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Abstract — In this paper the stability of the upwind scheme for second order, linear ordinary
differential equations with general boundary conditions of the third kind is proved. The proof
is carried out via compactness arguments and is rather short. Moreover, no information on the
behaviour of the solution of the differential equation itself is needed. This approach seems not
to be present in the existing literature.
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1. Introduction

It is well-known that the upwind scheme for approximating second order, lin-
ear ordinary differential equations has superior stability properties compared to
the central difference approximations. If a first order derivative is present in the
differential equation, in the upwind scheme it is approximated by the forward
or backward difference quotient in case the coefficient multiplying the first
derivative is positive or negative, respectively. Especially, in cases where the
coefficient is very large this strategy is preferable — otherwise in the central
difference approximations the mesh widths must be chosen very small. Such
cases appear in singularly perturbed ordinary differential equations where a
small parameter multiplies the second derivative. Such differential equations
are also called convection–diffusion equations where the convection term dom-
inates the diffusion.

It is also well-known that the upwind scheme fulfils a maximum principle
without any restriction on the mesh widths while the central difference approx-
imation needs small mesh widths for such a property. It seems not to be clear
whether the maximum principle alone — or an equivalent monotonicity prop-
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148 H. J. Reinhardt

erty — assures a stability estimate for the solutions of the difference equations
(cf., e.g., [14], 5.3). Such a stability estimates provides the uniform bounded-
ness of the associated inverses of the difference operators. For the central dif-
ference approximations or the upwind scheme such a stability estimate must be
proven separately. In case of the central difference approximations and general
separated boundary conditions of the third kind a stability estimate via maxi-
mum principles is proved in [5], 3.8. For the special case of Dirichlet boundary
conditions this is proved at many places (see, e.g., [13], 8.1). The stability of
the upwind scheme is shown by means of maximum principle arguments in
the excellent work of T. Linß [8]. There, in the mathematical analysis, detailed
information on the behaviour of the solution of the singularly perturbed differ-
ential equation is needed. The essential point in this paper is the fact that the
stability constant is independent of the small parameter multiplying the highest
derivative. This is achieved by the fact that in the norm the discrete derivatives
are weighted by a suitable power of the small parameter. It is also worth men-
tioning that in [8] it is shown that the stability constants for the differential
operator and its discretization are equal w.r.t. the weighted norms.

Related results concerning the upwind scheme for approximating singu-
larly perturbed convection–diffusion equations can be found in [1, 2, 7, 9, 10].
Standard references for numerical methods for convection–diffusion equa-
tions are [11, 12, 15]. Upwind schemes are also available for elliptic bound-
ary value problems in higher spatial dimensions or parabolic initial-boundary
value problems — also in higher dimensions (see [3, 4, 13]). For these, usu-
ally also maximum principles or positivity properties are exploited to assure
stability.

Already by G. Vainikko in [16], 6.3 and 6.4, it is observed that compactness
arguments can be used to provide an elegant proof of stability and convergence
for difference approximations of boundary value problems for ordinary differ-
ential equations. Moreover, such properties are stronger than the one obtained
by maximum principles because a stronger norm appears on the left-hand side
without requiring stronger assumptions. In [13], 8.2, we have carried out the
stability of the central difference approximation in the framework of discrete
convergence using compactness arguments. It is not difficult to see that the
same arguments can be also applied to the upwind scheme which, however,
seems not to be present in the literature. In this paper the stability of the upwind
scheme for second order ordinary differential equations with general boundary
conditions of the third kind is proved. The proof is carried out by contradic-
tion using compactness arguments with the theorem of Arzela–Ascoli as the
essential tool.

The present paper is organized as follows. In the following section, the up-
wind scheme as well as the central difference approximation for second order
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Stability of upwind scheme 149

ordinary differential equations are presented. The boundary conditions are al-
lowed to be of third kind including the function itself and its first derivative.
The maximum principle and a related monotonicity property are formulated.
Moreover the functional analytical framework with suitable norms and differ-
ence operators is introduced. In Section 3 of this paper we prove the stability
of the upwind scheme. The proof is rather short and needs no information on
the behaviour of the solution of the differential equation itself. The only as-
sumption we use, is standard, namely that the homogeneous boundary value
problem has only the trivial solution.

It should be mentioned that the proof — by contradiction using compact-
ness arguments — seems not be able to guarantee that the constant in the sta-
bility estimate is independent of the small parameter in a singularly perturbed
problem. As mentioned above, for a stability constant independent of the small
parameter one must weight the discrete derivatives in the norm by powers of
the small parameter. However, our proof by contradiction seems not to allow
such a modified stability result where the stability constant is independent of
a small parameter. Moreover, because our proof is not constructive it is obvi-
ous that we cannot make any statement which allows the comparison of the
stability constant in a stability estimate for the differential operator and its dis-
cretization.

Our stability result can be generalized to the case of nonuniform grids.
When one considers a sequence of nonuniform grids for which the maximal
mesh widths tend to zero, our Lemma 3.2 is still valid and, therefore, the stabil-
ity result in Theorem 3.1 also holds with a stability constant independent of the
mesh widths. In principle, the application of compactness arguments should be
also possible for higher dimensional convection–diffusion equations.

2. Problem setting

Let us consider boundary value problems for ordinary differential equations of
the form

u′′+ pu′+qu = f in I = [a,b] (2.1)
with general separated boundary conditions of the third kind,

α0u(a)+α1u′(a) = η0

β0u(a)+β1u′(b) = η1.
(2.2)

We assume that I = [a,b] is a closed bounded interval in R, −∞ < a < b < ∞,
and that p,q, f are continuous real-valued functions and that α0,α1,β0,β1 are
real numbers fulfilling

|α0|+ |α1|> 0, |β0|+ |β1|> 0. (2.3)
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150 H. J. Reinhardt

We denote the linear differential operator and the linear functionals on the left-
hand sides of (2.1) and (2.2), respectively, by

(Lv)(x) : = v′′(x)+ p(x)v′(x)+q(x)v(x), x ∈ I

`0(v) : = α0v(a)+α1v′(a)

`1(v) : = β0v(b)+β1v′(b).

For the approximation by difference methods we consider a null sequence Λ

of mesh widths h > 0 and equidistant grids,

Ih : =
{

x ∈ [a,b]
∣∣ x = x j := a+ jh, j = 0, . . . ,Nh

}
I′h : =

{
x ∈ I

∣∣ x = x j, j = 1, . . . ,Nh−1
}

I0
h : =

{
x ∈ I

∣∣ x = x j, j = 0, . . . ,Nh−1
}

I1
h : =

{
x ∈ I

∣∣ x = x j, j = 1, . . . ,Nh
}

where Nh ∈ N, hNh = b− a. The differential quotients are approximated by
difference quotients,

(Dhvh)(x) =
1
2h

(
vh(x+h)− vh(x−h)

)
, x ∈ I′h, (central)

(D+
h vh)(x) =

1
h

(
vh(x+h)− vh(x)

)
, x ∈ I0

h , (forward)

(D−h vh)(x) =
1
h

(
vh(x)− vh(x−h)

)
, x ∈ I1

h , (backward)

(D2
hvh)(x) =

1
h2

(
vh(x+h)−2vh(x)+ vh(x−h)

)
, x ∈ I′h (central, 2nd order)

where vh ∈C(Ih) denotes a grid function.
The upwind scheme approximates the first order differential quotient by the

forward or backward difference quotient whenever the value of the function
p(x) is positive or negative; hence pu′ is approximated by

p(x)D+
h uh(x) if p(x)> 0

p(x)D−h uh(x) if p(x)< 0, x ∈ I′h.

The upwind scheme for approximating (2.1) can be written as

D2
huh(x)+ p+h (x)D

+
h uh(x)+ p−h (x)D

−
h uh(x)+qh(x)uh(x) = fh(x), x ∈ I′h

(2.4)
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Stability of upwind scheme 151

where

p+h (x) := max
(
0, p(x)

)
, p−h (x) := min

(
0, p(x)

)
, x ∈ I′h

qh = q
∣∣I′h, fh = f

∣∣I′h.
One can also write the difference operator on the left-hand side of (2.4) in the
following form,

(Lhvh)(x)= a−1,h(x)vh(x−h)+a0,h(x)vh(x)+a1,h(x)vh(x+h), x∈ I′h (2.5)

with

a−1,h(x) = h−2(1−hp−h (x)
)
, a−1,h(x) = h−2(1+hp+h (x)

)
a0,h(x) =−h−2(2−h2qh(x)+h

∣∣ph(x)
∣∣), x ∈ I′h.

(2.6)

We note that p+h − p−h = |ph|, and that under the assumption

q(x)6 0, x ∈ I (2.7)

the difference operator Lh in (2.5) is of positive type. This means

a−1,h > 0, a1,h > 0, a−1,h +a0,h +a1,h 6 0 in I′h. (2.8)

It is important to note that this property holds without any restriction on the
mesh widths. An important consequence from the positivity (2.8) is the fol-
lowing monotonicity property (see, e.g., [13], 8.1):

If Lhvh(x)6 Lhuh(x), x ∈ I′h, vh(a)> uh(a), vh(b)> uh(b)
then vh(x)> uh(x) ∀x ∈ Ih.

(2.9)

Maximum principles can also be formulated and proved for general boundary
conditions of the form (2.10) (see [5]).

If one approximates the differential equation (2.1) by central difference
quotients also for the first order derivative, the positive type property is present
if the mesh width is small enough, namely, h< 2/max |p(x)|. Such a difference
approximation has the advantage that the truncation error is of order O(h2)
while, for the upwind scheme, the truncation error is only O(h). The restric-
tion on the mesh widths, however, makes the central difference approximation
not suitable if the coefficient p is large, e.g., for singularly perturbed ordinary
differential equations.

The boundary conditions (2.2) and the associated functionals `i, i = 0,1,
will be approximated in the following way,

`0,h(uh) := α0uh(a)+α1D+
h uh(a) = η0,h

`1,h(uh) := β0uh(b)+β1D−h uh(b) = η1,h
(2.10)
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152 H. J. Reinhardt

where ηi,h are approximations of ηi, i = 0,1, in (2.2).
Together with the difference operators Lh defined in (2.5), (2.6) we define

linear operators L̂h : Eh→ Fh, Eh = Fh =C(Ih), by

(
L̂hvh

)
(x) =


Lhvh(x), x ∈ I′h
`0,h(vh), x = a
`1,h(vh), x = b, h ∈ Λ.

(2.11)

Moreover, we supply Eh and Fh with the following norms,

‖vh‖Eh := ‖vh‖2,∞,h := max
x∈Ih
|vh(x)|+max

x∈I0
h

|D+
h vh(x)|

+max
x∈I′h
|D2

hvh(x)|, vh ∈ Eh

‖wh‖Fh := ‖wh‖0,∞,h := |wh(a)|+ |wh(b)|+max
x∈I′h
|wh(x)|, wh ∈ Fh.

Moreover, we set ‖ · ‖0,∞ for the maximum norm in C(I). It is clear that

max
x∈I′h
|Lhvh(x)| 6max

(
1,‖p‖0,∞, ‖q‖0,∞

)
‖vh‖2,∞,h, vh ∈ Eh. (2.12)

Indeed, in (2.4) one has

max
x∈ I1

h

|D−h vh(x)|= max
x∈I0

h

|D+
h vh(x)|

and |p+h (x)|6 |p(x)|, |p
−
h (x)|6 |p(x)|, x ∈ I′h.

Moreover, the `i,h, i = 0,1, are uniformly bounded linear functionals be-
cause the following estimates are fulfilled,

|`0,h(vh)|6max
(
|α0|, |α1|

)(
|vh(a)|+ |D+

h vh(a)|
)

6max
(
|α0|, |α1|

)(
max
x∈Ih
|vh(x)|+max

x∈I0
h

|D+
h vh(x)|

)
6max

(
|α0|, |α1|

)
‖vh‖2,∞,h

|`1,h(vh)|6max
(
|β0|, |β1|

)(
|vh(b)|+ |D−h vh(b)|

)
6max

(
|β0|, |β1|

)(
max
x∈Ih
|vh(x)|+max

x∈I0
h

|D+
h vh(x)|

)
6max

(
|β0|, |β1|

)
‖vh‖2,∞,h.
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Stability of upwind scheme 153

Combining the last estimates with (2.12), one obtains

‖L̂hvh‖Fh =
∣∣`0,h(vh)

∣∣+ ∣∣`1,h(vh)
∣∣+max

x∈I′h
|Lhvh(x)|

6 c1‖vh‖2,∞,h

(2.13)

with a constant c1 independent on the mesh width h.
The estimate (2.13) bounds the operators L̂h, h ∈ Λ, from above which is

important but not difficult to show. In the following section we shall prove a
uniform estimate from below for L̂h which, in other words, yields the ‘stability
of the upwind scheme’.

3. Stability via compactness arguments

An important tool for the following considerations is the theorem of Arzela–
Ascoli. We use a formulation as it is stated in [13], 5.4. In the following we
do not distinguish between a sequence of grid functions uh,vh ∈C(Ih), h ∈ Λ,
and its linear interpolants which are functions in C(I). If a grid function is
defined only on inner grid points, e.g., on I′h, we extend the function piecewise
constant in [a,a+ h] or [b− h,b]. At some places we denote the restriction of
a continuous function v to Ih (or I0

h , I
′
h) by vh. A sequence of functions vh ∈

C(I), h ∈ Λ, is called equicontinuous, if, for every ε > 0 there exists a positive
number δ > 0 such that for every h ∈ Λ and every x,y ∈ I with |x− y|< δ the
estimate

|vh(x)− vh(y)|< ε

holds. One may also call this property ’uniform equicontinuous’ because δ > 0
is also independent of the positions x,y ∈ I. One can formulate the equicon-
tinuity pointwise and knows that, due to the compactness of I = [a,b], the
equicontinuity also holds uniformly.

We need a lemma which is well-known and can be found in many text-
books (see, e.g., [6]).

Lemma 3.1. Let vh,h ∈ Λ, an equicontinuous sequence in C(I). Then the
following statements hold:

(i) If
(
vh(x)

)
h∈Λ

converges for every x ∈ J, J dense in I, then there exists a
continuous function v ∈C(I) and (vh)h∈Λ converges pointwise in I to v,
i.e., vh(x)→ v(x)(h→ 0) for all x ∈ I.

(ii) If vh→ v (h→ 0,h ∈ Λ) pointwise in I with v ∈C(I), then the conver-
gence is also uniform,

max
x∈I

∣∣vh(x)− v(x)
∣∣→ 0 (h→ 0,h ∈ Λ).
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154 H. J. Reinhardt

The following lemma is essential for the stability theorem and uses the
Arzela–Ascoli theorem as main tool. The proof is very similar to the one of
Lemma 5.10 in [14] but instead of central differences we consider here the
difference approximation (2.5), (2.6) using the upwind scheme.

Lemma 3.2. Let the sequence (Lhvh)h∈Λ be compact and
(
‖vh‖2,∞,h

)
h∈Λ

be bounded. Then the following statements hold:

(i) (vh)h∈Λ, (D±h vh)h∈Λ and (D2
hvh)h∈Λ are compact in C(I).

(ii) For all subsequences Λ′ ⊂ Λ there exists a subsequence Λ′′ ⊂ Λ′ and a
function v ∈C2(I) such that

‖vh− vh‖0,∞,h +‖D+
h vh− (v′)h‖0,∞,h +‖D2

hvh− (v′′)h‖0,∞,h

→ 0 (h→ 0,h ∈ Λ
′′).

Proof. (i) Let ‖vh‖2,∞,h 6 1,h ∈Λ, without restriction of generality. Since
vh is considered to be piecewise differentiable with

|v′h(x)|6max
x∈I0

h

|D+
h vh(x)|6 1, h ∈ Λ

one obtains

|vh(x)− vh(y)|6 |x− y|max
s∈I0

h

|D+
h vh(s)|6 |x− y|, x,y ∈ I, h ∈ Λ.

Therefore, (vh)h∈Λ is equicontinuous and uniformly bounded and, according
to the Arzela–Ascoli theorem, it is compact. Similarly, the same argument for
zh := D+

h vh and D+
h zh(x) = D2

hvh(x+h) yields

|zh(x)− zh(y)|6 |x− y|max
s∈I′h
|D+

h zh(s)|6 |x− y|, x,y ∈ I, h ∈ Λ.

Hence, (zh)h∈Λ is also compact. Analogously, one sees that (D−h vh)h∈Λ is com-
pact, too. The relation

D2
hvh = Lhvh− p+h D+

h vh− p−h D−h vh−qhvh

and the required compactness of Lhvh yields that D2
hvh is also compact. In-

deed, a sequence of functions consisting of a product of a sequence of uniform
bounded functions and a compact sequence is again compact. This proves (i).

Bereitgestellt von | Universitaetsbibliothek Siegen (Universitaetsbibliothek Siegen)
Angemeldet | 172.16.1.226

Heruntergeladen am | 26.06.12 15:21



Stability of upwind scheme 155

(ii) Summarizing (i), for all Λ′ ⊂ Λ there exist a Λ′′ ⊂ Λ′ and functions
v,w,z ∈C(I) such that

‖vh− v‖0,∞→ 0, ‖D+
h vh−w‖0,∞→ 0

and
‖D2

hvh− z‖0,∞→ 0 (h→ 0,h ∈ Λ
′′).

Because one has

vh(x) = vh(a)+
∫ x

a
v′h(s)ds = vh(a)+h ∑

a6y<x
y∈I0

h

D+
h vh(y)

in the limit h→ 0 one obtains (see, e.g., [4], 104.4)

v(x) = v(a)+
∫ x

a
w(s)ds.

This shows that v′(x) = w(x). Analogously, one sees that w′ = z which com-
pletes the proof of this lemma. �

Let us recall that a sequence (gh)h∈Λ of functions in C(I) is compact if, for
every subsequence Λ′ ⊂ Λ there exist a subsequence Λ′′ ⊂ Λ′ and a function
g ∈C(I) such that gh→ g (h→ 0, h ∈ Λ′′) uniformly.

We are now able to prove that stability of the upwind scheme for general
boundary conditions of the form (2.10).

Theorem 3.1. Let us assume that the homogeneous boundary value prob-
lem (2.1), (2.2) has only the trivial solution. Then the difference approxima-
tions L̂h, h ∈ Λ, defined in (2.11) fulfill the estimate

‖vh‖2,∞,h 6 γ
(
|`0,h(vh)|+ |`1,h(vh)|+‖Lhvh‖0,∞,h

)
, vh ∈ Eh, h ∈Λ0 (3.1)

where Λ0 = {h ∈ Λ | 0 < h6 h0}, and h0 > 0 and γ > 0 are independent of h.

Proof. The proof will be carried by contradiction. Let us assume that the
assertion does not hold. Then, for every γ > 0 and every h > 0 there exists an
h′ ∈ Λ, h′ 6 h, and a function vh′ ∈ Eh′ with

‖vh‖2,∞,h > γ
(
|`0,h(vh)|+ |`1,h(vh)|+‖Lhvh‖0,∞,h

)
, h = h′.
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156 H. J. Reinhardt

We choose γ = n, n = 1,2, . . . , and set h = h1,h2, . . . . Then for every n ∈ N,
n> 2, one can find h(n) ∈ Λ, h(n) < hn−1, and v(n)h ∈ Eh, h = h(n), such that

‖v(n)h ‖2,∞,h > n
(
|`0,h(v

(n)
h )|+ |`1,h(v

(n)
h )|+‖Lhv(n)h ‖0,∞,h

)
, h = h(n).

We obtain a subsequence Λ′ = {h(1),h(2), . . .} of Λ and elements

zh = v(n)h /‖v(n)h ‖2,∞,h, h = h(n) ∈ Λ
′

with the properties

‖zh‖2,∞,h = 1, |`0,h(zh)|+ |`1,h(zh)|+‖Lhzh‖0,∞,h <
1
n
, h = h(n), n ∈ N.

Thus
Lhzh→ 0 and `i,h(zh)→ 0 (h→ 0,h ∈ Λ

′), i = 0,1.

In particular, (Lhzh)h∈Λ′ is compact and, because ‖zh‖2,∞,h, h ∈ Λ′, is bounded,
Lemma 3.2 can be applied. We obtain a subsequence Λ′′ ⊂ Λ′ and a z ∈C2(I)
such that

‖zh−zh‖0,∞,h+‖D+
h zh−(z′)h‖0,∞,h+‖D2

hzh−(z′′)h‖0,∞,h→ 0 (h→ 0,h∈Λ
′′).

Since z ∈ C2(I), we know that ‖Lhzh− (Lz)h‖0,∞,h → 0 (h→ 0, h ∈ Λ′′), and
the estimate (2.13) yields

‖Lhzh− (Lz)h‖0,∞,h→ 0 (h→ 0, h ∈ Λ
′′).

Indeed, we have

‖Lhzh− (Lz)h‖0,∞,h 6 ‖Lhzh−Lhzh‖0,∞,h +‖Lhzh− (Lz)h‖0,∞,h

6
(2.13)

c1‖zh− zh‖2,∞,h +‖Lhzh− (Lz)h‖0,∞,h

and

‖zh− zh‖2,∞,h 6 ‖zh− zh‖0,∞,h +‖D+
h (zh− zh)‖0,∞,h +‖D2

h(zh− zh)‖0,∞,h

6 ‖z− zh‖0,∞,h +‖D+
h zh− (z′)h‖0,∞,h +‖(z′)h−D+

h zh‖0,∞,h

+‖D2
hzh− (z′′)h‖0,∞,h +‖(z′′)h−D2

hzh‖0,∞,h → 0 (h→ 0, h ∈ Λ
′′).

Since, additionally, Lhzh → 0 (h→ 0, h ∈ Λ′), one sees that Lz = 0. Further-
more, we have `i(z) = 0, i = 0,1, because

|`i,h(zh)− `i,h(zh)|= |`i,h(zh− zh)|6 c‖zh− zh‖2,∞,h→ 0 (h→ 0, h ∈ Λ
′)
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Stability of upwind scheme 157

for i = 0,1 and because |`i(z)−`i,h(z)| → 0 (h→ 0) for z ∈C2(I). By assump-
tion, z = 0 must be the trivial solution of the homogeneous boundary value
problem (2.1), (2.2) which contradicts ‖zh‖2,∞,h = 1 and∣∣‖zh‖2,∞,h−‖zh‖2,∞,h

∣∣→ 0 (h→ 0, h ∈ Λ
′′).

This proves the stability theorem. �

As a consequence of the stability theorem the difference equations (2.4),
(2.10) are uniquely solvable for every right-hand side fh,η0,h,η1,h and every
h ∈ Λ0. Moreover the uniform boundedness of the inverses L̂−1

h : Fh → Eh,
h ∈ Λ0, is assured. The estimate (3.1) is stronger than corresponding estimates
obtained by the maximum principles because the stronger norm ‖ · ‖2,∞,h —
instead of ‖ ·‖0,∞,h — appears on the left-hand side. However, the constant γ is
not explicitly known.

As a further consequence of the stability theorem one obtains convergence
in the usual way whenever fh→ f , ηi,h→ ηi, i = 0,1 (h→ 0). Indeed, with u
the solution of (2.1), (2.2), one inserts uh−uh in the stability estimate (3.1) and
on the right-hand side there essentially appear the truncation errors in the dif-
ferential equation and the boundary conditions. These are known to converge
to zero with an order O(h).
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