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1. Introduction

The numerical treatment of elliptic partial differential equations is an in-
tensively studied field. Finite-element-methods (FEM) are well-established
as an important tool for this purpose. The classical h-FEM relies on a space
refinement of the domain Ω under consideration, another possibility is to
increase the polynomial degree of the ansatz functions, this is known as the
p-method. Even a combination of both, so-called hp-FEM, is possible. For
an overview of FEM we refer to [2, 7, 10,13].

When it comes to practical applications, adaptive strategies are very
often indispensable to increase efficiency. In the FEM setting, a lot of very
efficient strategies have been derived, we refer to [13] for an overview. In
the context of adaptivity, in particular the hp-method is appealing since in
many cases exponential convergence has been observed. However, rigorous
proofs of this fact are still quite rare.

A quite different approach is the use of wavelets. Wavelets have strong
analytic properties and form stable bases of function spaces such as the
classical Sobolev spaces. This fact can be used to design adaptive wavelet
methods that are guaranteed to converge with optimal order, cf. [3,12]. Es-
sentially, these adaptive strategies are based on space refinement. Therefore,
they can be interpreted as h-methods. Hence, the question arises whether
it is possible to design hp-versions of adaptive wavelet schemes. This leads
to the concept of quarklets, which have been studied in [5, 6].

This paper is concerned with the approximation power of highly nonlin-
ear quarklet schemes which serve as the benchmark for the performance of
adaptive numerical algorithms based on quarklets. It is well-known that for
second order elliptic boundary value problems on polygonal domains with
reentrant corners singular solutions of the form S(r, ϕ) = rασ(r)η(ϕ) occur.
Here, (r, ϕ) denote polar coordinates with respect to the reentrant corner,
η(ϕ) is a smooth function, σ(r) is a smooth cut-off function, and α depends
on the interior angle. Having this relationship in mind, very often univariate
functions of the form xα serve as models for typical singularities, see, e.g. [1]
for details. In this paper, we show that by means of a suitable refinement
strategy the approximation error that can be achieved by a quarklet dictio-
nary decreases exponentially with respect to the degrees of freedom. This
result holds for both, the L2 and the H1 norm, and relies on the construc-
tion of a certain spline with varying polynomial degree and mesh size, which
generalizes the concept of [1] to higher order splines. In order to quantify
the number of quarklet functions needed to realize a certain approximation
accuracy, we will transfer some concepts of wavelet theory to the quarklet
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setting. In particular we need to switch between single-scale and multi-scale
functions. To this end we derive reconstruction properties for quarklets.

Our approach has one important advantage when compared, e.g., with
the case of hp finite element dictionaries. After suitable rescaling, our uni-
variate quarklets form frames in L2 and H1, and they are therefore stable
under anisotropic tensor product approximation techniques, see [5] for de-
tails. In this way, we can generalize our findings to the multivariate case and
obtain exponentially convergent quarklet approximations also for anisotropic
edge singularities.

The paper is organized as follows. In Section 2 we recall the basic idea
of quarklet frames as polynomially enriched wavelet bases. In Section 3
we derive the important reconstruction property of quarklets. To this end,
in Subsection 3.1 we establish some general reconstruction properties of
multi-wavelets which are applied to the quarklet case in Subsection 3.2. In
Section 4, we study approximation to xα-type singularity functions in terms
of quarklets in the function spaces L2(I), H1(I) and H1(I2).

2. Quarklets

In this section we briefly recall the basic properties of quarkonial systems,
as far as they are needed for our purposes. For fixed m ∈ N let ϕ := Nm(·+
bm2 c) denote the symmetrized cardinal B-spline with suppϕ = [−bm2 c, d

m
2 e].

The quark ϕp is defined as

ϕp(x) := ( x
dm/2e)

pϕ(x), for all p ∈ N0, x ∈ R. (2.1)

Further we consider dilated and translated copies of ϕp:

ϕp,j,k(x) := 2j/2ϕp(2
jx− k), for all p, j ∈ N0, k ∈ Z, x ∈ R. (2.2)

It is well known that the cardinal B-splines are refinable, i.e., for x ∈ R it
holds that

ϕ(x) =

dm
2
e∑

k=−bm
2
c

akϕ(2x− k), ak = 21−m
(

m

k + bm2 c

)
. (2.3)

For later use, we cite a refinement property of the functions ϕ0, . . . , ϕp
from [6]: Although each individual ϕq is usually not a refinable function,
the whole collection (ϕ0, . . . ϕp) forms a refinable function vector.
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Proposition 2.1 ( [6], Prop. 5). For any p ≥ 0, the vector (ϕ0, . . . , ϕp) is
refinable with (p+ 1)× (p+ 1)-refinement matrices Ak given by

(Ak)q,l :=
1

2q
ak

(
q

l

)
kq−l, (2.4)

i.e., 
ϕ0(x)

...

ϕp(x)

 =
∑
k∈Z

Ak


ϕ0(2x− k)

...

ϕp(2x− k)

 , x ∈ R. (2.5)

Remark 2.2. Property (2.5) sets the stage for the application of concepts
from wavelet analysis. Usually, the construction of wavelets is based on
a multiresolution analysis, which is a nested sequence {Vj}j∈Z of closed
subspaces whose union is dense while the intersection is zero. Defining

Vp,j := span{Φq(2j · −k) : 0 ≤ q ≤ p, j ∈ N0, k ∈ Z}L2
, (2.6)

the relation (2.5) immediately implies that Vp,j ⊂ Vp,j+1. We refer to Sub-
section 3.1 for further information.

Let the CDF spline wavelet ψ with m̃ vanishing moments be defined by

ψ(x) :=
∑
k∈Z

bkϕ(2x− k), x ∈ R, (2.7)

where we refer to [4] for a detailed description. Then, we define the quarklet
ψp by

ψp(x) :=
∑
k∈Z

bkϕp(2x− k), for all p ∈ N0, x ∈ R. (2.8)

Further we consider dilated and translated copies of ψp:

ψp,j,k(x) := 2j/2ψp(2
jx− k), for all p, j ∈ N0, k ∈ Z, x ∈ R. (2.9)

It can be shown that the quarks and quarklets inherit crucial properties of
the B-splines and B-spline wavelets, respectively. In particular, Jackson and
Bernstein estimates are fulfilled and the quarklets possess the same amount
of vanishing moments. For details we refer to [6].

Theorem 2.3 ( [6], Thm. 3). Let wp ≥ 0 be chosen such that w0 = 1 and

wp(p+ 1)−1/2 is summable. Then, the system

ΨQ,w := {wpψp,j,k : p ∈ N0, j ∈ N0 ∪ {−1}, k ∈ Z}, (2.10)

forms a frame for L2(R).
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Theorem 2.4 ( [6], Thm. 4). For a given γ > 0, let ϕ = Nm(· + bm2 c),
m > γ + 1/2. Then, the system

ΨQ,w,s = {wp,j,sψp,j,k : p ∈ N0, j ∈ N0 ∪ {−1}, k ∈ Z} , (2.11)

with wp,j,s := 2−js(p + 1)−2s−δ for j ∈ N0 and wp,−1,s := wp,0,s with δ > 1
has the frame property in Hs(R), 0 < s < γ.

3. Reconstruction Properties

To establish the exponential convergence of quarklet expansions, it is
necessary to express a fine quark ϕp,j,k as a linear combination of coarse
quarks ϕq,j−1,l and quarklets ψq,j−1,n, i.e., we look for a decomposition re-
lation

ϕp,j,k(x) =

p∑
q=0

∑
l∈Z

cp,q,j−1,lϕq,j−1,l(x)+

p∑
q=0

∑
n∈Z

dp,q,j−1,nψq,j−1,n(x), x ∈ R,

(3.1)
where c,d are called reconstruction sequences. The existence of a relation
(3.1) is nontrivial, and we will establish a sufficient criterion for such expan-
sions to hold in the context of general multi-generators.

3.1. The General Setting. Let Φ = (Φ0, . . . ,Φp)
T be a vector of functions

from L1(R)∩L2(R). The function vector Φ is called refinable if there exists
a sequence of (p+ 1)× (p+ 1)-matrices Ak such that

Φ(x) =
∑
k∈Z

AkΦ(2x− k), x ∈ R, {Ak}k∈Z ∈ `2(Z)(p+1)×(p+1). (3.2)

To avoid technical difficulties, in the sequel we will always assume the
stronger condition {Ak}k∈Z ∈ `1(Z)(p+1)×(p+1). Defining a second function
vector Ψ = (Ψ0, . . . ,Ψp)

T by

Ψ(x) :=
∑
k∈Z

BkΦ(2x− k), x ∈ R, (3.3)

where Bk are (p + 1) × (p + 1)-matrices, the question arises whether the
functions defined in (3.3) span an algebraic complement Wp,j such that
Vp,j+1 = Vp,j⊕Wp,j . We will need the following proposition whose proof can
be performed by standard arguments and will be presented in the appendix.

Proposition 3.1.
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(i) The Fourier transform Φ̂ = (Φ̂0, . . . , Φ̂p)
T of a refinable function

vector fulfills the matrix equation

Φ̂(ξ) =
1

2
A (z)Φ̂

(
ξ

2

)
, ξ ∈ R, z = ei

ξ
2 ∈ S1, (3.4)

where
(A (z))q,l :=

∑
k∈Z

(Ak)q,l z
k (3.5)

is called the symbol matrix of Φ.

(ii) For a symbol matrix A (z) and ρ ∈ {0, 1} we define the sub-symbol
matrices Aρ(z

2) by(
Aρ(z

2)
)
q,l

:=
∑
k∈Z

(A2k+ρ)q,l z
2k. (3.6)

Then, it holds that

A0(z2) =
1

2
(A (z) + A (−z)) , A1(z2) =

1

2z
(A (z)−A (−z)) . (3.7)

Applying the Fourier transform to (3.3) in an analogous way, it follows
that

Ψ̂(ξ) =
1

2
B(z)Φ̂

(
ξ

2

)
, (B(z))q,l :=

∑
k∈Z

(Bk)q,l z
k. (3.8)

To achieve a decomposition relation (3.1), we need another preparatory
result. By refinability, it suffices to consider j = 1. Because the spaces Vp,j
are shift-invariant and we have Φp(2x − k) = Φp(2(x − k̃) − ρ), k̃ ∈ Z, ρ ∈
{0, 1}, it is sufficient to derive a decomposition relation of Φp(2x− ρ).

Theorem 3.2. Suppose that there exist (p+1)×(p+1) matrices Cρ+2k, Dρ+2l,
such that (

C0(z2) D0(z2)

C1(z2) D1(z2)

)(
A0(z2) A1(z2)

B0(z2) B1(z2)

)
= I, (3.9)

where the sub-symbol matrices Cρ(z2), ρ ∈ {0, 1}, are defined by(
Cρ(z

2)
)
q,l

=
∑
k∈Z

(Cρ+2k)q,lz
2k,

(
Dρ(z

2)
)
q,l

=
∑
k∈Z

(Dρ+2k)q,lz
2k.

Then, each function vector Φ(2 ·−ρ) has a decomposition in terms of coarse
generators Φ and wavelets Ψ, i.e., it holds

Φ(2x− ρ) =
∑
k∈Z

Cρ+2kΦ(x− k) +
∑
n∈Z

Dρ+2nΨ(x− n), x ∈ R. (3.10)
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Proof. Applying a component-wise Fourier-transform to (3.10) yields(
1

2
e−i

ξ
2
ρI

)
Φ̂

(
ξ

2

)
= Cρ(z

2)Φ̂(ξ) + Dρ(z
2)Ψ̂(ξ), ξ ∈ R, z ∈ S1.

With (3.4) and (3.8) we get(
1

2
e−i

ξ
2
ρI

)
Φ̂

(
ξ

2

)
=

1

2
Cρ(z

2)A (z)Φ̂

(
ξ

2

)
+

1

2
Dρ(z

2)B(z)Φ̂

(
ξ

2

)
.

Hence, a sufficient condition for (3.10) is given by

zρI = Cρ(z
2)A (z) + Dρ(z

2)B(z), z ∈ S1. (3.11)

With (3.7) this is equivalent to

zρI = Cρ(z
2)

∑
ρ̂=0,1

zρ̂Aρ̂(z
2)

+ Dρ(z
2)

∑
ρ̂=0,1

zρ̂Bρ̂(z
2)


=
∑
ρ̂=0,1

zρ̂
(
Cρ(z

2)Aρ̂(z
2) + Dρ(z

2)Bρ̂(z
2)
)
.

Hence, by (3.9) the claim follows. �

Proposition 3.3. Defining

X(z) :=
1

2

(
A (z) A (−z)
B(z) B(−z)

)
, E (z) :=

(
I 1

z I

I −1
z I

)
, (3.12)

it holds that (
A0(z2) A1(z2)

B0(z2) B1(z2)

)
= X(z)E (z). (3.13)

Moreover, E (z) is invertible on S1 with

det E (z) = 2p+1(−z)−p−1, E (z)−1 =
1

2

(
I I

zI −zI

)
. (3.14)

Proof. One easily verifies (3.13) with the help of (3.7):

X(z)E (z) =

1
2(A (z) + A (−z)) 1

2z (A (z)−A (−z))

1
2(B(z) + B(−z)) 1

2z (B(z)−B(−z))


=

(
A0(z2) A1(z2)

B0(z2) B1(z2)

)
.
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Using block determinant formulas, cf. [11], we have

det E (z) = det(−1

z
I) det(I + zI

1

z
II)

= det(−1

z
I) det(2I)

= (−z)−p−12p+1.

Additionally, one easily verifies E (z)E (z)−1 = I. �

Remark 3.4. In case that the matrix

X(z)E (z) =

(
A0(z2) A1(z2)

B0(z2) B1(z2)

)

in (3.9) is invertible on the torus S1, it follows that all entries in(
C0(z2) D0(z2)

C1(z2) D1(z2)

)

consist of symbols whose coefficients are contained in `1(Z). Indeed, by our
assumption, every entry in X(z)E (z) has this property, therefore the same
holds for the determinant. Consequently, if the determinant does not vanish
on the torus, the result follows by an application of the Wiener lemma, see,
e.g., [9], page 278, for details.

Remark 3.5. In practice, one usually works with compactly supported gen-
erators that possess finitely supported masks {Ak}k∈Z. Then, it is of course
desirable to find wavelets such that the entries of the matrix

(
A (z) A (−z)
B(z) B(−z)

)−1

consist of Laurent polynomials, for then the reconstruction sequences in
(3.10) are also finitely supported. Fortunately, in the quarklet case, this
is indeed the case, see Subsection 3.2.
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3.2. Application to Quarks. We apply the general theory of reconstruc-
tion to the quarklet case. The assumptions (3.2) and (3.3) simplify as fol-
lows: The matrices Ak defined in (2.4) and hence the symbol matrix A (z)
are lower triangular matrices. The definition of the quarklets (2.8) can be
interpreted as a matrix equation with

Bk = diag(bk, . . . , bk).

Accordingly (3.8) becomes

Ψ̂(ξ) =
1

2
b(z)IΦ̂

(
ξ

2

)
, (3.15)

where b(z) is the symbol of the wavelet ψ.

Remark 3.6. For later use let us recall some basic facts concerning the
construction of biorthogonal wavelets. Let a(z), ã(z) be the symbols of the
primal (dual) generator. The biorthogonality of the generators ϕ und ϕ̃
implies that

a(z)ã(z) + a(−z)ã(z) = 4. (3.16)

The wavelet symbols are chosen as

b(z) = −zã(−z), b̃(z) = −za(−z), (3.17)

Hence, (3.16) and (3.17) imply the fundamental identity

a(z)b(−z)− b(z)a(−z) = 4z. (3.18)

Theorem 3.7. Let z ∈ S1. With the definition

X(z) :=
1

2

(
A (z) A (−z)
b(z)I b(−z)I

)
, (3.19)

it holds that
detX(z) = 2−p(p+1)/2zp+1. (3.20)

If b(−z) 6= 0, then b(−z)I is invertible on S1 and

X(z)−1 = 2

 T (z)−1 − 1
b(−z)T (z)−1A (−z)

− b(z)
b(−z)T (z)−1 1

b(−z)T (z)−1A (z)

 , (3.21)
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where

T (z) =
1

2

(
A (z)− b(z)

b(−z)
A (−z)

)
. (3.22)

Otherwise, if b(−z) = 0, it holds

X(z)−1 = 2

 0 1
b(z)I

A (−z)−1 − 1
b(z)A (−z)−1A (z)

 . (3.23)

Proof. Since b(z)I and b(−z)I commute, the determinant can by computed
by, cf. [11]

detX(z) =

(
1

2

)2p+2

det(A (z)b(−z)I − b(z)IA (−z)).

The matrix A (z)b(−z)− b(z)A (−z) is of lower triangular shape with diag-
onal entries

aqq(z)b(−z)− b(z)aqq(−z) = 2−q(a(z)b(−z)− b(z)a(−z))
= 2−q4z,

where we used (3.5), (2.4), (3.18). Hence we conclude

detX(z) = 2−2p−2
p∏
q=0

2−q4z

= 2−2p−2(4z)p+12−
∑p
q=0 q

= zp+12−p(p+1)/2.

First let us consider the case b(−z) 6= 0. Again, T (z) is a lower triangular
matrix, hence its determinant is given by

detT (z) =

(
1

2

)p+1 p∏
q=0

(
aqq(z)−

b(z)

b(−z)
aqq(−z)

)

= 2−p−1
p∏
q=0

2−q
a(z)b(−z)− b(z)a(−z)

b(−z)

= 2−p−12−p(p+1)/2

(
4z

b(−z)

)p+1

.
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We then calculate

X(z)−1X(z)

=

 T (z)−1
(
A (z)− b(z)

b(−z)A (−z)
)

T (z)−1A (−z)− T (z)−1A (−z)

T (z)−1
(
− b(z)
b(−z)A (z) + b(z)

b(−z)A (z)
)

T (z)−1
(
− b(z)
b(−z)A (−z) + A (z)

)
=

(
T (z)−1T (z) 0

0 T (z)−1T (z)

)
.

Now let b(−z) = 0. Then, with (3.18) it holds that b(z) 6= 0, a(−z) 6= 0
and hence b(z)I and A (−z) are invertible. From (3.18) we also conclude
a(−z) = − 4z

b(z) . We compute

det A (−z) =

p∏
q=0

2−qa(−z) = 2−p(p+1)/2

(
− 4z

b(z)

)p+1

. (3.24)

Again one easily verifies (3.23). �

Theorem 3.8. Let ρ ∈ {0, 1}. The matrix(
C0(z2) D0(z2)

C1(z2) D1(z2)

)

in (3.9) consists of Laurent polynomials only. Furthermore, the length of
the reconstruction sequences (Cρ+2k)k∈Z, (Dρ+2k)k∈Z scales linearly with p.

Proof. By (3.13), invertibility of X(z) implies invertibility of the matrix

S(z2) :=

(
A0(z2) A1(z2)

B0(z2) B1(z2)

)

from (3.9). Furthermore, (3.20) implies that detS(z2) is a monomial. Hence,
since any subdeterminant of S(z2) is also a Laurent polynomial, each entry
of S(z2)−1 is a Laurent polynomial as well. The claim follows with another
application of (3.9). The dimension of the matrix S(z2) is of order p, hence
the degree of its subdeterminants is linearly increasing with respect to p and
the second claim follows. �
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Theorem 3.9. Each multi-quark Φ(2j · −ρ) on level j has a decomposition
in terms of multi-quarks Φ and multi-quarklets Ψ, i.e., it holds

Φ(2j · −ρ) =

jpk+∑
k=jpk−

Cj,ρ+2kΦ(· − k) +

j−1∑
i=0

ipk++pn+∑
n=ipk−+pn−

Di,ρ+2nΨ(2j−1−i · −n).

(3.25)
Furthermore, the length of the sequences Cj (Di) is of order jp (ip). The
overall length of the reconstruction sequences is of order j2p.

Proof. To prove (3.25), we iteratively apply the decomposition relation (3.10).
In particular we have to determine the number of multi-quarks and multi-
quarklets, respectively. With the length of the reconstruction sequences
being of order p, see Theorem 3.8, we conclude that the translations corre-
sponding to the nontrivial coefficients are contained in the interval [pk−, pk+]
and [pn−, pn+], respectively. Without loss of generality we assume k−, n− <
0. We have

Φ(2j · −ρ) =

pk+∑
k=pk−

C0,ρ+2kΦ(2j−1 · −k) +

pn+∑
n=pn−

D0,ρ+2nΨ(2j−1 · −n).

Again decomposing the multi-quarks leads to

pk+∑
k=pk−

C0,ρ+2kΦ(2j−1 · −k) =

2pk+∑
k=2pk−

C1,ρ+2kΦ(2j−2 · −k)

+

pk++pn+∑
n=pk−+pn−

D1,ρ+2nΨ(2j−2 · −n).

Inductively we get

Φ(2j · −ρ) =

jpk+∑
k=jpk−

Cj,ρ+2kΦ(· − k) +

j−1∑
i=0

ipk++pn+∑
n=ipk−+pn−

Di,ρ+2nΨ(2j−1−i · −n).

Counting the nontrivial entries of Cj , Di leads to | suppCj | = jp(k+ − k−),
| suppDi| = ip(k+ − k−) + p(n+ − n−). Since k−, k+, n−, n+ depend on
the reconstruction properties of the underlying wavelet basis, only, we get
| suppCj | ∼ jp, | suppDi| ∼ ip. Summation over i yields a total number of
function vectors of order j2p. �
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Table 1. Refinement coefficients of Φ in z-notation.

m p A (z)

1 0
(
z + 1

)
1

(
z + 1 0

1
2z

1
2z + 1

2

)

2


z + 1 0 0

1
2z

1
2z + 1

2 0
1
4z

1
2z

1
4z + 1

4


2 0

(
1
2
z2+z+ 1

2
z

)
1

 1
2
z2+z+ 1

2
z 0

1
4
z2− 1

4
z

1
4
z2+ 1

2
z+ 1

4
z


2


1
2
z2+z+ 1

2
z 0 0

1
4
z2− 1

4
z

1
4
z2+ 1

2
z+ 1

4
z 0

1
8
z2+ 1

8
z

1
4
z2− 1

4
z

1
8
z2+ 1

4
z+ 1

8
z


3 0

(
1
4
z3+ 3

4
z2+ 3

4
z+ 1

4
z

)
1

 1
4
z3+ 3

4
z2+ 3

4
z+ 1

4
z 0

1
4
z3+ 3

8
z2− 1

8
z

1
8
z3+ 3

8
z2+ 3

8
z+ 1

8
z





1
4

S
.

D
A

H
L

K
E

,
T

.
R

A
A

S
C

H
,

A
N

D
A

.
S

IE
B

E
R

Table 2. Reconstruction coefficients of Φ(2·) in z-notation.

m p C0(z2)

1 0
(

1
2

)
1

(
1
2 0

−1
4 1

)

2


1
2 0 0

−1
4 1 0

0 −1 2


2 0

(
− 1

8
z4+ 3

4
z2− 1

8
z2

)
1

 − 1
8
z4+ 3

4
z2− 1

8
z2

0
1
64
z8− 3

32
z6+ 3

32
z2− 1

64
z4

− 1
4
z4+ 3

2
z2− 1

4
z2


2


− 1

8
z4+ 3

4
z2− 1

8
z2

0 0
1
64
z8− 3

32
z6+ 3

32
z2− 1

64
z4

− 1
4
z4+ 3

2
z2− 1

4
z2

0
− 1

256
z12+ 5

128
z10− 15

256
z8− 13

64
z6− 15

256
z4+ 5

128
z2− 1

256
z6

1
16
z8− 3

8
z6+ 3

8
z2− 1

16
z4

− 1
2
z4+3z2− 1

2
z2


3 0

(
− 9

64
z6+ 45

64
z4− 7

64
z2+ 3

64
z4

)
1

 − 9
64
z6+ 45

64
z4− 7

64
z2+ 3

64
z4

0
− 81

16384
z14+ 999

16384
z12− 1881

16384
z10− 5865

16384
z8+ 3749

16384
z6− 1251

16384
z4+ 261

16384
z2− 27

16384
z8

− 9
32
z6+ 45

32
z4− 7

32
z2+ 3

32
z4


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Table 3. Reconstruction coefficients of Φ(2·) in z-notation.

m p D0(z2)

1 0
(

1
2

)
1

(
1
2 0
1
4

1
2

)

2


1
2 0 0
1
4

1
2 0

0 1
2

1
2


2 0

(
1
4
z2+ 1

4
z2

)
1

 1
4
z2+ 1

4
z2

0
− 1

32
z6+ 7

32
z4− 7

32
z2+ 1

32
z4

1
4
z2+ 1

4
z2


2


1
4
z2+ 1

4
z2

0 0
− 1

32
z6+ 7

32
z4− 7

32
z2+ 1

32
z4

1
4
z2+ 1

4
z2

0
1

128
z10− 11

128
z8+ 13

64
z6+ 13

64
z4− 11

128
z2+ 1

128
z6

− 1
16
z6+ 7

16
z4− 7

16
z2+ 1

16
z4

1
4
z2+ 1

4
z2


3 0

(
3
8
z2+ 1

8
z2

)
1

 3
8
z2+ 1

8
z2

0
27

2048
z10− 189

2048
z8+ 159

1024
z6− 93

1024
z4+ 39

2048
z2− 9

2048
z6

3
8
z2+ 1

8
z2





1
6

S
.

D
A

H
L

K
E

,
T

.
R

A
A

S
C

H
,

A
N

D
A

.
S

IE
B

E
R

Table 4. Reconstruction coefficients of Φ(2 · −1) in z-notation.

m p C1(z2)

1 0
(

1
2

)
1

(
1
2 0

−1
4 1

)

2


1
2 0 0

−1
4 1 0

0 −1 2


2 0

(
1
4z

2 + 1
4

)
1

 1
4z

2 + 1
4 0

− 1
32
z6− 1

32
z4+ 1

32
z2+ 1

32
z2

1
2z

2 + 1
2


2


1
4z

2 + 1
4 0 0

− 1
32
z6− 1

32
z4+ 1

32
z2+ 1

32
z2

1
2z

2 + 1
2 0

1
128

z10− 3
128

z8− 7
64
z6− 7

64
z4− 3

128
z2+ 1

128
z4

− 1
8
z6− 1

8
z4+ 1

8
z2+ 1

8
z2

z2 + 1


3 0

(
3
64
z6− 7

64
z4+ 45

64
z2− 9

64
z2

)
1

 3
64
z6− 7

64
z4+ 45

64
z2− 9

64
z2

0
27

16384
z14− 261

16384
z12+ 483

16384
z10− 1957

16384
z8− 5655

16384
z6+ 4185

16384
z4− 999

16384
z2+ 81

16384
z6

3
32
z6− 7

32
z4+ 45

32
z2− 9

32
z2


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Table 5. Reconstruction coefficients of Φ(2 · −1) in z-notation.

m p D1(z2)

1 0
(
−1

2

)
1

(
−1

2 0
1
4 −1

2

)

2


−1

2 0 0
1
4 −1

2 0

0 1
2 −1

2


2 0

(
−1

2

)
1

 −1
2 0

1
16
z4− 1

16
z2

−1
2


2


−1

2 0 0
1
16
z4− 1

16
z2

−1
2 0

− 1
64
z8+ 1

16
z6+ 5

32
z4+ 1

16
z2− 1

64
z4

1
8
z4− 1

8
z2

−1
2


3 0

(
−1

8z
2 − 3

8

)
1

 −1
8z

2 − 3
8 0

− 9
2048

z10+ 39
2048

z8− 93
1024

z6+ 159
1024

z4− 189
2048

z2+ 27
2048

z4
−1

8z
2 − 3

8


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4. Quarklet Approximation

Usually, the function

uα : I → R,
x 7→ xα,

(4.1)

with α > 1
2 serves as a typical model example of singular solutions to elliptic

PDEs. In this section, we show that the function (4.1) can be approximated
in L2 and in H1, respectively, with exponential order by the elements of our
quarklet frame. We proceed in the following way. First of all, we choose
a highly nonuniform partition of [0, 1] and approximate uα by means of a
Hermite spline with respect to the partition. Then we show that this spline
can be written as a linear combination of quarks on different refinement
levels. Finally, by using the decomposition relation derived in Section 3.2,
we rewrite the spline in terms of quarklets and count the necessary degrees
of freedom.

4.1. Approximation in L2.

4.1.1. Construction of the Spline. We study approximations to (4.1) in terms
of quarks and quarklets. First we are going to construct a piecewise poly-
nomial approximation by Hermite interpolation. This generalizes the spline
from [1]. Thus, for i = 1, . . . , J we define

• a finite geometric sequence of points: x0 := 0, xi := 2i−J ;

• intervals Ii := [xi−1, xi];

• a local maximal refinement level ji := J − i+ 1 + dlog2(m)e;

• a local maximal polynomial degree pi := i+m− 3.

Theorem 4.1. Let g be the piecewise polynomial on [0, 1] which on each
subinterval Ii is defined as the Hermite interpolant gi with respect to

xi−1, . . . , xi−1︸ ︷︷ ︸
m−1 times

, yi, . . . , yi︸ ︷︷ ︸
i−1 times

, xi, . . . , xi︸ ︷︷ ︸
m−1 times

, (4.2)

where yi := 1
2(xi + xi−1). Let

Ei := ‖uα − gi‖2L2(Ii)
(4.3)
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denote the squared L2 approximation error. Then, it holds that

Ei . 2−2i2(i−J)(2α+1), i = 2, . . . , J, (4.4)

E1 . 2(1−J)(2α+1). (4.5)

Furthermore the squared global L2 error is bounded by

J∑
i=1

Ei . 2−2J . (4.6)

Proof. Let i ≥ 2. We construct gi as the Hermite interpolant with respect
to the i + 2m − 3 knots from (4.2). For x ∈ II the pointwise error can be
estimated by

|uα(x)− gi(x)| ≤ |u
(i+2m−3)
α (ξ)|

(i+ 2m− 3)!
|x− xi−1|m−1|x− yi|i−1|x− xi|m−1

≤ |u
(i+2m−3)
α (ξ)|

(i+ 2m− 3)!
|Ii|i+2m−32−i+1

=
|u(i+2m−3)
α (ξ)|

(i+ 2m− 3)!
2(i−J−1)(i+2m−3)2−i+1.

Now we estimate the derivative for ξ ∈ Ii. With the absolute convergence
of the binomial series it can be bounded by

|u(i+2m−3)
α (ξ)|

(i+ 2m− 3)!
=
α|α− 1| · · · |α− i− 2m+ 4|

(i+ 2m− 3)!
ξα−i−2m+3 ≤ 2αξα−i−2m+3.

Combining these estimates with the monotonicity of uα leads to

|uα(x)− gi(x)| ≤ 2α2(i−J−1)(i+2m−3)2−i+1

{
xα−i−2m+3
i−1 , α < i+ 2m− 3

xα−i−2m+3
i , α > i+ 2m− 3

≤ 2α

{
2(i−J−1)α2−i+1, α < i+ 2m− 3

2(i−J)α2−2i−2m+3, α > i+ 2m− 3

. 2(i−J)α2−i,

with a constant depending on m and α. For Ei, i = 2, . . . , J we conclude

Ei =

∫
Ii

|uα(x)− gi(x)|2dx . 2i−J−122(i−J)α2−2i . 2(i−J)(2α+1)2−2i.
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It remains to treat the case i = 1. We directly compute

E1 ≤ ‖uα‖2L2(I1) =

∫ 21−J

0
|xα|2dx =

[
1

2α+ 1
x2α+1

]21−J

0

≤ 2(2α+1)(1−J).

Finally we consider the global error.

J∑
i=2

Ei .
J∑
i=2

2−2i2(2α+1)(i−J) = 2−(2α+1)J
J∑
i=2

(
2−222α+1

)i
= 2−(2α+1)J

(
2−222α+1

)2 J−2∑
i=0

(
2−222α+1

)i
. 2−(2α+1)J

(
2−222α+1

)2
(2−222α+1)J−1

. 2−2J .

With the asymptotic behaviour of E1 the claim follows. �

4.1.2. Quarkonial Decomposition. The next step is to show that the approx-
imation

∑J
i=1 giχIi can be expanded in terms of quarklet frame elements.

Firstly, we consider a decomposition into fine quarks which are not ele-
ments of the frame. Secondly, we use the reconstruction properties derived
in Section 3 to get a decomposition into frame elements.

Proposition 4.2. The functions ϕ0(· − k), . . . , ϕp(· − k), |k| < m, span a
spline space that contains the polynomial space Πp+m−1(−bm2 c, d

m
2 e).

Proof. Let q ∈ N0. If q ≤ m−1, xq has a representation in terms of B-splines,
i.e., for x ∈ (−bm2 c, d

m
2 e) it holds

xq =
∑

−m<k<m
cq,kϕ0(x− k).

Otherwise we split q = p+m− 1 such that

xq = xpxm−1 = xp
∑

−m<k<m
cm−1,kϕ0(x− k)

=
∑

−m<k<m

p∑
l=0

(
p

l

)
kp−l(x− k)lcm−1,kϕ0(x− k)

=
∑

−m<k<m

p∑
l=0

(
p

l

)
dm/2elkp−lcm−1,kϕl(x− k).

(4.7)

�
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By a change of variables, we can expand any polynomial on the intervals
Ii in terms of quark generators:

Proposition 4.3. The quarks ϕl,ji,k, l = 0, . . . , pi, 2dlog2(m)e − dm/2e <
k < 2dlog2(m)e+1 + bm/2c span a spline space including the polynomial space
Πi+2m−4(Ii).

Proof. We have ϕp,ji,k = 2ji/2ϕp(2
ji · −k) and hence

suppϕp,ji,k = [2−ji(k − bm/2c), 2−ji(k + dm/2e)]. (4.8)

Comparing the interval bounds with Ii = [2i−J−1, 2i−J ], we conclude that
only the suppports of those quarks intersect with Ii which satisfy

2dlog2(m)e − dm/2e < k < 2dlog2(m)e+1 + bm/2c. (4.9)

For quarks lying completely inside Ii the condition on the translation pa-
rameter reads as follows:

2dlog2(m)e + bm/2c ≤ k ≤ 2dlog2(m)e+1 − dm/2e. (4.10)

Hence, the B-splines fulfilling (4.9) generate all polynomials with degree
m−1 on Ii. The remainder of the proof is analogous to the previous one. �

So far, we have shown that each gi on Ii can be decomposed in terms
of quarks on level ji. But, for m ≥ 2 the supports of certain quarks in-
tersect with the intervals Ii−1, Ii+1. As a consequence we have to thin out
the amount of quarks in the neighbourhood of the knots xi to construct a
globally m− 1-times differentiable approximation to uα. We do this in the
following way. We allow the supports of the quarks ϕp,ji,k to intersect with
the interval Ii+1, but not with Ii−1. At the left boundary of Ii, for each p
we insert m − 1 quarks on level ji − 1. By proceeding this way and using
the refinability of the B-splines the gap in the spline space of degree m− 1
is filled. In the following we use the abbreviations

K0 := 2dlog2(m)e, K1 := 2dlog2(m)e+1. (4.11)
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Figure 1. Closing the ’gap’ in the spline space at the right
hand side of xi = 1

2 with an additional fine hat.

Proposition 4.4. Let 2 ≤ i < J , ji = J − i + 1 + dlog2(m)e and pi =
i+m− 3. Then, the coarse quarks ϕp,ji,k, p = 0, . . . , pi, K0 + bm/2c ≤ k <
K1 + bm/2c and the fine quarks ϕp,ji+1,k, p = 0, . . . , pi − 1,K1 − dm/2e <
k ≤ K1 + bm/2c+m− 2 span a spline space including the polynomial space
Πi+2m−5(Ii).

Proof. As seen in the proof of Proposition 4.2, it suffices to show that each
polynomial of degree m − 1 can be decomposed into a sum of B-splines on
fine and coarse scales. Let P ∈ Πm−1(Ii). Of course, P has a decomposition
in terms of coarse B-splines

P (x) =
∑

K0−dm/2e<k<K1+bm/2c

ckϕ0,ji,k(x)

=

K0+bm/2c−1∑
k=K0−dm/2e+1

ckϕ0,ji,k(x) +

K1+bm/2c−1∑
k=K0+bm/2c

ckϕ0,ji,k(x),

where the latter sum consists only of B-splines not intersecting with Ii−1. We
have a look at the first sum. Inserting the refinement equation for B-splines
(2.3) yields

K0+bm/2c−1∑
k=K0−dm/2e+1

ckϕ0(2jix− k) =

K0+bm/2c−1∑
k=K0−dm/2e+1

ck

 dm/2e∑
l=−bm/2c

alϕ0(2 · 2jix− 2k − l)

 .

With an index shift we obtain

K0+bm/2c−1∑
k=K0−dm/2e+1

ckϕ0(2jix− k) =

K1+m+bm/2c−2∑
l̃=K1−m−dm/2e+2

 ∑
2k+l=l̃

ckal

ϕ0(2ji+1x− l̃).
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With (4.10) we can omit the fine B-splines lying completely inside Ii−1 and
get

K0+bm/2c−1∑
k=K0−dm/2e+1

ckϕ0(2jix− k) =

K1+m+bm/2c−2∑
l̃=K1−dm/2e+1

 ∑
2k+l=l̃

ckal

ϕ0(2ji+1x− l̃).

Hence we have for x ∈ Ii:

P (x) =

K1+bm/2c+m−2∑
l̃=K1−dm/2e+1

 ∑
2k+l=l̃

ckal

ϕ0,ji+1,l̃(x)

+

K1+bm/2c−1∑
k=K0+bm/2c

ckϕ0,ji,k(x)

By polynomial enrichment as in (4.7), the claim follows . �

Theorem 4.5. Let the spline constructed in Theorem 4.1 be given by g =∑J
i=1 giχIi and let ji be defined as at the beginning of this section. We define

the collection of quark indices

Λji := {(p, ji, k) : p ≤ pi,K0 + bm/2c ≤ k ≤ K1 + bm/2c+m− 2},
Λj1 := {(p, j1, k) : p ≤ p1, bm/2c ≤ k ≤ K1 + bm/2c+m− 2},
ΛjJ := {(p, jJ , k) : p ≤ pJ ,K0 + bm/2c ≤ k < K1 + bm/2c},

Λ :=
J⋃
i=1

Λji . (4.12)

Then, there exist cλ ∈ R, such that

g(x) =
∑
λ∈Λ

cλϕλ(x), x ∈ I. (4.13)

Proof. Let 2 ≤ i ≤ J . We proceed in the following way: Suppose, that gi−1

is given on Ii−1 as a polynomial of degree i+ 2m− 5. Then, we decompose
gi into

gi(x) = Pi(x) +Qi(x),
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where Pi ∈ Πi+2m−5, Qi ∈ Πi+2m−4 and Qi has a root with multiplicity
m− 1 in xi−1. Pi is constructed as the extension of gi−1|Ii to a polynomial
on Ii. With (4.9) and (4.10) we can rewrite Λ as Λ = ∪ΛIi ,

ΛIi :={(p, ji−1, k) : p ≤ pi−1,K1 − dm/2e < k < K1 + bm/2c}
∪{(p, ji−1, k) : p ≤ pi−1,K1 + bm/2c ≤ k ≤ K1 + bm/2c+m− 2}
∪{(p, ji, k) : p ≤ pi,K0 + bm/2c ≤ k < K1 + bm/2c}.

Since gi−1 is a polynomial on Ii−1, with Proposition 4.3 we have for x ∈ Ii−1:

gi−1(x) =
∑

λ∈ΛIi−1

cλϕλ(x).

Considering gi−1 on Ii, we can omit the nonoverlapping quarks and get for
x ∈ Ii

gi−1|Ii(x) =

K1+bm/2c−1∑
k=K1−dm/2e+1

pi−1∑
p=0

ck,pϕp,ji+1,k(x).

With Proposition 4.4, gi−1|Ii can be extended to a polynomial Pi ∈ Πi+2m−5(Ii):

Pi(x) =

K1+bm/2c+m−2∑
k=K1−dm/2e+1

pi−1∑
p=0

ck,pϕp,ji+1,k(x) +

K1+bm/2c−1∑
k=K0+bm/2c

pi−1∑
p=0

ck,pϕp,ji,k(x).

By construction, the polynomial Qi interpolates uα − Pi in xi and yi and
has a decomposition

Qi(x) = (x− xi−1)m−1
pi∑
p=0

apx
p.

Obviously, the first part consists only of B-splines lying completely inside
Ii. Hence, Qi has a decomposition in coarse quarks

Qi(x) =

K1+bm/2c−1∑
k=K0+bm/2c

pi∑
p=0

bk,pϕp,ji,k(x)

The case i = 1 is already covered by Proposition 4.3, since no overlapping
quarks have to be considered. �

After all these preparations, we are now able to state and to prove the
main result of this section. By expanding the Hermite interpolation spline
with respect to the elements of the quarklet frame, we show that the model
function uα can indeed be approximated with exponential order.
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Theorem 4.6. Let ∆ := {(p, j, k) : p ∈ N0, j ∈ N0 ∪ {−1}, k ∈ Z} be the
index set of the full quarklet system and let g be the spline constructed in
Theorem 4.1 . For N ∼ J5, J ∈ N there exist cλ ∈ R such that

g(x) =
∑

λ∈∆′⊂∆:|∆′|≤N

cλψλ(x), x ∈ I, (4.14)

‖uα − g‖2L2(I) .
(
22
)−N1/5

= e−2 ln(2)N1/5
. (4.15)

Proof. First we have a look at (4.14). Since we have a decomposition of g
in terms of quarks, see (4.13), and finite reconstruction sequences derived
in Section 3, (4.14) follows. It remains to estimate the asymptotic number
of frame elements. With Proposition 4.4, each polynomial pi on Ii has a
decomposition in terms of C0(m)pi fine quarks on level ji. With Theorem
3.9, each fine multi-quark consists of j2

i pi frame element vectors. Hence,
summation over i gives a total number of J5 frame elements. Inserting this
into the estimate (4.6) gives (4.15). �

4.2. Approximation in H1.

Theorem 4.7. Let g be the piecewise polynomial on [0, 1] which on each
subinterval Ii is defined as the Hermite interpolant gi with respect to u′α and
the knots

xi−1, . . . , xi−1︸ ︷︷ ︸
m−1−times

, yi, . . . , yi︸ ︷︷ ︸
i−2−times

, xi, . . . , xi︸ ︷︷ ︸
m−1−times

, (4.16)

where yi := 1
2(xi−1 + xi). Let

Ei := |uα − g|2H1(Ii)
(4.17)

denote the squared H1 approximation error. Then, it holds that

Ei . 2−2i2(i−J)(2α−1), i = 2, . . . , J, (4.18)

E1 . 2(1−J)(2α−1). (4.19)

Furthermore the global squared H1 error is bounded by

J∑
i=1

Ei . min
(
22, 22α−1

)−J
. (4.20)



26 S. DAHLKE, T. RAASCH, AND A. SIEBER

Proof. We use

|u|H1(Ii) = ‖u′‖L2(Ii).

Now the remainder of the proof is analogous to the previously treated
L2-case. Let i ≥ 2 and consider the i + 2m − 4 knots in (4.16). With
u′α(x) = αxα−1 and gi ∈ Πi+2m−5 we conclude for x ∈ Ii

|u′α(x)− gi(x)| ≤ |u
′(i+2m−4)
α (ξ)|

(i+ 2m− 4)!
|x− xi−1|m−1|x− yi|i−2|x− xi|m−1

≤ |u
(i+2m−3)
α (ξ)|

(i+ 2m− 4)!
|Ii|i+2m−42−i+2

=
|u(i+2m−3)
α (ξ)|

(i+ 2m− 4)!
2(i−J−1)(i+2m−4)2−i+2.

Now we have a look at the derivative for ξ ∈ Ii. With the absolute conver-
gence of the binomial series it can be bounded by

|u(i+2m−3)
α (ξ)|

(i+ 2m− 4)!
=
α|α− 1| · · · |α− i− 2m+ 4|

(i+ 2m− 4)!
ξα−i−2m+3

≤ α2α−1ξα−i−2m+3.

Combining these estimates with the monotonicity of uα leads to

|u′α(x)− gi(x)| ≤ α2α−12(i−J−1)(i+2m−4)2−i+2

{
xα−i−2m+3
i−1 , α < i+ 2m− 3

xα−i−2m+3
i , α > i+ 2m− 3

≤ α2α−1

{
2(i−J−1)(α−1)2−i+2, α < i+ 2m− 3

2(i−J)(α−1)2−2i−2m+6, α > i+ 2m− 3

. 2(i−J)(α−1)2−i,

with a constant depending on m and α. For Ei, i = 2, . . . , J we conclude

Ei =

∫
Ii

|u′α(x)− gi(x)|2dx . 2i−J−122(i−J)(α−1)2−2i . 2(i−J)(2α−1)2−2i.

Now let i = 1. We directly compute

E1 ≤ ‖u′α‖2L2(I1) = α2

∫ 21−J

0
|xα−1|2dx =

[
α2x2α−1

2α− 1

]21−J

0

. 2(2α−1)(1−J).
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Next we consider the global error.

J∑
i=2

Ei .
J∑
i=2

2−2i2(2α−1)(i−J) = 2−(2α−1)J
J∑
i=2

(
2−222α−1

)i
= 2−(2α−1)J

(
2−222α−1

)2 J−2∑
i=0

(
2−222α−1

)i
. 2−(2α−1)J

(
2−222α−1

)2
(2−222α−1)J−1

. 2−2J .

With the asymptotic behaviour of E1 the claim follows. �

Theorem 4.8. Let ∆ = {(p, j, k) : p ∈ N0, j ∈ N0 ∪ {−1}, k ∈ Z} be the
index set of the full quarklet system and let g be the spline constructed in
Theorem 4.7 . For N ∼ J5, J ∈ N there exist cλ ∈ R such that

g(x) =
∑

λ∈∆′⊂∆:|∆′|≤N

cλψλ(x), x ∈ I, (4.21)

|uα − g|2H1(I) . min
(
22, 22α−1

)−N1/5

= e−min(2,2α−1) ln(2)N1/5
. (4.22)

Proof. To derive a quarkonial decomposition of the polynomial approxima-
tion, we differentiate

xq−1 =

(
1

q
xq
)′

=
∑
λ

c̃λϕ
′
λ(x), q = 1, . . . , i+ 2m− 4.

That means that every polynomial on Ii can be decomposed with respect to
derivatives of quarks. Using the decomposition of quarks on a fine level in
terms of frame elements as in Theorem 4.6, we get the asymptotic behaviour.

�

4.3. Tensor product quarklet approximation. Let us now consider the
case of the unit cube I2 = [0, 1]2. As a model for edge singularities that
might occur in higher dimensions we consider the function

uα : I2 → R,
x 7→ xα1 ,

(4.23)

with α > 1
2 . We expect that anisotropic singularities of the form (4.23) can

be very efficiently approximated by anisotropic tensor product quarklets.
This is indeed the case, as we shall see below.
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Theorem 4.9. Let g̃ be the univariate spline constructed in Theorem 4.7.
Then we define the function g(x1, x2) := g̃(x1)χ[0,1](x2). Let

Ei := |uα − g|2H1(Ii×I), (4.24)

denote the squared H1 approximation error. Then, it holds that

Ei . 2−2i2(i−J)(2α−1), i = 2, . . . , J, (4.25)

E1 . 2(1−J)(2α−1). (4.26)

Furthermore the global squared H1 error is bounded by

J∑
i=1

Ei . min
(
22, 22α−1

)−J
. (4.27)

Proof. The proof is analogous to the univariate case. We use

|u|2H1(Ii×I) =
∑

β∈N2,|β|=1

‖Dβu‖L2(Ii×I), (4.28)

where D(0,1)uα = 0. Hence it suffices to consider derivatives with respect
to x1, i.e. ∂

∂x1
u. We construct the Hermite interpolation polynomial gi as

gi(x) := g̃i(x1). Following the lines of the proof of Theorem 4.7, we obtain

| ∂
∂x1

uα(x)− gi(x)| . 2(i−J)(α−1)2−i. (4.29)

Now we conclude for Ei:

Ei =

∫
I

∫
Ii

| ∂
∂x1

uα(x)− gi(x)|2dx .
∫
I

2i−J−122(i−J)(α−1)2−2idx2

. 2(i−J)(2α−1)2−2i.

Similar computations for E1 and summation over i complete the proof. �

Theorem 4.10. Let ∆ = {(p, j, k) : p ∈ N0, j ∈ N0 ∪ {−1}, k ∈ Z} be the
index set of the full univariate quarklet system and let g be the spline defined
in Theorem 4.9 . For N ∼ J5, J ∈ N there exist cλ ∈ R such that

g(x) =
∑

λ∈∆′⊂∆2:|∆′|≤N

cλψλ(x), x ∈ I, (4.30)

|uα − g|2H1(I2) . min
(
22, 22α−1

)−N1/5

= e−min(2,2α−1) ln(2)N1/5
. (4.31)
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Proof. Again, we derive a decomposition of the polynomials gi with respect
to elements of the tensor quarklet frame. From the tensor product structure

ψλ(x) = ψp1,j1,k1(x1)ψp2,j2,k2(x2),

the partition of unity

1 =
∑

−m<k<m
ϕ0(x2 − k), x2 ∈ I,

and gi(x) = g̃i(x1)χ[0,1](x2) we conclude that only those frame elements of
the form

ψλ(x) = ψp1,j1,k1(x1)ϕ0(x2 − k2),

are needed for the decomposition of gi. In particular we have the same
decomposition as in the univariate case, i.e., gi consists of i fine quarks and
hence of (J − i)2i2 frame elements. Summation over i gives an asymptotic
number of degrees of freedom of J5. �

5. Discussion

In this paper, we have shown that typical singularity functions that may
arise in the context of elliptic boundary value problems on nonsmooth do-
mains can be approximated with exponential order by means of quarklet
expansions. This result is similar to the univariate approximation result
based on hp-dictionaries as outlined in [1]. These facts indicate the po-
tential of quarklet frames for the numerical treatment of elliptic operator
equations. Moreover, our approach has important advantages compared to
hp finite element systems. Since the quarklet frames give rise to stable ex-
pansions in scales of Sobolev spaces including L2, there is a very natural way
to generalize our results to higher-dimensional problems by means of tensor
products. This results in highly anisotropic dictionaries which again give rise
to exponentially convergent approximation schemes for specific anisotropic
functions that serve as models for typical edge singularities. We are con-
vinced that these exponential approximation properties can also be realized
algorithmically by adaptive quarklet schemes, and we will attack this task
in the near future.
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Appendix A

The following properties are well-known, we refer to [8] for details.

Proposition A.1.

(i) The Fourier transform Φ̂ = (Φ̂0, . . . , Φ̂p)
T of a refinable function

vector fulfils the matrix equation

Φ̂(ξ) =
1

2
A (z)Φ̂

(
ξ

2

)
, ξ ∈ R, z = ei

ξ
2 ∈ S1, (A.1)

where

(A (z))q,l :=
∑
k∈Z

(Ak)q,l z
k, (A.2)

is called the symbol matrix of Φ.

(ii) For a symbol matrix A (z) and ρ ∈ {0, 1} we define the sub-symbol
matrices Aρ(z

2) by(
Aρ(z

2)
)
q,l

:=
∑
k∈Z

(A2k+ρ)q,l z
2k. (A.3)

Then, it holds that

A0(z2) =
1

2
(A (z) + A (−z)) , A1(z2) =

1

2z
(A (z)−A (−z)) . (A.4)

Proof.

(i) Applying the Fourier transform to the q-th component of Φ, we
obtain

Φ̂q(ξ) =
∑
k∈Z

q∑
l=0

(Ak)q,l
̂Φl(2 · −k)(ξ)

=
∑
k∈Z

q∑
l=0

(Ak)q,l
1

2
Φ̂l

(
ξ

2

)
e−i

ξ
2
k

=
1

2

q∑
l=0

(∑
k∈Z

(Ak)q,l z
k

)
︸ ︷︷ ︸

:=(A (z))q,l

Φ̂l

(
ξ

2

)
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(ii) We consider an arbitrary entry of the matrices. Let 0 ≤ q, l ≤ p. We
calculate(
1

2
(A (z) + A (−z))

)
q,l

=
1

2

(∑
k∈Z

(Ak)q,lz
k +

∑
k∈Z

(Ak)q,l(−z)k
)

=
1

2

∑
k∈Z

2(A2k)q,lz
2k =

(
A0(z2)

)
q,l
,

(
1

2z
(A (z)−A (−z))

)
q,l

=
1

2z

(∑
k∈Z

(Ak)q,lz
k −

∑
k∈Z

(Ak)q,l(−z)k
)

=
1

2z

∑
k∈Z

2(A2k+1)q,lz
2k+1 =

(
A1(z2)

)
q,l
.

�

In Section 3.2 we have shown that the reconstruction sequences are
finitely supported. In addition, we show how to iteratively compute the
symbol matrices Cρ(z2),Dρ(z

2) and hence the reconstruction coefficients.

Theorem A.2. Let b(−z) 6= 0. Then, X(z)−1 consists of Laurent polyno-
mials only. In particular, the entries of T (z)−1 are products of a Laurent
polynomial L(z) and b(−z).

Proof. We proceed by induction. Let p = 1. We have detT (z) = 2( z
b(−z))2

and

T (z) =
1

2

a00(z)− b(z)
b(−z)a00(−z) 0

a10(z)− b(z)
b(−z)a10(−z) a11(z)− b(z)

b(−z)a11(−z)

 ,

T (z)−1 =
b(−z)2

4z2

a11(z)− b(z)
b(−z)a11(−z) 0

b(z)
b(−z)a10(−z)− a10(z) a00(z)− b(z)

b(−z)a00(−z)


=
b(−z)
4z2

(
a11(z)b(−z)− a11(−z)b(z) 0

a10(−z)b(z)− a10(z)b(−z) a00(z)b(−z)− a00(−z)b(z)

)

Now let T1 of dimension p × p and consist of Laurent polynomials times
b(−z) only. T and T−1 are given by

T =

(
T1 0

x αp+1,p+1

)
, T−1 =

(
T−1

1 0

y α−1
p+1,p+1

)
.
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We can compute α−1
p+1,p+1 explicitly by

αp+1,p+1 = ap+1,p+1(z)− b(z)

b(−z)
ap+1,p+1(−z) = 2−p−1 4z

b(−z)
.

For the i-th column of T−1 it is

0 = 〈
(

x

αp+1,p+1

)
,

(
(T−1

1 )i
yi

)
〉,

from which we conclude

yi = −〈x, (T
−1
1 )i〉

αp+1,p+1
= −〈x, (T

−1
1 )i〉b(−z)

2−p−14z
.

Since 〈x, (T−1
1 )i〉 consists of Laurent polynomials only, the claim follows. �

Theorem A.3. Let b(−z) = 0. Then, X(z)−1 consists of Laurent polyno-
mials only. In particular, the entries of A (−z)−1 are products of a Laurent
polynomial L(z) and b(z).

Proof. The proof is analogous to the previous one. From (3.18) we conclude

1
b(z) = −a(−z)

4z . Now let p = 1. We have det A (z) = 8
(
− z
b(z)

)2
and

A (z) =

(
a00(−z) 0

a10(−z) a11(−z)

)
,

A (z)−1 = −b(z)
2

8z2

(
a11(−z) 0

−a10(−z) a00(−z)

)
.

Now let A1 of dimension p×p and consist of Laurent polynomials times b(z)
only. A and A −1 are given by

A =

(
A1 0

x αp+1,p+1

)
, A −1 =

(
A −1

1 0

y α−1
p+1,p+1

)
.

We can compute α−1
p+1,p+1 explicitly by

αp+1,p+1 = ap+1,p+1(−z) = −2−p−1 4z

b(z)
.
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For the i-th column of A −1 it is

0 = 〈
(

x

αp+1,p+1

)
,

(
(A −1

1 )i
yi

)
〉,

from which we conclude

yi = −〈x, (A
−1

1 )i〉
αp+1,p+1

=
〈x, (A −1

1 )i〉b(z)
2−p−14z

.

Since 〈x, (A −1
1 )i〉 consists of Laurent polynomials only, the claim follows. �
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