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Abstract

Inverse Heat Conduction Problems (IHCPs) have been extensively studied over
the last 50 years. They have numerous applications in many branches of science and
technology. The problem consists in determining the temperature and heat flux at
inaccessible parts of the boundary of a 2- or 3-dimensional body from corresponding
data – called ’Cauchy data’ – on accessible parts of the boundary. It is well-known
that IHCPs are severely illposed which means that small perturbations in the data
may cause extremely large errors in the solution.

In this contribution we first present the problem and show examples of calcula-
tions for 2-dimensional IHCP’s where the direct problems are solved with the Finite
Element package DEAL. As solution procedure we use Tikhonov’s regularization in
combination with the conjugate gradient method.

1 Introduction

In [5] we have established the theoretical background for multidimensional inverse heat
conduction problems. In this contribution, we present several 2-d. calculations.

The importance of inverse heat conduction problems and appropriate solution algo-
rithms are established in numerous works and the books (see, e.g. [1], [3], [4], [8], [13],
[18], [20], [21] and the references therein). The conjugate gradient method (CGM) as
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an iterative solution algorithm is itself a regularization method where the iteration in-
dex plays the role of the regularization parameter. For our calculations, we have used
Tikhonov’s regularization in combination with CGM. Our program is based on a C++
code of C. Fröbel [11] where, as a direct solver for the underlying parabolic problems, the
Finite Element package DEAL [2], [21] is used. Our approach is very similar to the one
used by Y. Jarny in a series of papers (see, e.g. [14], [16]).

Figure 1: Problem setting

Let En be the n-dimensional Euclidian space, Ω be a bounded domain of En with a
sufficiently smooth boundary ∂Ω (for example, ∂Ω ∈ C2, or Ω is a parallelepiped). For
t ∈ (0, T ], set Qt := Ω × (0, t], Σt := ∂Ω × (0, t), Σ = ΣT . Suppose that ∂Ω consists
of three parts Γ0,Γ1 and Γ2, where Γ1,Γ2 are not empty, Γ0 may be empty or not and
Γi ∩ Γj = ∅ for i 6= j. We denote Γi × (0, T ] by Si for i = 0, 1, 2 (see Fig. 1). The
multi-dimensional IHCPs can be formulated as a non-characteristic Cauchy problem for
multi-dimensional parabolic equations as follows: Let ∂u/∂N be given only in S1, and
additionally the value of u at S1 be also given. In addition, u or ∂u/∂N is given on Γ0

– we restrict ourselves to a homogeneous flux condition in the following. It is desired to
find ∂u/∂N |S2

and u|t=0 (and so the function u) from

∂u

∂t
−

n
∑

i,j=1

∂

∂xi

(

aij(x, t)
∂u

∂xj

+ ai(x, t)u

)

(1)

+
n
∑

i=1

bi(x, t)uxi
+ a(x, t)u = f, (x, t) ∈ QT ,

∂u

∂N
|S0

= 0, (ξ, t) ∈ S0, (2)

u|S1
= ϕ(ξ, t), (ξ, t) ∈ S1, (3)

∂u

∂N
|S1

= g(ξ, t), (ξ, t) ∈ S1. (4)

Here ν is the outer normal to Ω,

∂u

∂N
|Sk

:=

n
∑

i,j=1

(aij(x, t)uxj
+ ai(x, t)u) cos(ν, xi)|Sk

, k = 0, 1, 2,
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λ, Λ are positive constants, and µ1 , µ2 ≥ 0. Further,

aij, ai, bi, a ∈ L∞(QT ), (5)

f ∈ L2(QT ), ϕ, g ∈ L2(S1) (6)

aij = aji, i, j ∈ {1, 2, . . . , n} (7)

λ‖ξ‖2
En

≤
n
∑

i,j=1

aij(x, t)ξiξj ≤ Λ‖ξ‖2
En
, ∀ξ ∈ En, (8)

|a(x, t)| ≤ µ1,

√

√

√

√

n
∑

1

a2
i ,

√

√

√

√

n
∑

1

b2i ≤ µ2 a.e. in QT . (9)

Later we assume that the bi vanish.
The problem (1) - (4) is known to be severely ill-posed. In this paper we shall deal

with this IHCP by a variational method suggested in [7]. The idea of our method is very
simple: Since the initial condition and the heat flux ∂u/∂N |S2

are not known, we consider
them as a control v to minimize the defect J0(v) = 1

2
‖u|S1

− ϕ‖2
L2(S1).

2 The direct and inverse problem

in weak formulation

In this section we first formulate the associated direct problem in a weak form and, then,
deduce the above inverse problem (1) - (4) also in weak form. As a theoretical background
we refer to our results on non-homogeneous second order boundary value problems for
linear parabolic equations in [5] and [7].

Let the conditions (5) - (9) be satisfied and u0 ∈ L2(Ω). Further, suppose that g̃ be a
function defined on Σ such that g̃|S1

= g, g̃|S0
= 0, g̃|S2

∈ L2(S2). As the direct problem
consider the boundary value problem for the following parabolic equation

∂u

∂t
−

n
∑

i,j=1

∂

∂xi

(

aij(x, t)
∂u

∂xj

+ ai(x, t)u

)

(10)

+

n
∑

i=1

bi(x, t)uxi
+ a(x, t)u = f, (x, t) ∈ QT ,

u(x, 0) = u0(x), x ∈ Ω, (11)

∂u

∂N
|P =

n
∑

i,j=1

(aij(x, t)uxj
+ ai(x, t)u) cos(ν, xi)|S = g(ξ, t), (ξ, t) ∈ Σ. (12)

LetH1(Ω), H1,0(QT ), H1,1(QT ) be the standard Sobolev spaces ([17]) and V 1,0(QT ) := C([0, T ];
L2(Ω)) ∩ L2((0, T );H1(Ω)).
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Definition

A weak solution u(x, t) of the problem (10)-(12) in V 1,0(QT ) is a function of V 1,0(QT )
satisfying the identity

∫

QT

(

−uηt +
n
∑

i,j=1

aij(x, t)uxi
ηxj

+
n
∑

i=1

aiuηxi
+

n
∑

i=1

biuxi
η + auη − fη

)

dxdt

=

∫

Ω

u0η(x, 0)dx+

∫

S1

g(ξ, t)η(ξ, t)dξdt+

∫

S2

g̃(ξ, t)η(ξ, t)dξdt, (13)

for all η ∈ H1,1(QT ), such that η(·, T ) = 0.
This is not the only way to formulate a weak solution (cf. [7], [5]). It can be shown

that a unique weak solution of (13) exists and a stability estimate holds (see [7], [8]). If
we are interested in higher regularity, one can define a weak solution in H1,1(QT ).

Definition

A weak solution u(x, t) of the problem (10)-(12) in H1,1(QT ) is a function of H1,1(QT )
satisfying the identity

∫

Qt

(

utη +
n
∑

i,j=1

aijuxi
ηxj

+
n
∑

i=1

aiuηxi
+

n
∑

i=1

biuxi
η + auη − fη

)

dxdτ

=

∫

P

t

g̃(ξ, τ)η(ξ, τ)dξdτ (14)

∀ t ∈ (0, T ], ∀ η ∈ H1,0(QT ), and u(x, 0) = u0(x). (15)

Under the additional assumptions

ess max
x∈Ω

∣

∣

∣

∣

∂aij

∂t

∣

∣

∣

∣

, ess max
x∈Ω

∣

∣

∣

∣

∂ai

∂t

∣

∣

∣

∣

≤ µ(t), (16)

T
∫

0

µ(t)dt < ∞, (17)

u0 ∈ H1(Ω), g(ξ, t) ∈ H0,1(Σ). (18)

it can be proved (s. [7], [8]), that there exists a weak solution in H1,1(QT ) which
satisfies a stability estimate.

We have already formulated the associated inverse problem in the classical form in (1)
- (4). In order to allow weak assumptions on the data we define the inverse problem in a
weak form.
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Definition

A pair of functions v := {v0(x), v1(ξ, t)} := {u(x, 0), ∂u/∂N |S2
} ∈ L2(Ω) × L2(S2) is

said to be a solution of the inverse problem (1)-(3), if, for ϕ and g, there exists a function
u(x, t) ∈ V 1,0(QT ) satisfying the identity

∫

QT

(

−uηt +
n
∑

i,j=1

aij(x, t)uxi
ηxj

+
n
∑

i=1

aiuηxi
+

n
∑

i=1

biuxi
η + auη − fη

)

dxdt

=

∫

Ω

v0η(x, 0)dx+

∫

S1

g(ξ, t)η(ξ, t)dξdt+

∫

S2

v1(ξ, t)η(ξ, t)dξdt,

for all ∀ η ∈ H1,1(QT ), such that η(·, T ) = 0, and

u|S1
= ϕ(ξ, t), (ξ, t) ∈ S1. (19)

Let us remark, that for the general case in n dimensions it is not clear when a solution
of this inverse problem exists. Let us further mention that the inverse problem (1) - (4)
is illposed which can be demonstrated in 1-d or 2-d by explicit examples (see [5] a. o.).

3 A variational approach

We want to solve the underlying inverse problem by discretization in combination with
Tikhonov’s regularization using a zeroth order penalty term as well as iterative regulariza-
tion via an appropriate stopping rule. For this we have to reformulate the inverse problem
as a minimization problem and determine the gradient of the minimizing functional.

As the underlying operator we choose the Neumann-to-Dirichlet mapping A : L2(Ω)×
L2(S2) −→ L2(S1) which maps the (unknown) initial function v0 and the heat flux v1 =
∂u/∂N |S2 to u|S1

where u is the solution of the parabolic equation in a weak form.
The operator A is affine. It consists of a linear part AL and a shift term w, A = AL+w.

Indeed, the solution u of the direct problem not only depends on v0, v1 but also on
f, g, u = u(x, t; v0, v1, f, g). With this notation,

AL : L2(Ω) × L2(S2) 3 (v0, v1) 7→ u(·, ·; v0, v1, 0, 0)
∣

∣

S1

∈ L2(S1)

w = u(·, ·; 0, 0, f, g̃)
∣

∣

S1

Later, we can consider the case when f = 0 and g = 0 because the shift term w can be
obtained as the solution of a (well-posed) direct problem.

We consider problem (1)-(3) as a variational problem. Since the initial condition u|t=0

and the heat flux at S2 are not known, we consider them as a control. We, therefore,
reformulate (1)-(3) as the following optimal control problem:

Let V0 and V1 be subsets of L2(Ω) and L2(S2), respectively. Set V := (V0, V1).

Minimize the functional

J0(v) :=
1

2
‖u|S1

− ϕ‖2
L2(S1), v ∈ V, (20)

subject to
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u ∈ V 1,0(QT ), (21)
∫

QT

(

−uηt +

n
∑

i,j=1

aij(x, t)uxi
ηxj

+

n
∑

i=1

aiuηxi
+

n
∑

i=1

biuxi
η + auη − fη

)

dxdt

=

∫

Ω

v0η(x, 0)dx+

∫

S1

g(ξ, t)η(ξ, t)dξdt+

∫

S2

v1(ξ, t)η(ξ, t)dξdt, (22)

for all η ∈ H1,1(QT ), such that η(·, T ) = 0.
The problem (20)-(22) is still unstable. A minimization problem is said to be unstable

when there exists a minimizing sequence that does not converge to its minimizing element.
In 2-d. such an example can be explicitly given (see [5]).

One can show (see [7], [8]), that for convex sets V1, V2 there exists a solution of problem
(20)-(22) and every minimizing sequence converges weakly to the set of all minimum points
of the problem.

Because of the possible unstable behaviour of the minimization problem, instead of
(20)-(22) we add a penalty term to J0 and minimize

Jγ(v) =
1

2

(

∥

∥u|S1
− ϕ

∥

∥

2

L2(S1)
+ γ2‖v‖2

L2(Ω)×L2(S2)

)

(23)

with a positive constant γ2 which, in addition, has to be determined in an optimal way.
This is the idea of Tikhonov’s regularization.

To solve the control problem (20)-(22) or (21)-(23), we need the gradient of Jγ. For
this, we assume in the following that

bi(x, t) = 0, i = 1, . . . , n. (24)

Let ψ(x, t) := ψ(x, t; v) be a weak solution from V 1,0(QT ) of the following adjoint
problem to (21), (22),

ψt = −

(

n
∑

i,j=1

ai,jψxi
+

n
∑

i=1

aiψ

)

xj

+ a(x, t)ψ, x ∈ Ω, 0 ≤ t < T, (25)

ψ(x, T ) = 0, x ∈ Ω, (26)

∂ψ

∂N
|S1

= u(v)|S1
− ϕ, 0 ≤ t < T, (27)

∂ψ

∂N
|S2

= 0 (28)

∂ψ

∂N
|S2

= 0, 0 ≤ t < T, (29)

where u = u(x, t) be a solution of Problem (22). The function ψ = ψ(x, t; v) satisfies
the integral identity

∫

QT

(

ψηt +
n
∑

i,j=1

ai,jψxi
ηxj

+ aψη

)

dxdt

= −

∫

Ω

ψ(x, 0)η(x, 0)dx+

∫

S1

[u(v)|S1
− ϕ]ηdξdt, (30)
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for all η ∈ H1,1(QT ).
If we replace t in (25)-(29) by the new variable τ := T − t, then we obtain a

boundary value problem of the same type as (10)-(12). Since u ∈ V 1,0(QT ), and the
available stability estimate for u, u(v)|S1

∈ L2(S1). Moreover we see that there exists a
unique solution in V 1,0(QT ) of Problem (25)-(29).

Based on the stability estimates for ψ we can prove that under the conditions (5)-(9)
the functional J0 is Fréchet differentiable in V and its gradient can be found as follows:

J ′

0(v) =

{

ψ(x, t; v)|t=0

ψ(x, t; v)|(x,t)∈S2

}

. (31)

Let us remark that the adjoint problem (25)-(29) is a parabolic equation backwards
in time but wellposed due to the minus sign on the right-hand side of (25).

It is not difficult to see that the Fréchet derivative of Jγ is given by

J ′

γ(v) = J ′

0(v) + γ2v (32)

If we notice that u|S1
= Av in (20) and (25), the Fréchet derivative of J0 can be also

written as

J ′

0(v) = A∗

L(Av − ϕ) (33)

where A∗

L : L2(S1) −→ L2(Ω)×L2(S2) is the adjoint operator to AL which can be obtained
via the weak solution of (25) - (29) and A∗

Ld as in the right-hand side of (31) with d on
the right-hand side in the boundary condition (27) on S1.

As an iterative algorithm to solve the minimization problem we use the CGM. We
allow perturbations of the data, ‖ϕ− ϕε‖L2(S1) = O(ε) and the operator A is replaced by
Ah which is a finite element or finite difference approximation – the same holds for AL

and AL,h.
The CGM for minimizing Jγ has the form1,

r0 = −d(0) = A∗

L,h(Ahv
(0) − ϕε) − γ2v(0), (34)

αk =
‖rk‖

2

‖AL,hd(k)‖2 + γ2‖d(k)‖2
, v(k+1) = v(k) + αkd

(k), (35)

rk+1 = A∗

L,h(Ahv
(k+1) − ϕε) − γ2v(0), (36)

βk =
‖rk+1‖

2

‖rk‖2
, d(k+1) = −rk+1 + βkd

(k). (37)

The optimal regularization parameter γ is determined by a sequence qiγ0 with 0 < q < 1.
The optimal iteration index is determined as the first k = kmax such that the stopping
rule (with γ1 = 1.1)

‖Ahv
(k) − ϕε‖ ≤ γ1

(

h‖v(k)‖ + ε
)

(38)

is fulfilled. In addition we stop if ‖rk‖ < ε. The stopping rule (38) is a modification
of that of Nemirovskii [19]. We like to emphasize the remarkable results of Nemirovskii
[19] on the optimal order regularization properties of the conjugate gradient method for
ill-posed problems.

As a ’zeroth approximation’ we usually take v(0) = (v
(0)
0 , v

(0)
1 ) = 0. Then, according

to the vanishing ’terminal value’ at t = T of the adjoint problem (see (26)), the iterative

1This is also called CGLS (=conjugate gradient least square) in [12].
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approximations v(k) = (v
(k)
0 , v

(k)
1 ) in (35) leave the solutions u(k) of the associated direct

problems at t = T nearly unchanged as long as γ2 is close to zero,

u
(k)
t − Lu(k) = 0 in QT ,

∂u(k)

∂N
|Si

= 0 on Si, i = 0, 1,

∂u(k)

∂N
|S2

= v
(k)
1 on S2,

u(k)|t=0 = v
(k)
0 in Ω.

(39)

Note that f and g in (1) and (4), resp., are set to zero. Here, L denotes the elliptic
operator on the left-hand side of (10) written as ut − Lu = f .

We are now able to compute the solutions of IHCPs with an iterative method which is a
regularization method in the sense of Tikhonov when the stopping rule (38) is applied (see
Nemirovskii [19]). Additionally, the regularization parameter γ makes the computations
more stable and the above stopping rule helps to determine it in an optimal way. In our
computations we leave the discretization parameter h fixed.

4 Numerical Calculations

The computations are performed by using the Finite Element Package DEAL [2]. For the
inverse problem calculations we use the Crank-Nicolson method for the time integration
and the conjugate gradient method plus Tikhonov’s regularization to solve the minimiza-
tion problem described above. The direct solution of the parabolic problems with DEAL
uses bilinear ansatzfunctions.

In the numerical experiments presented in this paper, we study the identifiability of
the boundary condition only; the initial condition is assumed to be given. From the
theory we know that the initial condition can also be identified. This will be verified by
numerical experiments in a forthcoming study.

As a first example we study the half-ring problem from [6]. The geometry is displayed
in Fig. 2.

Figure 2: Geometrical setting

In addition to Γ1 (Cauchy data on outer circle), Γ2 (inner circle, inaccessible) we have
a symmetry condition on Γ0. The governing equations are
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∂u

∂t
− α∆u = 0 in QT , (40)

λ
∂u

∂N
= 0 on Γ0, (41)

λ
∂u

∂N
+ θ(u− u∞) = 0 on Γ1, (42)

where the constants are given by

α = 1.43 ∗ 10−7m2s−1, λ = 0.3Wm−1K−1,

The heat transfer coefficient θ on Γ1 is spatial dependent,

θ(φ) =































10, 0 ≤ φ ≤ 40−

4.8 φ− 182, 40− ≤ φ ≤ 90−

682 − 4.8 φ, 90− ≤ φ ≤ 140−

10, 140− ≤ φ ≤ 180−

In this problem, the initial condition is given and is assumed to be constant in space,
u|t=0 = 2730K. The temperature u∞ outside of the domain under consideration is given
and assumed to be constant, u∞ = 313 −K. Since u|Γ1

and θ are known, the form (42)
of the boundary condition on Γ1, resp. S1, can be rewritten in the form (4).

In the inverse problem, the boundary Γ2 is considered to be inaccessible while on Γ1

Cauchy data are given. We want to recover the constant temperature u|Γ2
= 2730K on Γ2

from temperature data together with the heat flux caused by the heat transfer coefficient
θ(φ) on Γ1. The data on Γ1 are obtained by a direct computation using the heat flux on
Γ1 and the exact temperature on Γ2.

Fig. 3 shows the spatial discretization utilizing 320 rectangles and 369 grid points.
The spatial distribution of the temperature data on Γ1, obtained by the above mentioned
direct calculation in the beginning, are displayed in Fig. 4 at three different time values.

 1.6

 0.8

 0 1.6  0.8  0 -0.8 -1.6

Figure 3: 369 grid points, 320 rectangles, 41 grid points on Γ1 and Γ2
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t = 80 sec
t = 200 sec
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Figure 4: Spatial temperature distribution on Γ1 (Cauchy data) at different times

In Fig. 5 we show the decrease of the defect functional Jγ(v
(k)), the absolute value of

the gradient |J ′

γ(v
(k))| as well as the L2-norms

∥

∥(u(k+1) − u(k))|Γ1

∥

∥

2
during the iteration.

The latter can be also utilized for a stopping rule. Here, the optimal regularization
parameter γ = 5 · 10−4 is used; a maximum of 50 iterations is allowed.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0  5  10  15  20  25  30  35  40  45  50

Iteration number n

J(Tn)
J’(Tn)

||Tn+1-Tn||2

Figure 5: Tikhonov-Regularization with γ2 = 5 ∗ 10−4 for J(un), J ′(un), ‖(un+1−un)|Γ0
‖2

Fig. 6 displays the time plot for the resulting temperature (after 50 iterations) at
different spatial positions on the inner circle Γ2. It is clearly observed that the results are
bad for times greater than 480 sec. The reason lies in the starting function of the CGM
which is set to zero. Therefore, at the final time T = 600 sec. the initial guess of the
temperature remains nearly unchanged due to the adjoint problem during the iteration.
As a remedy, we suggest to use more data in time or to take the resulting temperature
only at 80 % of the time interval where data are available. (Compare also [9], [10] for a
discussion of the same phenomenon).
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Figure 6: Result of Tikhonov regularization with γ2 = 5∗10−4 on Γ1 at different positions

Fig. 7 and Fig. 8, show the spatial distribution of the temperature and of the error in
the temperature on the complete half ring after t = 300 sec. It is remarkable, that in our
calculations we have a maximal error of 0.2−K which is 1/8 of the error obtained by the
calculations in [6] with MODULEF on 400 triangles and 231 modal points. As expected
the maximal error appears at φ = 90− on Γ2 opposite to the highest temperature on the
outer circle Γ1.

 270
 275
 280
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 290
 295
 300
 305
 310

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-1.6 -0.8 0 0.8 1.6

Figure 7: Spatial temperature distribution at t = 300 sec.
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Figure 8: Spatial distribution of the error (in the temperature) at t = 300 sec.

In Fig. 9 the results of a stability analysis are displayed. The temperature data on
Γ1 are pointwise perturbed by ε multiplied by a random function having values between
−1 and 1. The time plot compares the temperature on Γ2 at position φ = 90− for
ε = 10−4, 10−3, 10−2 with the temperature calculated with ε = 0. The observed errors
are pointwise within the same magnitude as the perturbations which demonstrates the
stability of our algorithm.
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Figure 9: Reconstruction errors on Γ2 at φ = 90− with perturbed data
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For the second example we show analogous figures for calculations on a rectangular
domain (s. Fig. 10).

 1.5 1 0.5 0-0.5-1-1.5

 0.5

 0

Γ1

Γ0Γ0

Γ2

Figure 10: 1089 grid points, 1024 rectangles, 33 grid points on Γ1 and Γ2

The underlying equations are the same as in (40) where, here, α = λ = θ = 1 and
u∞ = 20−C. The Cauchy data are given on the upper horizontal side Γ1 while the lower
horizontal side Γ2 is considered to be inaccessible. Additionally, on the vertical sides Γ0 a
zero flux condition is imposed. The ’exact’ temperature values on Γ2 are obtained by an
inverse calculation with certain fictitious temperature data on Γ1. The Cauchy data for u
on Γ1 are then obtained by a direct calculation with the prescribed temperature flux on
Γ2 and the Neumann boundary condition on Γ1. Fig. 11 displays the temperature data
on S1 as a function of space and time.
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Figure 11: Temperature distribution on Γ1 (Cauchy data) in time and space
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Our result of the Tikhonov regularisation with γ2 = 5 · 10−5 after 10 iterations are
displayed in Fig. 12 and Fig. 13, resp., where the former shows the temperature on two
spatial positions on Γ1 and Γ2 while the latter shows the error at the same positions on
Γ2.
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Figure 12: Result of Tikhonov regularization (with γ2 = 5·10−5) at two different positions
after 10 iterations
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Figure 13: Error in temperature at position 0 and 0.75 on Γ2

Here, again, the largest errors occur near the final time T = 1. Until t = 0.8 the errors
are less than 1-. Similarly to Fig. 9, the error of a stability analysis at position 0 for four
different magnitude of perturbations ε of the Cauchy data are shown in Fig. 14.
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Figure 14: Absolute errors in temperature at position 0 on Γ2

As a third example we consider the half ring situation as in Example 1. However,
Cauchy data on the outer circle Γ1 are only available for φ ∈ [0−, 142−], while the rest Γ3

of the outer circle is considered to be inaccessible – as the inner circle Γ2 – and should now
belong to that part of the boundary where the temperature and flux should be determined.
Fig. 15 shows the spatial temperature distribution on Γ1 at three different times.
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Figure 15: Temperature on Γ1

The next and final figure shows the result of our inverse calculations after 300 sec. on
the complete half-ring.
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Figure 16: Result of inverse calculation at t = 300sec.

We observe astonishing good results on the inner circle Γ2 while unacceptable errors
occur on the inaccessible part of the outer circle. In these calculations no perturbations
of data are present. Possible improvements may be obtained by the approach suggested
by Johansson [15].

5 Conclusions

Our calculations show that CGM together with Tikhonov’s regularization provides a fast
and efficient method for solving Inverse Heat Conduction problems in two spatial dimen-
sions. The stability analysis ensures that the method is stable w.r.t. perturbations in the
data. The third example with a reduced amount of data leave some theoretical questions
open; a hint for improvements is given.
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[9] Dinh Nho Hào and H.-J. Reinhardt, Stable numerical solution to linear inverse heat
conduction problems by the conjugate gradient methods. J. Inverse and Ill-Posed Prob-
lems 3 (1995), 447 - 467.
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