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Abstract. A matrix formulation of the Beck method of solving the inverse heat conduction
problem is developed. A classical approach using maximum principles is applied, in order to
obtain stability estimates for the sequential procedure approximating the surface heat fluxes. On
the basis of our estimates, a stronger form of the classical Courant-Friedrichs-Lewy condition
ensures stability in a certain weak sense. Finally, numerical results are presented and discussed
in view of the stability condition.

1. Introduction

In a series of engineering problems concerning heat transfer processes, it is required to
calculate the transfer surface heat flux and the surface temperature from a temperature history
measured at fixed locations inside the body or on other parts of the surface. These problems
are well known under the name inverse heat conduction problems (IHCP); references can be
found in [4,9, 16] and references therein.

The problem described above belongs to a class of ill-posed boundary value problems
for parabolic equations that are known to be severely ill posed. The formulation of such
problems leads to a non-characteristic Cauchy problem for parabolic equations. In this paper
the heat equation in its simplest form is studied as a model problem.

For such problems, stability estimates of the Hélder type are established (see, for
example, [5,8,11-14,19]. The estimates of Carasso [5] are interesting in the sense that
they are not only in Ly-norm but also in Ly,-norm. In contrast to [5, 13, 14, 19], where the
problems are considered on infinite or on semi-infinite intervals with constant coefficients,
the works of [8,10,11] treat finite time intervals with variable coefficients. Numerical
approximations are also considered in some of these papers, but no estimates for the
discretizations are provided.

There are several approximating procedures available among which we concentrate on
sequential ones stepping forward in time. Among these the method of Beck [2.3] is well
established and has been successfully used for about thirty years. It is interesting, however,
that even in the simplest one-dimensional setting for the Beck method there 1s no theoretical
basis for the choice of the two essential parameters, i.e. the size of the time steps, A¢, and
the number, 7, of future times. A first attempt in this direction is made in [18].

For the Beck method studied in this paper, no Hélder-type estimates are known, nor
can be provided here. Instead of estimating the error between the solutions of the non-
characteristic Cauchy problem and the Beck method, only the stability behaviour of the
sequential procedure itself is analysed. More specifically. in this paper, the discrete version
of the Beck method is studied and, from the viewpoint of the classical stability analysis of
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time stepping algorithms, the growth of the (theoretical) bounds is analysed. The estimates
are not of Holder type but contain computable quantities (see Sf;) in (19), (20) and (23)),
which reflect the ill-posed character of the problem.

In this paper we develop a matrix formulation for the Beck method of solving the one-
dimensional IHCP. As representatives, the well known backward Euler and Crank-Nicolson
difference methods are considered. The aim of this paper is to demonstrate how a classical
approach, used for discretization methods solving initial value problems, can be applied
to obtain stability estimates for the sequential procedure approximating the heat fluxes
and the corresponding solutions of the ill-posed heat equation. Here, an approach using
positivity properties and maximum principles is applied. Other techniques, e.g. discrete
Fourier analysis, may be utilized in a similar way.

In section 2, a matrix formulation of the one-dimensional heat equation is given. Using
this as a basis, in section 3 the Beck method for solving the IHCP is written down in
discrete form. As a result, the desired surface fluxes and temperatures satisfy a system
of equations which has a similar form to those for discretization methods for initial value
problems. According to the ill-posed character of the problem, a certain extension of the
classical approach is present here. Using the classical point of view, we are able to obtain
stability estimates in section 4 showing how the surface heat fluxes at time #,4 can be
bounded by corresponding quantities at the previous time #,. On the basis of our estimates,
a stability condition is formulated in a way which can be understood as a stronger form of
the well known Courant-Friedrichs-Lewy condition (see (23)). It requires a boundedness
of the mesh ratio Az/A. In section 5 computational results for three examples of [HCPs are
presented for various At and r. The numerical results are discussed in view of our stability
condition.

2. Problem setting and discretization methods

The linear inverse heat conduction problem in one gpatial dimension in its simplest form
can be formulated as follows:

The one-dimensional linear inverse heat conduction problem. For a given data function g(2)
and an initial temperature distribution ug, find F(2) = w(0,1) and ¢() = —u(0,¢), 0 <
t < T, such that

Uy — Uyy =0 O<x<I,0<tgT
w)=0 wl.H=gt) 0<t<T )
u(x, 0) = up(x) D<x<1. ;

To obtain approximate solutions, we discretize the spatial interval using J, not
necessarily equidistant, subintervals and subdivide the time interval in equidistant time
steps of size At denoting t, = nAt, n =0,..., N. Then the (direct) heat equation with
flux boundary conditions at both ends of the spatial interval in a discretized form reads

COWH — A(@Pg2H + 007 = P + At(0P gl + 0P g7)
n=0,...,N—1. o)
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Here, Cg), i=0,1, are (J + 1) x (J 4+ 1) matrices, Cf) is assumed to be non-singular,
Q) are linear operators mapping a number ¢ to the (J + 1)-vector with a multiple of ¢ in
the vth component and zero otherwise, and gy, ¢/ are approximations of the heat fluxes
at x =0 and x = 1. respectively, at time ¢,, u =n,n+ 1.

The mappings Q% can be expressed by (J - 1)-vectors

09 =(0,...,0,a®,0,...,07 velo,...,J}, i=0,1
For example, if we use the backward Euler {BE) method in time, with the central difference

quotient for approximating u,, on equ1d1stant spatiai intervals of length %, we obtain (see,
e.g. 4.1.(10) in [15])

C®=A-AtB c'=4 (3)
2
o= —(1 0,....000 @V =2 =(0,....0, )7 W=0P=0,..07
{4)
with A = E and

\ o 0 2 -2/

The well known Crank—Nicolson (CN) method also using the central difference quotient for
the spatial derivative leads to

Al At
cV=4a-—¢R cP=a+=8 (5)
2 2 '
. ! 1
QBOJ=E(1,O,...,O)T Q‘E’O)=E(O’ 0.7
6}
1 n_ 1 T (
00 =201,0.....07  0f'=-0@,....0,1)

with A and B as in (3).

The standard Galerkin methods, e.g. with continuous piecewise linear basis functions,
can be written in the same way (2) where the mairices have to be defined appropriately
(see, e.g. 4.2.(22) in [15]).

Properties of the matrices A and B are well known. For example, —B in (3) is a positive
definite Af-matrix. By positivity arguments, or by studying the amplification factors of the
above methods, one can ensure the invertibility of Cf) and the uniform boundedness of

arbitrary powers of Ca = CL'CY (cf 12.1 and 12.2 in [15]).
ary p
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3. The Beck method in discrete form

We now employ the Beck method [3] in matrix formulation. According to the formulation
{1) of the IHCP, we consider zero flux boundary conditions at x = 1, i.e. g} = 0, in the
following. We assume that a single temperature transducer is located at the right end of the
spatial interval, at x = x; = 1.

With heat fluxes g5, v=0....,n, atx =0 and an approximation «" for u(., #;) already
computed, the Beck method determmes the new heat flux qo+' by solving the heat equation
for » “future time steps’ with constant flux g§ at x = 0 and initial value «” (for t = 1,)

COaH = cOF = 1 AtQogf =" I=1,...,r o)

where Qg = (D) + Qm
In the above examples, Qo is nothing other than the multiplication of the fluxes in the
first component by 2/ A. -
Now, qﬁ’” is obtained by one Newton step for minimizing the defect between the

computed i ""'H and the data g"* = g(t,), I =1,...,r (cf 443 in [4])
r
q61+[ — gg + Zyl(") (gﬂ+f _ &'-’}'H) , (8)
=1

where ¥’ = s4/A®) denote the gain coefficients, AT = Y[ (s})? and s} are the
sensitivity coeﬁiczents obtained by solving the heat equation with vamshmg 1n1t|al value
and flux equal toone at x =Q for ¢ > 0

CPst = s + A1 Qg1 v=0,1,... s°=0. (9
The sensitivity coefficients are nothing other than the corresponding numerical approxima-
tions for du/dg with ¢ = —u,|,—0, and represent the solution of the ‘step heat flux’ test
case.

For non-singular Cff’, we can write down explicit representations of #"*! and s' which

can easily be verified by induction (cf, e.g. 11.2.(41) in [15])

= Cuu” + g (10)
with
!
=AYy CHCPT 0ol (11)
=l
forl=1,...,r, where Co = CP~1cl),

We insert (10} into (8) and obtain for the new surface heat flux using Beck’s method

r { . r -
qg-l-l (1 — A Zyl(r) Z chi—#cio)—] Qﬂ)qg + Z},}(f)(gnh! _ chfsun)_
=1 p=I I=1
' (12)

Here, P; denotes the canonical mapping Pj = (0,...,0,1,0,...,07, j € {0...., J},
which maps a vector to its jth component,
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It is important to notice that the factor before g7 in (12) vanishes. Indeed, inserting
(10) into (8) leads to

r

Q’{)H-I _ qg + Zy}")[gﬂ'l'f _ P;(Ciu" +qu61)]
I=1

= (1 —_ Z }/I(r)P]SI)qg + Z }q(r)[g""'f - PJCLH"]
=t =1
where
r
2y Prsl =1
=i

according to the definition of the gain coefficients. Thus, only the second term in (12)
appears in the representation of q[]’“. This is tn accordance with formula (4.4.24) in [4]
since Cl u" is the discrete solution of the heat equation with vanishing surface heat fluxes
and initial value u” (at ¢t = ¢,). Considering the differential equation itself, an analogous
representation of qg“ is derived in [18] (see equation (17) and the proof of theorem 1
in [18]).

A combination of both the numerical approximation (2) of the heat equation and the
sequential procedure (12) for determining the new heat flux, leads to an extended system

of equations

Cg’)un+l _ AIQ(()O)QS+] = Cg)u" + AIQ(()]}QS (13)
r
qg—e-l — Z yI(r)(gnH - P;Ciu”). (14)

I=1

This system (for calculating &+ and gf*') is obviously decoupled and one can first compute
q{{"‘l from the second equation (14) and then solve the first equation (13) to obtain u”*!.
The second step can be viewed as calculating an update of #"+! with the new q{,‘“ as the

flux boundary value at x = 0.

4, Stability analysis

We are now in a position to analyse the method of (13), (14) from the point of view
of a classical stability analysis for initial value problems. This approach was also used by
Cialkowski [6, 7]; our system {13), (14) can be viewed as a certain example of Cialkowski’s
approach with Beck’s method as one suitable sequential procedure for calculating the heat
fluxes at x = 0. .

The classical stability analysis of discretization methods for initial value problems
provides conditions to ensure the uniform boundedness of arbitrary powers of the matrix
Ca= Cg]]“l cf_P with respect to certain norms. For the maximum norm, positivity properties
can be used to obtain the desired boundedness provided the step-size ratio At/h® lies in
a certain range. With respect to the discrete L?-norm—or to the spectral norm for the
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matrices—the well known von-Neumann condition provides a necessary and, in certain
cases, also a sufficient condition for the boundedness of Cj.

In this paper, we analyse both the backward Euler and Crank—Nicolson difference
method and we use positivity arguments—or, in other words, maximum principles. The
same approach can be applied to difference methods derived from Galerkin approximations.
For the L2-norm an approach using Fourier analysis may be carried out along the same
lines.

We repeat the difference equations in (2) for solving problem (1)

(1 + 220t — 2280 = (1 — 24(1 — ©))vf + 20(1 — B)v} + 2A1(Og + (1 — gy

(15)

(1 + 22008 —20(vhf] + oiH) = (1 - 2200 — O} + A1~ O)(vfy, +vj,)
(16)
(14+220)5t! — 22005 = (1 = 20(1 — @)k +20(1 — @h_,. (17)
For ® = 5 and © = 1 we have the Crank-Nicolson and backward Euler method,

respectwely, A = At/h* denotes the mesh ratio.
Using the representation (14) of the estimated surface heat fluxes, the discrete Beck
method consists of the following three steps:

(a) Compute 3" = Chu", I=1,...,r, by setingk =n,....n+r—1, gk = g" for
k=n, q—-Ofork—n+] n+r—1,in(15)—(17);

(b) calculate g2+ from (14);

(¢) compute ™! from (15)~(17) by setting k =n and ¢ = qg““

In the following, the mesh ratio is required to satisfy

1

A ——— : : 18
2(1 - ©) as)
This is the (classical) requirement for this type of difference method to be of “positive type’;
for the backward Euler method, obvigusly no restriction is present. Under (18), the norm
of the difference operator C, is bounded by one with respect to the maximum norm. We
utilize these classical arguments to prove stability estimates for the solutions #"+!, gt of

(13), (14).

Theorem !. Let condition (18) be satisfied. Then, for the discrete Beck method, the
estimated surface heat fluxes (see step (b)) and the approximate solutions of the IHCP at
time ¢ = ty4q (see (13) and step (c)}, satisfy the following estimates

S('}|%+[I < max Iu | +2Anlgg| + max g™+ (19)

max |7 < (1+ 2@1;;5"’) max, ] + 225[(1 — ©) + 202457 1148

o<yt

+ 201h8Y) max g™ (20)

where SO = 37_, v, and %" are the gain coefficients which are non-negative.
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Proaf.
(i) By induction we show that 5; 20, 0 j < J, which also implies that yf’) = 0 for all
I,r. For n = 0, this is true. Let it hold for n, then for the right-hand side of (16) (with

uj-‘ = s}) we obtain by means of (18)

(1 =221 = 8)s] +A(1 — @)sT, +57) > ngjgﬁ

= n
W
[un]

—
It

s
|

Thus, also for the left-hand side of (18)

A+220)s7" —28(sFH +sH) 20 j=1,.., 0 -1
Writing this as (th”"") ;, the associated difference operator Ly, is of negative type. Hence,
s* j=0,..., 7, assumes its non-positive minimum at j = 0 or j = J, which can also

i
be stated as

min s7* > min(0, s5*', s7)

0<;\J’
(cf, e.g. 8.1 in [15]). At the boundary point where a minimum appears, the first-order
difference quotient is negative or the function is constant.

It should be mentioned here, that by means of the same arguments as above, the right-
hand side of (15)—with v5+! = sm*1, g = gf = gf = 1. n > 1—is positive; the right-hand
side of (17) for v¥*! = s**! is non-negative.

Let us now assume that s5*' < 0 or s7*! < 0. Then a negative minimum is present,
which must be assumed to be at j = 0 or j = J. If the minimum is present at j = 0, then
sitt < 57t or 57! is constant. The first case leads to a contradiction since the left-hand

side of (15} is positive

200 2060
Sn+] n+1 - Srz+t - S"+].
0 14210 1+2207° 0
For the constant case we are led to the following contradiction

_2%...@“__ nt+l ﬂ n+1 ntl

a+1
T+220°) “1trmen ~%

s >
If the minimum is assumed at j = J, the same arguments hold. Thus s5™ > 0 and 7™ > 0
which, together with the above estimate, proves s;‘""l z0forall j= 0 R N
(if) Using (18), in (15)-(17) the solution v{*! can be estimated as

210 1
k| o & o
lél};g—llvj < 14200 oré'jagx.rluil_{_ 14226 02J<J! |
Jo-1 k+1 k _—
™| < 1+2,x®|‘ |+ T B lnl+ 1+2l@(®lm+(l ®)lgol)
k+1 k-}-] k
LIRS 1+2k®| I+ Te s ek, 1wl

Hence, using the relation

: 20\ 1
1+20/)  1+2.0
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we obtain

max (V] < max, 1vf[ +224(@lg] + (1 — ©)lggD- 1)

We therefore have the following estimate for 7" in step (a) of the Beck method

max |57*| < Jax lf| +2xklggl  I=1,...r
0 igt )

Using this in step (b), we obtain

r
|qo+li < Z: |y[(r) ”j—i-fi + Z ly](f)gn+1|
I=1 I=1

r
< (r} { n n n+l ]
< ;ly; 1§ cmax, 161+ 20hlgf | + max g™

which proves (19). Applying (21) to step (c) and using the above estimate for [qo‘Hl yields

ax, ¥ < max Jut} | + 22k (®lgst + (1 - @)qul)
j

(r) (r)
< (1 +2@7hS3") Jnax, [1}] + 21R[(1 — @) + 204k S [I95]

+ 202180 max (g™,
O

We mention here that the non-negativity of the sensitivity and gain coefficients has an
analogue in a corresponding property of the solution of the step heat flux test case. The
latter is zero at initial time ¢ = 0; the surface heat flux is 1 for x =0, # > 0, and vanishes
at x = 1 for all time. The corresponding maximum principle states that this function has
its minimum at t = 0 and thus is non-negative for all # 2> 0 (cf, e.g. chapter 84 in [20])

Considering (19} and (20), stability in the classical sense would require that th(’
O(At) which is equivalent to Sg) = Q(k). This cannot be achieved in the ill-posed problem
under consideration, as the vafues of Sg) in table 1 show. However, a weak instability of
the form

ARST = o(1) (22)
which is equivalent to
At/h < /8P (23)

would imply that the (theoretical) bounds of the sequential algorithm grow linearly with
respect to the maximum norm. As in other sequential or iterative algorithms this is
acceptable from the point of view of numerical analysis.

The numbers in table 1 are calculated by using the Crank-Nicolson method wnth an
equidistant grid in the spatial interval of mesh size 2 = 1/20. The computed S show
how they depend on the size of the time step width At and the number r of future times.
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Table 1. S for various values of A¢ and r.,

r

At [ 2 3 4 5 6 7 8§

00100 99 x 10 99x10° L3x10° 20x10° 51x10° 1.9xi0° B88x 0% 48x 102
00125 99x10° 22xI0f 27x10% 47x10 14x10° 62x102 32x10° 1.9x 107
0.0200 56x1068 27x10* 16x10° 43x107 18x10® 99x10' 62x108 43 x 10
00250 68x10° 55x10° S4x10® 1.8x10° 835x10' 50x10' 34x100 24xI10f
0.0400 1.9x10% 43xI02 91x10! 40x10! 23x10! 16x10! 12x100 9.1x10¢
0.0500 49%10° L7x107 46x100 23x10' 1d4x10! 10x10! 77x10° 62x 100
00800 48x102 37x100 15100 86x 10" 60x10° 46x10" 37x109 31x10°
0.1000 2.0x 102 21x!10! 94x10" 59xI0" 42x10° 33x10° 27x100 23 x 10V
02000 23x10' S54x109 30xI107 22x108 17x10° 14xI10® 12x10° 1.0x10°

Increasing r or At (or both) leads to a decrease of Sg) , which makes the sequential procedure

more stable in the sense of (22}, (23). Thus, on the basis of our stability condition, we have
regained the fact—known from computational experiments for a long time—that the Beck
method becomes more stable when r or At are increased.

It has been also analysed how the Sf_{) depend on the spatial mesh width A. Calculating
sf;) with & = %, L, L. 1 shows a rather big difference in the first two rows and in the

16 10" 8
first column of the table where the sf;’ are large. Here the values for s = % are up to 100%

larger than those for & = 21—0. In the other portions of the table the numbers depend very
little on 4. In every case the sﬁ(’ increase when /4 is increased.

We now discuss another aspect of our stability conditions (23). This condition can be
understood as a strengthened form of the classical Courant-Friedrichs—Lewy condition. The
Iatter is a stability condition for numerical methods of solving hyperbolic equations. Since
the surface heat fluxes are approximated by means of the Beck method, the relationship
to hyperbolic problems is not astonishing. When the surface temperature itself is the
control. a modified sequential method proceeds quite analogously, where, instead of flux
boundary conditions at x = {, one has to take Dirichlet conditions. In this case the gain
coefficients and the Sg) differ from the above and the corresponding stability condition
reads }LSf;) = ((1). This is then a stronger form of the classical stability condition for
numerical methods of solving parabolic equations.

At the end of this section two further remarks should be made. Firstly, the analysis
of the discrete version of Beck’s method for multiple sensor positions (cf 4.4.3 in [4]) is
straightforward and can be carried out along the same lines as above. Secondly, an extension
to two-dimensional rectangular domains is possible by means of the approach developed by
Reinhardt [16].

5. Numerical experiments
The final section is devoted to a presentation and discussion of computational results. The
following three examples will be considered: - .
Example 1.

wx, )y =t+L(1-x)? 0<x<1,0<1<1

g@) =1 f@y=t+1 )=t 0<tg 1.
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Example 2.
uix, 1) = 12+ (1 —x)’t + 151 — x)* 0<x<1, 0<rg1
g =2+1 fOy=+r+ 5% gy =12 0<r< 1.

Example 3. Triangular heat flux test case (cf section 5.2.3 in [4])

u(0,1) = lrz-i-lr L -+ iiex (—m2k%)
T T T d P

|+

u(],t):-l-zz—_l..t_i+iz(_1)

k
252
exp(—n-k°t).
4 4
3076 360w &
K T 1 1) T
Q ™
4r 5 1
Lo ¥
; x 5
¥ i
: X M it
25 e g C H
o S - "r:---’.é.__.“. P, ! - T N . i
) E""\Eb'-'"ﬁ"'"}m - ‘XJ‘:' ‘s_‘D'!‘ . ,'Mx ! ?’ RS ‘
0r % . ?‘ i . x’ < \:é Vi

®
: Exact Solution —— o
2 b x Num. Sol. (dt =.100) -~ .

: Num. Sol. (dt =.050) &~
_ Num. Sol. (dt = .025) - =~
4l : Num. Sol. (dt=.0125) -+ i
0 02 0.4 0.6 0.8 1
Time

Surface Heat Flux

Figure 1. Surface heat flux for example 1 {» = 4, random perturbation, A = -,';, g=35x10"3).

Figure | shows that the constant heat flux in example 1 is stably computed with r = 4
future times as long as the time step size is not smaller than At = 0.025; the curve for
At = 00125 is not seen in the figure because its values are far out of the indicated range.
In figures 2 and 3 the numerical solutions of surface temperature f(¢) for example 1 are
displayed with no perturbations in the temperature data at x = 1 (figure 2) and noisy data
caused by random perturbations of the data of magnitude & = 51072 (figure 3). Obviously,
r = 6 and r = 8 for At = 0.0125 stabilizes the computations; even with errorless data,
r = 4 is not enough to perform stable calculations—the corresponding curve is not visible
in figure 2. The spatial mesh size is chosen to be & = §.

For example 2, figures 4-6 display the corresponding results to figures 1-3 for
example 1. The same observations as above can be made as far as the magnitude of
At and r are concerned.,

Investigating the influence of the spatial mesh size & for the selected combinations of
r and At, figure 7 indicates an improvement of the computational results—at least for
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o Exact Solution ——
6 L Num. Sol. (r =4) - -
Num. Sol. (r =6) e
) Num. Sol. (=8} = - |
2
2
5
v
€
=] |
&
02 025 03 035 04 045 05
Time
Figure 2. Surface temperature for example 1 {df = 0.0125, 4 = }, £ = 0).
2-5 E" I U L T
2 b
1.5 |
E <
2
g 1
g 0.5
= L
3 0
€ o5k Exact Solution —— 4
5 ¥ r=4
? SR r=6 o -
: r=8 w- —
15 i
&
-2 1 1 N 1 - - 1 B
0 0.2 0.4 0.6 0.8 1

Time

Fipure 3. Surface temperature for example 1 (random perturbation, df = 0.0125, f

e=75x 1079,

1355

1
.

errorless data—when /1 is halved to %; the numerical solution is not accurate but it remains
bounded. This is in accordance with our stability condition (23) when we take into account
the observation that 5% decreases from 1.2 x 10* (for & = §)105.1x10° (for b = ). Note
that the left-hand side of {23) is doubled which nearly compensates for the increase of the
right-hand side. Nevertheless, At.r and h are in a range where the described improvement
is present; the same observation can be made for example 1—and also for example 3 (the

corresponding figures are not shown here).

Figures 8-11 are related to the triangular heat flux test case (example 3). For r = 4 only



1356 H-J Reinhardt

4 : . ’ ~
x
3 ;
5 2
fr,
% 1 .;‘.l _"" .
8 ! | ," \ ' ‘ L
ug 0r ! gf B e RN b i o1
A ox o  Exact Solution ——
7 . ?" i Numn. Sol. (dt =.100) -
1 ; s{ * Num. Sol. (dt = .050) o~ 1
* Num. Sol. (dt =.025) =%
2 r Num. Sol. (di=.0125} =a-
0 0.2 0.4 0.6 0.8 1

Time

Figare 4. Surface heat flux for example 2 (r = 4, random perturbation, 2 = §, £ = 5 x 073).

2.5 _ ‘ .
Exact Solution —e—

: Num. Sol. (r=4) -~ |

it ©or 0 Num. Sol. {r=6) «g--

" Num. Sol. (1 =8) =

b2
T

[ PR

o
Lh
T==ammmaoC
3]
e m o nn
\

=
Lh
T

ey +

'

Surface Temperare
—

T

0 005 01 015 02 025 03 035 04 045 05
Time

Figure 5. Surface temperature for example 2 (df = 0.0125, k=4, ¢ = 0).

relatively large At provide stable computations as shown in figure 8. Even with errorless
data, the same r = 4 and At = 0.0125 produce useless numerical solutions after a few time
steps (see figure 9) which can be made stable by using larger r ( = 6 or 8). According to
figure 10, the same statement can be made if data errors g¢” of magnitude ¢ = 5 x 102
are imposed with randomly created ¢” € [—1, 11; again the curve for At = 0.0125 is not
visible due to instability. Figure 8 is chosen analogously to figure 6, but with random errors
of magnitude 5 x 10~3; for » = 6 and 8 the errors remain bounded, while for r = 4 the
errors explode and are not visible in the figure.

In example 3, even with errorless data, instability is present for the same combinations
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Figure 6. Surface temperature for example 2 (random pertusbation, df = 0.0125, 4 = %,
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Figure 7. Surface temperature for example 2 (dr = 0.0125, k = %, £ = 0).

of r and Ar as for perturbed data. A possible explanation is the fact that in this example
the data are always perturbed due to the cutting of the infinite series in the representation of
the solution. Comparing figure 7 for example 2 with the computations including randomly
created data perturbations of magnitude & = 5 x 10, for example, the computations are no
longer stable (the corresponding curves are not displayed here). Thus, in this example, an
existing data perturbation indeed makes the problem more ill posed and the computations
can become unstable, i

Our computations suggest a conclusion which may help to decide a priori what choices
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Figure 8. Triangular heat flux for exampleB(r=4,h=§-,s=0).
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Figure 9. Triangular heat flux (dr = 0.0125, i = %, =0

of At and r lead to stable calculations. If we choose ¢ = 1 x 10% in (23) then, in our
examples, the calculations are stable as long as (23) is satisfied—otherwise the computations
are unstable. However, we think that more examples and test calculations are needed to
decide how ¢ in (23) has to be chosen.
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