field, [nε] j
k;l = nε

(
~x j

k;l

)
, in iteration step n to be given.

• Step 1: Evaluate the material model for each grid point at discretisation level 0 and assign the scaling function
coefficients of the stress field, nσ

(
~x
)

= nσqr
(
~x
)
~eq ⊗ ~er, by using the interpolating property of the wavelet

family, i.e. set 0[S σqr ]0
k;l ←

[
nσqr

]0

k;l
.

• Step 2: Define the (multi-)index set of all grid points at discretisation level 1 where the material model is to be
evaluated, i.e.M1 =

{
(k, l) ∈ Z2 : the grid point at ~x1

k;l occurs for the first time at discretisation level 1
}

and set
j = 0.

• Step 3: Evaluate the material model to determine the stress values [nσ] j+1
k;l for (k, l) ∈ M j+1.

• Step 4: Calculate a level j+1 approximation of the wavelet-discretised stress field by coefficient-wise carrying

out the backward wavelet transform (22) with
p[

S σqr

]0
= 0, p ∈ {1, 2, 3}, i.e.

0[
S σqr

] j+1
= B j+1

j


0[

S σqr

] j
0

0 0

 [
B j+1

j

]t
.

• Step 5: Determine the index set of critical grid points at discretisation level j + 1 where
the relative error in the wavelet-approximated stress field exceeds the tolerance εW, i.e. C j+1 ={

(k, l) ∈ M j+1 :

∥∥∥∥[∑q
∑

r
0[S σqr ] j+1

k;l ~eq ⊗~er

]
−[nσ] j+1

k;l

∥∥∥∥
Fro∥∥∥∥[nσ] j+1

k;l

∥∥∥∥
Fro

> εW

}
.

• Step 6: Take neighbouring grid points at the next higher resolution level into account. I.e. activate material
model evaluations at level j+2 grid points defined by the (multi-)index setM j+2 =

{
(k, l) ∈ Z2 : (2 n−1, 2 m−1)∨

(2 n−1, 2 m)∨(2 n−1, 2 m+1)∨(2 n, 2 m−1)∨(2 n, 2 m+1)∨(2 n+1, 2 m−1)∨(2 n+1, 2 m)∨(2 n+1, 2 m+1), (n,m) ∈
C j+1

}
when passing from level j + 1 to level j + 2.

• Step 7: Correct the wavelet approximated level j + 1 stress values 0[S σqr ] j+1
k;l by making use of the stresses

resulting from the material model evaluation [nσ] j+1
k;l , i.e. set 0[S σqr ] j+1

k;l ←
[
nσqr

] j+1

k;l
for (k, l) ∈ M j+1.

• Step 8: If level j + 1 is the maximal discretisation level, use the wavelet-approximated stresses∑
q
∑

r
0[S σqr ] j+1

k;l ~eq ⊗ ~er at the grid points to carry out an FFT update step according to (29). Else, increase the
level counter j← j + 1 and proceed with Step 3.

4.3. Additional numerical effort associated with the wavelet transforms
The wavelet-based approximation of the stress field in Step 4 of the algorithms discussed in Section 4.1 and

Section 4.2 is associated with additional floating point operations. To increase the overall efficiency of the numerical
scheme, the numerical effort associated with the backward wavelet transforms needs to be (significantly) smaller than
the one associated with the evaluation of the material model. Sophisticated material models that are for instance used
to simulate plastic deformation processes and that, in general, require the numerical solution of a non-linear system of
ordinary differential equations are computationally very demanding. In comparison, the numerical effort associated
with the wavelet transform is expected to be almost negligible as will be shown in this section.

In virtue of (11) and for the particular interpolating wavelet family chosen, it is observed that the wavelet transform
to approximate the stress state at even grid points x j

2k, (13), is the identity map. At odd grid points and for [dσ] j
k = 0

(as assumed in Step 4), relation (14) reduces to

[
sσ

] j+1
2k+1 = −

1
16

[
sσ

] j
k+2 +

9
16

[
sσ

] j
k+1 +

9
16

[
sσ

] j
k −

1
16

[
sσ

] j
k−1 (51)

such that (without factorisation) #Add = 3 additions and #Mul = 4 multiplications are required to calculate the
wavelet-based stress approximation at a particular grid point in Step 4.
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Accordingly, the overall numerical effort e1D when considering a discretisation with n0
1 grid points on level 0 and

n
nG
1 = 2nG n0

1 grid points at the highest discretisation level nG, reads

e1D =

nG−1∑
j=0

2 j
n

0
1 [#Add + #Mul] =

[
n

nG
1 − n

0
1

]
[#Add + #Mul] . (52)

Due to the underlying tensor-product structure adopted in a two-dimensional setting, the two-dimensional wavelet
transform in Step 4 reduces to two sequential one-dimensional transformations. Furthermore, by taking into account
p[

S σqr

]0
= 0, p ∈ {1, 2, 3} (as assumed in Step 4) close inspection reveals that n0

2 1D-transformations are required in the

first transformation step, whereas 2 n0
1 1D-transformations are required in the second transformation step for a level 0

discretisation with n0
1 ×n

0
2 grid points. Accordingly, the numerical effort e2D when approximating a scalar-valued field

and taking nG additional grid levels into account is given by

e2D =

nG−1∑
j=0

3
[
2l
n

0
1

] [
2l
n

0
2

]
[#Add + #Mul] =

[
n

nG
1 n

nG
2 − n

0
1 n

0
2

]
[#Add + #Mul] (53)

Since each coefficient of the (symmetric) Cauchy stress tensor is to be approximated, the overall effort for the stress
approximation in a two-dimensional setting is 3

[
n

nG
1 n

nG
2 − n

0
1 n

0
2

]
[#Add + #Mul].

To put the computational effort associated with the wavelet approximation into perspective, consider isotropic
linear elasticity, as the most simplistic material model, as a first example. In plane strain or plane stress settings,
the linear relation between the stresses and strains can be expressed in an appropriate matrix notation resulting in
#Addel = 2 and #Mulel = 5 per sampling point. This number is only slightly lower than the 3 #Add = 9 additions and
3 #Mul = 12 multiplications required per grid point for the wavelet transform. Next, consider von Mises-type elasto-
plasticity with linear isotropic and kinematic hardening, cf. [63, Chapter 3.3]. The specific structure of the material
model allows for a closed-form solution (return-mapping) such that no iterations at material point level are required.
However, even in such an idealised setting, a predictor-corrector step needs to be carried out, the state variables need
to be updated and the stress state needs to be determined. In a typical implementation this results into #Addpi ≈ 60
and #Mulpi ≈ 75 for isotropic hardening, and #Addpk ≈ 80 and #Mulpk ≈ 110 for combined isotropic and kinematic
hardening. Finally, consider a non-linear system of evolution equations featuring multiple (in general tensor-valued)
internal variables that is solved by means of an implicit integration scheme. Due to the underlying non-linearity of
the problem, several iterations are usually required in the iterative scheme at material point level, which significantly
increases the computational effort further as compared to the three elementary examples discussed before.

The previous examples clearly demonstrate that the computational effort associated with the material model eval-
uation significantly increases with increasing complexity of the constitutive response under consideration and can
certainly be expected to be significantly higher than the computational effort associated with the wavelet transform.

5. Representative simulation results

This section focuses on a study of representative boundary value problems that reveal the main properties of the
proposed wavelet-enhanced FFT-based solution approach. To this end, one-dimensional unit cells featuring material
interfaces and material interphases, respectively, are first considered in Section 5.1. Section 5.2 focuses on the two-
dimensional setting and on the influence of the particular structure of the Eshelby-Green operator.

5.1. One-dimensional setting

To gain a basic understanding of the wavelet-enhanced FFT-based spectral approach when applied to continuum
mechanics problems, typical one-dimensional boundary value problems for which analytical solutions can be derived
are studied in this section. In particular, material interfaces as a prototype for problems that feature weak disconti-
nuities (i.e. jumps in the strain field) are considered first in Section 5.1.1. In a second step, the discontinuities are
relaxed by resolving the material interfaces as material interphases of finite thickness, which, however, still results

16

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



in significant local changes in the strain field, see Section 5.1.2. For both one-dimensional sample boundary value
problems considered, the simple elastic constitutive relation accordingly takes the form

σ (x) = Ẽ (x) ε (x) , (54)

with Young’s modulus Ẽ (x) being a function of space as specified in the respective sections.
The periodic one-dimensional domain of length l = 1 mm is discretised with n0

1 = 8 grid points at discretisation
level 0 and a maximum number of nG = 6 additional discretisation levels it taken into account, see Figure 7. The
average macroscale strain εM = 0.005 is applied in a single load step, the stiffness constant of the reference material
is set to E0 = 0.8 E, and the convergence tolerance of the FFT-scheme is set to εF = 10−8.
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Figure 7: One-dimensional periodic boundary value problem. The first three levels of the nested dyadic grid for a discretion with n0
1 = 8 grid points

at discretisation level 0 are shown. In addition, the Young’s modulus as a function of space for the interface and interphase problem as specified in
Section 5.1.1 and Section 5.1.2, respectively, is depicted.

Remark 1 (Wavelet-discretisation in a one-dimensional setting). In a one-dimensional setting, it is observed that
the Eshelby-Green operator associated with the Moulinec-Suquet discretisation is constant in Fourier space except
for the origin and reduces to the inverse Young’s modulus of the reference material, i.e. Γ̂0 (ξB) =

[
E0

]−1
∀ξB , 0.

Moreover, the Nyquist frequencies do not require special treatment for Γ̂0 (ξB) being constant.
In contrast, focusing on the wavelet-based discretisation, it is observed that the Eshelby-Green operator is constant

except for the critical frequencies (which correspond to the origin and the Nyquist frequencies in a one-dimensional
setting), where it is not well-defined. In addition, the structure of the Eshelby-Green operator for wavelet-based
discretisations reveals striking similarities with the one for finite difference schemes, cf. Section 3.2. For the one-
dimensional setting, the particular choice Γ̂ j0

(
π n j

L

)
= 1

E0 will be adopted in the following such that the Eshelby-Green
operator associated with the wavelet discretisation and the one associated with the Moulinec-Suquet discretisation are
identical. The alternative choice, Γ̂ j0

(
π n j

L

)
= 0, is briefly discussed in Appendix B.

5.1.1. Material interfaces
This section focuses on the principal properties of the proposed formulation in the presence of weak discontinu-

ities, i.e. jumps in the strain field. Classical FFT-based solution techniques rely on a regular grid in physical space
which significantly increases the computational effort when strongly localised changes in the solution profile occur.
In essence, the smallest features in the solution domain that are to be resolved govern the (constant) grid spacing and
hence the number of material model evaluations. Note that material interfaces may not necessarily be positioned at
grid points but may occur at arbitrary places in the solution domain – either due to changes in the underlying mi-
crostructure or, for instance, due to the evolution of elasto-plastic transition zones. Properly resolving the position and
evolution of (possibly multiple) weak discontinuities thus requires a fine discretisation which is, however, not nec-
essary in most parts of the solution domain. In striking contrast to classical FFT-based approaches, it will be shown
in this section that by using the proposed wavelet-enhanced FFT approach, a targeted refinement is possible and that
higher-level grid points are only activated in the vicinity of the discontinuities.

To this end, a truss-like structure that consists of two materials with significantly different properties as sketched in
Figure 7 is considered. Without loss of generality, the positions of the material interfaces (x1 = 11

32 mm, x2 = 0.75 mm)
are chosen such that they coincide with level 2 and level 0 grid points, respectively. In particular, note that assuming
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the material interfaces to be positioned at x̃1 = x1 − c ηnG and x̃2 = x2 − c ηnG with c ∈ [0, 1), i.e. in between two
neighbouring grid points at the highest discretisation level, would not affect the solution scheme but only the accuracy
of the solution. Accordingly, the spatial distribution of the Young’s modulus takes the form

Ẽ(x) =


E, if 0 ≤ x < x1

α E, if x1 ≤ x < x2

E, if x2 ≤ x < l
, (55)

with material constants E = 210 GPa and α = 0.6. By following standard procedure, the closed-form solution for the
constant stress field σ (x) = σM as a function of the the applied macroscale strain εM takes the form

∆l =

3∑
i=1

∆li =

[
x1

E
+

x2 − x1

αE
+

l − x2

E

]
σM = l εM . (56)

Moreover, with (55) and (56) at hand, and by inverting (54) a closed-form solution for the (non-constant) microscale
strain field ε (x) can be derived.

The convergence rate of the fixed-point scheme with Barzilai-Borwein step size control is shown as a function
of refinement tolerance εW in Figure 8(a). It is observed that the convergence rate for the non-adaptive reference
calculation and for moderate refinement tolerances is almost the same. For high values of the refinement tolerance
(e.g. εW = 10−2) that correspond to rather inaccurate approximations of the stress field, a higher number of iterations
is required which can be explained by the inaccuracies induced by the stress approximation.

Taking a closer look at the overall number of material model evaluations and the accuracy of the macroscale
stresses shown in Figure 8(b), a significant drop in the number of material model evaluations from 1536 to 168
(for εW = 10−4 and εW = 10−3) and to 160 (for εW = 10−2) is observed. The reduction in the accuracy of the
macroscale stresses when compared with the analytical solution is negligible for the refinement tolerances εW = 10−4

and εW = 10−3, and even acceptable for a refinement tolerance εW = 10−2.
The previous observations suggest that the proposed formulation permits to maintain (almost) the same level of

accuracy while significantly reducing the number of material model evaluations. In this regard, the adaptive selection
of critical grid points at which the material model is to be evaluated is key. This is shown in Figure 9 which visualises
the set of active grid points for each iteration and various refinement tolerances. Clearly, grid points up to the highest
discretisation level are only activated in the vicinity of the material interfaces to accurately capture the stress profile
in the first few iterations. Moreover, only level 0 and level 1 grid points are activated in the last three iterations for
εW = 10−2 and in the last iteration for εW = 10−3 and εW = 10−4, respectively. This observation can be explained
by the fact that the stress distribution in the converged state is constant (within numerical tolerances) such that it can
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Figure 8: Convergence history, number of material model evaluations and error in macroscale stresses as a function of refinement tolerance εW for
the material interface problem shown in Figure 7. The convergence tolerance εF = 10−8 is indicated by the horizontal dashed line in a).
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(a) iteration 0, εW = 10−2
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(b) iteration 1, εW = 10−2
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(c) iterations 2-4, εW = 10−2
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(d) iteration 0, εW = 10−3
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(e) iteration 1, εW = 10−3
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(f) iteration 2, εW = 10−3
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(g) iteration 0, εW = 10−4
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(h) iteration 1, εW = 10−4
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(i) iteration 2, εW = 10−4

Figure 9: Active grid points (red) and inactive grid points (blue) for different iteration steps and various refinement tolerances εW.

exactly be reproduced by a level 0 wavelet discretisation. Accordingly, no further refinement is triggered in Step 5 of
the algorithm proposed in Section 4.1.

Finally, it is remarked that for this particular boundary value problem the refinement tolerances εW = 10−4 and
εW = 10−3 result in the same activation of grid points.

5.1.2. Material interphases
As a sample problem for localised changes in the solution profile, this section focuses on material interphases. In

contrast to the interface problem discussed in Section 5.1.1, the material properties are assumed to change over a region
that is finite but significantly smaller than the geometric problem dimensions. The corresponding one-dimensional
boundary value problem is sketched in Figure 7. Two different materials and their interphases are defined by the
geometrical parameters x1 = 0.2 mm, x2 = 0.3 mm, x3 = 0.7 mm, x4 = 0.8 mm, and the spatial distribution of the
Young’s modulus

Ẽ (x) =



E, if 0 ≤ x < x1
α+1

2 E + α−1
2 cos

([
x−x1
x2−x1

− 1
]
π
)

E, if x1 ≤ x < x2

α E, if x2 ≤ x < x3
α+1

2 E + 1−α
2 cos

([
x−x3
x4−x3

− 1
]
π
)

E, if x3 ≤ x < x4

E, if x4 ≤ x < l

(57)
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with material parameters E = 210 GPa and α = 0.6. Following the same procedure as in Section 5.1.1, the closed-
form analytical solution for the constant stress field σ (x) = σM as a function of the applied macroscale strain εM
reads

∆l =

3∑
i=1

∆li =

[
x1

E
+

x2 − x1
√
αE

+
x3 − x2

αE
+

x4 − x3
√
αE

+
l − x4

E

]
σM = l εM . (58)

Likewise, an analytical solution for the microscale strain field follows from inverting (54) and by inserting (57) and
(58) into the ensuing equation.

Focusing on the convergence rate as a function of refinement tolerance εW, it is observed in Figure 10(a) that less
iterations are required in the adaptive schemes compared to the non-adaptive one. In particular, the simulation with
εW = 10−3 requires the least number of iterations. This observation might be attributed to the smoothing effect of the
projection of the stress field onto the wavelet basis in conjunction with the one-dimensional character of the problem
– i.e. the stress field in the converged state is constant. However, in view of the latter observations and the results
for high values of the refinement tolerance discussed in Section 5.1.1, making a general statement on the influence of
the wavelet-approximation on the convergence rate of the Barzilai-Borwein-stabilised fixed-point iteration seems not
trivially possible.

The overall number of material model evaluations and the accuracy of the predicted macroscale stresses is shown
in Figure 10(b) as a function of the refinement tolerance εW. A significant reduction in the number of material model
evaluations with increasing values of the refinement tolerance is observed – reducing 5632 material model evaluations
as required in the non-adaptive scheme to 264 in the adaptive scheme with εW = 10−3. Regarding the accuracy of the
macroscale stresses, an opposite (logical) trend is noticeable – the relative error with respect to the analytical solution
increases from 1.59 ∗ 10−8 for the non-adaptive scheme to 9.49 ∗ 10−5 for the adaptive scheme with εW = 10−3.

Finally, the set of active grid points at each iteration step for various values of the refinement tolerance is shown in
Figure 11. In accordance with the findings of Section 5.1.1, higher-level grid points are only activated in the vicinity of
the material interphases, i.e. in regions where significant changes in the solution profile are expected. Likewise, only
grid points up to level 1 are activated in the last few iterations. Focusing in more detail on the activation of grid points
it is observed that grid points up to level 5 are activated but that no grid points at the highest allowed discretisation
level are activated for εW = 10−3. This is a striking contrast to the interface problem where grid points up to the
highest discretisation level were activated for all values of the refinement tolerance analysed (even for εW = 10−1 for
which the results were not shown). By comparing the activation of grid points for the various refinement tolerances it
is moreover observed that 1) higher-level grid points get activated and that 2) more grid points at lower discretisation
levels are taken into account for decreasing (tighter) values of the refinement tolerance.
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Figure 10: Convergence history, number of material model evaluations and error in macroscale stresses as a function of refinement tolerance εW
for the material interphase problem sketched in Figure 7. The convergence tolerance εF = 10−8 is indicated by a dashed line in a).
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(a) iteration 0, εW = 10−3
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(b) iteration 1, εW = 10−3
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(c) iterations 2-7, εW = 10−3
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(d) iteration 0, εW = 10−4
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(e) iteration 1, εW = 10−4
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(f) iteration 2, εW = 10−4

x in mm

d
is

cr
et

is
at

io
n

le
v
el

0

1

2

3

4

5

6

0.0 0.2 0.4 0.6 0.8 1.0

(g) iteration 3, εW = 10−4
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(h) iterations 4-8, εW = 10−4
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(i) iteration 0, εW = 10−5
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(j) iteration 1, εW = 10−5
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(k) iteration 2, εW = 10−5
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(l) iteration 3, εW = 10−5
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(m) iteration 4, εW = 10−5
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(n) iterations 5-8, εW = 10−5

Figure 11: Active grid points (red) and inactive grid points (blue) for different iteration steps and various refinement tolerances εW.
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5.2. Two-dimensional setting
This section focuses on the extension of the one-dimensional studies of Section 5.1 to a two-dimensional setting.

To this end, a rectangular unit cell with a circular inclusion as schematically depicted in Figure 12 is considered. For
conceptual simplicity, both phases are assumed to show a linear elastic material response

σ = E : ε , E =
E ν

[1 + ν] [1 − 2 ν]
I ⊗ I +

E
2 [1 + ν]

[
I⊗ I + I⊗ I

]
(59)

that is governed by the fourth order elasticity tensor E with Young’s modulus E and Poisson’s ratio ν. The specific
material parameters for each phase and the geometric dimensions are summarised in Table 2. The unit cell is subjected
to an average (macroscale) tensile strain

εM = 0.005~e1 ⊗ ~e1 (60)

in a single load step and plane strain loading conditions are assumed. Moreover, a level 0 discretisation with n0
1 ×n

0
2 =

8× 8 grid points is considered and a maximum number of nG = 5 additional discretisation levels is taken into account
in the hierarchical wavelet approximation. The reference material in the FFT-based fixed-point iteration is chosen to
be of the form (30) with

µ0 =
E1

2 [1 + ν1]
, (61)

and the Barzilai-Borwein step size control according to Section 3.3 is used for stabilisation purposes. The convergence
tolerance (49) is set to εF = 10−3.

In the following, the focus firstly lies on the influence of the hierarchical wavelet approximation of the stress field
on the computational efficiency in terms of material model evaluations and accuracy. To this end, adaptive and non-
adaptive simulations based on the classic Eshelby-Green operator associated with a Moulinec-Suquet discretisation
are studied in Section 5.2.1. In a second step, calculations based on the Eshelby-Green operator derived in Sec-
tion 3.2 that takes the underlying wavelet discretisation of the field variables into account are additionally considered
in Section 5.2.2.

~e1

~e2

l�

h
�

r�

E1,ν1

E2,ν2

Figure 12: Matrix with soft inclusion.

matrix
E1 210 GPa l� 1.0 mm
ν1 0.3 h� 1.0 mm

inclusion
E2 126 GPa r� 0.3 mm
ν2 0.3

Table 2: Material parameters and geometric dimensions.

5.2.1. Computational efficiency and accuracy
This section focuses on the gain in computational efficiency when enhancing a classic FFT-based multiscale solu-

tion approach with an adaptive wavelet scheme. A Moulinec-Suquet discretisation with its associated Eshelby-Green
operator (with Γ̂0

(
ξB1, ξ

c
B2

)
= Γ̂0

(
ξc
B1, ξB2

)
=

[
E0

]−1
) is here considered and enhanced by making use of the adaptive

hierarchical wavelet approach proposed in Section 4.2. In addition, a high-fidelity finite element calculation, as used
in FE2-based approaches, that relies on a geometrically conforming discretisation of the boundary value problem with
64980 4-node quadrilateral elements, featuring four quadrature points each, is taken into account as a reference. The
macroscale stress state predicted by the finite element-based simulation reads

σFE
M ≈ 1216.6094 MPa~e1 ⊗ ~e1 + 515.3692 MPa~e2 ⊗ ~e2 . (62)
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For the particular boundary value problem and the set of numerical control parameters chosen, the same number of
iterations until convergence is required for the classical, non-adaptive FFT scheme and the wavelet-enhanced scheme
with εW = 10−3 and εW = 10−4, respectively. However, it can be observed in Figure 13(a) that the convergence rate
decreases with increasing values of refinement tolerance εW. This effect can be attributed to the wavelet approximation
of the stress field as further analysed in Remark 2.

Clearly, a significant decrease in the number of material model evaluations with increasing values of the refinement
tolerance is observed in Figure 13(b), whereas a similar level of accuracy in the prediction of the macroscale stresses
is achieved in all simulations. The gain in computational efficiency results from the automatic activation of grid points
in regions where significant changes in the solution profile occur. This is exemplified in Figure 14 where the active
grid points are shown for various iteration steps and values of the refinement tolerance. The activation of grid points
is based on the iterative values of the stress field. For the converged state, the stress and strain fields of the reference
finite element simulation are provided in Figure 15 and those of the (wavelet-enhanced) FFT scheme are provided in
Figure 16 and in Appendix C. In particular, it is observed that the wavelet approximation reproduces the non-physical
oscillations that are inherent to the Moulinec-Suquet discretisation of a unit cell featuring weak discontinuities. This
observation suggests that the gain in computational efficiency can further be increased by taking into account an
Eshelby-Green operator associated with a more elaborated discretisation, e.g. of staggered grid-type [35, 21]. Against
this background, Section 5.2.2 focuses on simulation results that are based on the Eshelby-Green operator derived in
Section 3.2 that takes the underlying wavelet discretisation of the stress field into account.

Remark 2 (Shear loading and convergence rates). In this remark, additional simulation results focusing on the in-
fluence of the hierarchical wavelet-approximation on the convergence rate of the fixed-point iteration scheme are
studied. To this end, the unit cell of Section 5.2.1 is subjected to shear loading, i.e. an average macroscale strain

εM = 0.005
[
~e1 ⊗ ~e2 + ~e2 ⊗ ~e1

]
(63)

is prescribed in a single load step, giving rise to the macroscale stresses

σFE
M ≈ 689.5049 MPa

[
~e1 ⊗ ~e2 + ~e2 ⊗ ~e1

]
. (64)

For the same set of numerical parameters used in Section 5.2.1, the convergence rate, the number of material model
evaluations and the accuracy of the macroscale stresses are provided in Figure 17. It can be observed that the cal-
culation with refinement tolerance εW = 10−3 struggles to converge for the given set of numerical parameters (i.e.
for convergence tolerance εF = 10−3) and requires almost twice the amount of iterations until convergence compared
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Figure 13: Convergence history, number of material model evaluations and error in macroscale stresses as a function of refinement tolerance εW for
the two-dimensional tension problem discussed in Section 5.2.1 and sketched in Figure 12. The simulations are based on the original Eshelby-Green
operator (associated with the Moulinec-Suquet discretisation). The convergence tolerance εF = 10−3 is indicated by a dashed line in a).

23

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



(a) iteration 0, εW = 10−3 (b) iteration 2, εW = 10−3 (c) iteration 4, εW = 10−3

(d) iteration 0, εW = 10−4 (e) iteration 2, εW = 10−4 (f) iteration 4, εW = 10−4

Figure 14: Activity of grid points in the tension problem of the unit cell shown in Figure 12 for different iteration steps and values of the refinement
tolerance εW. The simulations are based on the original Eshelby-Green operator associated with the Moulinec-Suquet discretisation. Active grid
points are marked in red colour, inactive grid points in blue colour.
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Figure 15: Microscale stress and strain fields for the boundary value problem according to Figure 12 and tensile loading, predicted by the reference
finite element calculation with a geometrically conforming discretisation.
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Figure 16: 11-components of the microscale stress and strain fields for the boundary value problem according to Figure 12 and tensile loading,
predicted by a wavelet-enhanced FFT-based solution approach. The simulations are based on the original Eshelby-Green operator associated with
the Moulinec-Suquet discretisation.
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(b) material model evaluations and macroscale stresses

Figure 17: Convergence history, number of material model evaluations and error in macroscale stresses as a function of refinement tolerance εW
for the two-dimensional shear problem discussed in Remark 2 and sketched out in Figure 12. Solid lines in b) represent simulation results with
εF = 10−3, dashed lines represent simulation results with εF = 1.1 ∗ 10−3. The simulation with εW = 10−3 met the convergence tolerance εF = 10−3

after 9 iterations and the convergence tolerance εF = 1.1 ∗ 10−3 after 5 iterations, as highlighted by the circular marker in a). The convergence
tolerance εF = 10−3 is indicated by a dashed horizontal line in a). The simulations are based on the original Eshelby-Green operator associated
with the Moulinec-Suquet discretisation.

with a non-adaptive scheme. Nevertheless, a modest reduction in the overall number of material model evaluations
of approx. 11% is still achieved. When slightly changing the convergence tolerance to εF = 1.1 ∗ 10−3, the gain in
computational efficiency can further be increased to approx. 51% (dashed lines in Figure 17(b)) since the number
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of required fixed-point iterations decreases to 5 (circular marker in Figure 17(a)). The macroscale stress tensor is
predicted within the same level of accuracy in all simulations as shown in Figure 17(b).

5.2.2. Wavelet discretisation-based Eshelby-Green operator
In Section 5.2.1 it was shown that the proposed wavelet-based scheme can be used to enhance classic FFT-based

solution approaches for microscale boundary value problems as to significantly reduce the computational effort in
terms of material model evaluations. Yet, it is noted that the underlying wavelet discretisation was not accounted
for in the particular structure of the Eshelby-Green operator (i.e. the classic Eshelby-Green operator associated with
a Moulinec-Suquet discretisation of the field variables was used). In this section, focus lies on the influence of the
Eshelby-Green operator on the simulation results. To this end, additional simulation results that are based on the

Eshelby-Green operator associated with a wavelet discretisation (with Γ̂ j0
(
~̃
ξB

)
= 0 ∀ ~̃ξB , ~0) as derived in Section 3.2

are considered. Note that almost the same convergence rate and activation of grid points is observed in simulations

that alternatively assume Γ̂ j0
(
~̃
ξB

)
=

[
E0

]−1
∀
~̃
ξB , ~0.

Focusing on the tension problem introduced in Section 5.2.1, the influence of the particular choice of the Eshelby-
Green operator on the convergence rate is small with almost the same accuracy of the macroscale stresses being
achieved, see Figures 18(a) and 18(b). However, significant differences in the overall number of material model
evaluations are observed. Whereas 118260 (for εW = 10−3) and 217248 (for εW = 10−4) material model evaluations
were required in the simulations using a Moulinec-Suquet discretisation-based Eshelby-Green operator, only 52384
(for εW = 10−3) and 90880 (for εW = 10−4) material model evaluations are required when the underlying wavelet
discretisation is taken into account. Thus, a significant additional gain in computational efficiency with regard to the
number of material model evaluations is achieved. Compared to the 327680 material model evaluations required in
the non-adaptive scheme, the number of material model evaluations is reduced by 72% for εW = 10−4 and 84% for
εW = 10−3.

The additional gain in computational efficiency is due to the different activation of grid points in each fixed-point
iteration step as shown in Figure 19. In particular, by comparing the simulation results shown in Figure 14 with those
provided in Figure 19 it is apparent that significantly less grid points are activated ”at a distance” from the material
interface, e.g. close to the centre of the specimen. In other words, a significantly stronger localisation of the active grid
points in the vicinity of the material interfaces is observed when the underlying wavelet discretisation is accounted for
in the Eshelby-Green operator.

The microscale stress and strain fields in the converged state are additionally provided in Figure 20 and in Ap-
pendix C. Compared with their counterparts from Section 5.2.1, and as expected in virtue of the simulation results
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(b) material model evaluations and macroscale stresses

Figure 18: Convergence history, number of material model evaluations and error in macroscale stresses as a function of refinement tolerance εW
for the two-dimensional tension problem discussed in Section 5.2.2 and sketched out in Figure 12. The simulations are based on an Eshelby-Green
operator associated with a wavelet discretisation. The convergence tolerance εF = 10−3 is indicated by a dashed line in a).
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(a) iteration 0, εW = 10−3 (b) iteration 2, εW = 10−3 (c) iteration 4, εW = 10−3

(d) iteration 0, εW = 10−4 (e) iteration 2, εW = 10−4 (f) iteration 4, εW = 10−4

Figure 19: Activity of grid points in the tension problem of the unit cell shown in Figure 12 for different iteration steps and values of the refinement
tolerance εW. The simulations are based on the Eshelby-Green operator associated with the wavelet discretisation. Active grid points are marked
in red colour inactive grid points in blue colour.
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Figure 20: 11-components of the microscale stress and strain fields for the boundary value problem according to Figure 12 and tensile loading,
predicted by a wavelet-enhanced FFT-based solution approach. The simulations are based on the Eshelby-Green operator associated with the
wavelet discretisation.
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for different Eshelby-Green operators discussed in, e.g., [21], somewhat different oscillations are observed when
comparing for instance Figure 16(a) and Figure 20(a).

Remark 3 (Shear loading and convergence rates). Consistent with the tension problem in Section 5.2.2, the same
tendencies are observed when considering the shear problem defined in Remark 2. Almost the same convergence rates
can be noticed in Figures 17(a) and 21(a), and the macroscale stresses are for both cases predicted with a reasonable
accuracy, cf. Figures 17(b) and 21(b). However, when using a Moulinec-Suquet discretisation-based Eshelby-Green
operator 291956 (for εW = 10−3) and 268056 (for εW = 10−4) material model evaluations are required as opposed to
the 138744 (for εW = 10−3) and 146368 (for εW = 10−4) material model evaluations that are required when accounting
for the underlying wavelet discretisation in the Eshelby-Green operator.

By slightly modifying the convergence tolerance, the required number of material model evaluations can further
be reduced to 78376 (for εW = 10−3 with εF = 1.15 ∗ 10−3) such that an overall reduction of about 76% as compared
to a non-adaptive scheme is achieved.
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(b) material model evaluations and macroscale stresses

Figure 21: Convergence history, number of material model evaluations and error in the macroscale stress as a function of the refinement tolerance
εW for the two-dimensional shear problem sketched in Figure 12. Solid lines in b) represent simulation results with εF = 10−3, dashed lines
represent simulation results with εF = 1.15 ∗ 10−3. The simulation with εW = 10−5 met the convergence tolerance εF = 10−3 after 9 iterations and
the convergence tolerance εF = 1.15 ∗ 10−3 after 5 iterations, as highlighted by the circular marker in a). The convergence tolerance εF = 10−3 is
indicated by a dashed horizontal line in a). The simulations are based on the Eshelby-Green operator associated with the wavelet discretisation.

6. Concluding remarks

In this contribution, an adaptive hierarchical FFT-based approach for the efficient solution of microscale boundary
value problems has been proposed. The formulation makes use of the natural hierarchy and adaptivity of wavelet-
based approaches to adapt the computational grid to the solution profile and to significantly reduce the number of
material model evaluations. To this end, the stress field was represented with respect to a wavelet basis and higher
level stress approximations were successively derived by making use of wavelet synthesis operations. It was shown
that the additional computational effort associated with the wavelet transforms is (almost) negligible compared to the
numerical effort associated with the evaluation of non-linear history-dependent material models. Moreover, focusing
on the solution of the Lippmann-Schwinger equation, a representation of the Eshelby-Green operator in Fourier space
was derived that is consistent with the underlying wavelet discretisation.

In a first step, the proposed formulation was applied to representative one-dimensional boundary value problems
for which analytical solutions serve as a reference. In particular, unit cells featuring sharp material interfaces and
smooth material interphases as prototype problems, revealing significant local changes in the solution profile as fre-
quently encountered in continuum mechanics applications, were studied. In both cases, the computational grid was
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adapted to the solution profile – i.e. based on the proposed refinement criterion, significant grid-refinements were
observed in the vicinity of the material interfaces and interphases, respectively. For the one-dimensional boundary
value problems studied, the targeted activation of grid points in the hierarchical adaptive scheme eventually gave rise
to a large reduction of up to 95% in the number material model evaluations while maintaining reasonable levels of
accuracy.

In a second step, focus was laid on a rectangular two-dimensional unit cell featuring a circular inclusion. The unit
cell was subjected to different average strains and the overall accuracy and the number of material model evaluations
were analysed for different refinement tolerances. The influence of the particular form of the Eshelby-Green operator
was thereby also studied. In agreement with the one-dimensional simulation results, significant reductions in the num-
ber of material model evaluations of up to 84% were observed while maintaining reasonable levels of accuracy. This
remarkable gain in computational efficiency was again achieved by an automatic localised activation of grid points.
In addition, it was shown that the gain in computational efficiency compared with a Moulinec-Suquet discretisation
can further be increased by accounting for the underlying wavelet discretisation in the structure of the Eshelby-Green
operator.

The enhancement of a classical FFT-based solution approach to microscale boundary value problems by making
use of the multiresolution properties of wavelets has been demonstrated in the present contribution. The results are
promising since the intrinsic hierarchical structure of the underlying wavelet discretisation naturally gave rise to grid
refinement criteria. In contrast to classical FFT-based solution approaches that intrinsically rely on a regular grid with
constant spacing, it was shown that the proposed wavelet-enhanced approach adequately resolves small-scale features
while preserving a rather coarse discretisation in the remainder of the solution domain. By significantly reducing the
overall number of material model evaluations, a notable gain in computational efficiency is achieved. Since the pro-
posed wavelet-based approach naturally adapts the grid to the solution profile (in the sense that changes in the solution
profile trigger local grid refinements) it seems particularly suitable for the simulation of microstructures that include
evolving (possibly localised) features such as plastic deformation zones. The application to such microstructures,
including associated wavelet-based mapping algorithms for state variables, will be the focus of future work.

Appendix A. Derivation of one-dimensional Lippmann-Schwinger equation

In line with the derivations in [24, 25], one-dimensional versions of the Lippmann-Schwinger equation are derived
in this appendix. To this end, the auxiliary boundary value problem

E0ε∗ (x) + τ (x) = σ (x) ∀x ∈ B , (A.1a)
∇ · σ (x) = 0 ∀x ∈ B , ω

(
x−

)
= ω

(
x+) , σ

(
x−

)
= σ

(
x+) (A.1b)

with x+ and x− denoting points at opposing parts of ∂B, is introduced by considering a reference material with material
constant E0 and polarisation stresses τ (x). In frequency space, the set of equations (A.1) takes the form

i ξB
[
E0 ε̂∗ (ξB) + τ̂ (ξB)

]
= 0 . (A.2)

Together with the vanishing mean condition on the strain fluctuations, 〈ε∗〉 = 0, (A.2) yields the Fourier and real space
representations

ε̂∗ (ξB) = −Γ̂0 (ξB) τ̂ (ξB) ∀ξB , 0 , ε̂∗ (0) = 0 (A.3a)

ε∗ (x) = −Γ0 ( τ (x)) ∀x ∈ B (A.3b)

of the one-dimensional Lippmann-Schwinger equation in terms of the Eshelby–Green operator

Γ̂0 (ξB) =
[
E0

]−1
∀ξB , 0 , Γ̂0 (ξB) = 0 . (A.4)

Moreover, by invoking the kinematic relation

ε (x) = ε∗ (x) + εM , ε∗ (x) = ∇ω (x) , 〈ε〉 = εM (A.5)
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one arrives at the equivalent representation of (A.3) in terms of the strain field

ε̂ (ξB) = −Γ̂0 (ξB) τ̂ (ξB) ∀ξB , 0 , ε̂ (0) = εM (A.6a)

ε (x) = −Γ0 ( τ (x)) + εM ∀x ∈ B (A.6b)

By making use of (A.1a) and by observing that

ε∗ (x) = Γ0
(
E0 ε∗ (x)

)
(A.7)

holds, (A.6) may further be simplified and motivates the fixed-point-type basic scheme

n+1ε (x) = nε (x) − Γ0 ( nσ (x)) . (A.8)

Appendix B. Treatment of critical frequencies

In addition to the simulation results for material interfaces and material interphases discussed in Section 5.1.1 and
Section 5.1.2, complementary simulation results for wavelet-based discretisations and the particular choice Γ̂ j0
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Figure B.22: Convergence history, number of material model evaluations nmat and accuracy of macroscale stresses as a function of refinement

tolerance εW for a wavelet-based discretisation with Γ̂ j0
(
π n j

L

)
= 0. Complementary simulation results for the material interface problem and the

material interphase problem according to Section 5.1.1 and Section 5.1.2 are provided in a)-b) and c)-d), respectively. The convergence tolerance
εF = 10−8 is indicated by dashed lines in a) and c).
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0 are provided in Figure B.22. In agreement with observations made on finite difference scheme-based Eshelby-Green
operators [34], it is observed that the convergence rate, the number of material model evaluations and the accuracy
of the macroscale stresses are (almost) not influenced by the particular choice of the Eshelby-Green operator at the
critical frequency.

Appendix C. Supplementary simulation results

In this appendix, supplementary two-dimensional simulation results are provided. The 22- and 12-components
of the microscale stress and strain fields as predicted by the wavelet-enhanced FFT-based approach using a classi-
cal Moulinec-Suquet discretisation and a wavelet-based discretisation are shown in Figures C.23 and C.24 and in
Figures C.25 and C.26, respectively.
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Figure C.23: 22-components of the microscale stress and strain fields for the boundary value problem according to Figure 12 and tensile loading,
predicted by a wavelet-enhanced FFT-based solution approach. The simulations are based on the original Eshelby-Green operator associated with
the Moulinec-Suquet discretisation.
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Figure C.24: 12-components of the microscale stress and strain fields for the boundary value problem according to Figure 12 and tensile loading,
predicted by a wavelet-enhanced FFT-based solution approach. The simulations are based on the original Eshelby-Green operator associated with
the Moulinec-Suquet discretisation.
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Figure C.25: 22-components of the microscale stress and strain fields for the boundary value problem according to Figure 12 and tensile loading,
predicted by a wavelet-enhanced FFT-based solution approach. The simulations are based on the Eshelby-Green operator associated with the
wavelet discretisation.
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Figure C.26: 12-components of the microscale stress and strain fields for the boundary value problem according to Figure 12 and tensile loading,
predicted by a wavelet-enhanced FFT-based solution approach. The simulations are based on the Eshelby-Green operator associated with the
wavelet discretisation.
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[29] J. Zeman, J. Vondřejc, J. Novák, I. Marek, Accelerating a fft-based solver for numerical homogenization of periodic media by conjugate
gradients, Journal of Computational Physics 229 (21) (2010) 8065–8071. doi:10.1016/j.jcp.2010.07.010.

[30] J. C. Michel, H. Moulinec, P. Suquet, A computational scheme for linear and non-linear composites with arbitrary phase contrast, International
Journal for Numerical Methods in Engineering 52 (1–2) (2001) 139–160. doi:10.1002/nme.275.

[31] V. Monchiet, G. Bonnet, A polarization-based FFT iterative scheme for computing the effective properties of elastic composites with arbitrary
contrast, International Journal for Numerical Methods in Engineering 89 (11) (2012) 1419–1436. doi:https://doi.org/10.1002/nme.3295.

[32] M. Schneider, An FFT-based fast gradient method for elastic and inelastic unit cell homogenization problems, Computer Methods in Applied
Mechanics and Engineering 315 (2017) 846–866. doi:10.1016/j.cma.2016.11.004.

[33] F. Willot, B. Abdallah, Y.-P. Pellegrini, Fourier-based schemes with modified green operator for computing the electrical response of
heterogeneous media with accurate local fields, International Journal for Numerical Methods in Engineering 98 (7) (2014) 518–533.
doi:10.1002/nme.4641.

[34] F. Willot, Fourier-based schemes for computing the mechanical response of composites with accurate local fields, Comptes Rendus Mécanique
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